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Does the above M–H algorithm really work? It is not quite obvious...

According to our construction, the Markov process introduced at the

beginning, i.e. the one involving R and r, is with the choice

K(x, y) = (1− r(x))R(x, y) = α̃(x, y)q(x, y)

such that p is its invariant density. In the actual M–H algorithm, q(x, y)

is the employed proposal kernel, i.e. a probability density in its second

variable, and 0 ≤ α̃(x, y) ≤ 1 is the acceptance probability that depends

on both the current location x and the proposed location y (unlike

r(x)). If one is able to define 0 ≤ r(x) ≤ 1 and a transition kernel

R(x, y) for any given q(x, y) and α̃(x, y) so that the above identity is

satisfied, our construction is legitimate.
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It is easy to verify that this is achived by first setting

r(x) = 1−
∫

α̃(x, y)q(x, y)dy, x ∈ R
n,

and then simply defining

R(x, y) =
α̃(x, y)q(x, y)

1− r(x)
, x, y ∈ R

n.

Indeed, with these choices it is obvious that

(1− r(x))R(x, y) = α̃(x, y)q(x, y) and

∫

R(x, y)dy = 1.

Moreover, clearly r(x) ≤ 1 and also

r(x) ≥ 1−
∫

q(x, y)dy = 0

for any x ∈ R
n.
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Example

Consider sampling in R
2 from the density

π(x) ∝ exp

(

−10(x2
1 − x2)

2 − (x2 −
1

4
)4
)

.
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We use white noise random walk proposal

q(x, y) =
1

√

2πγ2
exp

(

− 1

2γ2
‖x− y‖2

)

.

Note that now the transition kernel is symmetric, i.e.,

q(x, y) = q(y, x),

and hence

α(x, y) =
π(y)

π(x)
.
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γ = 0.02; acceptance rate 95.6 %
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γ = 0.7; acceptance rate 24.5 %
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γ = 4; acceptance rate 1.4 %
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Adapting the Metropolis-Hastings sampler

With the white noise random walk proposal density (used in the

numerical example of the previous lecture), the sampler does not take

into account the form of the posterior density.

However, the shape of the density can be taken into account when

designing the proposal density in order to minimize the number of

‘wasted proposals’. In high-dimensional setting, this becomes especially

useful if the posterior density is highly anisotropic, i.e., if the posterior is

stretched in some directions.

The proposal distribution can be updated while the sampling algorithm

moves around the posterior density. This process is often called

adaptation.
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Gibbs sampler

Let us first consider some notational details:

• I = {1, 2, . . . , n} is the index set of Rn.

• I =
⋃m

j=1
Im is a partitioning of the index set into disjoint

nonempty subsets.

• The number of elements in Ij is denoted by kj ; k1 + · · ·+ km = n.

• We partition R
n as R

n = R
k1 × · · · × R

km , and correspondingly

x = [xI1 ; . . . ;xIm ] ∈ R
n, xIj ∈ R

kj ,

where xi ∈ R is a component of the vector xIj if and only if i ∈ Ij .

In practice, it often holds that kj = 1 for all j = 1, . . . ,m, meaning that

m = n and xIj is just the jth component of the original vector x.
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Transition kernel for the Gibbs sampler

Suppose that we are still aiming at sampling some given probability

density p : Rn → R+, and recall the Markov process considered at the

previous lecture: If you are currently at some x ∈ R
n, either

1. stay put at x with the probability r(x), 0 ≤ r(x) ≤ 1, or

2. move away from x using a transition kernel R(x, y) otherwise.

Recall also that we made the definition

K(x, y) = (1− r(x))R(x, y).

For the Gibbs sampler, we choose r(x) = 0 for all x ∈ R
n, i.e., moving is

obligatory, and define

K(x, y) = R(x, y) =
m
∏

i=1

p(yIi | yI1 , . . . , yIi−1
, xIi+1

, . . . , xIm),
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where the conditional densities are defined in the natural way based

on p, i.e.,

p(yIi | yI1 , . . . , yIi−1
, xIi+1

, . . . , xIm) =
p(yI1 , . . . , yIi , xIi+1

, . . . , xIm)
∫

Rki
p(yI1 , . . . , yIi , xIi+1

, . . . xIm)dyIi
.

Such a transition kernel K does not, in general, satisfy the detailed

balance equation, i.e.,

p(y)K(y, x) 6= p(x)K(x, y),

but it satisfies the (standard) balance equation,
∫

Rn

p(y)K(y, x)dx =

∫

Rn

p(x)K(x, y)dx,

which is a sufficient condition for p being an invariant density of the

above introduced Markov process. (See the slides of the previous lecture

for the details.)
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Proof: Consider first the left-hand side of the balance equation.

Due to the basic properties of probability densities, we have
∫

Rki

p(xIi |xI1 , . . . , xIi−1
, yIi+1

, . . . , yIm)dxIi = 1

for all i = 1, . . . ,m. By integrating the kernel K(y, x) over Rkm , we

thus get

∫

Rkm

K(y, x)dxIm =

∫

Rkm

m
∏

i=1

p(xIi |xI1 , . . . , xIi−1
, yIi+1

, . . . , yIm)dxIm

=
m−1
∏

i=1

p(xIi |xI1 , . . . , xIi−1
, yIi+1

, . . . , yIm)

∫

Rkm

p(xIm |xI1 , . . . , xIm−1
)dxIm

=
m−1
∏

i=1

p(xIi |xI1 , . . . , xIi−1
, yIi+1

, . . . , yIm).
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Inductively, by always integrating with respect to the last block of x with

respect to which we have not yet integrated, we easily obtain that

altogether
∫

Rn

K(y, x)dx = 1,

which in turn implies that
∫

Rn

p(y)K(y, x)dx = p(y)

∫

Rn

K(y, x)dx = p(y).
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Next, we consider the right-hand side of the balance equation. Since

K(x, y) is independent of xI1 and due to the definition of marginal

probability densities, we have
∫

Rk1

p(x)K(x, y)dxI1 = K(x, y)

∫

Rk1

p(x)dxI1 =: K(x, y)p(xI2 , . . . , xIm).

By substituting the definition of K in the above formula, we see that
∫

Rk1

p(x)K(x, y)dxI1 = K(x, y)p(xI2 , . . . , xIm)

=

(

m
∏

i=2

p(yIi | yI1 , . . . , yIi−1
, xIi+1

, . . . , xIm)

)

× p(yI1 |xI2 , . . . , xIm)p(xI2 , . . . , xIm)

=

(

m
∏

i=2

p(yIi | yI1 , . . . , yIi−1
, xIi+1

, . . . , xIm)

)

p(yI1 , xI2 , . . . , xIm).
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Next, we integrate with respect to xI2 over Rk2 . By denoting

ai = p(yIi | yI1 , . . . , yIi−1
, xIi+1

, . . . , xIm), i = 2, . . . ,m,

we may write

∫

Rk2

∫

Rk1

p(x)K(x, y)dxI1dxI2 =

∫

Rk2

m
∏

i=2

ai p(yI1 , xI2 , . . . , xIm)dxI2

=

m
∏

i=3

ai p(yI2 | yI1 , xI3 , . . . , xIm)

∫

Rk2

p(yI1 , xI2 , . . . , xIm)dxI2

=
m
∏

i=3

ai p(yI2 | yI1 , xI3 , . . . , xIm)p(yI1 , xI3 , . . . , xIm)

=
m
∏

i=3

ai p(yI1 , yI2 , xI3 , . . . , xIm).
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We can continue inductively integrating over the remaining blocks

xI3 , . . . , xIm in turns, which eventually results in
∫

Rn

p(x)K(x, y)dx = p(yI1 , . . . , yIm) = p(y),

and the proof is complete. �
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Gibbs sampler algorithm

1. Choose the initial value x0 ∈ R
n and set k = 0.

2. Draw the next sample as follows:

(a) Set x = xk and j = 1.

(b) Draw yIj ∈ R
kj from the kj-dimensional distribution

p(yIj | yI1 , . . . , yIj−1
, xIj+1

, . . . , xIm).

(c) If j = m, set y = [yI1 ; . . . ; ym] and terminate the inner loop.

Otherwise, set j ← j + 1 and return to step (b).

3. Set xk+1 = y, increase k ← k + 1 and return to step 2, unless the

chosen stopping criterion is satisfied.
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Single component Gibbs sampler algorithm

1. Choose the initial value x0 ∈ R
n and set k = 0.

2. Draw the next sample as follows:

(a) Set x = xk and j = 1.

(b) Draw t ∈ R from the one-dimensional distribution

p(t | y1, . . . , yj−1, xj+1, . . . , xn) ∝ p(y1, . . . , yj−1, t, xj+1, . . . , xn)

and set yj = t.

(c) If j = n, set y = [y1, . . . , yn]
T and terminate the inner loop.

Otherwise, set j ← j + 1 and return to step (b).

3. Set xk+1 = y, increase k ← k + 1 and return to step 2, unless the

chosen stopping criterion is satisfied.

328



Example

Consider again the density

π(x) ∝ exp

(

−10(x2
1 − x2)

2 − (x2 −
1

4
)4
)

, x ∈ R
2.
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How to judge the quality of a sample?

Essential questions:

• What sampling strategy and/or proposal distribution works the best?

• Is the sample big enough?

Consider estimates of the form

∫

f(x)π(x)dx = E{f(X)} ≈ 1

N

N
∑

j=1

f(xj),

and recall that the Central Limit Theorem gives some answers regarding

the convergence.
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Assume that the variables Yj = f(Xj) ∈ R are mutually independent

and identically distributed with E{Yj} = ȳ and var(Yj) = σ2, and define

ỸN =
1

N

N
∑

j=1

Yj and ZN =

√
N(ỸN − ȳ)

σ
.

Then, ỸN → E{Y } almost surely (LLN). Moreover, ZN is

asymptotically (standard) normally distributed, that is,

lim
N→∞

P{Zn ≤ z} = 1√
2π

∫ z

−∞

exp

(

−1

2
s2
)

ds.

Loosely speaking, the above result says that the approximation error

behaves as

1

N

N
∑

j=1

f(xj)−
∫

f(x)π(x)dx ≈ σ√
N

provided that the samples {xj} are independent.
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Let us have another look at the sample histories corresponding to our

standard example. First, the Metropolis–Hastings algorithm for the three

choices of γ (the vertical component is plotted):
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Clearly, consecutive elements are not independent.
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Then, the Gibbs sampler (both components are plotted):
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The results are somewhat better, but there is still some correlation

between consecutive elements — especially for the vertical component.
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If every kth sample point is independent, one might expect the

discrepancy to behave as 1/
√

N/k =
√

k/N instead of 1/
√
N .

Consequently, one should try to choose the proposal distribution so that

the correlation length is as small as possible.

Quick visual assessment: Take a look at the sample histories of

individual components. How should they look like?

Consider a white noise signal, where the sample points are independent

and the sample history looks like a "fuzzy worm". This is something one

could aim at.
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Autocovariance and correlation length

Denote by fc(xj) ∈ R, j = 1, . . . , N , the centered sample points, i.e.,

fc(xj) = f(xj)−
1

N

N
∑

i=1

f(xi), j = 1, . . . , N.

Define the normalized autocovariance of the sample as

γ2
k =

1

γ2
0(N − k)

N−k
∑

j=1

fc(xj)fc(xj+k), k ≥ 1,

where γ2
0 = 1

N

∑N

j=1
fc(xj)

2 is the mean energy of the signal.

The correlation length of the sample {f(xj)
}N

j=1
can be estimated based

on the decay of the normalized autocovariance sequence of the sample.
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For a white noise sample, γ2
k ≈ 0 for any k > 0, where the estimate gets

better as the sample, i.e., N , increases.

We test this hypothesis by drawing two white noise samples (N = 5000

and N = 100000) and plotting the function k 7→ γ2
k in both cases.
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Normalized autocovariance sequences for the MH example.

γ = 0.02 γ = 0.7 γ = 4
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Normalized autocovariances for the Gibbs example;
horizontal component in blue and vertical in red.
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