
Combinatorial
Optimization
Dias, Schiewe, Pattanaki Instructor: Pattanaki

NP Problems II

§ Week VI §

Problem 1: TSP alternative

For the following graph, propose an algorithm to find a solution for TSP.

Figure 1: Direct, weighted graph.

Give examples of at least three subtours and their corresponding subtour constraint elimination.

Solution:

There are plethora of algorithms that could be used as possible heuristics in order to approximate a solution
for TSP. A simple algorithm could an extension of either Dijkstra’s algorithm or from minimum spanning tree.
All those alternatives are valid.

An original approach could be as follows:

• For each node, choose the edge with the lowest code;

• If that edge leads to a node already visited, skip such node;

• Repeat the process until all nodes are visited.

Problem 2: Vertex Cycle Cover

Given a directed graph G = (V,E), a vertex cycle cover is a subset of vertices such that every simple cycle in
G passes through at least one of these vertices. For example, the graph shown in Fig 1 has a vertex cycle cover
of size 2 (shaded).



2 Combinatorial Optimization NP Problems II

Vertex Cycle Cover (VCC): Given a digraph G and an integer k, does G contain a vertex cycle cover of
size at most k?

Figure 2: A graph and a vertex cycle cover consisting of {g, h}.

Is this problem NP? Provide a possible algorithm to solve such problem.

Solution:

This problem is more commonly referred to as the Feedback Vertex Set. A naive approach to showing that
it is in NP-would be to guess the k vertices of V ′ that will constitute the VCC, and then verify that every simple
cycle passes through at least one of these vertices. The problem is that there are exponentially many simple
cycles, so you cannot enumerate them all.

You might wonder, couldn’t we simply guess the cycle as well? If the guessed-at cycle passes through some
vertex of V ′ then we output “no” and otherwise we output “yes.” The problem is that this does not work
according to the rules of nondeterministic computation. Recall that a nondeterministic computation succeeds
of any sequence of guesses leads to an answer of “yes”. Now, suppose that your graph does not have a VCC. The
above program will guess some subset of k vertices and then may guess a simple cycle that does not pass through
these vertices. It then answers “yes” which implies that the global answer is “yes.” But the global answer should
be “no”. (The problem is that it checked only one cycle, but it would need to check them all before answering
“yes”.)

The trick is to realize that the problem can be restated in a manner that makes the verification process
much simpler. We can equivalently define a VCC to be a subset of vertices such that, after removing these
vertices, the graph is acyclic. (For example, in Fig. 1(a) the vertices g, h form a VCC, and in (b) their removal
results in a DAG.) To see this, observe that if every simple cycle passes through some vertex of the VCC, then
removing these vertices destroys all cycles. Conversely, if the removal of the vertices of the VCC results in an
acyclic graph, then every cycle of the original graph must pass through at least one of these vertices. We can
check that a digraph is acylic either by (1) running DFS and checking that there is no back-edge or (2) compute
the strong components and check that every vertex is in its own strong component.

Problem 3: Cliques

When finding cliques, it is natural to look for vertices of high degree. Suppose, however, that you want to find
cliques consisting of vertices of relatively low degree. We will show that even this problem is NP-complete.

Low-Degree Clique (LDC): Given a graph G = (V,E) and an integer k, does G have a clique of size at
least k consisting entirely of vertices who degree is not greater than the median vertex degree of the entire graph?

By the median vertex degree, we mean the median value of the degrees of all n vertices of the graph.

For example, the graph shown in Fig. 2 has median vertex degree of 3. There exists an LDC of size 3
(vertices b, c, e) since all these vertices have degree at most 3. Even though there is a clique of size 4 (vertices
a, f, g, h) it is not an LDC since it contains (at least one) vertex of degree higher than 3.

Show that the LDC problem is NP.
Solution:



NP Problems II – Dias, Schiewe, Pattanaki 3

Figure 3: Low-Degree clique

LDC ∈ NP : Given a graph G and integer k, we guess k vertices of G. We then compute the degrees of all
the vertices of G and compute the median of this set. (This can be done in O(n +m) time by inspecting the
adjacency lists of all the vertices and using a fast selection algorithm.) We check that every one of the guessed
vertices has degree less than or equal to the median degree, and that each of these vertices is adjacent to all
the others. If both of these are satisfied, we output “yes,” and otherwise we output “no.” If G has an LDC, then
one of these guesses will succeed in identifying the LDC and we will output “yes.” If not, none of the guesses
will work, and we will output “no.”

LDC is NP-hard: We will show that the standard clique problem is polynomially reducible to LDC (Clique
≤ p LDC). The idea is to artificially increase the median degree of G so that any valid clique in the original
graph is an LDC in the modified graph. We want to do this without accidentally creating an LDC. Suppose
that we are given an input graph G and integer k. Let n be the number of vertices in G, and let us make the
(trivial) assumption that k ≥ 3. (Otherwise, the problem reduces to determining whether G has at least one
edge.) We create a new graph G0 by making a copy of G and adding to this a complete n× n bipartite graph.
The result is a graph with 3n vertices. The original vertices of G have degree at most n− 1, and the 2n newly
added vertices all have degree n, so the median degree of G′ is n. We output G′ and k. Clearly, this can be
done in polynomial time. (An alternative approach is to generate a very large clique in G, but some care is
needed to avoid this large clique from providing a spurious LDC.) To establish correctness, we will show that
G has a clique of size k if and only if G′ has an LDC of size k.

→ Suppose that G has a clique V ′ of size k. We assert that same vertices form an LDC within G′. The
reason is that G0 has median degree n and each original vertex of G has degree at most n−1, so all the vertices
of V ′ are LDC-eligible.

→ Suppose that G′ has an LDC V ′ of size k. The largest clique in any bipartite graph is of size 2, and
by our assumption k ≥ 3. Thus, the bipartite part of G′ cannot contribute to the existence of a clique, which
implies that V ′ is a clique within the original graph G.

Problem 4: Hamiltonian Path vs TSP

What is the main difference between Hamiltonian Cycle and Travelling Salesman Problem. Can we solve one
using the other?

Solution:

Hamiltonian Cycle (or Path, for that matter) only concern with the existence of a path based on its cardi-
nality and following the problem constraints. On the other hand, Travelling Salesman Problem concerns with
those metrics as well as the cost of the chosen route.

Problem 5: Paths and Cycles

The graph shown below is the Petersen graph. Does it have a Hamilton cycle? Justify your answer. Does it
have a Hamilton path? Justify your answer.



4 Combinatorial Optimization NP Problems II

Figure 4: Peterson Graph

Solution:

A Hamiltonian cycle is a cycle that uses every vertex of a graph while a Hamiltonian graph is a graph that
has a Hamiltonian cycle. In Peterson’s graph, there exists Hamiltonian paths, but no Hamiltonian cycle.

Thus, the Petersen graph is not Hamiltonian. However, it is interesting to note that by deleting any vertex
in the Petersen graph, it makes it Hamiltonian.


	TSP alternative
	Vertex Cycle Cover
	Cliques
	Hamiltonian Path vs TSP
	Paths and Cycles

