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This appendix covers some basic mathematics that are used in econometric analysis. 

We summarize various properties of the summation operator, study properties of 

linear and certain nonlinear equations, and review proportions and percentages. 

We also present some special functions that often arise in applied econometrics, including 

quadratic functions and the natural logarithm. The first four sections require only basic 

algebra skills. Section A.5 contains a brief review of differential calculus; although a 

knowledge of calculus is not necessary to understand most of the text, it is used in some 

end-of-chapter appendices and in several of the more advanced chapters in Part 3.

A.1  The Summation Operator and Descriptive Statistics
The summation operator is a useful shorthand for manipulating expressions involving 
the sums of many numbers, and it plays a key role in statistics and econometric analy-
sis. If {xi: i  1, …, n} denotes a sequence of n numbers, then we write the sum of these 
numbers as

	 ​∑ 
i1

 ​ 
n

  ​ xi​  x1  x2  …  xn.� [A.1] 

With this definition, the summation operator is easily shown to have the following 
properties:

Property Sum.1:  For any constant c,

	​ ∑ 
i1

 ​ 
n

  ​ c​  nc.� [A.2] 

Property Sum.2:  For any constant c,

	 ​∑ 
i1

 ​ 
n

  ​ ​cxi  c​∑ 
i1

 ​ 
n

  ​ xi​.� [A.3]
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Property Sum.3:  If {(xi,yi): i 5 1, 2, …, n} is a set of n pairs of numbers, and a and b are 
constants, then

	​ ∑ 
i1

 ​ 
n

  ​ ​ (axi 1 byi) 5 a ​∑ 
i1

 ​ 
n

  ​ ​ xi 1 b ​∑ 
i1

 ​ 
n

  ​ ​ yi.� [A.4]

It is also important to be aware of some things that cannot be done with the summa-
tion operator. Let {(xi,yi): i  1, 2, …, n} again be a set of n pairs of numbers with yi  0 
for each i. Then,

	 ​∑ 
i1

 ​ 
n

  ​ ​ (xi/yi)  ​ ​∑ 
i1

 ​ 
n

  ​ ​ xi ​​ ​∑ 
i1

 ​ 
n

  ​ ​ yi ​.
In other words, the sum of the ratios is not the ratio of the sums. In the n  2 case, the 
application of familiar elementary algebra also reveals this lack of equality: x1/y1   

x2/y2  (x1  x2)/(y1  y2). Similarly, the sum of the squares is not the square of the sum: ​

∑ i1​ 
n
  ​ ​ x2

i  ​ ​∑ i1​ 
n
  ​ ​ xi ​

2
, except in special cases. That these two quantities are not generally 

equal is easiest to see when n  2: x2
1  x2

2  (x1  x2)
2  x2

1  2x1x2  x2
2.

Given n numbers {xi: i  1, …, n}, we compute their average or mean by adding 
them up and dividing by n:

	 ​- x​  (1/n) ​∑ 
i1

 ​ 
n

  ​ ​xi.� [A.5]

When the xi are a sample of data on a particular variable (such as years of education), we 
often call this the sample average (or sample mean) to emphasize that it is computed from 
a particular set of data. The sample average is an example of a descriptive statistic; in this 
case, the statistic describes the central tendency of the set of points xi.

There are some basic properties about averages that are important to understand. 
First, suppose we take each observation on x and subtract off the average: di  xi  ​- x​ 
(the “d” here stands for deviation from the average). Then, the sum of these deviations 
is always zero:

​∑ 
i1

 ​ 
n

  ​ ​ di  ​∑ 
i1

 ​ 
n

  ​ ​ (xi  ​- x​)  ​∑ 
i1

 ​ 
n

  ​ ​ xi  ​∑ 
i1

 ​ 
n

  ​ ​​- x​  ​∑ 
i1

 ​ 
n

  ​ ​ xi  n  ​- x​  n​- x​  n ​- x​  0.

We summarize this as

	​ ∑ 
i1

 ​ 
n

  ​ ​ (xi  ​- x​)  0.� [A.6]

A simple numerical example shows how this works. Suppose n  5 and x1  6, x2  1,  
x3  2, x4  0, and x5  5. Then, ​- x​  2, and the demeaned sample is {4, 1, 4, 2, 3}.  
Adding these gives zero, which is just what equation (A.6) says.

In our treatment of regression analysis in Chapter 2, we need to know some additional 
algebraic facts involving deviations from sample averages. An important one is that the 
sum of squared deviations is the sum of the squared xi minus n times the square of ​- x​:

	​ ∑ 
i1

 ​ 
n

  ​ ​(xi  ​- x​)2  ​∑ 
i1

 ​ 
n

  ​ ​ xi
2  n(​- x​)2.� [A.7]
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This can be shown using basic properties of the summation operator:

	 ​∑ 
i1

 ​ 
n

  ​ ​(xi  ​- x​)2	  ​∑ 
i1

 ​ 
n

  ​ ​ (xi
2  2xi ​

- x​  x̄2)

		   ​∑ 
i1

 ​ 
n

  ​ ​ xi
2  2x̄ ​∑ 

i1

 ​ 
n

  ​ ​ xi  n( ​
- x​)2

		   ​∑ 
i1

 ​ 
n

  ​ ​ xi
2  2n( ​

- x​)2  n( ​
- x​)2   ​∑ 

i1

 ​ 
n

  ​ ​ xi
2  n( ​

- x​)2.

Given a data set on two variables, {(xi,yi): i  1, 2, …,  n}, it can also be shown that

	 ​∑ 
i1

 ​ 
n

  ​ ​ (xi   ​
- x​)(  yi   ​

- y​) 5 ​∑ 
i1

 ​ 
n

  ​ ​ xi(  yi   ​
- y​)

	5  ​∑ 
i1

 ​ 
n

  ​ ​(xi   ​
- x​)yi  ​∑ 

i1

 ​ 
n

  ​ ​ xi yi  n( ​
- x​. ​

- y​);� [A.8]

this is a generalization of equation (A.7). (There, yi  xi for all i.)
The average is the measure of central tendency that we will focus on in most of this text. 

However, it is sometimes informative to use the median (or sample median) to describe the 
central value. To obtain the median of the n numbers {x1, …, xn}, we first order the values 
of the xi from smallest to largest. Then, if n is odd, the sample median is the middle number 
of the ordered observations. For example, given the numbers {4,8,2,0,21,10,18}, the 
median value is 2 (because the ordered sequence is {10,4,0,2,8,18,21}). If we change 
the largest number in this list, 21, to twice its value, 42, the median is still 2. By contrast, 
the sample average would increase from 5 to 8, a sizable change. Generally, the median is 
less sensitive than the average to changes in the extreme values (large or small) in a list of 
numbers. This is why “median incomes” or “median housing values” are often reported, 
rather than averages, when summarizing income or housing values in a city or county.

If n is even, there is no unique way to define the median because there are two 
numbers at the center. Usually, the median is defined to be the average of the two middle 
values (again, after ordering the numbers from smallest to largest). Using this rule, the 
median for the set of numbers {4,12,2,6} would be (4  6)/2  5.

A.2  Properties of Linear Functions
Linear functions play an important role in econometrics because they are simple to inter-
pret and manipulate. If x and y are two variables related by

	 y  0  1x,� [A.9]

then we say that y is a linear function of x, and 0 and 1 are two parameters (numbers) 
describing this relationship. The intercept is 0, and the slope is 1.

The defining feature of a linear function is that the change in y is always 1 times the 
change in x:

	 y  1x,� [A.10]

where  denotes “change.” In other words, the marginal effect of x on y is constant and 
equal to 1.
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	E xample A.1	 Linear Housing Expenditure Function

Suppose that the relationship between monthly housing expenditure and monthly income is

	 housing  164  .27 income.� [A.11]

Then, for each additional dollar of income, 27 cents is spent on housing. If family income 
increases by $200, then housing expenditure increases by (.27)200  $54. This function is 
graphed in Figure A.1.

According to equation (A.11), a family with no income spends $164 on housing, 
which of course cannot be literally true. For low levels of income, this linear function 
would not describe the relationship between housing and income very well, which is why 
we will eventually have to use other types of functions to describe such relationships.

In (A.11), the marginal propensity to consume (MPC) housing out of income is .27. 
This is different from the average propensity to consume (APC), which is 

​ housing _______ 
income

 ​  164/income  .27.

The APC is not constant, it is always larger than the MPC, and it gets closer to the MPC 
as income increases.

Linear functions are easily defined for more than two variables. Suppose that y is 
related to two variables, x1 and x2, in the general form

	 y  0  1x1  2x2.� [A.12]

F i g u r e  A . 1   Graph of housing  164 1 .27 income.
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It is rather difficult to envision this function because its graph is three-dimensional. 
Nevertheless, 0 is still the intercept (the value of y when x1  0 and x2  0), and 1 and 2 
measure particular slopes. From (A.12), the change in y, for given changes in x1 and x2, is

	 y  1x1  2x2.� [A.13]

If x2 does not change, that is, x2  0, then we have

	 y  1x1 if x2  0,

so that 1 is the slope of the relationship in the direction of x1:

1  ​ 
 y

 ____ 
x1

 ​ if x2  0.

Because it measures how y changes with x1, holding x2 fixed, 1 is often called the partial 
effect of x1 on y. Because the partial effect involves holding other factors fixed, it is closely 
linked to the notion of ceteris paribus. The parameter 2 has a similar interpretation: 
2  y/x2 if x1  0, so that 2 is the partial effect of x2 on y.

	E xample A.2	 Demand for Compact Discs

For college students, suppose that the monthly quantity demanded of compact discs is 
related to the price of compact discs and monthly discretionary income by

quantity  120  9.8 price  .03 income,

where price is dollars per disc and income is measured in dollars. The demand curve is 
the relationship between quantity and price, holding income (and other factors) fixed. 
This is graphed in two dimensions in Figure A.2 at an income level of $900. The slope 
of the demand curve, 9.8, is the partial effect of price on quantity: holding income 
fixed, if the price of compact discs increases by one dollar, then the quantity demanded 
falls by 9.8. (We abstract from the fact that CDs can only be purchased in discrete units.) 
An increase in income simply shifts the demand curve up (changes the intercept), but 
the slope remains the same.

A.3  Proportions and Percentages
Proportions and percentages play such an important role in applied economics that it 
is necessary to become very comfortable in working with them. Many quantities reported 
in the popular press are in the form of percentages; a few examples are interest rates, un-
employment rates, and high school graduation rates.

An important skill is being able to convert proportions to percentages and vice versa. 
A percentage is easily obtained by multiplying a proportion by 100. For example, if the 
proportion of adults in a county with a high school degree is .82, then we say that 82% 
(82 percent) of adults have a high school degree. Another way to think of percentages 
and proportions is that a proportion is the decimal form of a percentage. For example, if 
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the marginal tax rate for a family earning $30,000 per year is reported as 28%, then the 
proportion of the next dollar of income that is paid in income taxes is .28 (or 28¢).

When using percentages, we often need to convert them to decimal form. For exam-
ple, if a state sales tax is 6% and $200 is spent on a taxable item, then the sales tax paid is 
200(.06)  $12. If the annual return on a certificate of deposit (CD) is 7.6% and we invest 
$3,000 in such a CD at the beginning of the year, then our interest income is 3,000(.076) 
 $228. As much as we would like it, the interest income is not obtained by multiplying 
3,000 by 7.6.

We must be wary of proportions that are sometimes incorrectly reported as percent-
ages in the popular media. If we read, “The percentage of high school students who drink 
alcohol is .57,” we know that this really means 57% (not just over one-half of a percent, 
as the statement literally implies). College volleyball fans are probably familiar with press 
clips containing statements such as “Her hitting percentage was .372.” This really means 
that her hitting percentage was 37.2%.

In econometrics, we are often interested in measuring the changes in various quan-
tities. Let x denote some variable, such as an individual’s income, the number of crimes 
committed in a community, or the profits of a firm. Let x0 and x1 denote two values for 
x: x0 is the initial value, and x1 is the subsequent value. For example, x0 could be the an-
nual income of an individual in 1994 and x1 the income of the same individual in 1995. 
The proportionate change in x in moving from x0 to x1, sometimes called the relative 
change, is simply

	 (x1  x0)/x0  x/x0,� [A.14]

147
quantity

15
price

=  –9.8 
D price

D quantity

F i g u r e  A . 2   �Graph of quantity  120 2 9.8 price 1 .03 income, with income  
fixed at $900.
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assuming, of course, that x0  0. In other words, to get the proportionate change, we sim-
ply divide the change in x by its initial value. This is a way of standardizing the change so 
that it is free of units. For example, if an individual’s income goes from $30,000 per year 
to $36,000 per year, then the proportionate change is 6,000/30,000  .20.

It is more common to state changes in terms of percentages. The percentage change 
in x in going from x0 to x1 is simply 100 times the proportionate change:

	 %x  100(x/x0);� [A.15]

the notation “%x” is read as “the percentage change in x.” For example, when income 
goes from $30,000 to $33,750, income has increased by 12.5%; to get this, we simply 
multiply the proportionate change, .125, by 100.

Again, we must be on guard for proportionate changes that are reported as percentage 
changes. In the previous example, for instance, reporting the percentage change in income 
as .125 is incorrect and could lead to confusion.

When we look at changes in things like dollar amounts or population, there is no 
ambiguity about what is meant by a percentage change. By contrast, interpreting percent-
age change calculations can be tricky when the variable of interest is itself a percentage,  
something that happens often in economics and other social sciences. To illustrate,  
let x denote the percentage of adults in a particular city having a college education. Suppose 
the initial value is x0  24 (24% have a college education), and the new value is x1  30.  
We can compute two quantities to describe how the percentage of college-educated  
people has changed. The first is the change in x, x. In this case, x  x1  x0  6:  
the percentage of people with a college education has increased by six percentage  
points. On the other hand, we can compute the percentage change in x using equation 
(A.15): % x  100[(30  24)/24]  25.

In this example, the percentage point change and the percentage change are very 
different. The percentage point change is just the change in the percentages. The 
percentage change is the change relative to the initial value. Generally, we must pay close 
attention to which number is being computed. The careful researcher makes this distinc-
tion perfectly clear; unfortunately, in the popular press as well as in academic research, the 
type of reported change is often unclear.

	E xample A.3	 Michigan Sales Tax Increase

In March 1994, Michigan voters approved a sales tax increase from 4% to 6%. In politi-
cal advertisements, supporters of the measure referred to this as a two percentage point 
increase, or an increase of two cents on the dollar. Opponents of the tax increase called it a 
50% increase in the sales tax rate. Both claims are correct; they are simply different ways 
of measuring the increase in the sales tax. Naturally, each group reported the measure that 
made its position most favorable.

For a variable such as salary, it makes no sense to talk of a “percentage point change 
in salary” because salary is not measured as a percentage. We can describe a change in 
salary either in dollar or percentage terms.
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A.4  Some Special Functions and Their Properties
In Section A.2, we reviewed the basic properties of linear functions. We already indicated 
one important feature of functions like y  0  1x: a one-unit change in x results in 
the same change in y, regardless of the initial value of x. As we noted earlier, this is the 
same as saying the marginal effect of x on y is constant, something that is not realistic for 
many economic relationships. For example, the important economic notion of diminishing 
marginal returns is not consistent with a linear relationship.

In order to model a variety of economic phenomena, we need to study several nonlin-
ear functions. A nonlinear function is characterized by the fact that the change in y for a 
given change in x depends on the starting value of x. Certain nonlinear functions appear 
frequently in empirical economics, so it is important to know how to interpret them.  
A complete understanding of nonlinear functions takes us into the realm of calculus. Here, 
we simply summarize the most significant aspects of the functions, leaving the details of 
some derivations for Section A.5.

Quadratic Functions
One simple way to capture diminishing returns is to add a quadratic term to a linear rela-
tionship. Consider the equation

	 y  0  1x  2  x
2,� [A.16]

where 0, 1, and 2 are parameters. When 1  0 and 2  0, the relationship between y 
and x has the parabolic shape given in Figure A.3, where 0  6, 1  8, and 2  2.

When 1  0 and 2  0, it can be shown (using calculus in the next section) that the 
maximum of the function occurs at the point

	 x*  1/(22).� [A.17]

For example, if y  6  8x  2x2 (so 1  8 and 2  2), then the largest value of y 
occurs at x*  8/4  2, and this value is 6  8(2)  2(2)2  14 (see Figure A.3).

The fact that equation (A.16) implies a diminishing marginal effect of x on y is easily 
seen from its graph. Suppose we start at a low value of x and then increase x by some amount, 
say, c. This has a larger effect on y than if we start at a higher value of x and increase x by the 
same amount c. In fact, once x  x*, an increase in x actually decreases y.

The statement that x has a diminishing marginal effect on y is the same as saying that 
the slope of the function in Figure A.3 decreases as x increases. Although this is clear from 
looking at the graph, we usually want to quantify how quickly the slope is changing. An 
application of calculus gives the approximate slope of the quadratic function as

	 slope  ​ 
y

 ___ 
x

 ​  1  22  x,� [A.18]

for “small” changes in x. [The right-hand side of equation (A.18) is the derivative of the 
function in equation (A.16) with respect to x.] Another way to write this is

	 y  (1  22x)x  for “small” x.� [A.19]
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To see how well this approximation works, consider again the function y  6  8x  2x2. 
Then, according to equation (A.19), y  (8  4x)x. Now, suppose we start at x  1 and 
change x by x  .1. Using (A.19), y  (8  4)(.1)  .4. Of course, we can compute 
the change exactly by finding the values of y when x  1 and x  1.1: y0  6  8(1)   
2(1)2  12 and y1  6  8(1.1)  2(1.1)2  12.38, so the exact change in y is .38. The 
approximation is pretty close in this case.

Now, suppose we start at x  1 but change x by a larger amount: x  .5. Then, the 
approximation gives y  4(.5)  2. The exact change is determined by finding the dif-
ference in y when x  1 and x  1.5. The former value of y was 12, and the latter value 
is 6  8(1.5)  2(1.5)2  13.5, so the actual change is 1.5 (not 2). The approximation is 
worse in this case because the change in x is larger.

For many applications, equation (A.19) can be used to compute the approximate mar-
ginal effect of x on y for any initial value of x and small changes. And, we can always 
compute the exact change if necessary.

	E xample A.4	 A Quadratic Wage Function

Suppose the relationship between hourly wages and years in the workforce (exper) is 
given by

	 wage  5.25  .48 exper  .008 exper2.� [A.20]

This function has the same general shape as the one in Figure A.3. Using equation (A.17), 
exper has a positive effect on wage up to the turning point, exper*  .48/[2(.008)]  30. 
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F i g u r e  A . 3   Graph of y  6 1 8x 2 2x2. 
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The first year of experience is worth approximately .48, or 48 cents [see (A.19) with x  0,  
x  1]. Each additional year of experience increases wage by less than the previous year—
reflecting a diminishing marginal return to experience. At 30 years, an additional year of 
experience would actually lower the wage. This is not very realistic, but it is one of the con-
sequences of using a quadratic function to capture a diminishing marginal effect: at some 
point, the function must reach a maximum and curve downward. For practical purposes, the 
point at which this happens is often large enough to be inconsequential, but not always.

The graph of the quadratic function in (A.16) has a U-shape if 1  0 and 2  0, in 
which case there is an increasing marginal return. The minimum of the function is at the 
point 1/(22).

The Natural Logarithm
The nonlinear function that plays the most important role in econometric analysis is the 
natural logarithm. In this text, we denote the natural logarithm, which we often refer to 
simply as the log function, as

	 y  log(x).� [A.21]

You might remember learning different symbols for the natural log; ln(x) or loge(x) are 
the most common. These different notations are useful when logarithms with several dif-
ferent bases are being used. For our purposes, only the natural logarithm is important, and 
so log(x) denotes the natural logarithm throughout this text. This corresponds to the nota-
tional usage in many statistical packages, although some use ln(x) [and most calculators 
use ln(x)]. Economists use both log(x) and ln(x), which is useful to know when you are 
reading papers in applied economics.

The function y  log(x) is defined only for x  0, and it is plotted in Figure A.4. It is 
not very important to know how the values of log(x) are obtained. For our purposes, the 
function can be thought of as a black box: we can plug in any x  0 and obtain log(x) from 
a calculator or a computer.

Several things are apparent from Figure A.4. First, when y  log(x), the relationship 
between y and x displays diminishing marginal returns. One important difference between 
the log and the quadratic function in Figure A.3 is that when y  log(x), the effect of x on 
y never becomes negative: the slope of the function gets closer and closer to zero as x gets 
large, but the slope never quite reaches zero and certainly never becomes negative.

The following are also apparent from Figure A.4:

	 log(x)  0 for 0  x  1

	 log(1)  0

	 log(x)  0 for x  1.

In particular, log(x) can be positive or negative. Some useful algebraic facts about the log 
function are

	 log(x1
.x2)  log(x1)  log(x2), x1, x2  0

	 log(x1/x2)  log(x1)  log(x2), x1, x2  0

	 log(xc)  clog(x), x  0, c any number.

Occasionally, we will need to rely on these properties.
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The logarithm can be used for various approximations that arise in econometric appli-
cations. First, log(1  x)  x for x  0. You can try this with x  .02, .1, and .5 to see how 
the quality of the approximation deteriorates as x gets larger. Even more useful is the fact 
that the difference in logs can be used to approximate proportionate changes. Let x0 and x1 
be positive values. Then, it can be shown (using calculus) that

	 log(x1)  log(x0)  (x1  x0)/x0  x/x0� [A.22]

for small changes in x. If we multiply equation (A.22) by 100 and write log(x)  log(x1) 
 log(x0), then

	 100.log(x)  %x� [A.23]

for small changes in x. The meaning of “small” depends on the context, and we will en-
counter several examples throughout this text.

Why should we approximate the percentage change using (A.23) when the exact per-
centage change is so easy to compute? Momentarily, we will see why the approximation 
in (A.23) is useful in econometrics. First, let us see how good the approximation is in two 
examples.

First, suppose x0  40 and x1  41. Then, the percentage change in x in moving from 
x0 to x1 is 2.5%, using 100(x1  x0)/x0. Now, log(41)  log(40)  .0247 to four decimal 
places, which when multiplied by 100 is very close to 2.5. The approximation works pretty 
well. Now, consider a much bigger change: x0  40 and x1  60. The exact percentage 
change is 50%. However, log(60)  log(40)  .4055, so the approximation gives 40.55%, 
which is much farther off.

Why is the approximation in (A.23) useful if it is only satisfactory for small changes? 
To build up to the answer, we first define the elasticity of y with respect to x as

0

y

1 x

y = log(x)

F i g u r e  A . 4   Graph of y  log(x).
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	 ​ 
y

 ___ 
  x

 ​  .  ​ x __  y ​  ​ 
%y

 _____ 
%  x

 ​ .� [A.24]

In other words, the elasticity of y with respect to x is the percentage change in y when x 
increases by 1%. This notion should be familiar from introductory economics.

If y is a linear function of x, y  0  1x, then the elasticity is

	​ 
y

 ___ 
  x

 ​  .  ​ x __  y ​  1
.  ​ x __  y ​   1

. ​  x ________ 
0  1x

 ​ ,� [A.25]

which clearly depends on the value of x. (This is a generalization of the well-known result 
from basic demand theory: the elasticity is not constant along a straight-line demand 
curve.)

Elasticities are of critical importance in many areas of applied economics, not just in 
demand theory. It is convenient in many situations to have constant elasticity models, and 
the log function allows us to specify such models. If we use the approximation in (A.23) 
for both x and y, then the elasticity is approximately equal to log(y)/log(x). Thus, a 
constant elasticity model is approximated by the equation

	 log(y)  0  1log(x),� [A.26]

and 1 is the elasticity of y with respect to x (assuming that x, y  0).

	E xample A.5	 Constant Elasticity Demand Function

If q is quantity demanded and p is price and these variables are related by

	 log(q)  4.7  1.25 log(p),

then the price elasticity of demand is 1.25. Roughly, a 1% increase in price leads to a 
1.25% fall in the quantity demanded.

For our purposes, the fact that 1 in (A.26) is only close to the elasticity is not 
important. In fact, when the elasticity is defined using calculus—as in Section A.5—the 
definition is exact. For the purposes of econometric analysis, (A.26) defines a constant 
elasticity model. Such models play a large role in empirical economics.

Other possibilities for using the log function often arise in empirical work. Suppose 
that y  0 and

	 log(y)  0  1x.� [A.27]

Then, log(y)  1x, so 100.log(y)  (100.1)x. It follows that, when y and x are 
related by equation (A.27),

	 %y  (100.1)x.� [A.28]
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	E xample A.6	 Logarithmic Wage Equation

Suppose that hourly wage and years of education are related by

	 log(wage)  2.78  .094 educ.

Then, using equation (A.28),

	 %wage  100(.094) educ  9.4 educ.

It follows that one more year of education increases hourly wage by about 9.4%.

Generally, the quantity %y/x is called the semi-elasticity of y with respect to x.  
The semi-elasticity is the percentage change in y when x increases by one unit. What 
we have just shown is that, in model (A.27), the semi-elasticity is constant and equal to 
100.1. In Example A.6, we can conveniently summarize the relationship between wages 
and education by saying that one more year of education—starting from any amount of 
education—increases the wage by about 9.4%. This is why such models play an important 
role in economics.

Another relationship of some interest in applied economics is

	 y  0  1log(x),� [A.29]

where x  0. How can we interpret this equation? If we take the change in y, we get 
y  1log(x), which can be rewritten as y  (1/100)[100.log(x)]. Thus, using the 
approximation in (A.23), we have

	 y  (  1/100)(%x).� [A.30]

In other words, 1/100 is the unit change in y when x increases by 1%.

	E xample A.7	 Labor Supply Function

Assume that the labor supply of a worker can be described by

	 hours  33  45.1 log(wage),

where wage is hourly wage and hours is hours worked per week. Then, from (A.30),

	 hours  (45.1/100)(%wage)  .451 %wage.

In other words, a 1% increase in wage increases the weekly hours worked by about .45, or 
slightly less than one-half hour. If the wage increases by 10%, then hours  .451(10)  
4.51, or about four and one-half hours. We would not want to use this approximation for 
much larger percentage changes in wages.
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The Exponential Function
Before leaving this section, we need to discuss a special function that is related to the 
log. As motivation, consider equation (A.27). There, log( y) is a linear function of x. 
But how do we find y itself as a function of x? The answer is given by the exponential 
function.

We will write the exponential function as y  exp(x), which is graphed in Figure A.5. 
From Figure A.5, we see that exp(x) is defined for any value of x and is always greater 
than zero. Sometimes, the exponential function is written as y  e x, but we will not use 
this notation. Two important values of the exponential function are exp(0)  1 and exp(1) 
 2.7183 (to four decimal places).

The exponential function is the inverse of the log function in the following 
sense: log[exp(x)]  x for all x, and exp[log(x)]  x for x  0. In other words, the 
log “undoes” the exponential, and vice versa. (This is why the exponential function is 
sometimes called the anti-log function.) In particular, note that log(y)  0  1x is 
equivalent to

	 y  exp(  0  1x).

If 1  0, the relationship between x and y has the same shape as in Figure A.5. Thus, if 
log(y)  0  1x with 1  0, then x has an increasing marginal effect on y. In Example 
A.6, this means that another year of education leads to a larger change in wage than the 
previous year of education.

Two useful facts about the exponential function are exp(x1  x2)  exp(x1)exp(x2) 
and exp[c.log(x)]  xc.

0

y

x

y = exp(x)

F i g u r e  A . 5   Graph of y  exp(x).
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A.5  Differential Calculus
In the previous section, we asserted several approximations that have foundations in cal-
culus. Let y  f (x) for some function f. Then, for small changes in x,

	 y  ​ 
df

 ___ 
dx

 ​ .x,� [A.31]

where df/dx is the derivative of the function f, evaluated at the initial point x0. We also 
write the derivative as dy/dx.

For example, if y  log(x), then dy/dx  1/x. Using (A.31), with dy/dx evaluated at x0, 
we have y  (1/x0)x, or log(x)  x/x0, which is the approximation given in (A.22).

In applying econometrics, it helps to recall the derivatives of a handful of functions 
because we use the derivative to define the slope of a function at a given point. We can then 
use (A.31) to find the approximate change in y for small changes in x. In the linear case, the 
derivative is simply the slope of the line, as we would hope: if y  0  1x, then dy/dx  1.

If y  x c, then dy/dx  cx c1. The derivative of a sum of two functions is the sum 
of the derivatives: d[ f(x)  g(x)]/dx  df(x)/dx  dg(x)/dx. The derivative of a constant 
times any function is that same constant times the derivative of the function: d[cf(x)]/dx  
c[df(x)/dx]. These simple rules allow us to find derivatives of more complicated functions. 
Other rules, such as the product, quotient, and chain rules, will be familiar to those who 
have taken calculus, but we will not review those here.

Some functions that are often used in economics, along with their derivatives, are

	 y  0  1x  2x2; dy/dx  1  22x

	 y  0  1/x; dy/dx  1/(x
2)

	 y  0  1 ​
__

 x ​; dy/dx  (1/2)x1/2

	 y  0  1log(x); dy/dx  1/x

	 y  exp(0  1x); dy/dx  1exp(0  1x).

If 0  0 and 1  1 in this last expression, we get dy/dx  exp(x), when y  exp(x).
In Section A.4, we noted that equation (A.26) defines a constant elasticity model when 

calculus is used. The calculus definition of elasticity is (dy/dx) . (x/y). It can be shown 
using properties of logs and exponentials that, when (A.26) holds, (dy/dx) . (x/y)  1.

When y is a function of multiple variables, the notion of a partial derivative becomes 
important. Suppose that

	 y  f (x1, x2).� [A.32]

Then, there are two partial derivatives, one with respect to x1 and one with respect to x2. 
The partial derivative of y with respect to x1, denoted here by y/x1, is just the usual 
derivative of (A.32) with respect to x1, where x2 is treated as a constant. Similarly, y/x2  
is just the derivative of (A.32) with respect to x2, holding x1 fixed.

Partial derivatives are useful for much the same reason as ordinary derivatives. We 
can approximate the change in y as

	 y  ​ 
y

 ___ 
x1

 ​ .  x1, holding x2 fixed.� [A.33]
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Thus, calculus allows us to define partial effects in nonlinear models just as we could in 
linear models. In fact, if

	 y  0  1x1  2x2,

then

	​ 
y

 ___ 
x1

 ​  1,  ​ 
y

 ____ 
x2 

 ​  2.

These can be recognized as the partial effects defined in Section A.2.
A more complicated example is

	 y  5  4x1  x1
2  3x2  7x1

.x2.� [A.34]

Now, the derivative of (A.34), with respect to x1 (treating x2 as a constant), is simply

	​ 
y

 ___ 
x1

 ​  4  2x1  7x2;

note how this depends on x1 and x2. The derivative of (A.34), with respect to x2, is  
y/x2  3  7x1, so this depends only on x1. 

	E xample A.8	 Wage Function with Interaction

A function relating wages to years of education and experience is

	 wage  3.10  .41 educ  .19 exper  .004 exper2

	  .007 educ.exper.� [A.35]

The partial effect of exper on wage is the partial derivative of (A.35):

	  ​ 
wage

 ______ 
exper

 ​  .19  .008 exper  .007 educ. 

This is the approximate change in wage due to increasing experience by one year. Notice 
that this partial effect depends on the initial level of exper and educ. For example, for a 
worker who is starting with educ  12 and exper  5, the next year of experience in-
creases wage by about .19  .008(5)  .007(12)  .234, or 23.4 cents per hour. The exact 
change can be calculated by computing (A.35) at exper  5, educ  12 and at exper  6, 
educ  12, and then taking the difference. This turns out to be .23, which is very close to 
the approximation.

Differential calculus plays an important role in minimizing and maximizing functions 
of one or more variables. If f(x1,  x2,  …,  xk ) is a differentiable function of k variables, then 
a necessary condition for x1*, x2*,  …,  xk* to either minimize or maximize f over all possible 
values of xj is

	​ 
f

 ___ 
xj

 ​ (x1*,  x2*,  …,  xk*)  0, j  1, 2, …, k.� [A.36]
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In other words, all of the partial derivatives of f must be zero when they are evaluated at 
the xh*. These are called the first order conditions for minimizing or maximizing a func-
tion. Practically, we hope to solve equation (A.36) for the xh*. Then, we can use other 
criteria to determine whether we have minimized or maximized the function. We will not 
need those here. [See Sydsaeter and Hammond (1995) for a discussion of multivariable 
calculus and its use in optimizing functions.]

Summary
The math tools reviewed here are crucial for understanding regression analysis and the 
probability and statistics that are covered in Appendices B and C. The material on nonlin-
ear functions—especially quadratic, logarithmic, and exponential functions—is critical for 
understanding modern applied economic research. The level of comprehension required 
of these functions does not include a deep knowledge of calculus, although calculus is 
needed for certain derivations.

Key Terms
Average
Ceteris Paribus
Constant Elasticity Model
Derivative
Descriptive Statistic
Diminishing Marginal Effect
Elasticity
Exponential Function

Intercept
Linear Function
Log Function
Marginal Effect
Median
Natural Logarithm
Nonlinear Function
Partial Derivative

Partial Effect
Percentage Change
Percentage Point Change
Proportionate Change
Relative Change
Semi-Elasticity
Slope
Summation Operator

Problems

	 1	 The following table contains monthly housing expenditures for 10 families.

Family
Monthly Housing

Expenditures
(Dollars)

1 300

2 440

3 350

4 1,100

5 640

6 480

7 450

8 700

9 670

10 530
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(i)	 Find the average monthly housing expenditure.
(ii)	 Find the median monthly housing expenditure.
(iii)	� If monthly housing expenditures were measured in hundreds of dollars, rather than 

in dollars, what would be the average and median expenditures?
(iv)	� Suppose that family number 8 increases its monthly housing expenditure to $900, 

but the expenditures of all other families remain the same. Compute the average 
and median housing expenditures.

	 2	� Suppose the following equation describes the relationship between the average number 
of classes missed during a semester (missed ) and the distance from school (distance, 
measured in miles):

missed  3  0.2 distance.

(i)	� Sketch this line, being sure to label the axes. How do you interpret the intercept in 
this equation?

(ii)	� What is the average number of classes missed for someone who lives five miles 
away?

(iii)	� What is the difference in the average number of classes missed for someone who 
lives 10 miles away and someone who lives 20 miles away?

	 3	� In Example A.2, quantity of compact discs was related to price and income by quantity 
 120  9.8 price  .03 income. What is the demand for CDs if price  15 and in-
come  200? What does this suggest about using linear functions to describe demand 
curves?

	 4	� Suppose the unemployment rate in the United States goes from 6.4% in one year to 
5.6% in the next.
(i)	 What is the percentage point decrease in the unemployment rate?
(ii)	 By what percentage has the unemployment rate fallen?

	 5	� Suppose that the return from holding a particular firm’s stock goes from 15% in one 
year to 18% in the following year. The majority shareholder claims that “the stock re-
turn only increased by 3%,” while the chief executive officer claims that “the return on 
the firm’s stock increased by 20%.” Reconcile their disagreement.

	 6	 Suppose that Person A earns $35,000 per year and Person B earns $42,000.
(i)	 Find the exact percentage by which Person B’s salary exceeds Person A’s.
(ii)	� Now, use the difference in natural logs to find the approximate percentage 

difference.

	 7	� Suppose the following model describes the relationship between annual salary (salary) 
and the number of previous years of labor market experience (exper):

	 log(salary)  10.6  .027 exper.

(i)	� What is salary when exper  0? When exper  5? (Hint: You will need to 
exponentiate.)

(ii)	� Use equation (A.28) to approximate the percentage increase in salary when exper 
increases by five years.

(iii)	� Use the results of part (i) to compute the exact percentage difference in salary 
when exper  5 and exper  0. Comment on how this compares with the 
approximation in part (ii).
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	 8	� Let grthemp denote the proportionate growth in employment, at the county level, from 
1990 to 1995, and let salestax denote the county sales tax rate, stated as a proportion. 
Interpret the intercept and slope in the equation

	 grthemp  .043  .78 salestax.

	 9	� Suppose the yield of a certain crop (in bushels per acre) is related to fertilizer amount (in 
pounds per acre) as

	 yield  120  .19 ​
________

  fertilizer ​.

(i)	 Graph this relationship by plugging in several values for fertilizer.
(ii)	� Describe how the shape of this relationship compares with a linear relationship 

between yield and fertilizer.

	 10	� Suppose that in a particular state a standardized test is given to all graduating se-
niors. Let score denote a student’s score on the test. Someone discovers that perfor-
mance on the test is related to the size of the student’s graduating high school class. 
The relationship is quadratic:

	 score  45.6 1 .082 class 2 .000147 class2,

		  where class is the number of students in the graduating class.
(i)	� How do you literally interpret the value 45.6 in the equation? By itself, is it of 

much interest? Explain.
(ii)	� From the equation, what is the optimal size of the graduating class (the size that 

maximizes the test score)? (Round your answer to the nearest integer.) What is the 
highest achievable test score?

(iii)	 Sketch a graph that illustrates your solution in part (ii).
(iv)	� Does it seem likely that score and class would have a deterministic relationship? 

That is, is it realistic to think that once you know the size of a student’s graduating 
class you know, with certainty, his or her test score? Explain.
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T � his appendix covers key concepts from basic probability. Appendices B and C are 

primarily for review; they are not intended to replace a course in probability and 

statistics. However, all of the probability and statistics concepts that we use in the

text are covered in these appendices.

Probability is of interest in its own right for students in business, economics, and 

other social sciences. For example, consider the problem of an airline trying to decide 

how many reservations to accept for a flight that has 100 available seats. If fewer than  

100 people want reservations, then these should all be accepted. But what if more than  

100 people request reservations? A safe solution is to accept at most 100 reservations. 

However, because some people book reservations and then do not show up for the flight, 

there is some chance that the plane will not be full even if 100 reservations are booked. 

This results in lost revenue to the airline. A different strategy is to book more than 100 res-

ervations and to hope that some people do not show up, so the final number of passengers 

is as close to 100 as possible. This policy runs the risk of the airline having to compensate 

people who are necessarily bumped from an overbooked flight.

A natural question in this context is: Can we decide on the optimal (or best) number 

of reservations the airline should make? This is a nontrivial problem. Nevertheless, given 

certain information (on airline costs and how frequently people show up for reservations), 

we can use basic probability to arrive at a solution.

B.1  Random Variables and Their Probability Distributions
Suppose that we flip a coin 10 times and count the number of times the coin turns up 
heads. This is an example of an experiment. Generally, an experiment is any procedure 
that can, at least in theory, be infinitely repeated and has a well-defined set of outcomes. 
We could, in principle, carry out the coin-flipping procedure again and again. Before we 
flip the coin, we know that the number of heads appearing is an integer from 0 to 10, so 
the outcomes of the experiment are well defined.

B
appendix

Fundamentals of Probability
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A random variable is one that takes on numerical values and has an outcome that 
is determined by an experiment. In the coin-flipping example, the number of heads 
appearing in 10 flips of a coin is an example of a random variable. Before we flip the 
coin 10 times, we do not know how many times the coin will come up heads. Once 
we flip the coin 10 times and count the number of heads, we obtain the outcome of the 
random variable for this particular trial of the experiment. Another trial can produce a 
different outcome. 

In the airline reservation example mentioned earlier, the number of people showing 
up for their flight is a random variable: before any particular flight, we do not know how 
many people will show up.

To analyze data collected in business and the social sciences, it is important to have a 
basic understanding of random variables and their properties. Following the usual conven-
tions in probability and statistics throughout Appendices B and C, we denote random vari-
ables by uppercase letters, usually W, X, Y, and Z; particular outcomes of random variables 
are denoted by the corresponding lowercase letters, w, x, y, and z. For example, in the 
coin-flipping experiment, let X denote the number of heads appearing in 10 flips of a coin. 
Then, X is not associated with any particular value, but we know X will take on a value in 
the set {0, 1, 2, …, 10}. A particular outcome is, say, x 5 6.

We indicate large collections of random variables by using subscripts. For example, if 
we record last year’s income of 20 randomly chosen households in the United States, we 
might denote these random variables by X1, X2, …, X20; the particular outcomes would be 
denoted x1, x2, …, x20.

As stated in the definition, random variables are always defined to take on numerical 
values, even when they describe qualitative events. For example, consider tossing a single 
coin, where the two outcomes are heads and tails. We can define a random variable as 
follows: X 5 1 if the coin turns up heads, and X 5 0 if the coin turns up tails.

A random variable that can only take on the values zero and one is called a Bernoulli 
(or binary) random variable. In basic probability, it is traditional to call the event X 5 1  
a “success” and the event X 5 0 a “failure.” For a particular application, the success-
failure nomenclature might not correspond to our notion of a success or failure, but it is a 
useful terminology that we will adopt.

Discrete Random Variables
A discrete random variable is one that takes on only a finite or countably infinite number 
of values. The notion of “countably infinite” means that even though an infinite number 
of values can be taken on by a random variable, those values can be put in a one-to-one 
correspondence with the positive integers. Because the distinction between “countably 
infinite” and “uncountably infinite” is somewhat subtle, we will concentrate on discrete 
random variables that take on only a finite number of values. Larsen and Marx (1986, 
Chapter 3) provide a detailed treatment.

A Bernoulli random variable is the simplest example of a discrete random variable. 
The only thing we need to completely describe the behavior of a Bernoulli random vari-
able is the probability that it takes on the value one. In the coin-flipping example, if the 
coin is “fair,” then P(X 5 1) 5 1/2 (read as “the probability that X equals one is one-
half”). Because probabilities must sum to one, P(X 5 0) 5 1/2, also.
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Social scientists are interested in more than flipping coins, so we must allow for 
more general situations. Again, consider the example where the airline must decide how 
many people to book for a flight with 100 available seats. This problem can be analyzed 
in the context of several Bernoulli random variables as follows: for a randomly selected 
customer, define a Bernoulli random variable as X 5 1 if the person shows up for the 
reservation, and X 5 0 if not.

There is no reason to think that the probability of any particular customer showing 
up is 1/2; in principle, the probability can be any number between zero and one. Call this 
number u, so that

	 P(X 5 1) 5 u�������� [B.1]
	 P(X 5 0) 5 1 2 u.� [B.2]

For example, if u������� 5 .75, then there is a 75% chance that a customer shows up after making 
a reservation and a 25% chance that the customer does not show up. Intuitively, the value 
of u������� is crucial in determining the airline’s strategy for booking reservations. Methods for 
estimating u, given historical data on airline reservations, are a subject of mathematical 
statistics, something we turn to in Appendix C.

More generally, any discrete random variable is completely described by listing its 
possible values and the associated probability that it takes on each value. If X takes on the 
k possible values {x1, …, xk}, then the probabilities p1, p2, …, pk are defined by

	 pj 5 P(X 5 xj), j 5 1, 2, …, k,� [B.3]

where each pj is between 0 and 1 and

	 p1 1 p2 1 … 1 pk 5 1.� [B.4]

Equation (B.3) is read as: “The probability that X takes on the value xj is equal to pj.”
Equations (B.1) and (B.2) show that the probabilities of success and failure for a 

Bernoulli random variable are determined entirely by the value of u. Because Bernoulli 
random variables are so prevalent, we have a special notation for them: X ~ Bernoulli(u�������) is 
read as “X has a Bernoulli distribution with probability of success equal to u.”

The probability density function (pdf ) of X summarizes the information concerning 
the possible outcomes of X and the corresponding probabilities:

	 f(xj) 5 pj, j 5 1, 2, …, k,� [B.5]

with f (x) 5 0 for any x not equal to xj for some j. In other words, for any real number x, 
f (x) is the probability that the random variable X takes on the particular value x. When 
dealing with more than one random variable, it is sometimes useful to subscript the pdf in 
question: fX is the pdf of X, fY is the pdf of Y, and so on.

Given the pdf of any discrete random variable, it is simple to compute the probability 
of any event involving that random variable. For example, suppose that X is the number 
of free throws made by a basketball player out of two attempts, so that X can take on the 
three values {0,1,2}. Assume that the pdf of X is given by

	 f (0) 5 .20, f (1) 5 .44, and f (2) 5 .36.
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The three probabilities sum to one, as they must. Using this pdf, we can calculate the 
probability that the player makes at least one free throw: P(X $ 1) 5 P(X 5 1) 1 P(X 5 2) 5  
.44 1 .36 5 .80. The pdf of X is shown in Figure B.1.

Continuous Random Variables
A variable X is a continuous random variable if it takes on any real value with zero 
probability. This definition is somewhat counterintuitive because in any application we 
eventually observe some outcome for a random variable. The idea is that a continuous  
random variable X can take on so many possible values that we cannot count them or 
match them up with the positive integers, so logical consistency dictates that X can take 
on each value with probability zero. While measurements are always discrete in prac-
tice, random variables that take on numerous values are best treated as continuous. For 
example, the most refined measure of the price of a good is in terms of cents. We can 
imagine listing all possible values of price in order (even though the list may continue in-
definitely), which technically makes price a discrete random variable. However, there are 
so many possible values of price that using the mechanics of discrete random variables is 
not feasible.

We can define a probability density function for continuous random variables, and, 
as with discrete random variables, the pdf provides information on the likely outcomes of 
the random variable. However, because it makes no sense to discuss the probability that 
a continuous random variable takes on a particular value, we use the pdf of a continuous 
random variable only to compute events involving a range of values. For example, if a 
and b are constants where a , b, the probability that X lies between the numbers a and b,  
P(a # X # b), is the area under the pdf between points a and b, as shown in Figure B.2. If 
you are familiar with calculus, you recognize this as the integral of the function f between 
the points a and b. The entire area under the pdf must always equal one.

f (x)

0 1 2 x

.20

.44

.36

F i g u r e  B . 1   The pdf of the number of free throws made out of two attempts.
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When computing probabilities for continuous random variables, it is easiest to work 
with the cumulative distribution function (cdf ). If X is any random variable, then its cdf 
is defined for any real number x by

	 F(x) ; P(X # x).� [B.6]

For discrete random variables, (B.6) is obtained by summing the pdf over all values xj 
such that xj # x. For a continuous random variable, F(x) is the area under the pdf, f, to the 
left of the point x. Because F(x) is simply a probability, it is always between 0 and 1. Fur-
ther, if x1 , x2, then P(X # x1) # P(X # x2), that is, F(x1) # F(x2). This means that a cdf is 
an increasing (or at least a nondecreasing) function of x.

Two important properties of cdfs that are useful for computing probabilities are the 
following:

	 For any number c, P(X . c) 5 1 2 F(c).� [B.7]

	 For any numbers a , b, P(a , X # b) 5 F(b) 2 F(a).� [B.8]

In our study of econometrics, we will use cdfs to compute probabilities only for continu-
ous random variables, in which case it does not matter whether inequalities in probability 
statements are strict or not. That is, for a continuous random variable X,

a

f(x)

b x

F i g u r e  B . 2   The probability that X lies between the points a and b.
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	 P(X $ c) 5 P(X . c),� [B.9]

and

	 P(a , X , b) 5 P(a # X # b) 5 P(a # X , b) 5 P(a , X # b).� [B.10]

Combined with (B.7) and (B.8), equations (B.9) and (B.10) greatly expand the probability 
calculations that can be done using continuous cdfs.

Cumulative distribution functions have been tabulated for all of the important con
tinuous distributions in probability and statistics. The most well known of these is the 
normal distribution, which we cover along with some related distributions in Section B.5.

B.2  Joint Distributions, Conditional Distributions,  
and Independence

In economics, we are usually interested in the occurrence of events involving more than 
one random variable. For example, in the airline reservation example referred to earlier, 
the airline might be interested in the probability that a person who makes a reservation 
shows up and is a business traveler; this is an example of a joint probability. Or, the airline 
might be interested in the following conditional probability: conditional on the person 
being a business traveler, what is the probability of his or her showing up? In the next two 
subsections, we formalize the notions of joint and conditional distributions and the impor-
tant notion of independence of random variables.

Joint Distributions and Independence
Let X and Y be discrete random variables. Then, (X,Y) have a joint distribution, which is 
fully described by the joint probability density function of (X,Y ):

	 fX,Y(x,y) 5 P(X 5 x,Y 5 y),� [B.11]

where the right-hand side is the probability that X 5 x and Y 5 y. When X and Y are con-
tinuous, a joint pdf can also be defined, but we will not cover such details because joint 
pdfs for continuous random variables are not used explicitly in this text.

In one case, it is easy to obtain the joint pdf if we are given the pdfs of X and Y. In 
particular, random variables X and Y are said to be independent if, and only if,

	 fX,Y(x,y) 5 fX(x)fY(y)� [B.12]

for all x and y, where fX is the pdf of X and fY is the pdf of Y. In the context of more than 
one random variable, the pdfs fX and fY are often called marginal probability density func-
tions to distinguish them from the joint pdf fX,Y. This definition of independence is valid 
for discrete and continuous random variables.

To understand the meaning of (B.12), it is easiest to deal with the discrete case. If X 
and Y are discrete, then (B.12) is the same as

	 P(X 5 x,Y 5 y) 5 P(X 5 x)P(Y 5 y);� [B.13]
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in other words, the probability that X 5 x and Y 5 y is the product of the two probabilities 
P(X 5 x) and P(Y 5 y). One implication of (B.13) is that joint probabilities are fairly easy 
to compute, since they only require knowledge of P(X 5 x) and P(Y 5 y).

If random variables are not independent, then they are said to be dependent.

	E xample B.1	 Free Throw Shooting

Consider a basketball player shooting two free throws. Let X be the Bernoulli random 
variable equal to one if she or he makes the first free throw, and zero otherwise. Let Y be a 
Bernoulli random variable equal to one if he or she makes the second free throw. Suppose 
that she or he is an 80% free throw shooter, so that P(X 5 1) 5 P(Y 5 1) 5 .8. What is the 
probability of the player making both free throws?

If X and Y are independent, we can easily answer this question: P(X 5 1,Y 5 1) 5 
P( X 5 1)P(Y 5 1) 5 (.8)(.8) 5 .64. Thus, there is a 64% chance of making both free 
throws. If the chance of making the second free throw depends on whether the first was 
made—that is, X and Y are not independent—then this simple calculation is not valid.

Independence of random variables is a very important concept. In the next subsec-
tion, we will show that if X and Y are independent, then knowing the outcome of X does 
not change the probabilities of the possible outcomes of Y, and vice versa. One useful fact 
about independence is that if X and Y are independent and we define new random vari-
ables g(X) and h(Y) for any functions g and h, then these new random variables are also 
independent.

There is no need to stop at two random variables. If X1, X2, …, Xn are discrete random 
variables, then their joint pdf is f (x1, x2, …, xn) 5 P(X1 5 x1, X2 5 x2, …, Xn 5 xn). The 
random variables X1, X2, …, Xn are independent random variables if, and only if, their 
joint pdf is the product of the individual pdfs for any (x1,  x2, …, xn). This definition of 
independence also holds for continuous random variables.

The notion of independence plays an important role in obtaining some of the classic 
distributions in probability and statistics. Earlier, we defined a Bernoulli random variable 
as a zero-one random variable indicating whether or not some event occurs. Often, we 
are interested in the number of successes in a sequence of independent Bernoulli trials. 
A standard example of independent Bernoulli trials is flipping a coin again and again. 
Because the outcome on any particular flip has nothing to do with the outcomes on other 
flips, independence is an appropriate assumption.

Independence is often a reasonable approximation in more complicated situations. In 
the airline reservation example, suppose that the airline accepts n reservations for a partic-
ular flight. For each i 5 1, 2, …, n, let Yi denote the Bernoulli random variable indicating 
whether customer i shows up: Yi 5 1 if customer i appears, and Yi 5 0 otherwise. Letting u�������  
again denote the probability of success (using reservation), each Yi has a Bernoulli(u�������) 
distribution. As an approximation, we might assume that the Yi are independent of one 
another, although this is not exactly true in reality: some people travel in groups, which 
means that whether or not a person shows up is not truly independent of whether all others 
show up. Modeling this kind of dependence is complex, however, so we might be willing 
to use independence as an approximation.

The variable of primary interest is the total number of customers showing up out of 
the n reservations; call this variable X. Since each Yi is unity when a person shows up, we 

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	A ppendix B  Fundamentals of Probability� 729

can write X 5 Y1 1 Y2 1 … 1 Yn. Now, assuming that each Yi has probability of success u������� 
and that the Yi are independent, X can be shown to have a binomial distribution. That is, 
the probability density function of X is

	 f (x) 5 ​ ​n   x​ ​ u �������x (1 2 u�������)n2x, x 5 0, 1, 2, …, n,� [B.14]

where ​ ​n   x​ ​ 5 ​  n! _________ 
x!(n 2 x)!

 ​, and for any integer n, n! (read “n factorial”) is defined as n! 5 

n.(n 2 1) . (n 2 2) …1. By convention, 0! 5 1. When a random variable X has the pdf 
given in (B.14), we write X ~ Binomial(n,u�������). Equation (B.14) can be used to compute  
P(X 5 x) for any value of x from 0 to n.

If the flight has 100 available seats, the airline is interested in P(X . 100). Suppose, 
initially, that n 5 120, so that the airline accepts 120 reservations, and the probability that 
each person shows up is u������� 5 .85. Then, P(X . 100) 5 P(X 5 101) 1 P(X 5 102) 1 … 
1 P(X 5 120), and each of the probabilities in the sum can be found from equation (B.14) 
with n 5 120, u������� 5 .85, and the appropriate value of x (101 to 120). This is a difficult 
hand calculation, but many statistical packages have commands for computing this kind of 
probability. In this case, the probability that more than 100 people will show up is about 
.659, which is probably more risk of overbooking than the airline wants to tolerate. If, 
instead, the number of reservations is 110, the probability of more than 100 passengers 
showing up is only about .024.

Conditional Distributions
In econometrics, we are usually interested in how one random variable, call it Y, is related 
to one or more other variables. For now, suppose that there is only one variable whose 
effects we are interested in, call it X. The most we can know about how X affects Y is con-
tained in the conditional distribution of Y given X. This information is summarized by 
the conditional probability density function, defined by

	 fY|X(y|x) 5 fX,Y(x,y) /fX(x)� [B.15]

for all values of x such that fX (x) . 0. The interpretation of (B.15) is most easily seen 
when X and Y are discrete. Then,

	 fY|X(y|x) 5 P(Y 5 y|X 5 x),� [B.16]

where the right-hand side is read as “the probability that Y 5 y given that X 5 x.” When 
Y is continuous, fY |X(y|x) is not interpretable directly as a probability, for the reasons 
discussed earlier, but conditional probabilities are found by computing areas under the 
conditional pdf.

An important feature of conditional distributions is that, if X and Y are indepen-
dent random variables, knowledge of the value taken on by X tells us nothing about the 
probability that Y takes on various values (and vice versa). That is, fY|X (y|x) 5 fY(y), and 
fX |Y(x|y) 5 fX(x).
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	E xample B.2	 Free Throw Shooting

Consider again the basketball-shooting example, where two free throws are to be 
attempted. Assume that the conditional density is

	 fY|X(1|1) 5 .85, fY|X(0|1) 5 .15

	 fY|X(1|0) 5 .70, fY|X(0|0) 5 .30.

This means that the probability of the player making the second free throw depends on 
whether the first free throw was made: if the first free throw is made, the chance of making 
the second is .85; if the first free throw is missed, the chance of making the second is .70. 
This implies that X and Y are not independent; they are dependent.

We can still compute P(X 5 1,Y 5 1) provided we know P(X 5 1). Assume that the 
probability of making the first free throw is .8, that is, P(X 5 1) 5 .8. Then, from (B.15), 
we have

	 P(X 5 1,Y 5 1) 5 P(Y 5 1|X 5 1).P(X 5 1) 5 (.85)(.8) 5 .68.

B.3  Features of Probability Distributions
For many purposes, we will be interested in only a few aspects of the distributions of 
random variables. The features of interest can be put into three categories: measures of 
central tendency, measures of variability or spread, and measures of association between 
two random variables. We cover the last of these in Section B.4.

A Measure of Central Tendency: The Expected Value
The expected value is one of the most important probabilistic concepts that we will 
encounter in our study of econometrics. If X is a random variable, the expected value (or 
expectation) of X, denoted E(X) and sometimes m�������X or simply m, is a weighted average of 
all possible values of X. The weights are determined by the probability density function. 
Sometimes, the expected value is called the population mean, especially when we want to 
emphasize that X represents some variable in a population.

The precise definition of expected value is simplest in the case that X is a discrete 
random variable taking on a finite number of values, say, {x1, …, xk}. Let f (x) denote the 
probability density function of X. The expected value of X is the weighted average

	 E(X ) 5 x1 f (x1) 1 x2 f (x2) 1 … 1 xk f (xk) ;​∑ 
j1

 ​ 
k

  ​ ​xj f (xj).� [B.17]

This is easily computed given the values of the pdf at each possible outcome of X.

	E xample B.3	 Computing an Expected Value

Suppose that X takes on the values 21, 0, and 2 with probabilities 1/8, 1/2, and 3/8, 
respectively. Then,

	 E(X) 5 (21).(1/8) 1 0.(1/2) 1 2.(3/8) 5 5/8.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	A ppendix B  Fundamentals of Probability� 731

This example illustrates something curious about expected values: the expected value of 
X can be a number that is not even a possible outcome of X. We know that X takes on the 
values 21, 0, or 2, yet its expected value is 5/8. This makes the expected value deficient 
for summarizing the central tendency of certain discrete random variables, but calcula-
tions such as those just mentioned can be useful, as we will see later.

If X is a continuous random variable, then E(X) is defined as an integral:

	 E(X ) 5 ​∫ 
2

​ 


 ​ ​x f (x)dx,� [B.18]

which we assume is well defined. This can still be interpreted as a weighted average. For 
the most common continuous distributions, E(X) is a number that is a possible outcome 
of X. In this text, we will not need to compute expected values using integration, although 
we will draw on some well-known results from probability for expected values of special 
random variables.

Given a random variable X and a function g(.), we can create a new random variable 
g(X). For example, if X is a random variable, then so is X2 and log(X) (if X . 0). The ex-
pected value of g(X) is, again, simply a weighted average:

	 E[g(X )] 5​∑ 
j1

 ​ 
k

  ​ ​g(xj)fX(xj)� [B.19]

or, for a continuous random variable,

	 E[g(X )] 5 ​∫ 
2

​ 


 ​ ​g(x)fX(x)dx.� [B.20]

	E xample B.4	 Expected Value of X2

For the random variable in Example B.3, let g(X) 5 X2. Then,

	 E(X2) 5 (21)2(1/8) 1 (0)2(1/2) 1 (2)2(3/8) 5 13/8.

In Example B.3, we computed E(X) 5 5/8, so that [E(X)]2 5 25/64. This shows that E(X2) 
is not the same as [E(X)]2. In fact, for a nonlinear function g(X), E[g(X)]  g[E(X)] (except 
in very special cases).

If X and Y are random variables, then g(X,Y ) is a random variable for any function  
g, and so we can define its expectation. When X and Y are both discrete, taking on values 
{x1, x2, …, xk} and {y1, y2, …, ym}, respectively, the expected value is

	 E[g(X,Y )] 5 ​∑ 
h1

 ​ 
k

  ​ ​​∑ 
j1

 ​ 
m

  ​ ​g(xh,yj)fX,Y(xh, yj),

where fX,Y is the joint pdf of (X,Y ). The definition is more complicated for continuous ran-
dom variables since it involves integration; we do not need it here. The extension to more 
than two random variables is straightforward.

Properties of Expected Values
In econometrics, we are not so concerned with computing expected values from various 
distributions; the major calculations have been done many times, and we will largely take 
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these on faith. We will need to manipulate some expected values using a few simple rules. 
These are so important that we give them labels:

Property E.1:  For any constant c, E(c) 5 c.

Property E.2:  For any constants a and b, E(aX 1 b) 5 aE(X) 1 b.

One useful implication of E.2 is that, if m������� 5 E(X ), and we define a new random variable 
as Y 5 X 2 m, then E(Y ) 5 0; in E.2, take a 5 1 and b 5 2m.

As an example of Property E.2, let X be the temperature measured in Celsius at noon 
on a particular day at a given location; suppose the expected temperature is E(X ) 5 25.  
If Y is the temperature measured in Fahrenheit, then Y 5 32 1 (9/5)X. From  
Property E.2, the expected temperature in Fahrenheit is E(Y ) 5 32 1 (9/5).E(X ) 5 32 1  
(9/5).25 5 77.

Generally, it is easy to compute the expected value of a linear function of many 
random variables.

Property E.3:  If {a1, a2, …, an} are constants and {X1, X2, …, Xn} are random variables, 
then

	 E(a1X1 1 a2X2 1 … 1 anXn) 5 a1E(X1) 1 a2E(X2) 1 … 1 anE(Xn).

Or, using summation notation,

	 E ​ ​∑ 
i1

 ​ 
n

  ​ ​ai Xi ​ 5​∑ 
i1

 ​ 
n

  ​ ​ai E(Xi).� [B.21]

As a special case of this, we have (with each ai 5 1)

	 E ​ ​∑ 
i1

 ​ 
n

  ​ ​Xi ​ 5​∑ 
i1

 ​ 
n

  ​ ​E(Xi).� [B.22]

so that the expected value of the sum is the sum of expected values. This property is used 
often for derivations in mathematical statistics.

	E xample B.5	 Finding Expected Revenue

Let X1, X2, and X3 be the numbers of small, medium, and large pizzas, respectively, sold dur-
ing the day at a pizza parlor. These are random variables with expected values E(X1) 5 25,  
E(X2) 5 57, and E( X3) 5 40. The prices of small, medium, and large pizzas are $5.50, 
$7.60, and $9.15. Therefore, the expected revenue from pizza sales on a given day is

	E(5.50 X1 1 7.60 X2 1 9.15 X3) 5 5.50 E(X1) 1 7.60 E(X2) 1 9.15 E(X3) 
	 5 5.50(25) 1 7.60(57) 1 9.15(40) 5 936.70,

that is, $936.70. The actual revenue on any particular day will generally differ from this 
value, but this is the expected revenue.
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We can also use Property E.3 to show that if X ~ Binomial(n,u�������), then E(X) 5 nu. That 
is, the expected number of successes in n Bernoulli trials is simply the number of trials 
times the probability of success on any particular trial. This is easily seen by writing X as 
X 5 Y1 1 Y2 1 … 1 Yn, where each Yi ~ Bernoulli(u�������). Then,

	 E(X) 5 ​∑ 
i1

 ​ 
n

  ​ ​E(Yi) 5 ​∑ 
i1

 ​ 
n

  ​ u������� ​5 nu.

We can apply this to the airline reservation example, where the airline makes n 5 120 
reservations, and the probability of showing up is u������� 5 .85. The expected number of people 
showing up is 120(.85) 5 102. Therefore, if there are 100 seats available, the expected 
number of people showing up is too large; this has some bearing on whether it is a good 
idea for the airline to make 120 reservations.

Actually, what the airline should do is define a profit function that accounts for the 
net revenue earned per seat sold and the cost per passenger bumped from the flight. This 
profit function is random because the actual number of people showing up is random. Let r  
be the net revenue from each passenger. (You can think of this as the price of the ticket 
for simplicity.) Let c be the compensation owed to any passenger bumped from the flight. 
Neither r nor c is random; these are assumed to be known to the airline. Let Y denote prof-
its for the flight. Then, with 100 seats available,

	 Y 5 rX  if X # 100

	 5 100r 2 c(X 2 100) if X . 100.

The first equation gives profit if no more than 100 people show up for the flight; the 
second equation is profit if more than 100 people show up. (In the latter case, the net rev-
enue from ticket sales is 100r, since all 100 seats are sold, and then c(X 2 100) is the cost 
of making more than 100 reservations.) Using the fact that X has a Binomial(n,.85) distri-
bution, where n is the number of reservations made, expected profits, E(Y ), can be found 
as a function of n (and r and c). Computing E(Y ) directly would be quite difficult, but it 
can be found quickly using a computer. Once values for r and c are given, the value of n 
that maximizes expected profits can be found by searching over different values of n.

Another Measure of Central Tendency: The Median 
The expected value is only one possibility for defining the central tendency of a random 
variable. Another measure of central tendency is the median. A general definition of me-
dian is too complicated for our purposes. If X is continuous, then the median of X, say, m, 
is the value such that one-half of the area under the pdf is to the left of m, and one-half of 
the area is to the right of m.

When X is discrete and takes on a finite number of odd values, the median is obtained 
by ordering the possible values of X and then selecting the value in the middle. For 
example, if X can take on the values {24,0,2,8,10,13,17}, then the median value of X is 8.  
If X takes on an even number of values, there are really two median values; sometimes, 
these are averaged to get a unique median value. Thus, if X takes on the values {–5,3,9,17}, 
then the median values are 3 and 9; if we average these, we get a median equal to 6.

In general, the median, sometimes denoted Med(X), and the expected value, E(X), are 
different. Neither is “better” than the other as a measure of central tendency; they are both 
valid ways to measure the center of the distribution of X. In one special case, the median 

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



734	 Appendices

and expected value (or mean) are the same. If X has a symmetric distribution about the 
value m, then m������� is both the expected value and the median. Mathematically, the condition 
is f (m������� 1 x) 5 f (m������� 2 x) for all x. This case is illustrated in Figure B.3.

Measures of Variability: Variance and Standard Deviation
Although the central tendency of a random variable is valuable, it does not tell us every-
thing we want to know about the distribution of a random variable. Figure B.4 shows the 
pdfs of two random variables with the same mean. Clearly, the distribution of X is more 
tightly centered about its mean than is the distribution of Y. We would like to have a 
simple way of summarizing differences in the spreads of distributions.

Variance
For a random variable X, let m������� 5 E(X). There are various ways to measure how far X is 
from its expected value, but the simplest one to work with algebraically is the squared 
difference, (X 2 m�������)2. (The squaring eliminates the sign from the distance measure; the 
resulting positive value corresponds to our intuitive notion of distance, and treats values 
above and below m������� symmetrically.) This distance is itself a random variable since it can 
change with every outcome of X. Just as we needed a number to summarize the central 
tendency of X, we need a number that tells us how far X is from m, on average. One such 
number is the variance, which tells us the expected distance from X to its mean:

	 Var(X) ; E[(X 2 m�������)2].� [B.23]

x

f(x)

m

F i g u r e  B . 3   A symmetric probability distribution.
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Variance is sometimes denoted s �������2X, or simply s 2, when the context is clear. From (B.23), 
it follows that the variance is always nonnegative.

As a computational device, it is useful to observe that

	 s 2 5 E(X2 2 2Xm������� 1 m�������2) 5 E(X2) 2 2m2 1 m2 5 E(X2) 2 m2.� [B.24]

In using either (B.23) or (B.24), we need not distinguish between discrete and continuous 
random variables: the definition of variance is the same in either case. Most often, we 
first compute E(X), then E(X2), and then we use the formula in (B.24). For example, if 
X ~ Bernoulli(u�������), then E(X) 5 u, and, since X2 5 X, E(X2) 5 u. It follows from equation 
(B.24) that Var(X) 5 E(X2) 2 m2 5 u������� 2 u2 5 u(1 2 u�������).

Two important properties of the variance follow.

Property VAR.1:  Var(X) 5 0 if, and only if, there is a constant c such that P(X 5 c) 5 1,  
in which case E(X) 5 c.

This first property says that the variance of any constant is zero and if a random vari-
able has zero variance, then it is essentially constant.

Property VAR.2:  For any constants a and b, Var(aX 1 b) 5 a2Var(X).

This means that adding a constant to a random variable does not change the variance, but 
multiplying a random variable by a constant increases the variance by a factor equal to the 
square of that constant. For example, if X denotes temperature in Celsius and Y 5 32 1 
(9/5)X is temperature in Fahrenheit, then Var(Y ) 5 (9/5)2Var(X) 5 (81/25)Var(X).

F i g u r e  B . 4   Random variables with the same mean but different distributions.
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Standard Deviation
The standard deviation of a random variable, denoted sd(X), is simply the positive square 
root of the variance: sd(X) ; 1​

______
 Var(X) ​. The standard deviation is sometimes denoted s�������X, 

or simply s, when the random variable is understood. Two standard deviation properties 
immediately follow from Properties VAR.1 and VAR.2.

Property SD.1:  For any constant c, sd(c) 5 0.

Property SD.2:  For any constants a and b,

sd(aX 1 b) 5 uausd(X).

In particular, if a . 0, then sd(aX) 5 a?sd(X).
This last property makes the standard deviation more natural to work with than 

the variance. For example, suppose that X is a random variable measured in thousands 
of dollars, say, income. If we define Y 5 1,000X, then Y is income measured in dol-
lars. Suppose that E(X) 5 20, and sd(X) 5 6. Then, E(Y ) 5 1,000E(X) 5 20,000, 
and sd(Y ) 5 1,000?sd(X) 5 6,000, so that the expected value and standard deviation 
both increase by the same factor, 1,000. If we worked with variance, we would have  
Var(Y ) 5 (1,000)2Var(X), so that the variance of Y is one million times larger than the 
variance of X.

Standardizing a Random Variable
As an application of the properties of variance and standard deviation—and a topic of prac-
tical interest in its own right—suppose that given a random variable X, we define a new 
random variable by subtracting off its mean m and dividing by its standard deviation s�������:

	 Z ; ​ 
X 2 m�������

 ______ s������� ​ ,� [B.25]

which we can write as Z 5 aX 1 b, where a ; (1/s�������), and b ; 2(m/s�������). Then, from Prop-
erty E.2,

	 E(Z) 5 aE(X) 1 b 5 (m������� /s�������) 2 (m������� /s�������) 5 0.

From Property VAR.2,

	 Var(Z ) 5 a2Var(X) 5 (s2/s�������2) 5 1.

Thus, the random variable Z has a mean of zero and a variance (and therefore a standard 
deviation) equal to one. This procedure is sometimes known as standardizing the random 
variable X, and Z is called a standardized random variable. (In introductory statistics 
courses, it is sometimes called the z-transform of X.) It is important to remember that the 
standard deviation, not the variance, appears in the denominator of (B.25). As we will see, 
this transformation is frequently used in statistical inference.

As a specific example, suppose that E(X) 5 2, and Var(X) 5 9. Then, Z 5 (X 2 2)/3  
has expected value zero and variance one.
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Skewness and Kurtosis
We can use the standardized version of a random variable to define other features of the 
distribution of a random variable. These features are described by using what are called 
higher order moments. For example, the third moment of the random variable Z in (B.25) 
is used to determine whether a distribution is symmetric about its mean. We can write

	 E(Z 3) 5 E[(X 2 m�������)3]/s�������3

If X has a symmetric distribution about m, then Z has a symmetric distribution about 
zero. (The division by s3 does not change whether the distribution is symmetric.) 
That means the density of Z at any two points z and −z is the same, which means that, 
in computing E(Z 3), positive values z3 when z . 0 are exactly offset with the nega-
tive value (2z)3 5 2z3. It follows that, if X is symmetric about zero, then E(Z) 5 0. 
Generally, E[(X 2 m�������)3]/s3 is viewed as a measure of skewness in the distribution of 
X. In a statistical setting, we might use data to estimate E(Z3) to determine whether 
an underlying population distribution appears to be symmetric. (Computer Exercise 
C5.4 in Chapter 5 provides an illustration.)

It also can be informative to compute the fourth moment of Z,

	 E(Z4) 5 E[(X 2 m�������)4]/s4.

Because Z4  0, E(Z4)  0 (and, in any interesting case, strictly greater than zero). With-
out having a reference value, it is difficult to interpret values of E(Z4), but larger values 
mean that the tails in the distribution of X are thicker. The fourth moment E(Z4) is called 
a measure of kurtosis in the distribution of X. In Section B.5 we will obtain E(Z4) for the 
normal distribution.

B.4  Features of Joint and Conditional Distributions

Measures of Association: Covariance and Correlation
While the joint pdf of two random variables completely describes the relationship between 
them, it is useful to have summary measures of how, on average, two random variables 
vary with one another. As with the expected value and variance, this is similar to using a 
single number to summarize something about an entire distribution, which in this case is a 
joint distribution of two random variables.

Covariance
Let m�������X 5 E(X ) and m�������Y 5 E(Y ) and consider the random variable (X 2 m�������X)(Y 2 m�������Y). Now, 
if X is above its mean and Y is above its mean, then (X 2 m�������X)(Y 2 m�������Y) . 0. This is also 
true if X , m�������X and Y , m�������Y. On the other hand, if X . m�������X and Y , m�������Y, or vice versa, then 
(X 2 m�������X)(Y 2 m�������Y) , 0. How, then, can this product tell us anything about the relationship 
between X and Y?

The covariance between two random variables X and Y, sometimes called the 
population covariance to emphasize that it concerns the relationship between two 
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variables describing a population, is defined as the expected value of the product  
(X 2 m�������X)(Y 2 m�������Y):

	 Cov(X,Y ) ; E[(X 2 m�������X)(Y 2 m�������Y)],� [B.26]

which is sometimes denoted s�������XY . If s�������XY . 0, then, on average, when X is above its mean, 
Y is also above its mean. If s�������XY , 0, then, on average, when X is above its mean, Y is be-
low its mean.

Several expressions useful for computing Cov(X,Y ) are as follows:

	 Cov(X,Y ) 5 E[(X 2 m�������X)(Y 2 m�������Y)] 5 E[(X 2 m�������X)Y]
	 5 E[X(Y 2 m�������Y)] 5 E(XY ) 2 m�������Xm�������Y .	 [B.27]

It follows from (B.27), that if E(X)  0 or E(Y )  0, then Cov(X,Y )  E(XY ).
Covariance measures the amount of linear dependence between two random variables. 

A positive covariance indicates that two random variables move in the same direction, 
while a negative covariance indicates they move in opposite directions. Interpreting the 
magnitude of a covariance can be a little tricky, as we will see shortly.

Because covariance is a measure of how two random variables are related, it is 
natural to ask how covariance is related to the notion of independence. This is given by 
the following property.

Property Cov.1:  If X and Y are independent, then Cov(X,Y)  0.

This property follows from equation (B.27) and the fact that E(XY )  E(X)E(Y ) when X 
and Y are independent. It is important to remember that the converse of COV.1 is not true: 
zero covariance between X and Y does not imply that X and Y are independent. In fact, 
there are random variables X such that, if Y  X2, Cov(X,Y )  0. [Any random variable 
with E(X)  0 and E(X3)  0 has this property.] If Y  X2, then X and Y are clearly not in-
dependent: once we know X, we know Y. It seems rather strange that X and X2 could have 
zero covariance, and this reveals a weakness of covariance as a general measure of asso-
ciation between random variables. The covariance is useful in contexts when relationships 
are at least approximately linear.

The second major property of covariance involves covariances between linear 
functions.

Property Cov.2:  For any constants a1, b1, a2, and b2,

	 Cov(a1X  b1,a2Y  b2)  a1a2Cov(X,Y ).� [B.28]

An important implication of COV.2 is that the covariance between two random 
variables can be altered simply by multiplying one or both of the random variables by 
a constant. This is important in economics because monetary variables, inflation rates, 
and so on can be defined with different units of measurement without changing their 
meaning.

Finally, it is useful to know that the absolute value of the covariance between any two 
random variables is bounded by the product of their standard deviations; this is known as 
the Cauchy-Schwartz inequality.

Property Cov.3:  uCov(X,Y)u  sd(X)sd(Y).
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Correlation Coefficient
Suppose we want to know the relationship between amount of education and annual earn-
ings in the working population. We could let X denote education and Y denote earnings 
and then compute their covariance. But the answer we get will depend on how we choose 
to measure education and earnings. Property COV.2 implies that the covariance between 
education and earnings depends on whether earnings are measured in dollars or thousands 
of dollars, or whether education is measured in months or years. It is pretty clear that 
how we measure these variables has no bearing on how strongly they are related. But the 
covariance between them does depend on the units of measurement.

The fact that the covariance depends on units of measurement is a deficiency that is 
overcome by the correlation coefficient between X and Y:

	 Corr(X,Y )  ​ 
Cov(X,Y )

 __________ 
sd(X)sd(Y )

 ​ 5 ​ 
s�������XY _____ s�������Xs�������Y ​;� [B.29]

the correlation coefficient between X and Y is sometimes denoted r�������XY (and is sometimes 
called the population correlation).

Because s�������X and s�������Y are positive, Cov(X,Y ) and Corr(X,Y ) always have the same sign, 
and Corr(X,Y )  0 if, and only if, Cov(X,Y )  0. Some of the properties of covariance 
carry over to correlation. If X and Y are independent, then Corr(X,Y )  0, but zero correla-
tion does not imply independence. (Like the covariance, the correlation coefficient is also 
a measure of linear dependence.) However, the magnitude of the correlation coefficient is 
easier to interpret than the size of the covariance due to the following property.

Property Corr.1:  1  Corr(X,Y)  1.

If Corr(X,Y )  0, or equivalently Cov(X,Y )  0, then there is no linear relationship 
between X and Y, and X and Y are said to be uncorrelated random variables; other-
wise, X and Y are correlated. Corr(X,Y )  1 implies a perfect positive linear relationship, 
which means that we can write Y  a  bX for some constant a and some constant b  0.  
Corr(X,Y )  1 implies a perfect negative linear relationship, so that Y  a  bX for 
some b  0. The extreme cases of positive or negative 1 rarely occur. Values of r�������XY closer 
to 1 or 1 indicate stronger linear relationships.

As mentioned earlier, the correlation between X and Y is invariant to the units of 
measurement of either X or Y. This is stated more generally as follows.

Property Corr.2:  For constants a1, b1, a2, and b2, with a1a2  0,

	 Corr(a1X  b1,a2Y  b2)  Corr(X,Y ).

If a1a2  0, then

	 Corr(a1X  b1,a2Y  b2)  Corr(X,Y ).

As an example, suppose that the correlation between earnings and education in the work-
ing population is .15. This measure does not depend on whether earnings are measured 
in dollars, thousands of dollars, or any other unit; it also does not depend on whether 
education is measured in years, quarters, months, and so on.
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Variance of Sums of Random Variables
Now that we have defined covariance and correlation, we can complete our list of major 
properties of the variance.

Property Var.3:  For constants a and b,

	 Var(aX  bY )  a2Var(X)  b2Var(Y )  2abCov(X,Y ).

It follows immediately that, if X and Y are uncorrelated—so that Cov(X,Y )  0—then

	 Var(X  Y)  Var(X)  Var(Y )� [B.30]

and

	 Var(X  Y )  Var(X)  Var(Y ).� [B.31]

In the latter case, note how the variance of the difference is the sum of the variances, not 
the difference in the variances.

As an example of (B.30), let X denote profits earned by a restaurant during a Friday 
night and let Y be profits earned on the following Saturday night. Then, Z  X  Y is 
profits for the two nights. Suppose X and Y each have an expected value of $300 and a 
standard deviation of $15 (so that the variance is 225). Expected profits for the two nights 
is E(Z)  E(X)  E(Y )  2(300)  600 dollars. If X and Y are independent, and there-
fore uncorrelated, then the variance of total profits is the sum of the variances: Var(Z)  
Var(X)  Var(Y )  2(225)  450. It follows that the standard deviation of total profits is ​


____
 450 ​ or about $21.21.
Expressions (B.30) and (B.31) extend to more than two random variables. To state 

this extension, we need a definition. The random variables {X1, …, Xn} are pairwise un-
correlated random variables if each variable in the set is uncorrelated with every other 
variable in the set. That is, Cov(Xi,Xj)  0, for all i  j.

Property Var.4:  If {X1, …, Xn} are pairwise uncorrelated random variables and {ai: i  
1, …, n} are constants, then

	 Var(a1X1  …  anXn)  a2
1Var(X1)  …  a2

nVar(Xn).

In summation notation, we can write

	 Var ​ ​∑ 
i1

 ​ 
n

  ​ ​aiXi ​  ​∑ 
i1

 ​ 
n

  ​ ​ai
2Var(Xi).� [B.32]

A special case of Property VAR.4 occurs when we take ai  1 for all i. Then, for pairwise 
uncorrelated random variables, the variance of the sum is the sum of the variances:

	 Var ​ ​∑ 
i1

 ​ 
n

  ​ ​Xi ​ ​∑ 
i1

 ​ 
n

  ​ ​Var(Xi).� [B.33]
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Because independent random variables are uncorrelated (see Property COV.1), the 
variance of a sum of independent random variables is the sum of the variances.

If the Xi are not pairwise uncorrelated, then the expression for Var ​ ​∑ i1​ 
n
  ​ ​aiXi ​ is much 

more complicated; we must add to the right-hand side of (B.32) the terms 2aiajCov(xi,xj) 
for all i  j.

We can use (B.33) to derive the variance for a binomial random variable. Let X ~ 
Binomial(n,u�������) and write X  Y1  …  Yn, where the Yi are independent Bernoulli(u�������) 
random variables. Then, by (B.33), Var(X)  Var(Y1)  …  Var(Yn)  nu(1  u�������).

In the airline reservation example with n  120 and u�������  .85, the variance of the num-
ber of passengers arriving for their reservations is 120(.85)(.15)  15.3, so the standard 
deviation is about 3.9.

Conditional Expectation
Covariance and correlation measure the linear relationship between two random variables 
and treat them symmetrically. More often in the social sciences, we would like to explain 
one variable, called Y, in terms of another variable, say, X. Further, if Y is related to X 
in a nonlinear fashion, we would like to know this. Call Y the explained variable and X 
the explanatory variable. For example, Y might be hourly wage, and X might be years of 
formal education.

We have already introduced the notion of the conditional probability density func-
tion of Y given X. Thus, we might want to see how the distribution of wages changes with 
education level. However, we usually want to have a simple way of summarizing this dis-
tribution. A single number will no longer suffice, since the distribution of Y given X  x  
generally depends on the value of x. Nevertheless, we can summarize the relationship be-
tween Y and X by looking at the conditional expectation of Y given X, sometimes called 
the conditional mean. The idea is this. Suppose we know that X has taken on a particular 
value, say, x. Then, we can compute the expected value of Y, given that we know this 
outcome of X. We denote this expected value by E(Y X  x), or sometimes E(Y x) for 
shorthand. Generally, as x changes, so does E(Y x).

When Y is a discrete random variable taking on values {y1, …, ym}, then

	 E(Y x)  ​∑ 
j1

 ​ 
m

  ​ ​yj  fYX(yjx).

When Y is continuous, E(Y x) is defined by integrating yf Y X(yx) over all possible values 
of y. As with unconditional expectations, the conditional expectation is a weighted aver-
age of possible values of Y, but now the weights reflect the fact that X has taken on a spe-
cific value. Thus, E(Y x) is just some function of x, which tells us how the expected value 
of Y varies with x.

As an example, let (X,Y ) represent the population of all working individuals, where X 
is years of education and Y is hourly wage. Then, E(Y X  12) is the average hourly wage 
for all people in the population with 12 years of education (roughly a high school educa-
tion). E(Y X  16) is the average hourly wage for all people with 16 years of education. 
Tracing out the expected value for various levels of education provides important infor-
mation on how wages and education are related. See Figure B.5 for an illustration.

In principle, the expected value of hourly wage can be found at each level of educa-
tion, and these expectations can be summarized in a table. Because education can vary 
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widely—and can even be measured in fractions of a year—this is a cumbersome way 
to show the relationship between average wage and amount of education. In economet-
rics, we typically specify simple functions that capture this relationship. As an example, 
suppose that the expected value of WAGE given EDUC is the linear function

	 E(WAGEEDUC)  1.05  .45 EDUC.

If this relationship holds in the population of working people, the average wage for peo-
ple with 8 years of education is 1.05  .45(8)  4.65, or $4.65. The average wage for  
people with 16 years of education is 8.25, or $8.25. The coefficient on EDUC implies that 
each year of education increases the expected hourly wage by .45, or 45¢.

Conditional expectations can also be nonlinear functions. For example, suppose that 
E(Y x)  10/x, where X is a random variable that is always greater than zero. This function 
is graphed in Figure B.6. This could represent a demand function, where Y is quantity de-
manded and X is price. If Y and X are related in this way, an analysis of linear association, 
such as correlation analysis, would be incomplete.

Properties of Conditional Expectation
Several basic properties of conditional expectations are useful for derivations in econo-
metric analysis.

Property CE.1:  E[c(X)uX]  c(X), for any function c(X).

4 8 12

E(WAGE|EDUC )

16 20 EDUC

F i g u r e  B . 5   The expected value of hourly wage given various levels of education.
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This first property means that functions of X behave as constants when we compute expec-
tations conditional on X. For example, E(X2X)  X2. Intuitively, this simply means that if 
we know X, then we also know X2.

Property CE.2:  For functions a(X) and b(X),

	 E[a(X)Y  b(X)X]  a(X)E(Y X)  b(X).

For example, we can easily compute the conditional expectation of a function such as  
XY  2X2: E(XY  2X2X)  XE(Y X)  2X2.

The next property ties together the notions of independence and conditional 
expectations.

Property CE.3:  If X and Y are independent, then E(Y uX)  E(Y).

This property means that, if X and Y are independent, then the expected value of Y given X 
does not depend on X, in which case, E(Y X) always equals the (unconditional) expected‑
value of Y. In the wage and education example, if wages were independent of education, 
then the average wages of high school and college graduates would be the same. Since this 
is almost certainly false, we cannot assume that wage and education are independent.

A special case of Property CE.3 is the following: if U and X are independent and  
E(U)  0, then E(UX)  0.

There are also properties of the conditional expectation that have to do with the fact 
that E(Y X) is a function of X, say, E(Y X)  m(X). Because X is a random variable, m(X) 
is also a random variable. Furthermore, m(X) has a probability distribution and therefore 
an expected value. Generally, the expected value of m(X) could be very difficult to com-
pute directly. The law of iterated expectations says that the expected value of m(X) is 
simply equal to the expected value of Y. We write this as follows.

1 5 10

1

2

E(Y|x) 10

E(Y|x) = 10/x

x

F i g u r e  B . 6   Graph of E(Y|x)  10/x.
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Property CE.4:  E[E(Y uX)]  E(Y).

This property is a little hard to grasp at first. It means that, if we first obtain E(Y X) as a 
function of X and take the expected value of this (with respect to the distribution of X, of 
course), then we end up with E(Y ). This is hardly obvious, but it can be derived using the 
definition of expected values.

As an example of how to use Property CE.4, let Y  WAGE and X  EDUC, where 
WAGE is measured in hours and EDUC is measured in years. Suppose the expected value 
of WAGE given EDUC is E(WAGEEDUC)  4  .60 EDUC. Further, E(EDUC)  11.5. 
Then, the law of iterated expectations implies that E(WAGE)  E(4  .60 EDUC)  4  .60  
E(EDUC)  4  .60(11.5)  10.90, or $10.90 an hour.

The next property states a more general version of the law of iterated expectations.

Property CE.4':  E(Y uX)  E[E(Y uX,Z)uX].

In other words, we can find E(Y X) in two steps. First, find E(Y X,Z) for any other random 
variable Z. Then, find the expected value of E(Y X,Z), conditional on X.

Property CE.5:  If E(Y uX)  E(Y), then Cov(X,Y)  0 [and so Corr(X,Y)  0]. In fact, 
every function of X is uncorrelated with Y.

This property means that, if knowledge of X does not change the expected value of Y, then 
X and Y must be uncorrelated, which implies that if X and Y are correlated, then E(Y X) 
must depend on X. The converse of Property CE.5 is not true: if X and Y are uncorrelated, 
E(Y X) could still depend on X. For example, suppose Y  X2. Then, E(Y X)  X2, which is 
clearly a function of X. However, as we mentioned in our discussion of covariance and cor-
relation, it is possible that X and X2 are uncorrelated. The conditional expectation captures 
the nonlinear relationship between X and Y that correlation analysis would miss entirely.

Properties CE.4 and CE.5 have two important implications: if U and X are random 
variables such that E(UX)  0, then E(U)  0, and U and X are uncorrelated.

Property CE.6:  If E(Y 2)   and E[g(X)2]   for some function g, then E{[Y  
m(X)]2uX}  E{[Y  g(X)]2uX} and E{[Y  m(X)]2}  E{[Y  g(X)]2}.

Property CE.6 is very useful in predicting or forecasting contexts. The first inequality 
says that, if we measure prediction inaccuracy as the expected squared prediction error, 
conditional on X, then the conditional mean is better than any other function of X for 
predicting Y. The conditional mean also minimizes the unconditional expected squared 
prediction error.

Conditional Variance
Given random variables X and Y, the variance of Y, conditional on X  x, is simply the 
variance associated with the conditional distribution of Y, given X  x: E{[Y  E(Y x)]2x}. 
The formula

	 Var(Y X  x)  E(Y 2x)  [E(Y x)]2

is often useful for calculations. Only occasionally will we have to compute a conditional 
variance. But we will have to make assumptions about and manipulate conditional vari-
ances for certain topics in regression analysis.
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As an example, let Y  SAVING and X  INCOME (both of these measured annu-
ally for the population of all families). Suppose that Var(SAVINGINCOME)  400  .25 
INCOME. This says that, as income increases, the variance in saving levels also increases. 
It is important to see that the relationship between the variance of SAVING and INCOME 
is totally separate from that between the expected value of SAVING and INCOME.

We state one useful property about the conditional variance.

Property CV.1:  If X and Y are independent, then Var(Y uX)  Var(Y).

This property is pretty clear, since the distribution of Y given X does not depend on X, and 
Var(Y X) is just one feature of this distribution.

B.5  The Normal and Related Distributions

The Normal Distribution
The normal distribution and those derived from it are the most widely used distribu-
tions in statistics and econometrics. Assuming that random variables defined over popu-
lations are normally distributed simplifies probability calculations. In addition, we will 
rely heavily on the normal and related distributions to conduct inference in statistics 
and econometrics—even when the underlying population is not necessarily normal. We 
must postpone the details, but be assured that these distributions will arise many times 
throughout this text.

A normal random variable is a continuous random variable that can take on any value. 
Its probability density function has the familiar bell shape graphed in Figure B.7.

m x

fX for a normal
          random variable

F i g u r e  B . 7   The general shape of the normal probability density function.
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Mathematically, the pdf of X can be written as

	 f (x)  ​  1 _____ 
s������� ​

___
 2 ​
 ​ exp[(x  m�������)2/2s�������2],    x  ,� [B.34]

where m�������  E(X) and s2  Var(X). We say that X has a normal distribution with expected 
value m������� and variance s2, written as X ~ Normal(m,s�������2). Because the normal distribution is 
symmetric about m, m������� is also the median of X. The normal distribution is sometimes called 
the Gaussian distribution after the famous mathematician C. F. Gauss.

Certain random variables appear to roughly follow a normal distribution. Human 
heights and weights, test scores, and county unemployment rates have pdfs roughly the 
shape in Figure B.7. Other distributions, such as income distributions, do not appear to 
follow the normal probability function. In most countries, income is not symmetrically 
distributed about any value; the distribution is skewed toward the upper tail. In some 
cases, a variable can be transformed to achieve normality. A popular transformation is the 
natural log, which makes sense for positive random variables. If X is a positive random 
variable, such as income, and Y  log(X) has a normal distribution, then we say that X has 
a lognormal distribution. It turns out that the lognormal distribution fits income distribu-
tion pretty well in many countries. Other variables, such as prices of goods, appear to be 
well described as lognormally distributed.

The Standard Normal Distribution
One special case of the normal distribution occurs when the mean is zero and the variance 
(and, therefore, the standard deviation) is unity. If a random variable Z has a Normal(0,1) 
distribution, then we say it has a standard normal distribution. The pdf of a standard nor-
mal random variable is denoted f(z); from (B.34), with m�������  0 and s2  1, it is given by

	 f(z)  ​  1 ____ 
 ​

___
 2 ​
 ​ exp(z2/2),    z  .� [B.35]

The standard normal cumulative distribution function is denoted (z) and is obtained 
as the area under f, to the left of z; see Figure B.8. Recall that (z)  P(Z  z); because Z 
is continuous, (z)  P(Z  z) as well.

No simple formula can be used to obtain the values of (z) [because (z) is the in-
tegral of the function in (B.35), and this intregral has no closed form]. Nevertheless, the 
values for (z) are easily tabulated; they are given for z between 3.1 and 3.1 in Table G.1  
in Appendix G. For z  3.1, (z) is less than .001, and for z  3.1, (z) is greater than 
.999. Most statistics and econometrics software packages include simple commands for 
computing values of the standard normal cdf, so we can often avoid printed tables entirely 
and obtain the probabilities for any value of z.

Using basic facts from probability—and, in particular, properties (B.7) and (B.8) con-
cerning cdfs—we can use the standard normal cdf for computing the probability of any 
event involving a standard normal random variable. The most important formulas are

	 P(Z  z)  1  (z),� [B.36]

	 P(Z  z)  P(Z  z),� [B.37]
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and

	 P(a  Z  b)  (b)  (a).� [B.38]

Because Z is a continuous random variable, all three formulas hold whether or not the 
inequalities are strict. Some examples include P(Z  .44)  1  .67  .33, P(Z  .92) 
 P(Z  .92)  1  .821  .179, and P(1  Z  .5)  .692  .159  .533.

Another useful expression is that, for any c  0,

	 P(Z  c)  P(Z  c)  P(Z  c)� [B.39]

	  2P(Z  c)  2[1  (c)].

Thus, the probability that the absolute value of Z is bigger than some positive constant c 
is simply twice the probability P(Z  c); this reflects the symmetry of the standard normal 
distribution.

In most applications, we start with a normally distributed random variable, X ~ 
Normal(m,s�������2), where m������� is different from zero and s2  1. Any normal random variable 
can be turned into a standard normal using the following property.

Property Normal.1:  If X ~ Normal(m,s�������2), then (X  m)/s������� ~ Normal(0,1).

Property Normal.1 shows how to turn any normal random variable into a standard normal. 
Thus, suppose X ~ Normal(3,4), and we would like to compute P(X  1). The steps always 
involve the normalization of X to a standard normal:

	 P(X  1)  P(X  3  1  3)  P ​ ​ X  3 ______ 
2
 ​   1 ​ 

	  P(Z  1)  (1)  .159.

0 z

1

0

.5

23 3

F i g u r e  B . 8   The standard normal cumulative distribution function.
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	E xample B.6	 Probabilities for a Normal Random Variable

First, let us compute P(2  X  6) when X ~ Normal(4,9) (whether we use  or  is 
irrelevant because X is a continuous random variable). Now,

	 P(2  X  6)  P ​ ​ 2 2 4 _____ 
3
 ​   ​ X 2 4 ______ 

3
 ​   ​ 6 2 4 _____ 

3
 ​  ​  P(2/3  Z  2/3)

	  (.67)  (.67)  .749  .251  .498.

Now, let us compute P(X  2):

	 P(X  2)  P(X  2)  P(X  2)

	  P[(X  4)/3  (2  4)/3]  P[(X  4)/3  (2  4)/3]

	  1  (2/3)  (2)

	  1  .251  .023  .772.

Additional Properties of the Normal Distribution
We end this subsection by collecting several other facts about normal distributions that we 
will later use.

Property Normal.2:  If X ~ Normal(m,s2), then aX  b ~ Normal(am  b,a2s2).

Thus, if X ~ Normal(1,9), then Y  2X  3 is distributed as normal with mean 2E(X)   
3  5 and variance 229  36; sd(Y )  2sd(X)  23  6.

Earlier, we discussed how, in general, zero correlation and independence are not the 
same. In the case of normally distributed random variables, it turns out that zero correla-
tion suffices for independence.

Property Normal.3:  If X and Y are jointly normally distributed, then they are indepen-
dent if, and only if, Cov(X,Y)  0.

Property Normal.4:  Any linear combination of independent, identically distributed nor-
mal random variables has a normal distribution.

For example, let Xi, for i  1, 2, and 3, be independent random variables distributed as 
Normal(m,s�������2). Define W  X1  2X2  3X3. Then, W is normally distributed; we must 
simply find its mean and variance. Now,

	 E(W )  E(X1)  2E(X2)  3E(X3)  m�������  2m�������  3m�������  0.

Also,

	 Var(W )  Var(X1)  4Var(X2)  9Var(X3)  14s2.

Property Normal.4 also implies that the average of independent, normally distrib-
uted random variables has a normal distribution. If Y1, Y2, …, Yn are independent random 
variables and each is distributed as Normal(m, s�������2), then

	 Y
–
 ~ Normal(m, s2/n).� [B.40]

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	A ppendix B  Fundamentals of Probability� 749

This result is critical for statistical inference about the mean in a normal population.
Other features of the normal distribution are worth knowing, although they do 

not play a central role in the text. Because a normal random variable is symmetric 
about its mean, it has zero skewness, that is, E[(X 2 m�������)3]  0. Further, it can be 
shown that

	 E[(X 2 m�������)4]/s������� 4 5 3,

or E(Z4) 5 3, where Z has a standard normal distribution. Because the normal distribution 
is so prevalent in probability and statistics, the measure of kurtosis for any given random 
variable X (whose fourth moment exists) is often defined to be E[(X 2 m�������)4]/s������� 4 2 3, that 
is, relative to the value for the standard normal distribution. If E[(X 2 m�������)4]/s������� 4  3, then 
the distribution of X has fatter tails than the normal distribution (a somewhat common 
occurrence, such as with the t distribution to be introduced shortly); if E[(X 2 m�������)4]/s������� 4  3,  
then the distribution has thinner tails than the normal (a rarer situation).

The Chi-Square Distribution
The chi-square distribution is obtained directly from independent, standard nor-
mal random variables. Let Zi, i  1, 2, …, n, be independent random variables, each 
distributed as standard normal. Define a new random variable as the sum of the squares 
of the Zi:

	 X ​∑ 
i1

 ​ 
n

  ​ ​Z​2   i ​.� [B.41]

Then, X has what is known as a chi-square distribution with n degrees of freedom (or 
df for short). We write this as X ~ x�������n

2. The df in a chi-square distribution corresponds to 
the number of terms in the sum in (B.41). The concept of degrees of freedom will play an 
important role in our statistical and econometric analyses.

The pdf for chi-square distributions with varying degrees of freedom is given in 
Figure B.9; we will not need the formula for this pdf, and so we do not reproduce it here. 
From equation (B.41), it is clear that a chi-square random variable is always nonnegative, 
and that, unlike the normal distribution, the chi-square distribution is not symmetric about 
any point. It can be shown that if X ~ x�������n

2, then the expected value of X is n [the number of 
terms in (B.41)], and the variance of X is 2n.

The t Distribution
The t distribution is the workhorse in classical statistics and multiple regression analysis. 
We obtain a t distribution from a standard normal and a chi-square random variable.

Let Z have a standard normal distribution and let X have a chi-square distribution with 
n degrees of freedom. Further, assume that Z and X are independent. Then, the random 
variable

	 T  ​  Z _____ 
​
___

 X/n ​
 ​� [B.42]
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has a t distribution with n degrees of freedom. We will denote this by T ~ tn. The t distribution 
gets its degrees of freedom from the chi-square random variable in the denominator of (B.42).

The pdf of the t distribution has a shape similar to that of the standard normal 
distribution, except that it is more spread out and therefore has more area in the tails. 
The expected value of a t distributed random variable is zero (strictly speaking, the 
expected value exists only for n  1), and the variance is n/(n  2) for n  2. (The 
variance does not exist for n  2 because the distribution is so spread out.) The pdf 
of the t distribution is plotted in Figure B.10 for various degrees of freedom. As 
the degrees of freedom gets large, the t distribution approaches the standard normal 
distribution.

The F Distribution
Another important distribution for statistics and econometrics is the F distribution. In par-
ticular, the F distribution will be used for testing hypotheses in the context of multiple 
regression analysis.

To define an F random variable, let X1 ~ x2
k1

 and X2 ~ x2
k 2

 and assume that X1 and X2 
are independent. Then, the random variable

	 F  ​ 
(X1/k1) ______ 
(X2/k2)

 ​� [B.43]

has an F distribution with (k1,k2) degrees of freedom. We denote this as F ~ Fk1, k2
. The 

pdf of the F distribution with different degrees of freedom is given in Figure B.11.

x 

df = 2 

f(x)

df = 4 

df = 8 

F i g u r e  B . 9   The chi-square distribution with various degrees of freedom.
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0 3

df = 1

23

df = 2df = 24

F i g u r e  B . 1 0   The t distribution with various degrees of freedom.

x 

df = 2, 8 
f(x)

df = 6, 8 

df = 6, 20

0

F i g u r e  B . 1 1   The Fk1, k2
 distribution for various degrees of freedom, k1 and k2.
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The order of the degrees of freedom in Fk1,k2
 is critical. The integer k1 is called the 

numerator degrees of freedom because it is associated with the chi-square variable in the 
numerator. Likewise, the integer k2 is called the denominator degrees of freedom because 
it is associated with the chi-square variable in the denominator. This can be a little tricky 
because (B.43) can also be written as (X1k2)/(X2k1), so that k1 appears in the denominator. 
Just remember that the numerator df is the integer associated with the chi-square variable 
in the numerator of (B.43), and similarly for the denominator df.

Summary
In this appendix, we have reviewed the probability concepts that are needed in econometrics. 
Most of the concepts should be familiar from your introductory course in probability and 
statistics. Some of the more advanced topics, such as features of conditional expectations, do 
not need to be mastered now—there is time for that when these concepts arise in the context 
of regression analysis in Part 1.

In an introductory statistics course, the focus is on calculating means, variances, covari-
ances, and so on for particular distributions. In Part 1, we will not need such calculations: we 
mostly rely on the properties of expectations, variances, and so on that have been stated in 
this appendix.

Key Terms
Bernoulli (or Binary) Random 

Variable
Binomial Distribution
Chi-Square Distribution
Conditional Distribution
Conditional Expectation
Continuous Random Variable
Correlation Coefficient
Covariance
Cumulative Distribution 

Function (cdf)
Degrees of Freedom
Discrete Random Variable

Problems

	 1	� Suppose that a high school student is preparing to take the SAT exam. Explain why his or 
her eventual SAT score is properly viewed as a random variable.

	 2	� Let X be a random variable distributed as Normal(5,4). Find the probabilities of the 
following events:
(i)	 P(X  6).
(ii)	 P(X  4).
(iii)	 P(X  5  1).

Expected Value
Experiment
F Distribution
Independent Random Variables
Joint Distribution
Kurtosis
Law of Iterated Expectations
Median
Normal Distribution
Pairwise Uncorrelated Random 

Variables
Probability Density Function  

(pdf)

Random Variable
Skewness
Standard Deviation
Standard Normal Distribution
Standardized Random 

Variable
Symmetric Distribution
t Distribution
Uncorrelated Random 

Variables
Variance
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	 3	� Much is made of the fact that certain mutual funds outperform the market year after year 
(that is, the return from holding shares in the mutual fund is higher than the return from 
holding a portfolio such as the S&P 500). For concreteness, consider a 10-year period 
and let the population be the 4,170 mutual funds reported in The Wall Street Journal on 
January 1, 1995. By saying that performance relative to the market is random, we mean 
that each fund has a 50–50 chance of outperforming the market in any year and that perfor-
mance is independent from year to year.
(i)	� If performance relative to the market is truly random, what is the probability that any 

particular fund outperforms the market in all 10 years?
(ii)	� Find the probability that at least one fund out of 4,170 funds outperforms the market 

in all 10 years. What do you make of your answer?
(iii)	� If you have a statistical package that computes binomial probabilities, find the 

probability that at least five funds outperform the market in all 10 years.

	 4	� For a randomly selected county in the United States, let X represent the proportion of 
adults over age 65 who are employed, or the elderly employment rate. Then, X is restricted 
to a value between zero and one. Suppose that the cumulative distribution function for X is 
given by F(x)  3x2  2x3 for 0  x  1. Find the probability that the elderly employment 
rate is at least .6 (60%).

	 5	� Just prior to jury selection for O. J. Simpson’s murder trial in 1995, a poll found that about 
20% of the adult population believed Simpson was innocent (after much of the physical 
evidence in the case had been revealed to the public). Ignore the fact that this 20% is 
an estimate based on a subsample from the population; for illustration, take it as the true 
percentage of people who thought Simpson was innocent prior to jury selection. Assume 
that the 12 jurors were selected randomly and independently from the population (although 
this turned out not to be true).
(i)	� Find the probability that the jury had at least one member who believed in Simpson’s 

innocence prior to jury selection. [Hint: Define the Binomial(12,.20) random vari-
able X to be the number of jurors believing in Simpson’s innocence.]

(ii)	� Find the probability that the jury had at least two members who believed in Simpson’s  
innocence. [Hint: P(X  2)  1  P(X  1), and P(X  1)  P(X  0)  P(X  1).]

	 6	� (Requires calculus) Let X denote the prison sentence, in years, for people convicted  
of auto theft in a particular state in the United States. Suppose that the pdf of X is 
given by

f (x)  (1/9)x2, 0  x  3.

Use integration to find the expected prison sentence.

	 7	� If a basketball player is a 74% free throw shooter, then, on average, how many free throws 
will he or she make in a game with eight free throw attempts?

	 8	� Suppose that a college student is taking three courses: a two-credit course, a three-credit 
course, and a four-credit course. The expected grade in the two-credit course is 3.5, while 
the expected grade in the three- and four-credit courses is 3.0. What is the expected overall 
grade point average for the semester? (Remember that each course grade is weighted by its 
share of the total number of units.)
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	 9	� Let X denote the annual salary of university professors in the United States, measured in 
thousands of dollars. Suppose that the average salary is 52.3, with a standard deviation of 
14.6. Find the mean and standard deviation when salary is measured in dollars.

	 10	� Suppose that at a large university, college grade point average, GPA, and SAT score, SAT, 
are related by the conditional expectation E(GPASAT )  .70  .002 SAT.
(i)	� Find the expected GPA when SAT  800. Find E(GPASAT  1,400). Comment on 

the difference.
(ii)	� If the average SAT in the university is 1,100, what is the average GPA? (Hint: Use 

Property CE.4.)
(iii)	� If a student’s SAT score is 1,100, does this mean he or she will have the GPA found 

in part (ii)? Explain.
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C.1  Populations, Parameters, and Random Sampling
Statistical inference involves learning something about a population given the availability 
of a sample from that population. By population, we mean any well-defined group of sub-
jects, which could be individuals, firms, cities, or many other possibilities. By “learning,” 
we can mean several things, which are broadly divided into the categories of estimation 
and hypothesis testing.

A couple of examples may help you understand these terms. In the population 
of all working adults in the United States, labor economists are interested in learn-
ing about the return to education, as measured by the average percentage increase in 
earnings given another year of education. It would be impractical and costly to obtain 
information on earnings and education for the entire working population in the United 
States, but we can obtain data on a subset of the population. Using the data collected, 
a labor economist may report that his or her best estimate of the return to another 
year of education is 7.5%. This is an example of a point estimate. Or, she or he may 
report a range, such as “the return to education is between 5.6% and 9.4%.” This is an 
example of an interval estimate.

An urban economist might want to know whether neighborhood crime watch pro-
grams are associated with lower crime rates. After comparing crime rates of neighbor-
hoods with and without such programs in a sample from the population, he or she can 
draw one of two conclusions: neighborhood watch programs do affect crime, or they do 
not. This example falls under the rubric of hypothesis testing.

The first step in statistical inference is to identify the population of interest. This 
may seem obvious, but it is important to be very specific. Once we have identified the 
population, we can specify a model for the population relationship of interest. Such 
models involve probability distributions or features of probability distributions, and 
these depend on unknown parameters. Parameters are simply constants that determine 
the directions and strengths of relationships among variables. In the labor econom-
ics example just presented, the parameter of interest is the return to education in the 
population.

C
appendix

Fundamentals of Mathematical 
Statistics
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Sampling
For reviewing statistical inference, we focus on the simplest possible setting. Let Y be 
a random variable representing a population with a probability density function f (y;u�), 
which depends on the single parameter u. The probability density function (pdf) of Y is as-
sumed to be known except for the value of u�; different values of u� imply different popula-
tion distributions, and therefore we are interested in the value of u. If we can obtain certain 
kinds of samples from the population, then we can learn something about u. The easiest 
sampling scheme to deal with is random sampling.

Random Sampling.  If Y1, Y2, …, Yn are independent random variables with a common 
probability density function f(y;u), then {Y1, …, Yn} is said to be a random sample from 
f(y;u) [or a random sample from the population represented by f(y;u)].

When {Y1, …, Yn} is a random sample from the density f (y;u�), we also say that the Yi are 
independent, identically distributed (or i.i.d.) random variables from f (y;u�). In some cases, 
we will not need to entirely specify what the common distribution is.

The random nature of Y1, Y2, …, Yn in the definition of random sampling reflects 
the fact that many different outcomes are possible before the sampling is actually car-
ried out. For example, if family income is obtained for a sample of n  100 families in 
the United States, the incomes we observe will usually differ for each different sample of 
100 families. Once a sample is obtained, we have a set of numbers, say, {y1, y2, …, yn}, 
which constitute the data that we work with. Whether or not it is appropriate to assume 
the sample came from a random sampling scheme requires knowledge about the actual 
sampling process.

Random samples from a Bernoulli distribution are often used to illustrate statistical 
concepts, and they also arise in empirical applications. If Y1, Y2, …, Yn are independent 
random variables and each is distributed as Bernoulli(u�), so that P(Yi  1)  u� and P(Yi 
 0)  1  u, then {Y1, Y2, …, Yn} constitutes a random sample from the Bernoulli(u�) 
distribution. As an illustration, consider the airline reservation example carried along in 
Appendix B. Each Yi denotes whether customer i shows up for his or her reservation; Yi  
1 if passenger i shows up, and Yi  0 otherwise. Here, u� is the probability that a randomly 
drawn person from the population of all people who make airline reservations shows up 
for his or her reservation.

For many other applications, random samples can be assumed to be drawn from a 
normal distribution. If {Y1, …, Yn} is a random sample from the Normal(m,2) popula-
tion, then the population is characterized by two parameters, the mean m� and the variance 
2. Primary interest usually lies in m, but 2 is of interest in its own right because making 
inferences about m� often requires learning about 2.

C.2  Finite Sample Properties of Estimators
In this section, we study what are called finite sample properties of estimators. The term 
“finite sample” comes from the fact that the properties hold for a sample of any size, 
no matter how large or small. Sometimes, these are called small sample properties. In 
Section C.3, we cover “asymptotic properties,” which have to do with the behavior of 
estimators as the sample size grows without bound.
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Estimators and Estimates
To study properties of estimators, we must define what we mean by an estimator. Given a 
random sample {Y1, Y2, …, Yn} drawn from a population distribution that depends on an 
unknown parameter u, an estimator of u� is a rule that assigns each possible outcome of 
the sample a value of u. The rule is specified before any sampling is carried out; in par-
ticular, the rule is the same regardless of the data actually obtained.

As an example of an estimator, let {Y1, …, Yn} be a random sample from a population 
with mean m. A natural estimator of m� is the average of the random sample:

	 Ȳ  n21 ​∑ 
i51

 ​ 
n

  ​​ Yi.� [C.1]

Ȳ is called the sample average but, unlike in Appendix A where we defined the sample 
average of a set of numbers as a descriptive statistic, Ȳ is now viewed as an estimator. 
Given any outcome of the random variables Y1, …, Yn, we use the same rule to estimate 
m�: we simply average them. For actual data outcomes {y1, …, yn}, the estimate is just the 
average in the sample: ​- y​  (y1  y2  …  yn)/n.

	E xample C.1	 City Unemployment Rates

Suppose we obtain the following sample of unemployment rates for 10 cities in the United 
States:

City Unemployment Rate

  1 5.1

  2 6.4

  3 9.2

  4 4.1

  5 7.5

  6 8.3

  7 2.6

  8 3.5

  9 5.8

10 7.5

Our estimate of the average city unemployment rate in the United States is ​- y​  6.0. Each 
sample generally results in a different estimate. But the rule for obtaining the estimate is 
the same, regardless of which cities appear in the sample, or how many.
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More generally, an estimator W of a parameter u� can be expressed as an abstract 
mathematical formula:

	 W  h(Y1, Y2, …, Yn),� [C.2]

for some known function h of the random variables Y1, Y2, …, Yn. As with the special case 
of the sample average, W is a random variable because it depends on the random sample: 
as we obtain different random samples from the population, the value of W can change. 
When a particular set of numbers, say, {y1, y2, …, yn}, is plugged into the function h, we 
obtain an estimate of u, denoted w  h(y1, …, yn). Sometimes, W is called a point estima-
tor and w a point estimate to distinguish these from interval estimators and estimates, 
which we will come to in Section C.5.

For evaluating estimation procedures, we study various properties of the probability 
distribution of the random variable W. The distribution of an estimator is often called its 
sampling distribution, because this distribution describes the likelihood of various out-
comes of W across different random samples. Because there are unlimited rules for com-
bining data to estimate parameters, we need some sensible criteria for choosing among 
estimators, or at least for eliminating some estimators from consideration. Therefore, we 
must leave the realm of descriptive statistics, where we compute things such as the sample 
average to simply summarize a body of data. In mathematical statistics, we study the 
sampling distributions of estimators.

Unbiasedness
In principle, the entire sampling distribution of W can be obtained given the probability 
distribution of Yi and the function h. It is usually easier to focus on a few features of the 
distribution of W in evaluating it as an estimator of u. The first important property of an 
estimator involves its expected value.

Unbiased Estimator.  An estimator, W of u, is an unbiased estimator if

	 E(W )  u,� [C.3]

for all possible values of u.

If an estimator is unbiased, then its probability distribution has an expected value equal to 
the parameter it is supposed to be estimating. Unbiasedness does not mean that the esti-
mate we get with any particular sample is equal to u, or even very close to u. Rather, if we 
could indefinitely draw random samples on Y from the population, compute an estimate 
each time, and then average these estimates over all random samples, we would obtain u. 
This thought experiment is abstract because, in most applications, we just have one ran-
dom sample to work with.

For an estimator that is not unbiased, we define its bias as follows.

Bias of an Estimator.  If W is a biased estimator of u, its bias is defined as

	 Bias(W )  E(W )  u.� [C.4]

Figure C.1 shows two estimators; the first one is unbiased, and the second one has a 
positive bias.
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The unbiasedness of an estimator and the size of any possible bias depend on the 
distribution of Y and on the function h. The distribution of Y is usually beyond our control 
(although we often choose a model for this distribution): it may be determined by nature 
or social forces. But the choice of the rule h is ours, and if we want an unbiased estimator, 
then we must choose h accordingly.

Some estimators can be shown to be unbiased quite generally. We now show that the 
sample average Ȳ is an unbiased estimator of the population mean m, regardless of the 
underlying population distribution. We use the properties of expected values (E.1 and E.2) 
that we covered in Section B.3:

	 E(Ȳ )  E ​ (1/n) ​∑ 
i51

 ​ 
n

  ​​ Yi ​  (1/n)E ​ ​∑ 
i51

 ​ 
n

  ​​ Yi ​  (1/n) ​ ​∑ 
i51

 ​ 
n

  ​​ E(Yi ) ​
	  (1/n) ​ ​∑ 

i51

 ​ 
n

  ​ m​​�​​  ​​  (1/n)(nm�)  m.

For hypothesis testing, we will need to estimate the variance s2 from a population 
with mean m. Letting {Y1, …, Yn} denote the random sample from the population with 
E(Y )  m� and Var(Y )  s2, define the estimator as

	 S 2  ​  1  
n 21

 ​ ​∑ 
i51

 ​ 
n

  ​​ (Yi  Ȳ )2,� [C.5]

wu = E(W1) E(W2)

pdf of W1 pdf of W2

f(w)

F i g u r e  C . 1   An unbiased estimator, W1, and an estimator with positive bias, W2.
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which is usually called the sample variance. It can be shown that S 2 is unbiased for s�2: 
E(S 2)  s2. The division by n  1, rather than n, accounts for the fact that the mean m� 
is estimated rather than known. If m� were known, an unbiased estimator of s2 would be  
n1 ​∑ 

i51
​ 

n
  ​ (​Yi  m�)2, but m� is rarely known in practice.

Although unbiasedness has a certain appeal as a property for an estimator—indeed, 
its antonym, “biased,” has decidedly negative connotations—it is not without its prob-
lems. One weakness of unbiasedness is that some reasonable, and even some very good, 
estimators are not unbiased. We will see an example shortly.

Another important weakness of unbiasedness is that unbiased estimators exist that are 
actually quite poor estimators. Consider estimating the mean m� from a population. Rather 
than using the sample average Ȳ to estimate m, suppose that, after collecting a sample of 
size n, we discard all of the observations except the first. That is, our estimator of m� is 
simply W  Y1. This estimator is unbiased because E(Y1)  m. Hopefully, you sense that 
ignoring all but the first observation is not a prudent approach to estimation: it throws out 
most of the information in the sample. For example, with n  100, we obtain 100 out-
comes of the random variable Y, but then we use only the first of these to estimate E(Y ).

The Sampling Variance of Estimators
The example at the end of the previous subsection shows that we need additional criteria 
to evaluate estimators. Unbiasedness only ensures that the sampling distribution of an esti-
mator has a mean value equal to the parameter it is supposed to be estimating. This is fine, 
but we also need to know how spread out the distribution of an estimator is. An estima-
tor can be equal to u, on average, but it can also be very far away with large probability. 
In Figure C.2, W1 and W2 are both unbiased estimators of u. But the distribution of W1 is 
more tightly centered about u�: the probability that W1 is greater than any given distance 
from u� is less than the probability that W2 is greater than that same distance from u. Using 
W1 as our estimator means that it is less likely that we will obtain a random sample that 
yields an estimate very far from u.

To summarize the situation shown in Figure C.2, we rely on the variance (or standard 
deviation) of an estimator. Recall that this gives a single measure of the dispersion in the 
distribution. The variance of an estimator is often called its sampling variance because it 
is the variance associated with a sampling distribution. Remember, the sampling variance 
is not a random variable; it is a constant, but it might be unknown.

We now obtain the variance of the sample average for estimating the mean m� from a 
population:

	 Var(Ȳ )  Var ​ (1/n)​∑ 
i51

 ​ 
n

  ​​ Yi ​  (1/n2)Var ​ ​∑ 
i51

 ​ 
n

  ​​ Yi ​  (1/n2) ​ ​∑ 
i51

 ​ 
n

  ​​ Var(Yi) ​
	  (1/n2) ​ ​∑ 

i51

 ​ 
n

  ​​ s�2 ​  (1/n2)(ns�2)  s2/n.� [C.6]

Notice how we used the properties of variance from Sections B.3 and B.4 (VAR.2 and 
VAR.4), as well as the independence of the Yi. To summarize: If {Yi: i  1, 2, …, n} is a 
random sample from a population with mean m� and variance s2, then Ȳ has the same mean 
as the population, but its sampling variance equals the population variance, s2, divided by 
the sample size.
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An important implication of Var(Ȳ)  s2/n is that it can be made very close to zero by 
increasing the sample size n. This is a key feature of a reasonable estimator, and we return 
to it in Section C.3.

As suggested by Figure C.2, among unbiased estimators, we prefer the estimator 
with the smallest variance. This allows us to eliminate certain estimators from consider-
ation. For a random sample from a population with mean m� and variance s2, we know that  
Ȳ is unbiased, and Var(Ȳ )  s2/n. What about the estimator Y1, which is just the first ob-
servation drawn? Because Y1 is a random draw from the population, Var(Y1)  s2. Thus,  
the difference between Var(Y1) and Var(Ȳ ) can be large even for small sample sizes. If  
n  10, then Var(Y1) is 10 times as large as Var(Ȳ )  s2/10. This gives us a formal way  
of excluding Y1 as an estimator of m.

To emphasize this point, Table C.1 contains the outcome of a small simulation 
study. Using the statistical package Stata®, 20 random samples of size 10 were gener-
ated from a normal distribution, with m�  2 and s2  1; we are interested in estimating 
m� here. For each of the 20 random samples, we compute two estimates, y1 and ​- y​; these 
values are listed in Table C.1. As can be seen from the table, the values for y1 are much 
more spread out than those for ​- y​: y1 ranges from 0.64 to 4.27, while ​- y​ ranges only 
from 1.16 to 2.58. Further, in 16 out of 20 cases, ​- y​ is closer than y1 to m�  2. The aver-
age of y1 across the simulations is about 1.89, while that for ​- y​ is 1.96. The fact that these 
averages are close to 2 illustrates the unbiasedness of both estimators (and we could get 
these averages closer to 2 by doing more than 20 replications). But comparing just the 
average outcomes across random draws masks the fact that the sample average Ȳ  is far 
superior to Y1 as an estimator of m.

wu

f(w)

pdf of W1 

pdf of W2 

F i g u r e  C . 2   The sampling distributions of two unbiased estimators of u.
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Efficiency
Comparing the variances of Ȳ and Y1 in the previous subsection is an example of a general 
approach to comparing different unbiased estimators.

Relative Efficiency.  If W1 and W2 are two unbiased estimators of u, W1 is efficient 
relative to W2 when Var(W1)  Var(W2) for all u, with strict inequality for at least 
one value of u.

Earlier, we showed that, for estimating the population mean m, Var(Ȳ )  Var(Y1) for any 
value of s2 whenever n  1. Thus, Ȳ is efficient relative to Y1 for estimating m. We can-
not always choose between unbiased estimators based on the smallest variance criterion: 
given two unbiased estimators of u, one can have smaller variance from some values of u, 
while the other can have smaller variance for other values of u.

If we restrict our attention to a certain class of estimators, we can show that the sample 
average has the smallest variance. Problem C.2 asks you to show that Ȳ has the smallest 
variance among all unbiased estimators that are also linear functions of Y1, Y2,  …,  Yn.  
The assumptions are that the Yi have common mean and variance, and that they are pair-
wise uncorrelated.

T a b l e  C . 1   Simulation of Estimators for a Normal(m,1) Distribution with m = 2

Replication y1 ​- y​

  1 0.64 1.98

  2 1.06 1.43

  3 4.27 1.65

  4 1.03 1.88

  5 3.16 2.34

  6 2.77 2.58

  7 1.68 1.58

  8 2.98 2.23

  9 2.25 1.96

10 2.04 2.11

11 0.95 2.15

12 1.36 1.93

13 2.62 2.02

14 2.97 2.10

15 1.93 2.18

16 1.14 2.10

17 2.08 1.94

18 1.52 2.21

19 1.33 1.16

20 1.21 1.75
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If we do not restrict our attention to unbiased estimators, then com-
paring variances is meaningless. For example, when estimating the 
population mean m, we can use a trivial estimator that is equal to zero, 
regardless of the sample that we draw. Naturally, the variance of this 
estimator is zero (since it is the same value for every random sample). 
But the bias of this estimator is m, so it is a very poor estimator when 
m� is large.

One way to compare estimators that are not necessarily unbiased is 
to compute the mean squared error (MSE) of the estimators. If W is an 
estimator of u, then the MSE of W is defined as MSE(W )  E[(W  u�)2]. 
The MSE measures how far, on average, the estimator is away from u. It 
can be shown that MSE(W )  Var(W )  [Bias(W )]2, so that MSE(W ) 
depends on the variance and bias (if any is present). This allows us to 
compare two estimators when one or both are biased.

C.3  Asymptotic or Large Sample Properties  
of Estimators

In Section C.2, we encountered the estimator Y1 for the population mean 
m, and we saw that, even though it is unbiased, it is a poor estimator be-
cause its variance can be much larger than that of the sample mean. One 
notable feature of Y1 is that it has the same variance for any sample size. 
It seems reasonable to require any estimation procedure to improve as 
the sample size increases. For estimating a population mean m, Ȳ  im-
proves in the sense that its variance gets smaller as n gets larger; Y1 
does not improve in this sense.

We can rule out certain silly estimators by studying the asymptotic or 
large sample properties of estimators. In addition, we can say something 
positive about estimators that are not unbiased and whose variances are 
not easily found.

Asymptotic analysis involves approximating the features of the 
sampling distribution of an estimator. These approximations depend on 
the size of the sample. Unfortunately, we are necessarily limited in what 
we can say about how “large” a sample size is needed for asymptotic anal-
ysis to be appropriate; this depends on the underlying population distribu-
tion. But large sample approximations have been known to work well for 
sample sizes as small as n  20.

Consistency
The first asymptotic property of estimators concerns how far the estimator is 
likely to be from the parameter it is supposed to be estimating as we let the 
sample size increase indefinitely.

Consistency.  Let Wn be an estimator of u based on a sample Y1, Y2, …, Yn 
of size n. Then, Wn is a consistent estimator of u if for every  > 0,
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	 P(Wn  u�  ) → 0 as n → .� [C.7]

If Wn is not consistent for u, then we say it is inconsistent.
When Wn is consistent, we also say that u� is the probability limit of Wn, written as 

plim(Wn)  u.
Unlike unbiasedness—which is a feature of an estimator for a given sample 

size—consistency involves the behavior of the sampling distribution of the estimator 
as the sample size n gets large. To emphasize this, we have indexed the estimator by 
the sample size in stating this definition, and we will continue with this convention 
throughout this section.

Equation (C.7) looks technical, and it can be rather difficult to establish based on 
fundamental probability principles. By contrast, interpreting (C.7) is straightforward. It 
means that the distribution of Wn becomes more and more concentrated about u, which 
roughly means that for larger sample sizes, Wn is less and less likely to be very far from u. 
This tendency is illustrated in Figure C.3.

If an estimator is not consistent, then it does not help us to learn about u, even with an 
unlimited amount of data. For this reason, consistency is a minimal requirement of an es-
timator used in statistics or econometrics. We will encounter estimators that are consistent 
under certain assumptions and inconsistent when those assumptions fail. When estimators 
are inconsistent, we can usually find their probability limits, and it will be important to 
know how far these probability limits are from u.

As we noted earlier, unbiased estimators are not necessarily consistent, but those 
whose variances shrink to zero as the sample size grows are consistent. This can be stated 

fW
n
(w)

u

n = 40

n = 16

n = 4

w

F i g u r e  C . 3   The sampling distributions of a consistent estimator for three sample sizes.
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formally: If Wn is an unbiased estimator of u� and Var(Wn) → 0 as n → , then plim(Wn)  u.  
Unbiased estimators that use the entire data sample will usually have a variance that 
shrinks to zero as the sample size grows, thereby being consistent.

A good example of a consistent estimator is the average of a random sample drawn 
from a population with mean m� and variance s2. We have already shown that the sample 
average is unbiased for m. In equation (C.6), we derived Var(Ȳn)  s2/n for any sample size 
n. Therefore, Var(Ȳn) → 0 as n → , so Ȳn is a consistent estimator of m� (in addition to 
being unbiased).

The conclusion that Ȳn is consistent for m� holds even if Var(Ȳn) does not exist. This 
classic result is known as the law of large numbers (LLN).

Law of Large Numbers.  Let Y1, Y2, …, Yn be independent, identically distributed random 
variables with mean m. Then,

	 plim(Ȳn)  m.� [C.8]

The law of large numbers means that, if we are interested in estimating the population 
average m, we can get arbitrarily close to m� by choosing a sufficiently large sample. This 
fundamental result can be combined with basic properties of plims to show that fairly 
complicated estimators are consistent.

Property PLIM.1:  Let u be a parameter and define a new parameter,   g(u), for some con-
tinuous function g(u). Suppose that plim(Wn)  u. Define an estimator of  by Gn 5 g(Wn).  
Then,

	 plim(Gn)  .� [C.9]

This is often stated as

	 plim g(Wn)  g(plim Wn)� [C.10]

for a continuous function g(u�).

The assumption that g(u�) is continuous is a technical requirement that has often been 
described nontechnically as “a function that can be graphed without lifting your pencil 
from the paper.” Because all the functions we encounter in this text are continuous, 
we do not provide a formal definition of a continuous function. Examples of continu-
ous functions are g(u�)  a  bu� for constants a and b, g(u�)  u2, g(u�)  1/u, g(u�)  ​


__
 u� ​, g(u�)  exp(u�), and many variants on these. We will not need to mention the con-

tinuity assumption again.
As an important example of a consistent but biased estimator, consider estimating 

the standard deviation, s, from a population with mean m� and variance s2. We already 
claimed that the sample variance Sn

2  (n 2 1)21 n
i1 (Yi  Ȳn)2 is unbiased for s2. Using 

the law of large numbers and some algebra, Sn
2 can also be shown to be consistent for s2. 

The natural estimator of s�  ​
___

 s�2 ​ is Sn  ​
__

 Sn
2 ​ (where the square root is always the positive 

square root). Sn, which is called the sample standard deviation, is not an unbiased esti-
mator because the expected value of the square root is not the square root of the expected 
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value (see Section B.3). Nevertheless, by PLIM.1, plim Sn  ​
_______

 plim Sn
2 ​  ​

___
 s�2 ​  s, so Sn is 

a consistent estimator of s.
Here are some other useful properties of the probability limit:

Property PLIM.2:  If plim(Tn)   and plim(Un)  , then

	 (i)	 plim(Tn  Un)    ;
	 (ii)	 plim(TnUn)  ;
	 (iii)	 plim(Tn /Un)  /, provided   0.

These three facts about probability limits allow us to combine consistent estimators in 
a variety of ways to get other consistent estimators. For example, let {Y1, …, Yn} be a 
random sample of size n on annual earnings from the population of workers with a high 
school education and denote the population mean by m�Y . Let {Z1, …, Zn} be a random 
sample on annual earnings from the population of workers with a college education and 
denote the population mean by m�Z . We wish to estimate the percentage difference in an-
nual earnings between the two groups, which is   100(m�Z  m�Y)/m�Y . (This is the per-
centage by which average earnings for college graduates differs from average earnings 
for high school graduates.) Because Ȳn is consistent for m�Y and Z̄n is consistent for m�Z, it 
follows from PLIM.1 and part (iii) of PLIM.2 that

	 Gn  100  ( Z̄n 2 Ȳn )/Ȳn

is a consistent estimator of . Gn is just the percentage difference between Z̄n and Ȳn in 
the sample, so it is a natural estimator. Gn is not an unbiased estimator of , but it is still a 
good estimator except possibly when n is small.

Asymptotic Normality
Consistency is a property of point estimators. Although it does tell us that the distribu-
tion of the estimator is collapsing around the parameter as the sample size gets large, it 
tells us essentially nothing about the shape of that distribution for a given sample size. 
For constructing interval estimators and testing hypotheses, we need a way to approxi-
mate the distribution of our estimators. Most econometric estimators have distributions 
that are well approximated by a normal distribution for large samples, which motivates the 
following definition.

Asymptotic Normality.  Let {Zn: n  1, 2, …} be a sequence of random variables, such 
that for all numbers z,

	 P(Zn  z) → (z) as n → ,� [C.11]

where (z) is the standard normal cumulative distribution function. Then, Zn is said to have 
an asymptotic standard normal distribution. In this case, we often write Zn ~ª  Normal(0,1). 
(The “a” above the tilde stands for “asymptotically” or “approximately.”)

Property (C.11) means that the cumulative distribution function for Zn gets  
closer and closer to the cdf of the standard normal distribution as the sample size n 
gets large. When asymptotic normality holds, for large n we have the approximation 
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P(Zn  z)  (z). Thus, probabilities concerning Zn can be approximated by standard 
normal probabilities.

The central limit theorem (CLT) is one of the most powerful results in probability 
and statistics. It states that the average from a random sample for any population (with 
finite variance), when standardized, has an asymptotic standard normal distribution.

Central Limit Theorem.  Let {Y1, Y2, …, Yn} be a random sample with mean m and 
variance s2. Then,

	 Zn  ​ 
Ȳn 2 m�

  
/​

__
 n ​
 ​ � [C.12]

has an asymptotic standard normal distribution.

The variable Zn in (C.12) is the standardized version of Ȳn: we have subtracted off 
E(Ȳn)  m� and divided by sd(Ȳn)  s/​

__
 n ​. Thus, regardless of the population distribution 

of Y, Zn has mean zero and variance one, which coincides with the mean and variance of 
the standard normal distribution. Remarkably, the entire distribution of Zn gets arbitrarily 
close to the standard normal distribution as n gets large.

We can write the standardized variable in equation (C.12) as ​
__

 n ​(Ȳn  m�)/s, which 
shows that we must multiply the difference between the sample mean and the population 
mean by the square root of the sample size in order to obtain a useful limiting distribu-
tion. Without the multiplication by ​

__
 n ​, we would just have (Ȳn  m�)/s, which converges 

in probability to zero. In other words, the distribution of (Ȳn  m�)/s� simply collapses to a 
single point as n → , which we know cannot be a good approximation to the distribution 
of (Ȳn  m�)/s� for reasonable sample sizes. Multiplying by ​

__
 n ​ ensures that the variance of 

Zn remains constant. Practically, we often treat Ȳn as being approximately normally dis-
tributed with mean m� and variance s2/n, and this gives us the correct statistical procedures 
because it leads to the standardized variable in equation (C.12).

Most estimators encountered in statistics and econometrics can be written as functions 
of sample averages, in which case we can apply the law of large numbers and the central 
limit theorem. When two consistent estimators have asymptotic normal distributions, we 
choose the estimator with the smallest asymptotic variance.

In addition to the standardized sample average in (C.12), many other statistics that 
depend on sample averages turn out to be asymptotically normal. An important one is ob-
tained by replacing s� with its consistent estimator Sn in equation (C.12):

	​ 
Ȳn 2 m�

  Sn /​
__

 n ​  ​� [C.13]

also has an approximate standard normal distribution for large n. The exact (finite sample) 
distributions of (C.12) and (C.13) are definitely not the same, but the difference is often 
small enough to be ignored for large n.

Throughout this section, each estimator has been subscripted by n to emphasize the 
nature of asymptotic or large sample analysis. Continuing this convention clutters the no-
tation without providing additional insight, once the fundamentals of asymptotic analysis 
are understood. Henceforth, we drop the n subscript and rely on you to remember that 
estimators depend on the sample size, and properties such as consistency and asymptotic 
normality refer to the growth of the sample size without bound.
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C.4  General Approaches to Parameter Estimation
Until this point, we have used the sample average to illustrate the finite and large sam-
ple properties of estimators. It is natural to ask: Are there general approaches to estima-
tion that produce estimators with good properties, such as unbiasedness, consistency, and 
efficiency?

The answer is yes. A detailed treatment of various approaches to estimation is beyond 
the scope of this text; here, we provide only an informal discussion. A thorough discussion 
is given in Larsen and Marx (1986, Chapter 5).

Method of Moments
Given a parameter u� appearing in a population distribution, there are usually many ways 
to obtain unbiased and consistent estimators of u. Trying all different possibilities and 
comparing them on the basis of the criteria in Sections C.2 and C.3 is not practical. Fortu-
nately, some methods have been shown to have good general properties, and, for the most 
part, the logic behind them is intuitively appealing.

In the previous sections, we have studied the sample average as an unbiased estimator 
of the population average and the sample variance as an unbiased estimator of the popula-
tion variance. These estimators are examples of method of moments estimators. Gener-
ally, method of moments estimation proceeds as follows. The parameter u� is shown to be 
related to some expected value in the distribution of Y, usually E(Y ) or E(Y 2) (although 
more exotic choices are sometimes used). Suppose, for example, that the parameter of 
interest, u, is related to the population mean as u�  g(m�) for some function g. Because 
the sample average Ȳ is an unbiased and consistent estimator of m, it is natural to replace 
m� with Ȳ , which gives us the estimator g(Ȳ ) of u. The estimator g(Ȳ ) is consistent for u, 
and if g(m�) is a linear function of m, then g(Ȳ ) is unbiased as well. What we have done is 
replace the population moment, m, with its sample counterpart, Ȳ . This is where the name 
“method of moments” comes from.

We cover two additional method of moments estimators that will be useful for our 
discussion of regression analysis. Recall that the covariance between two random vari-
ables X and Y is defined as s�XY  E[(X  m�X)(Y  m�Y)]. The method of moments suggests 

estimating s�XY by n1 ​∑ i1​ 
n
  ​  ​ (Xi  X̄)(Yi  Ȳ ). This is a consistent estimator of s�XY, but it 

turns out to be biased for essentially the same reason that the sample variance is biased if 
n, rather than n  1, is used as the divisor. The sample covariance is defined as

	 SXY  ​  1  
n 2 1

 ​ ​∑ 
i51

 ​ 
n

  ​ ​(Xi  X̄ )(Yi  Ȳ ).� [C.14]

It can be shown that this is an unbiased estimator of s�XY. (Replacing n with n  1 makes 
no difference as the sample size grows indefinitely, so this estimator is still consistent.)

As we discussed in Section B.4, the covariance between two variables is often dif-
ficult to interpret. Usually, we are more interested in correlation. Because the population 
correlation is XY  s�XY /(s�X s�Y), the method of moments suggests estimating XY as

	 RXY  ​ 
SXY _____ 

SX SY
 ​  ​ 

​∑ 
i51

 ​ 
n

  ​​ (Xi  X̄ )(Yi  Ȳ )

      

​ ​∑ 
i51

 ​ 
n

  ​​ (Xi  X̄ )2 ​
1/2

​ ​∑ 
i51

 ​ 
n

  ​​ (Yi  Ȳ )2 ​
1/2 ​,� [C.15]
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which is called the sample correlation coefficient (or sample correlation for short). 
Notice that we have canceled the division by n  1 in the sample covariance and the 
sample standard deviations. In fact, we could divide each of these by n, and we would ar-
rive at the same final formula.

It can be shown that the sample correlation coefficient is always in the interval [1,1], 
as it should be. Because SXY, SX, and SY are consistent for the corresponding population pa-
rameter, RXY is a consistent estimator of the population correlation, XY. However, RXY is a 
biased estimator for two reasons. First, SX and SY are biased estimators of s�X and s�Y, respec-
tively. Second, RXY is a ratio of estimators, so it would not be unbiased, even if SX and SY 
were. For our purposes, this is not important, although the fact that no unbiased estimator of 
XY exists is a classical result in mathematical statistics.

Maximum Likelihood
Another general approach to estimation is the method of maximum likelihood, a topic 
covered in many introductory statistics courses. A brief summary in the simplest case will 
suffice here. Let {Y1, Y2, …, Yn} be a random sample from the population distribution 
f(y;u�). Because of the random sampling assumption, the joint distribution of {Y1, Y2, …, 
Yn} is simply the product of the densities: f(y1;u�) f(y2;u�)  f(yn;u�). In the discrete case, this 
is P(Y1  y1, Y2  y2, …, Yn  yn). Now, define the likelihood function as

	 L(u�;Y1, …, Yn)  f(Y1;u�) f (Y2;u�)  f(Yn;u�),

which is a random variable because it depends on the outcome of the random sample {Y1, 
Y2, …, Yn}. The maximum likelihood estimator of u, call it W, is the value of u� that 
maximizes the likelihood function. (This is why we write L as a function of u, followed 
by the random sample.) Clearly, this value depends on the random sample. The maximum 
likelihood principle says that, out of all the possible values for u, the value that makes the 
likelihood of the observed data largest should be chosen. Intuitively, this is a reasonable 
approach to estimating u.

Usually, it is more convenient to work with the log-likelihood function, which is 
obtained by taking the natural log of the likelihood function:

	 log [L(u�; Y1, …, Yn)]  ​∑ 
i51

 ​ 
n

  ​​ log [ f (Yi; u�)],� [C.16]

where we use the fact that the log of the product is the sum of the logs. Because (C.16) 
is the sum of independent, identically distributed random variables, analyzing estimators 
that come from (C.16) is relatively easy.

Maximum likelihood estimation (MLE) is usually consistent and sometimes unbiased. 
But so are many other estimators. The widespread appeal of MLE is that it is generally 
the most asymptotically efficient estimator when the population model f (y;u�) is correctly 
specified. In addition, the MLE is sometimes the minimum variance unbiased estimator;  
that is, it has the smallest variance among all unbiased estimators of u. [See Larsen and 
Marx (1986, Chapter 5) for verification of these claims.]

In Chapter 17, we will need maximum likelihood to estimate the parameters of more 
advanced econometric models. In econometrics, we are almost always interested in the 
distribution of Y conditional on a set of explanatory variables, say, X1, X2, …, Xk. Then, 
we replace the density in (C.16) with f (YiuXi1, …, Xik; u1, …, u�p), where this density is 
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allowed to depend on p parameters, u1,  …,  u�p. Fortunately, for successful application of 
maximum likelihood methods, we do not need to delve much into the computational issues 
or the large-sample statistical theory. Wooldridge (2010, Chapter 13) covers the theory of 
maximum likelihood estimation.

Least Squares
A third kind of estimator, and one that plays a major role throughout the text, is called a 
least squares estimator. We have already seen an example of least squares: the sample 
mean, Ȳ , is a least squares estimator of the population mean, m. We already know Ȳ  is a 
method of moments estimator. What makes it a least squares estimator? It can be shown 
that the value of m that makes the sum of squared deviations

	  ​∑ 
i51

 ​ 
n

  ​ (​Yi  m)2

as small as possible is m  Ȳ. Showing this is not difficult, but we omit the algebra.
For some important distributions, including the normal and the Bernoulli, the sample 

average Ȳ  is also the maximum likelihood estimator of the population mean m. Thus, the 
principles of least squares, method of moments, and maximum likelihood often result in 
the same estimator. In other cases, the estimators are similar but not identical.

C.5  Interval Estimation and Confidence Intervals

The Nature of Interval Estimation
A point estimate obtained from a particular sample does not, by itself, provide enough 
information for testing economic theories or for informing policy discussions. A point 
estimate may be the researcher’s best guess at the population value, but, by its nature, it 
provides no information about how close the estimate is “likely” to be to the population 
parameter. As an example, suppose a researcher reports, on the basis of a random sample 
of workers, that job training grants increase hourly wage by 6.4%. How are we to know 
whether or not this is close to the effect in the population of workers who could have been 
trained? Because we do not know the population value, we cannot know how close an 
estimate is for a particular sample. However, we can make statements involving probabili-
ties, and this is where interval estimation comes in.

We already know one way of assessing the uncertainty in an estimator: find its sam-
pling standard deviation. Reporting the standard deviation of the estimator, along with 
the point estimate, provides some information on the accuracy of our estimate. However, 
even if the problem of the standard deviation’s dependence on unknown population pa-
rameters is ignored, reporting the standard deviation along with the point estimate makes 
no direct statement about where the population value is likely to lie in relation to the esti-
mate. This limitation is overcome by constructing a confidence interval.

We illustrate the concept of a confidence interval with an example. Suppose the popu-
lation has a Normal(m,1) distribution and let {Y1, …, Yn} be a random sample from this 
population. (We assume that the variance of the population is known and equal to unity 
for the sake of illustration; we then show what to do in the more realistic case that the 
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variance is unknown.) The sample average, Ȳ, has a normal distribution with mean m� and 
variance 1/n: Ȳ ~ Normal(m,1/n). From this, we can standardize Ȳ, and, because the stan-
dardized version of Ȳ has a standard normal distribution, we have

	 P ​ 21.96  ​ 
Ȳ – m�

  1/​
__

 n ​
 ​  1.96 ​  .95.

The event in parentheses is identical to the event Ȳ  1.96/​
__

 n ​  m�  Ȳ  1.96/​
__

 n ​, so

	 P(Ȳ  1.96/​
__

 n ​  m�  Ȳ  1.96/​
__

 n ​ )  .95.� [C.17]

Equation (C.17) is interesting because it tells us that the probability that the random inter-
val [Ȳ  1.96/​

__
 n ​,Ȳ  1.96/​

__
 n ​ ] contains the population mean m� is .95, or 95%. This infor-

mation allows us to construct an interval estimate of m, which is obtained by plugging in 
the sample outcome of the average, ​- y​. Thus,

	 [ ​- y​  1.96/​
__

 n ​,​- y​  1.96/​
__

 n ​]� [C.18]

is an example of an interval estimate of m. It is also called a 95% confidence interval. A 
shorthand notation for this interval is ​- y​  1.96/​

__
 n ​.

The confidence interval in equation (C.18) is easy to compute, once the sample data 
{y1,y2, …, yn} are observed; ​- y​ is the only factor that depends on the data. For example, sup-
pose that n  16 and the average of the 16 data points is 7.3. Then, the 95% confidence 
interval for m� is 7.3  1.96/​

___
 16 ​  7.3  .49, which we can write in interval form as 

[6.81,7.79]. By construction, ​- y​  7.3 is in the center of this interval.
Unlike its computation, the meaning of a confidence interval is more difficult to un-

derstand. When we say that equation (C.18) is a 95% confidence interval for m, we mean 
that the random interval

	 [Ȳ  1.96/​
__

 n ​,Ȳ  1.96/​
__

 n ​]� [C.19]

contains m� with probability .95. In other words, before the random sample is drawn, there 
is a 95% chance that (C.19) contains m. Equation (C.19) is an example of an interval 
estimator. It is a random interval, since the endpoints change with different samples.

A confidence interval is often interpreted as follows: “The probability that m� is in 
the interval (C.18) is .95.” This is incorrect. Once the sample has been observed and ​- y​ 
has been computed, the limits of the confidence interval are simply numbers (6.81 and 
7.79 in the example just given). The population parameter, m, though unknown, is also 
just some number. Therefore, m� either is or is not in the interval (C.18) (and we will 
never know with certainty which is the case). Probability plays no role once the confi-
dence interval is computed for the particular data at hand. The probabilistic interpreta-
tion comes from the fact that for 95% of all random samples, the constructed confidence 
interval will contain m.

To emphasize the meaning of a confidence interval, Table C.2 contains calculations 
for 20 random samples (or replications) from the Normal(2,1) distribution with sample 
size n  10. For each of the 20 samples, ​- y​ is obtained, and (C.18) is computed as ​- y​  1.96/​


___
 10 ​  ​- y​  .62 (each rounded to two decimals). As you can see, the interval changes with 

each random sample. Nineteen of the 20 intervals contain the population value of m. Only 
for replication number 19 is m� not in the confidence interval. In other words, 95% of the 
samples result in a confidence interval that contains m. This did not have to be the case 
with only 20 replications, but it worked out that way for this particular simulation.
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T a b l e  C . 2   �Simulated Confidence Intervals from a Normal(m,1) Distribution with  
m  2

Replication ​- y​ 95% Interval Contains m?

  1 1.98 (1.36,2.60) Yes

  2 1.43 (0.81,2.05) Yes

  3 1.65 (1.03,2.27) Yes

  4 1.88 (1.26,2.50) Yes

  5 2.34 (1.72,2.96) Yes

  6 2.58 (1.96,3.20) Yes

  7 1.58 (.96,2.20) Yes

  8 2.23 (1.61,2.85) Yes

  9 1.96 (1.34,2.58) Yes

10 2.11 (1.49,2.73) Yes

11 2.15 (1.53,2.77) Yes

12 1.93 (1.31,2.55) Yes

13 2.02 (1.40,2.64) Yes

14 2.10 (1.48,2.72) Yes

15 2.18 (1.56,2.80) Yes

16 2.10 (1.48,2.72) Yes

17 1.94 (1.32,2.56) Yes

18 2.21 (1.59,2.83) Yes

19 1.16 (.54,1.78) No

20 1.75 (1.13,2.37) Yes

Confidence Intervals for the Mean from a Normally 
Distributed Population
The confidence interval derived in equation (C.18) helps illustrate how to construct and 
interpret confidence intervals. In practice, equation (C.18) is not very useful for the mean 
of a normal population because it assumes that the variance is known to be unity. It is easy 
to extend (C.18) to the case where the standard deviation s� is known to be any value: the 
95% confidence interval is

	 [ ​- y​  1.96s/​
__

 n ​,​- y​  1.96s/​
__

 n ​].� [C.20]

Therefore, provided s� is known, a confidence interval for m� is readily constructed. To 
allow for unknown s, we must use an estimate. Let

	 s  ​ ​  1  
n – 1

 ​ ​∑ 
i51

 ​ 
n

  ​ ( ​yi  ​- y​)2 ​
1/2

� [C.21]
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denote the sample standard deviation. Then, we obtain a confidence interval that depends 
entirely on the observed data by replacing s� in equation (C.20) with its estimate, s. Un-
fortunately, this does not preserve the 95% level of confidence because s depends on 
the particular sample. In other words, the random interval [Ȳ   1.96(S/​

__
 n ​)] no longer 

contains m� with probability .95 because the constant s� has been replaced with the random 
variable S.

How should we proceed? Rather than using the standard normal distribution, we must 
rely on the t distribution. The t distribution arises from the fact that

	​ 
Ȳ 2 m�

  S/​
__

 n ​
 ​  ~ tn1,� [C.22]

where Ȳ is the sample average and S is the sample standard deviation of the random sam-
ple {Y1, …, Yn}. We will not prove (C.22); a careful proof can be found in a variety of 
places [for example, Larsen and Marx (1986, Chapter 7)].

To construct a 95% confidence interval, let c denote the 97.5th percentile in the 
tn1 distribution. In other words, c is the value such that 95% of the area in the tn1 is 
between c and c: P(c  tn1  c)  .95. (The value of c depends on the degrees 
of freedom n  1, but we do not make this explicit.) The choice of c is illustrated in 
Figure C.4. Once c has been properly chosen, the random interval [Ȳ   cS/​

__
 n ​,Ȳ   

cS/​
__

 n ​] contains m� with probability .95. For a particular sample, the 95% confidence 
interval is calculated as

	 [ ​- y​  cs/​
__

 n ​,​- y​  cs/​
__

 n ​].� [C.23]

02c

area = .025 area = .025

c

area = .95

F i g u r e  C . 4   The 97.5th percentile, c, in a t distribution.
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The values of c for various degrees of freedom can be obtained from Table G.2 in 
Appendix G. For example, if n  20, so that the df is n  1  19, then c  2.093. Thus, 
the 95% confidence interval is [ ​- y​  2.093(s/​

___
 20 ​)], where ​- y​ and s are the values obtained 

from the sample. Even if s  s� (which is very unlikely), the confidence interval in (C.23) 
is wider than that in (C.20) because c  1.96. For small degrees of freedom, (C.23) is 
much wider.

More generally, let c denote the 100(1  ) percentile in the tn1 distribution. Then, 
a 100(1  )% confidence interval is obtained as

	 [ ​- y​  c/2s/​
__

 n ​,​- y​  c/2s/​
__

 n ​].� [C.24]

Obtaining c/2 requires choosing  and knowing the degrees of freedom n  1; then, 
Table G.2 can be used. For the most part, we will concentrate on 95% confidence 
intervals.

There is a simple way to remember how to construct a confidence interval for the 
mean of a normal distribution. Recall that sd(Ȳ)  s/​

__
 n ​. Thus, s/​

__
 n ​ is the point estimate of 

sd(Ȳ). The associated random variable, S/​
__

 n ​, is sometimes called the standard error of Ȳ. 
Because what shows up in formulas is the point estimate s/​

__
 n ​, we define the standard error 

of ​- y​ as se(​- y​)  s/​
__

 n ​. Then, (C.24) can be written in shorthand as

	 [ ​- y​  c/2se(​- y​)].� [C.25]

This equation shows why the notion of the standard error of an estimate plays an impor-
tant role in econometrics.

	E xample C.2	 �Effect of Job Training Grants on Worker  
Productivity

Holzer, Block, Cheatham, and Knott (1993) studied the effects of job training grants on 
worker productivity by collecting information on “scrap rates” for a sample of Michigan 
manufacturing firms receiving job training grants in 1988. Table C.3 lists the scrap rates—
measured as number of items per 100 produced that are not usable and therefore need to 
be scrapped—for 20 firms. Each of these firms received a job training grant in 1988; there 
were no grants awarded in 1987. We are interested in constructing a confidence interval 
for the change in the scrap rate from 1987 to 1988 for the population of all manufacturing 
firms that could have received grants.

We assume that the change in scrap rates has a normal distribution. Since n  20, a 
95% confidence interval for the mean change in scrap rates m� is [ ​- y​  2.093se( ​- y​)], where 
se( ​- y​)  s/​

__
 n ​. The value 2.093 is the 97.5th percentile in a t19 distribution. For the particular 

sample values, ​- y​  1.15 and se( ​- y​)  .54 (each rounded to two decimals), so the 95% 
confidence interval is [2.28,.02]. The value zero is excluded from this interval, so we 
conclude that, with 95% confidence, the average change in scrap rates in the population is 
not zero.
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At this point, Example C.2 is mostly illustrative because it has some potentially serious 
flaws as an econometric analysis. Most importantly, it assumes that any systematic reduc-
tion in scrap rates is due to the job training grants. But many things can happen over the 
course of the year to change worker productivity. From this analysis, we have no way of 
knowing whether the fall in average scrap rates is attributable to the job training grants or 
if, at least partly, some external force is responsible.

A Simple Rule of Thumb for a 95% Confidence Interval
The confidence interval in (C.25) can be computed for any sample size and any confi-
dence level. As we saw in Section B.5, the t distribution approaches the standard normal 
distribution as the degrees of freedom gets large. In particular, for   .05, c/2 → 1.96 
as n → , although c/2 is always greater than 1.96 for each n. A rule of thumb for an ap-
proximate 95% confidence interval is

	 [ ​- y​ 6 2se(​- y​)].� [C.26]

T a b l e  C . 3   Scrap Rates for 20 Michigan Manufacturing Firms

Firm 1987 1988 Change

  1 10 3 –7

  2 1 1 0

  3 6 5 –1

  4 .45 .5 .05

  5 1.25 1.54 .29

  6 1.3 1.5 .2

  7 1.06 .8 –.26

  8 3 2 –1

  9 8.18 .67 –7.51

10 1.67 1.17 –.5

11 .98 .51 –.47

12 1 .5 –.5

13 .45 .61 .16

14 5.03 6.7 1.67

15 8 4 –4

16 9 7 –2

17 18 19 1

18 .28 .2 –.08

19 7 5 –2

20 3.97 3.83 –.14

Average 4.38 3.23 –1.15

©
 C

en
ga

ge
 L

ea
rn

in
g,

 2
01

3

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



776	 appendices

In other words, we obtain ​- y​ and its standard error and then compute ​- y​ plus and minus 
twice its standard error to obtain the confidence interval. This is slightly too wide for very 
large n, and it is too narrow for small n. As we can see from Example C.2, even for n as 
small as 20, (C.26) is in the ballpark for a 95% confidence interval for the mean from a 
normal distribution. This means we can get pretty close to a 95% confidence interval with-
out having to refer to t tables.

Asymptotic Confidence Intervals for Nonnormal 
Populations
In some applications, the population is clearly nonnormal. A leading case is the Bernoulli 
distribution, where the random variable takes on only the values zero and one. In other 
cases, the nonnormal population has no standard distribution. This does not matter, pro-
vided the sample size is sufficiently large for the central limit theorem to give a good ap-
proximation for the distribution of the sample average Ȳ. For large n, an approximate 95% 
confidence interval is

	 [ ​- y​  1.96se( ​- y​)],� [C.27]

where the value 1.96 is the 97.5th percentile in the standard normal distribution. Mechani-
cally, computing an approximate confidence interval does not differ from the normal case. 
A slight difference is that the number multiplying the standard error comes from the stan-
dard normal distribution, rather than the t distribution, because we are using asymptotics. 
Because the t distribution approaches the standard normal as the df increases, equation 
(C.25) is also perfectly legitimate as an approximate 95% interval; some prefer this to 
(C.27) because the former is exact for normal populations.

	E xample C.3	 Race Discrimination in Hiring

The Urban Institute conducted a study in 1988 in Washington, D.C., to examine the ex-
tent of race discrimination in hiring. Five pairs of people interviewed for several jobs. In 
each pair, one person was black and the other person was white. They were given résumés 
indicating that they were virtually the same in terms of experience, education, and other 
factors that determine job qualification. The idea was to make individuals as similar as 
possible with the exception of race. Each person in a pair interviewed for the same job, 
and the researchers recorded which applicant received a job offer. This is an example of 
a matched pairs analysis, where each trial consists of data on two people (or two firms, 
two cities, and so on) that are thought to be similar in many respects but different in one 
important characteristic.

Let u�B denote the probability that the black person is offered a job and let u�W be the 
probability that the white person is offered a job. We are primarily interested in the differ-
ence, u�B  u�W. Let Bj denote a Bernoulli variable equal to one if the black person gets a job 
offer from employer i, and zero otherwise. Similarly, Wi  1 if the white person gets a job 
offer from employer i, and zero otherwise. Pooling across the five pairs of people, there 
were a total of n  241 trials (pairs of interviews with employers). Unbiased estimators 
of u�B and u�W are ​

-
 B​ and ​

-
 W​, the fractions of interviews for which blacks and whites were of-

fered jobs, respectively.
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To put this into the framework of computing a confidence interval for a population 
mean, define a new variable Yi  Bi  Wi. Now, Yi can take on three values: 1 if the 
black person did not get the job but the white person did, 0 if both people either did or did 
not get the job, and 1 if the black person got the job and the white person did not. Then,  
m�  E(Yi)  E(Bi)  E(Wi)  u�B  u�W.

The distribution of Yi is certainly not normal—it is discrete and takes on only three 
values. Nevertheless, an approximate confidence interval for u�B  u�W can be obtained by 
using large sample methods.

The data from the Urban Institute audit study are in the file AUDIT.RAW. Using the 
241 observed data points, ​

-
 b​  .224 and ​- w​  .357, so ​- y​  .224 .357  .133. Thus, 

22.4% of black applicants were offered jobs, while 35.7% of white applicants were of-
fered jobs. This is prima facie evidence of discrimination against blacks, but we can learn 
much more by computing a confidence interval for m. To compute an approximate 95% 
confidence interval, we need the sample standard deviation. This turns out to be s  .482 
[using equation (C.21)]. Using (C.27), we obtain a 95% CI for m�  u�B  u�W as .133  
1.96(.482/​

____
 241 ​)  .133  .031  [.164,.102]. The approximate 99% CI is .133 

 2.58(.482/​
____

 241 ​)  [.213,.053]. Naturally, this contains a wider range of values 
than the 95% CI. But even the 99% CI does not contain the value zero. Thus, we are very 
confident that the population difference u�B  u�W is not zero.

Before we turn to hypothesis testing, it is useful to review the various population and 
sample quantities that measure the spreads in the population distributions and the sampling 
distributions of the estimators. These quantities appear often in statistical analysis, and exten-
sions of them are important for the regression analysis in the main text. The quantity s� is the 
(unknown) population standard deviation; it is a measure of the spread in the distribution of Y. 
When we divide s� by ​

__
 n ​, we obtain the sampling standard deviation of Ȳ (the sample aver-

age). While s� is a fixed feature of the population, sd(Ȳ ) 5 s/​
__

 n ​ shrinks to zero as n → : our 
estimator of m� gets more and more precise as the sample size grows.

The estimate of s� for a particular sample, s, is called the sample standard deviation 
because it is obtained from the sample. (We also call the underlying random variable, S, 
which changes across different samples, the sample standard deviation.) Like ​- y​ as an es-
timate of m, s is our “best guess” at s� given the sample at hand. The quantity s/​

__
 n ​ is what 

we call the standard error of ​- y​, and it is our best estimate of s/​
__

 n ​. Confidence intervals for 
the population parameter m� depend directly on se( ​- y​) 5 s/​

__
 n ​. Because this standard error 

shrinks to zero as the sample size grows, a larger sample size generally means a smaller 
confidence interval. Thus, we see clearly that one benefit of more data is that they result 
in narrower confidence intervals. The notion of the standard error of an estimate, which in 
the vast majority of cases shrinks to zero at the rate 1/​

__
 n ​, plays a fundamental role in hy-

pothesis testing (as we will see in the next section) and for confidence intervals and testing 
in the context of multiple regression (as discussed in Chapter 4). 

C.6  Hypothesis Testing
So far, we have reviewed how to evaluate point estimators, and we have seen—in the 
case of a population mean—how to construct and interpret confidence intervals. But 
sometimes the question we are interested in has a definite yes or no answer. Here are 
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some examples: (1) Does a job training program effectively increase average worker 
productivity? (see Example C.2); (2) Are blacks discriminated against in hiring? (see 
Example C.3); (3) Do stiffer state drunk driving laws reduce the number of drunk 
driving arrests? Devising methods for answering such questions, using a sample of 
data, is known as hypothesis testing.

Fundamentals of Hypothesis Testing
To illustrate the issues involved with hypothesis testing, consider an election example. 
Suppose there are two candidates in an election, Candidates A and B. Candidate A is re-
ported to have received 42% of the popular vote, while Candidate B received 58%. These 
are supposed to represent the true percentages in the voting population, and we treat them 
as such.

Candidate A is convinced that more people must have voted for him, so he would 
like to investigate whether the election was rigged. Knowing something about statistics, 
Candidate A hires a consulting agency to randomly sample 100 voters to record whether or 
not each person voted for him. Suppose that, for the sample collected, 53 people voted for 
Candidate A. This sample estimate of 53% clearly exceeds the reported population value of 
42%. Should Candidate A conclude that the election was indeed a fraud?

While it appears that the votes for Candidate A were undercounted, we cannot be 
certain. Even if only 42% of the population voted for Candidate A, it is possible that, in a 
sample of 100, we observe 53 people who did vote for Candidate A. The question is: How 
strong is the sample evidence against the officially reported percentage of 42%?

One way to proceed is to set up a hypothesis test. Let u� denote the true proportion 
of the population voting for Candidate A. The hypothesis that the reported results are ac-
curate can be stated as

	 H0: u�  .42.� [C.28]

This is an example of a null hypothesis. We always denote the null hypothesis by H0. In 
hypothesis testing, the null hypothesis plays a role similar to that of a defendant on trial in 
many judicial systems: just as a defendant is presumed to be innocent until proven guilty, 
the null hypothesis is presumed to be true until the data strongly suggest otherwise. In the 
current example, Candidate A must present fairly strong evidence against (C.28) in order 
to win a recount.

The alternative hypothesis in the election example is that the true proportion voting 
for Candidate A in the election is greater than .42:

	 H1: u�  .42.� [C.29]

In order to conclude that H0 is false and that H1 is true, we must have evidence “beyond 
reasonable doubt” against H0. How many votes out of 100 would be needed before we 
feel the evidence is strongly against H0? Most would agree that observing 43 votes out 
of a sample of 100 is not enough to overturn the original election results; such an out-
come is well within the expected sampling variation. On the other hand, we do not need to 
observe 100 votes for Candidate A to cast doubt on H0. Whether 53 out of 100 is enough 
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to reject H0 is much less clear. The answer depends on how we quantify “beyond reason-
able doubt.”

Before we turn to the issue of quantifying uncertainty in hypothesis testing, we should 
head off some possible confusion. You may have noticed that the hypotheses in equations 
(C.28) and (C.29) do not exhaust all possibilities: it could be that u� is less than .42. For the 
application at hand, we are not particularly interested in that possibility; it has nothing to 
do with overturning the results of the election. Therefore, we can just state at the outset that 
we are ignoring alternatives u� with u� , .42. Nevertheless, some authors prefer to state null 
and alternative hypotheses so that they are exhaustive, in which case our null hypothesis 
should be H0: u�  .42. Stated in this way, the null hypothesis is a composite null hypothesis 
because it allows for more than one value under H0. [By contrast, equation (C.28) is an ex-
ample of a simple null hypothesis.] For these kinds of examples, it does not matter whether 
we state the null as in (C.28) or as a composite null: the most difficult value to reject if u� 
 .42 is u� 5 .42. (That is, if we reject the value u� 5 .42, against u� . .42, then logically we 
must reject any value less than .42.) Therefore, our testing procedure based on (C.28) leads 
to the same test as if H0: u�  .42. In this text, we always state a null hypothesis as a simple 
null hypothesis.

In hypothesis testing, we can make two kinds of mistakes. First, we can reject the null 
hypothesis when it is in fact true. This is called a Type I error. In the election example, a 
Type I error occurs if we reject H0 when the true proportion of people voting for Candidate 
A is in fact .42. The second kind of error is failing to reject H0 when it is actually false. 
This is called a Type II error. In the election example, a Type II error occurs if u�  .42 
but we fail to reject H0.

After we have made the decision of whether or not to reject the null hypothesis, we 
have either decided correctly or we have committed an error. We will never know with 
certainty whether an error was committed. However, we can compute the probability of 
making either a Type I or a Type II error. Hypothesis testing rules are constructed to 
make the probability of committing a Type I error fairly small. Generally, we define the 
significance level (or simply the level ) of a test as the probability of a Type I error; it is 
typically denoted by . Symbolically, we have

	   P(Reject H0H0).� [C.30]

The right-hand side is read as: “The probability of rejecting H0 given that H0 is true.”
Classical hypothesis testing requires that we initially specify a significance level 

for a test. When we specify a value for , we are essentially quantifying our tolerance 
for a Type I error. Common values for  are .10, .05, and .01. If   .05, then the 
researcher is willing to falsely reject H0 5% of the time, in order to detect deviations 
from H0.

Once we have chosen the significance level, we would then like to minimize the prob-
ability of a Type II error. Alternatively, we would like to maximize the power of a test 
against all relevant alternatives. The power of a test is just one minus the probability of a 
Type II error. Mathematically,

	 (u�)  P(Reject H0u�)  1  P(Type IIu�),
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where u� denotes the actual value of the parameter. Naturally, we would like the power to 
equal unity whenever the null hypothesis is false. But this is impossible to achieve while 
keeping the significance level small. Instead, we choose our tests to maximize the power 
for a given significance level.

Testing Hypotheses about the Mean in a Normal 
Population
In order to test a null hypothesis against an alternative, we need to choose a test statistic 
(or statistic, for short) and a critical value. The choices for the statistic and critical value 
are based on convenience and on the desire to maximize power given a significance level 
for the test. In this subsection, we review how to test hypotheses for the mean of a normal 
population.

A test statistic, denoted T, is some function of the random sample. When we compute 
the statistic for a particular outcome, we obtain an outcome of the test statistic, which we 
will denote t.

Given a test statistic, we can define a rejection rule that determines when H0 is rejected 
in favor of H1. In this text, all rejection rules are based on comparing the value of a test 
statistic, t, to a critical value, c. The values of t that result in rejection of the null hypothesis 
are collectively known as the rejection region. To determine the critical value, we must 
first decide on a significance level of the test. Then, given , the critical value associated 
with  is determined by the distribution of T, assuming that H0 is true. We will write this 
critical value as c, suppressing the fact that it depends on .

Testing hypotheses about the mean m� from a Normal(m,s�2) population is straightfor-
ward. The null hypothesis is stated as

	 H0: m�  m0,� [C.31]

where m0 is a value that we specify. In the majority of applications, m0  0, but the general 
case is no more difficult.

The rejection rule we choose depends on the nature of the alternative hypothesis. The 
three alternatives of interest are

	 H1: m�  m0,� [C.32]

	 H1: m�  m0,� [C.33]

and

	 H1: m�  m0.� [C.34]

Equation (C.32) gives a one-sided alternative, as does (C.33). When the alternative hy-
pothesis is (C.32), the null is effectively H0: m�  m0, since we reject H0 only when m�  
m0. This is appropriate when we are interested in the value of m� only when m� is at least as 
large as m0. Equation (C.34) is a two-sided alternative. This is appropriate when we are 
interested in any departure from the null hypothesis.

Consider first the alternative in (C.32). Intuitively, we should reject H0 in favor of H1 
when the value of the sample average, ​- y​, is “sufficiently” greater than m0. But how should 
we determine when ​- y​ is large enough for H0 to be rejected at the chosen significance 
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level? This requires knowing the probability of rejecting the null hypothesis when it is 
true. Rather than working directly with ​- y​, we use its standardized version, where s� is re-
placed with the sample standard deviation, s:

	 t  ​
__

 n ​( ​- y​  m�0)/s  (​- y​  m�0)/se( ​- y​),� [C.35]

where se( ​- y​)  s/​
__

 n ​ is the standard error of ​- y​. Given the sample of data, it is easy to obtain t. 
We work with t because, under the null hypothesis, the random variable

	 T  ​
__

 n ​(Ȳ  m�0)/S

has a tn1 distribution. Now, suppose we have settled on a 5% significance level. Then, the 
critical value c is chosen so that P(T  cH0)  .05; that is, the probability of a Type I er-
ror is 5%. Once we have found c, the rejection rule is

	 t  c,� [C.36]

where c is the 100(1  ) percentile in a tn1 distribution; as a percent, the significance 
level is 100%. This is an example of a one-tailed test because the rejection region is in 
one tail of the t distribution. For a 5% significance level, c is the 95th percentile in the tn1 
distribution; this is illustrated in Figure C.5. A different significance level leads to a dif-
ferent critical value.

The statistic in equation (C.35) is often called the t statistic for testing H0: m�  m0. The 
t statistic measures the distance from ​- y​ to m0 relative to the standard error of ​- y​, se(​- y​).

0

c rejection

area = .05

area = .95

Figure C.5  �Rejection region for a 5% significance level test against the one-sided 
alternative m > m0.
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	E xample C.4	 �Effect of Enterprise Zones on Business  
Investments

In the population of cities granted enterprise zones in a particular state [see Papke (1994) for 
Indiana], let Y denote the percentage change in investment from the year before to the year 
after a city became an enterprise zone. Assume that Y has a Normal(m,s�2) distribution. The 
null hypothesis that enterprise zones have no effect on business investment is H0: m�  0;  
the alternative that they have a positive effect is H1: m�  0. (We assume that they do not have a 
negative effect.) Suppose that we wish to test H0 at the 5% level. The test statistic in this case is

	 t  ​ 
​- y​ 
  s/​
__

 n ​ ​  ​ 
​- y​
  se(​- y​)

 ​.� [C.37]

Suppose that we have a sample of 36 cities that are granted enterprise zones. Then, the 
critical value is c  1.69 (see Table G.2), and we reject H0 in favor of H1 if t  1.69. 
Suppose that the sample yields ​- y​  8.2 and s  23.9. Then, t  2.06, and H0 is therefore 
rejected at the 5% level. Thus, we conclude that, at the 5% significance level, enterprise 
zones have an effect on average investment. The 1% critical value is 2.44, so H0 is not 
rejected at the 1% level. The same caveat holds here as in Example C.2: we have not 
controlled for other factors that might affect investment in cities over time, so we cannot 
claim that the effect is causal.

The rejection rule is similar for the one-sided alternative (C.33). A test with a signifi-
cance level of 100% rejects H0 against (C.33) whenever

	 t  c;� [C.38]

in other words, we are looking for negative values of the t statistic—which implies ​- y​  
m�0—that are sufficiently far from zero to reject H0.

For two-sided alternatives, we must be careful to choose the critical value so that the 
significance level of the test is still . If H1 is given by H1: m�  m0, then we reject H0 if ​

- y​ is 
far from m0 in absolute value: a ​- y​ much larger or much smaller than m0 provides evidence 
against H0 in favor of H1. A 100% level test is obtained from the rejection rule

	 t  c,� [C.39]

where t is the absolute value of the t statistic in (C.35). This gives a two-tailed test. We 
must now be careful in choosing the critical value: c is the 100(1  /2) percentile in the 
tn1 distribution. For example, if   .05, then the critical value is the 97.5th percentile in 
the tn1 distribution. This ensures that H0 is rejected only 5% of the time when it is true 
(see Figure C.6). For example, if n  22, then the critical value is c  2.08, the 97.5th 
percentile in a t21 distribution (see Table G.2). The absolute value of the t statistic must 
exceed 2.08 in order to reject H0 against H1 at the 5% level.

It is important to know the proper language of hypothesis testing. Sometimes, the 
appropriate phrase “we fail to reject H0 in favor of H1 at the 5% significance level” is re-
placed with “we accept H0 at the 5% significance level.” The latter wording is incorrect. 
With the same set of data, there are usually many hypotheses that cannot be rejected. In 
the earlier election example, it would be logically inconsistent to say that H0: u�  .42 and 
H0: u�  .43 are both “accepted,” since only one of these can be true. But it is entirely pos-
sible that neither of these hypotheses is rejected. For this reason, we always say “fail to 
reject H0” rather than “accept H0.”
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Asymptotic Tests for Nonnormal Populations
If the sample size is large enough to invoke the central limit theorem (see Section C.3), 
the mechanics of hypothesis testing for population means are the same whether or not the 
population distribution is normal. The theoretical justification comes from the fact that, 
under the null hypothesis,

	 T  ​
__

 n ​(Ȳ  m�0)/S ~ª  Normal (0,1).

Therefore, with large n, we can compare the t statistic in (C.35) with the critical values 
from a standard normal distribution. Because the tn1 distribution converges to the stan-
dard normal distribution as n gets large, the t and standard normal critical values will 
be very close for extremely large n. Because asymptotic theory is based on n increasing 
without bound, it cannot tell us whether the standard normal or t critical values are better. 
For moderate values of n, say, between 30 and 60, it is traditional to use the t distribution 
because we know this is correct for normal populations. For n  120, the choice between 
the t and standard normal distributions is largely irrelevant because the critical values are 
practically the same.

Because the critical values chosen using either the standard normal or t distribution 
are only approximately valid for nonnormal populations, our chosen significance levels 
are also only approximate; thus, for nonnormal populations, our significance levels are 
really asymptotic significance levels. Thus, if we choose a 5% significance level, but our 
population is nonnormal, then the actual significance level will be larger or smaller than 

0
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Figure C.6  �Rejection region for a 5% significance level test against the two-sided 
alternative H1:   0.
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5% (and we cannot know which is the case). When the sample size is large, the actual 
significance level will be very close to 5%. Practically speaking, the distinction is not im-
portant, so we will now drop the qualifier “asymptotic.”

	E xample C.5	 Race Discrimination in Hiring

In the Urban Institute study of discrimination in hiring (see Example C.3), we are primar-
ily interested in testing H0: m�  0 against H1: m�  0, where m�  u�B  u�W is the difference 
in probabilities that blacks and whites receive job offers. Recall that m� is the popula-
tion mean of in the variable Y  B  W, where B and W are binary indicators. Using the  
n  241 paired comparisons in the data file AUDIT.RAW, we obtained ​- y​  .133 and  
se(​- y​)  .482/​

____
 241 ​  .031. The t statistic for testing H0: m�  0 is t  .133/.031  4.29. 

You will remember from Appendix B that the standard normal distribution is, for practical 
purposes, indistinguishable from the t distribution with 240 degrees of freedom. The value 
4.29 is so far out in the left tail of the distribution that we reject H0 at any reasonable 
significance level. In fact, the .005 (one-half of a percent) critical value (for the one-sided 
test) is about 2.58. A t value of 4.29 is very strong evidence against H0 in favor of H1. 
Hence, we conclude that there is discrimination in hiring.

Computing and Using p-Values
The traditional requirement of choosing a significance level ahead of time means that dif-
ferent researchers, using the same data and same procedure to test the same hypothesis, 
could wind up with different conclusions. Reporting the significance level at which we 
are carrying out the test solves this problem to some degree, but it does not completely 
remove the problem.

To provide more information, we can ask the following question: What is the larg-
est significance level at which we could carry out the test and still fail to reject the null 
hypothesis? This value is known as the p-value of a test (sometimes called the prob-
value). Compared with choosing a significance level ahead of time and obtaining a critical 
value, computing a p-value is somewhat more difficult. But with the advent of quick and 
inexpensive computing, p-values are now fairly easy to obtain.

As an illustration, consider the problem of testing H0: m�  0 in a Normal(m,s�2) popu-
lation. Our test statistic in this case is T  ​

__
 n ​Ȳ/S, and we assume that n is large enough to 

treat T as having a standard normal distribution under H0. Suppose that the observed value 
of T for our sample is t  1.52. (Note how we have skipped the step of choosing a signifi-
cance level.) Now that we have seen the value t, we can find the largest significance level 
at which we would fail to reject H0. This is the significance level associated with using t 
as our critical value. Because our test statistic T has a standard normal distribution under 
H0, we have

	 p-value  P(T  1.52uH0)  1  (1.52)  .065,� [C.40]

where () denotes the standard normal cdf. In other words, the p-value in this example 
is simply the area to the right of 1.52, the observed value of the test statistic, in a standard 
normal distribution. See Figure C.7 for illustration.
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Because the p-value  .065, the largest significance level at which we can carry out 
this test and fail to reject is 6.5%. If we carry out the test at a level below 6.5% (such as at 
5%), we fail to reject H0. If we carry out the test at a level larger than 6.5% (such as 10%), 
we reject H0. With the p-value at hand, we can carry out the test at any level.

The p-value in this example has another useful interpretation: it is the probability that we 
observe a value of T as large as 1.52 when the null hypothesis is true. If the null hypothesis is 
actually true, we would observe a value of T as large as 1.52 due to chance only 6.5% of the 
time. Whether this is small enough to reject H0 depends on our tolerance for a Type I error. The 
p-value has a similar interpretation in all other cases, as we will see.

Generally, small p-values are evidence against H0, since they indicate that the out-
come of the data occurs with small probability if H0 is true. In the previous example, if 
t had been a larger value, say, t  2.85, then the p-value would be 1  (2.85)  .002. 
This means that, if the null hypothesis were true, we would observe a value of T as large 
as 2.85 with probability .002. How do we interpret this? Either we obtained a very unusual 
sample or the null hypothesis is false. Unless we have a very small tolerance for Type 
I error, we would reject the null hypothesis. On the other hand, a large p-value is weak 
evidence against H0. If we had gotten t  .47 in the previous example, then the p-value 
 1  (.47)  .32. Observing a value of T larger than .47 happens with probability .32, 
even when H0 is true; this is large enough so that there is insufficient doubt about H0, un-
less we have a very high tolerance for Type I error.

For hypothesis testing about a population mean using the t distribution, we need de-
tailed tables in order to compute p-values. Table G.2 only allows us to put bounds on 
p-values. Fortunately, many statistics and econometrics packages now compute p-values 
routinely, and they also provide calculation of cdfs for the t and other distributions used 
for computing p-values.

0 1.52

area = .065
= p-value

F i g u r e  C . 7   The p-value when t  1.52 for the one-sided alternative  . 0.
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	E xample C.6	 �Effect of Job Training Grants on Worker 
Productivity

Consider again the Holzer et al. (1993) data in Example C.2. From a policy perspective, 
there are two questions of interest. First, what is our best estimate of the mean change in 
scrap rates, m? We have already obtained this for the sample of 20 firms listed in Table C.3: 
the sample average of the change in scrap rates is 1.15. Relative to the initial average 
scrap rate in 1987, this represents a fall in the scrap rate of about 26.3% (1.15/4.38  
.263), which is a nontrivial effect.

We would also like to know whether the sample provides strong evidence for an ef-
fect in the population of manufacturing firms that could have received grants. The null 
hypothesis is H0: m�  0, and we test this against H1: m�  0, where m� is the average change 
in scrap rates. Under the null, the job training grants have no effect on average scrap rates. 
The alternative states that there is an effect. We do not care about the alternative m�  0, so 
the null hypothesis is effectively H0: m�  0.

Since ​- y​  1.15 and se(​- y​)  .54, t  1.15/.54  2.13. This is below the 5% criti-
cal value of 1.73 (from a t19 distribution) but above the 1% critical value, 2.54. The 
p-value in this case is computed as

	 p-value  P(T19  2.13),� [C.41]

where T19 represents a t distributed random variable with 19 degrees of freedom. The 
inequality is reversed from (C.40) because the alternative has the form in (C.33). The 
probability in (C.41) is the area to the left of 2.13 in a t19 distribution (see Figure C.8).

0

area = p-value = .023

–2.13

Figure C.8  �The p-value when t 5 22.13 with 19 degrees of freedom for the one-sided 
alternative  < 0.
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Using Table G.2, the most we can say is that the p-value is between .025 and .01, 
but it is closer to .025 (since the 97.5th percentile is about 2.09). Using a statistical pack-
age, such as Stata, we can compute the exact p-value. It turns out to be about .023, which 
is reasonable evidence against H0. This is certainly enough evidence to reject the null 
hypothesis that the training grants had no effect at the 2.5% significance level (and there-
fore at the 5% level).

Computing a p-value for a two-sided test is similar, but we must account for the two-
sided nature of the rejection rule. For t testing about population means, the p-value is com-
puted as

	 P(Tn1  t)  2P(Tn1  t),� [C.42]

where t is the value of the test statistic and Tn1 is a t random variable. (For large n, replace 
Tn1 with a standard normal random variable.) Thus, compute the absolute value of the t statis-
tic, find the area to the right of this value in a tn1 distribution, and multiply the area by two.

For nonnormal populations, the exact p-value can be difficult to obtain. Neverthe-
less, we can find asymptotic p-values by using the same calculations. These p-values are 
valid for large sample sizes. For n larger than, say, 120, we might as well use the standard 
normal distribution. Table G.1 is detailed enough to get accurate p-values, but we can 
also use a statistics or econometrics program.

	E xample C.7	 Race Discrimination in Hiring

Using the matched pair data from the Urban Institute (n  241), we obtained t  4.29. 
If Z is a standard normal random variable, P(Z  4.29) is, for practical purposes, zero. 
In other words, the (asymptotic) p-value for this example is essentially zero. This is very 
strong evidence against H0.

Summary of How to Use p-Values:

(i) Choose a test statistic T and decide on the nature of the alternative. This determines 
whether the rejection rule is t  c, t  c, or t  c.

(ii) Use the observed value of the t statistic as the critical value and compute the cor-
responding significance level of the test. This is the p-value. If the rejection rule is of the 
form t  c, then p-value  P(T  t). If the rejection rule is t  c, then p-value  P(T  t);  
if the rejection rule is t  c, then p-value  P(T   t).

(iii) If a significance level  has been chosen, then we reject H0 at the 100% level if 
p-value  . If p-value  , then we fail to reject H0 at the 100% level. Therefore, it is 
a small p-value that leads to rejection.

The Relationship between Confidence Intervals  
and Hypothesis Testing
Because contructing confidence intervals and hypothesis tests both involve probability state-
ments, it is natural to think that they are somehow linked. It turns out that they are. After a 
confidence interval has been constructed, we can carry out a variety of hypothesis tests.
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The confidence intervals we have discussed are all two-sided by nature. (In this text, 
we will have no need to construct one-sided confidence intervals.) Thus, confidence inter-
vals can be used to test against two-sided alternatives. In the case of a population mean, 
the null is given by (C.31), and the alternative is (C.34). Suppose we have constructed a 
95% confidence interval for m. Then, if the hypothesized value of m� under H0, m0, is not in 
the confidence interval, then H0: m�  m0 is rejected against H1: m�  m0 at the 5% level. If 
m0 lies in this interval, then we fail to reject H0 at the 5% level. Notice how any value for 
m0 can be tested once a confidence interval is constructed, and since a confidence interval 
contains more than one value, there are many null hypotheses that will not be rejected.

	E xample C.8	 Training Grants and Worker Productivity

In the Holzer et al. example, we constructed a 95% confidence interval for the mean change 
in scrap rate m� as [2.28,.02]. Since zero is excluded from this interval, we reject H0: m�  0  
against H1: m�  0 at the 5% level. This 95% confidence interval also means that we fail to 
reject H0: m�  2 at the 5% level. In fact, there is a continuum of null hypotheses that are 
not rejected given this confidence interval.

Practical versus Statistical Significance
In the examples covered so far, we have produced three kinds of evidence concerning pop-
ulation parameters: point estimates, confidence intervals, and hypothesis tests. These tools 
for learning about population parameters are equally important. There is an understand-
able tendency for students to focus on confidence intervals and hypothesis tests because 
these are things to which we can attach confidence or significance levels. But in any study, 
we must also interpret the magnitudes of point estimates.

The sign and magnitude of ​- y​ determine its practical significance and allow us to 
discuss the direction of an intervention or policy effect, and whether the estimated effect 
is “large” or “small.” On the other hand, statistical significance of ​- y​ depends on the mag-
nitude of its t statistic. For testing H0: m�  0, the t statistic is simply t  ​- y​/se(​- y​). In other 
words, statistical significance depends on the ratio of ​- y​ to its standard error. Consequently, 
a t statistic can be large because ​- y​ is large or se(​- y​) is small. In applications, it is impor-
tant to discuss both practical and statistical significance, being aware that an estimate can 
be statistically significant without being especially large in a practical sense. Whether an 
estimate is practically important depends on the context as well as on one’s judgment, so 
there are no set rules for determining practical significance.

	E xample C.9	 Effect of Freeway Width on Commute Time

Let Y denote the change in commute time, measured in minutes, for commuters in a metro-
politan area from before a freeway was widened to after the freeway was widened. Assume 
that Y ~ Normal(m,s�2). The null hypothesis that the widening did not reduce average com-
mute time is H0: m�  0; the alternative that it reduced average commute time is H1: m�  0.  
Suppose a random sample of commuters of size n  900 is obtained to determine the 
effectiveness of the freeway project. The average change in commute time is computed to 
be ​- y​  3.6, and the sample standard deviation is s  32.7; thus, se(​- y​)  32.7/​

____
 900 ​  1.09.  

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 appendix C  Fundamentals of Mathematical Statistics� 789

The t statistic is t  3.6/1.09  3.30, which is very statistically significant; the p-value 
is about .0005. Thus, we conclude that the freeway widening had a statistically significant 
effect on average commute time.

If the outcome of the hypothesis test is all that were reported from the study, it would 
be misleading. Reporting only statistical significance masks the fact that the estimated re-
duction in average commute time, 3.6 minutes, is pretty meager. To be up front, we should 
report the point estimate of 3.6, along with the significance test.

Finding point estimates that are statistically significant without being practically sig-
nificant can occur when we are working with large samples. To discuss why this happens, 
it is useful to have the following definition.

Test Consistency.  A consistent test rejects H0 with probability approaching one as the 
sample size grows whenever H1 is true.

Another way to say that a test is consistent is that, as the sample size tends to infinity, 
the power of the test gets closer and closer to unity whenever H1 is true. All of the tests we 
cover in this text have this property. In the case of testing hypotheses about a population 
mean, test consistency follows because the variance of Ȳ converges to zero as the sample 
size gets large. The t statistic for testing H0: m�  0 is T  Ȳ/(S/​

__
 n ​). Since plim(Ȳ)  m� and 

plim(S )  s, it follows that if, say, m�  0, then T gets larger and larger (with high prob-
ability) as n → . In other words, no matter how close m� is to zero, we can be almost cer-
tain to reject H0: m�  0 given a large enough sample size. This says nothing about whether 
m� is large in a practical sense.

C.7  Remarks on Notation
In our review of probability and statistics here and in Appendix B, we have been careful 
to use standard conventions to denote random variables, estimators, and test statistics. For 
example, we have used W to indicate an estimator (random variable) and w to denote a 
particular estimate (outcome of the random variable W ). Distinguishing between an esti-
mator and an estimate is important for understanding various concepts in estimation and 
hypothesis testing. However, making this distinction quickly becomes a burden in econo-
metric analysis because the models are more complicated: many random variables and 
parameters will be involved, and being true to the usual conventions from probability and 
statistics requires many extra symbols.

In the main text, we use a simpler convention that is widely used in econometrics. If u� is a 
population parameter, the notation ​̂  u​�​ (“theta hat”) will be used to denote both an estimator and 
an estimate of u. This notation is useful in that it provides a simple way of attaching an estima-
tor to the population parameter it is supposed to be estimating. Thus, if the population param-
eter is , then ​̂  ​ denotes an estimator or estimate of ; if the parameter is s2, ​̂  s​​2 is an estimator 
or estimate of s�2; and so on. Sometimes, we will discuss two estimators of the same parameter, 
in which case we will need a different notation, such as ​̃  u​�​ (“theta tilde”).

Although dropping the conventions from probability and statistics to indicate estima-
tors, random variables, and test statistics puts additional responsibility on you, it is not a 
big deal once the difference between an estimator and an estimate is understood. If we are 
discussing statistical properties of ​̂  u​�​—such as deriving whether or not it is unbiased or 
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consistent—then we are necessarily viewing ​̂  u​�​ as an estimator. On the other hand, if we 
write something like ​̂  u​�​  1.73, then we are clearly denoting a point estimate from a given 
sample of data. The confusion that can arise by using ​̂  u​�​ to denote both should be minimal 
once you have a good understanding of probability and statistics.

Summary
We have discussed topics from mathematical statistics that are heavily relied upon in 
econometric analysis. The notion of an estimator, which is simply a rule for combining 
data to estimate a population parameter, is fundamental. We have covered various proper-
ties of estimators. The most important small sample properties are unbiasedness and effi-
ciency, the latter of which depends on comparing variances when estimators are unbiased. 
Large sample properties concern the sequence of estimators obtained as the sample size 
grows, and they are also depended upon in econometrics. Any useful estimator is consis-
tent. The central limit theorem implies that, in large samples, the sampling distribution of 
most estimators is approximately normal.

The sampling distribution of an estimator can be used to construct confidence intervals. We 
saw this for estimating the mean from a normal distribution and for computing approximate confi-
dence intervals in nonnormal cases. Classical hypothesis testing, which requires specifying a null 
hypothesis, an alternative hypothesis, and a significance level, is carried out by comparing a test 
statistic to a critical value. Alternatively, a p-value can be computed that allows us to carry out a 
test at any significance level.

Alternative Hypothesis
Asymptotic Normality
Bias
Biased Estimator
Central Limit Theorem (CLT)
Confidence Interval
Consistent Estimator
Consistent Test
Critical Value
Estimate
Estimator
Hypothesis Test
Inconsistent
Interval Estimator
Law of Large Numbers (LLN)
Least Squares Estimator
Maximum Likelihood 

Estimator

Mean Squared Error (MSE)
Method of Moments
Minimum Variance Unbiased 

Estimator
Null Hypothesis
One-Sided Alternative
One-Tailed Test
Population
Power of a Test
Practical Significance
Probability Limit
p-Value
Random Sample
Rejection Region
Sample Average
Sample Correlation Coefficient
Sample Covariance
Sample Standard Deviation

Sample Variance
Sampling Distribution
Sampling Standard Deviation
Sampling Variance
Significance Level
Standard Error
Statistical Significance
t Statistic
Test Statistic
Two-Sided Alternative
Two-Tailed Test
Type I Error
Type II Error
Unbiased Estimator

Key Terms
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Problems
	 1	 �Let Y1, Y2, Y3, and Y4 be independent, identically distributed random variables from a popu-

lation with mean m� and variance s2. Let Ȳ  ​ 1  4
 ​
 
(Y1  Y2  Y3  Y4) denote the average of 

these four random variables.
(i)	 What are the expected value and variance of Ȳ in terms of m� and s2?
(ii)	 Now, consider a different estimator of m�:

W  ​ 1  8
 ​Y1  ​ 1  8

 ​Y2  ​ 1  4
 ​Y3  ​ 1  2

 ​Y4.

	� This is an example of a weighted average of the Yi. Show that W is also an unbiased 
estimator of m. Find the variance of W.

(iii)	� Based on your answers to parts (i) and (ii), which estimator of m� do you prefer,  
Ȳ or W?

	 2	� This is a more general version of Problem C.1. Let Y1, Y2, …, Yn be n pairwise uncorrelated 
random variables with common mean m� and common variance s2. Let Ȳ denote the sample 
average.
(i)	 Define the class of linear estimators of m� by

Wa  a1Y1  a2Y2  …  anYn,

	� where the ai are constants. What restriction on the ai is needed for Wa to be an 
unbiased estimator of m?

(ii)	 Find Var(Wa).
(iii)	� For any numbers a1, a2, …, an, the following inequality holds: (a1  a2  …  

an)2/n  a1
2  a2

2  …  an
2. Use this, along with parts (i) and (ii), to show that 

Var(Wa)  Var(Ȳ) whenever Wa is unbiased, so that Ȳ is the best linear unbiased esti-
mator. [Hint: What does the inequality become when the ai satisfy the restriction from 
part (i)?]

	 3	� Let Ȳ  denote the sample average from a random sample with mean m� and variance s2. 
Consider two alternative estimators of m�: W1  [(n  1)/n]Ȳ and W2 Ȳ/2.
(i)	� Show that W1 and W2 are both biased estimators of m� and find the biases. What hap-

pens to the biases as n → ? Comment on any important differences in bias for the 
two estimators as the sample size gets large.

(ii)	� Find the probability limits of W1 and W2. {Hint: Use Properties PLIM.1 and PLIM.2; 
for W1, note that plim [(n  1)/n]  1.} Which estimator is consistent?

(iii)	� Find Var(W1) and Var(W2).
(iv)	� Argue that W1 is a better estimator than Ȳ if m� is “close” to zero. (Consider both bias 

and variance.)

	 4	� For positive random variables X and Y, suppose the expected value of Y given X is E(Y X) 
 u�X. The unknown parameter u� shows how the expected value of Y changes with X.
(i)	� Define the random variable Z  Y/X. Show that E(Z )  u. [Hint: Use Property CE.2 

along with the law of iterated expectations, Property CE.4. In particular, first show 
that E(ZX )  u� and then use CE.4.]

(ii)	� Use part (i) to prove that the estimator W1  n1 n
i1 (Yi /Xi) is unbiased for u, where 

{(Xi,Yi): i  1, 2, …, n} is a random sample.
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(iii)	� Explain why the estimator W2  Ȳ/X̄, where the overbars denote sample averages, is 
not the same as W1. Nevertheless, show that W2 is also unbiased for u.

(iv)	� The following table contains data on corn yields for several counties in Iowa. The 
USDA predicts the number of hectares of corn in each county based on satellite 
photos. Researchers count the number of “pixels” of corn in the satellite picture 
(as opposed to, for example, the number of pixels of soybeans or of uncultivated 
land) and use these to predict the actual number of hectares. To develop a prediction 
equation to be used for counties in general, the USDA surveyed farmers in selected 
counties to obtain corn yields in hectares. Let Yi  corn yield in county i and let 
Xi  number of corn pixels in the satellite picture for county i. There are n  17 
observations for eight counties. Use this sample to compute the estimates of u� 
devised in parts (ii) and (iii). Are the estimates similar?

Plot Corn Yield Corn Pixels

  1 165.76 374

  2 96.32 209

  3 76.08 253

  4 185.35 432

  5 116.43 367

  6 162.08 361

  7 152.04 288

  8 161.75 369

  9 92.88 206

10 149.94 316

11 64.75 145

12 127.07 355

13 133.55 295

14 77.70 223

15 206.39 459

16 108.33 290

17 118.17 307

	 5	� Let Y denote a Bernoulli(u�) random variable with 0  u�  1. Suppose we are interested 
in estimating the odds ratio,   u/(1  u�), which is the probability of success over the 
probability of failure. Given a random sample {Y1, …, Yn}, we know that an unbiased and 
consistent estimator of u� is Ȳ , the proportion of successes in n trials. A natural estimator 
of  is G  Ȳ /(1  Ȳ), the proportion of successes over the proportion of failures in the 
sample.
(i)	 Why is G not an unbiased estimator of ?
(ii)	 Use PLIM.2(iii) to show that G is a consistent estimator of .

	 6	� You are hired by the governor to study whether a tax on liquor has decreased average liquor 
consumption in your state. You are able to obtain, for a sample of individuals selected at 
random, the difference in liquor consumption (in ounces) for the years before and after the 
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tax. For person i who is sampled randomly from the population, Yi denotes the change in 
liquor consumption. Treat these as a random sample from a Normal(m,s�2) distribution.
(i)	� The null hypothesis is that there was no change in average liquor consumption. State 

this formally in terms of m.
(ii)	� The alternative is that there was a decline in liquor consumption; state the alternative 

in terms of m.
(iii)	� Now, suppose your sample size is n  900 and you obtain the estimates ​- y​  32.8 

and s  466.4. Calculate the t statistic for testing H0 against H1; obtain the p-value for 
the test. (Because of the large sample size, just use the standard normal distribution 
tabulated in Table G.1.) Do you reject H0 at the 5% level? At the 1% level?

(iv)	� Would you say that the estimated fall in consumption is large in magnitude? Com-
ment on the practical versus statistical significance of this estimate.

(v)	� What has been implicitly assumed in your analysis about other determinants of liquor 
consumption over the two-year period in order to infer causality from the tax change 
to liquor consumption?

	 7	� The new management at a bakery claims that workers are now more productive than they 
were under old management, which is why wages have “generally increased.” Let Wi

b 
be Worker i’s wage under the old management and let Wi

a be Worker i’s wage after the 
change. The difference is Di  Wi

a  Wi
b. Assume that the Di are a random sample from a 

Normal(m,s�2) distribution.
(i)	� Using the following data on 15 workers, construct an exact 95% confidence interval for m.
(ii)	� Formally state the null hypothesis that there has been no change in average wages. In 

particular, what is E(Di) under H0? If you are hired to examine the validity of the new 
management’s claim, what is the relevant alternative hypothesis in terms of m�  E(Di)?

(iii)	� Test the null hypothesis from part (ii) against the stated alternative at the 5% and 1% 
levels.

(iv)	 Obtain the p-value for the test in part (iii).

Worker Wage Before Wage After

  1   8.30   9.25

  2   9.40   9.00

  3   9.00   9.25

  4 10.50 10.00

  5 11.40 12.00

  6   8.75   9.50

  7 10.00 10.25

  8   9.50   9.50

  9 10.80 11.50

10 12.55 13.10

11 12.00 11.50

12   8.65   9.00

13   7.75   7.75

14 11.25 11.50

15 12.65 13.00
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	 8	� The New York Times (2/5/90) reported three-point shooting performance for the top 10 
three-point shooters in the NBA. The following table summarizes these data:

Player FGA-FGM

Mark Price 429-188

Trent Tucker 833-345

Dale Ellis 1,149-472

Craig Hodges 1,016-396

Danny Ainge 1,051-406

Byron Scott 676-260

Reggie Miller 416-159

Larry Bird 1,206-455

Jon Sundvold 440-166

Brian Taylor 417-157

Note: FGA  field goals attempted and FGM  field goals made.

		�  For a given player, the outcome of a particular shot can be modeled as a Bernoulli (zero-
one) variable: if Yi is the outcome of shot i, then Yi  1 if the shot is made, and Yi  0 if 
the shot is missed. Let u� denote the probability of making any particular three-point shot 
attempt. The natural estimator of u� is Ȳ  FGM/FGA.
(i)	 Estimate u� for Mark Price.
(ii)	� Find the standard deviation of the estimator Ȳ in terms of u� and the number of shot 

attempts, n.
(iii)	� The asymptotic distribution of (Ȳ  u�)/se(Ȳ) is standard normal, where se(Ȳ)  ​


_________

 Ȳ(1  Ȳ)/n ​. Use this fact to test H0: u�  .5 against H1: u�  .5 for Mark Price. Use a 
1% significance level.

	 9	� Suppose that a military dictator in an unnamed country holds a plebiscite (a yes/no vote of 
confidence) and claims that he was supported by 65% of the voters. A human rights group 
suspects foul play and hires you to test the validity of the dictator’s claim. You have a bud-
get that allows you to randomly sample 200 voters from the country.
(i)	� Let X be the number of yes votes obtained from a random sample of 200 out of the 

entire voting population. What is the expected value of X if, in fact, 65% of all voters 
supported the dictator?

(ii)	� What is the standard deviation of X, again assuming that the true fraction voting yes 
in the plebiscite is .65?

(iii)	�Now, you collect your sample of 200, and you find that 115 people actually voted 
yes. Use the CLT to approximate the probability that you would find 115 or 
fewer yes votes from a random sample of 200 if, in fact, 65% of the entire popu-
lation voted yes.

(iv)	� How would you explain the relevance of the number in part (iii) to someone who 
does not have training in statistics?
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	 10	� Before a strike prematurely ended the 1994 major league baseball season, Tony Gwynn 
of the San Diego Padres had 165 hits in 419 at bats, for a .394 batting average. There was 
discussion about whether Gwynn was a potential .400 hitter that year. This issue can be 
couched in terms of Gwynn’s probability of getting a hit on a particular at bat, call it u. Let 
Yi be the Bernoulli(u�) indicator equal to unity if Gwynn gets a hit during his ith at bat, and 
zero otherwise. Then, Y1,  Y2,  …, Yn is a random sample from a Bernoulli(u�) distribution, 
where u� is the probability of success, and n  419.

		�      Our best point estimate of u� is Gwynn’s batting average, which is just the proportion 
of successes: ​- y​  .394. Using the fact that se(​- y​)  ​

_________
 ȳ(1  ȳ )/n ​, construct an approximate 

95% confidence interval for u, using the standard normal distribution. Would you say there 
is strong evidence against Gwynn’s being a potential .400 hitter? Explain.
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D
appendix

Summary of Matrix Algebra

T his appendix summarizes the matrix algebra concepts, including the algebra of 

probability, needed for the study of multiple linear regression models using matri-

ces in Appendix E. None of this material is used in the main text.

D.1  Basic Definitions
Definition D.1 (Matrix).  A matrix is a rectangular array of numbers. More precisely, an 
m  n matrix has m rows and n columns. The positive integer m is called the row dimen-
sion, and n is called the column dimension.

We use uppercase boldface letters to denote matrices. We can write an m  n matrix 
generically as

A  [aij] 

 


	a11	 a12	 a13	 . . .	 a1n

	a21	 a22	 a23	 . . .	 a2n

	 .
	 .
	 .
	am1	 am2	 am3	 . . .	 amn

,

where aij represents the element in the ith row and the jth column. For example, a25 stands 
for the number in the second row and the fifth column of A. A specific example of a 
2  3 matrix is

	 A  	 2	 1	 7
	4	 5	 0,� [D.1]

where a13  7. The shorthand A  [aij] is often used to define matrix operations.

Definition D.2 (Square Matrix).  A square matrix has the same number of rows and 
columns. The dimension of a square matrix is its number of rows and columns.
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Definition D.3 (Vectors)
(i) A 1  m matrix is called a row vector (of dimension m) and can be written as  

x  (x1,  x2, …, xm).
(ii) An n  1 matrix is called a column vector and can be written as

	 y  
	y1

	y2

	.
	.
	.
	yn
.

Definition D.4 (Diagonal Matrix).  A square matrix A is a diagonal matrix when all 
of its off-diagonal elements are zero, that is, aij  0 for all i  j. We can always write a 
diagonal matrix as

	 A 

 


	a11	 0	 0	 . . .	 0
	0	 a22	 0	 . . .	 0
	 .
	 .
	 .
	0	 0	 0	 . . .	 ann

.

Definition D.5 (Identity and Zero Matrices)
(i) The n  n identity matrix, denoted I, or sometimes In to emphasize its dimension, is 

the diagonal matrix with unity (one) in each diagonal position, and zero elsewhere:

	 I  In  
	1	 0	 0	 . . .	 0
	0	 1	 0	 . . .	 0
	.
	.
	.
	0	 0	 0	 . . .	 1

.

(ii) The m  n zero matrix, denoted 0, is the m  n matrix with zero for all entries. 
This need not be a square matrix.

D.2  Matrix Operations

Matrix Addition
Two matrices A and B, each having dimension m  n, can be added element by element: 
A  B  [aij  bij]. More precisely,

	 A  B  
	a11  b11	 a12  b12	 . . .	 a1n  b1n

	a21  b21	 a22  b22	 . . .	 a2n  b2n

	 .
	 .
	 .
	am1  bm1	 am2  bm2	 . . .	 amn  bmn

.
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For example,

	
	 2	 1	 7

	4	 5	 0  	1	 0	 4
	4	 2	 3  	3	 1	 3

	0	 7	 3.

Matrices of different dimensions cannot be added.

Scalar Multiplication
Given any real number g (often called a scalar), scalar multiplication is defined as 
gA  [gaij], or

	 gA  
	ga11	 ga12	 . . .	 ga1n

	ga21	 ga22	 . . .	 ga2n

	 .
	 .
	 .
	gam1	 gam2	 . . .	 gamn

.

For example, if g  2 and A is the matrix in equation (D.1), then

	 gA  	 4	 2	 14
	8	 10	 0 .

Matrix Multiplication
To multiply matrix A by matrix B to form the product AB, the column dimension of A 
must equal the row dimension of B. Therefore, let A be an m  n matrix and let B be an 
n  p matrix. Then, matrix multiplication is defined as

	 AB  ​∑ 
k1

 ​ 
n

  ​ ​aikbkj.

In other words, the (i, j)th element of the new matrix AB is obtained by multiplying each 
element in the ith row of A by the corresponding element in the jth column of B and adding 
these n products together. A schematic may help make this process more transparent:

	

ith row →

 


A

ai1 ai2 ai3 . . . ain
B

b1j

b2j

b3j

.

.

.
bnj

jth column

 ,

AB

​∑ 
k1

 ​ 
n

  ​  ​ aikbkj

	
(i, j)th element
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where, by the definition of the summation operator in Appendix A,

	 ​∑ 
k1

 ​ 
n

  ​  ​ aikbkj  ai1b1j  ai2b2 j  …  ainbnj.

For example,

	 2	 1	 0
	4	 1	 0  	 0	 1	 6	 0

	1	 2	 0	 1
	 3	 0	 0	 0  


 	 1	 0	 12	 1

	1	 2	 24	 1.

We can also multiply a matrix and a vector. If A is an n  m matrix and y is an m  1 
vector, then Ay is an n  1 vector. If x is a 1  n vector, then xA is a 1  m vector.

Matrix addition, scalar multiplication, and matrix multiplication can be combined 
in various ways, and these operations satisfy several rules that are familiar from basic 
operations on numbers. In the following list of properties, A, B, and C are matrices with 
appropriate dimensions for applying each operation, and a� and b� are real numbers. Most 
of these properties are easy to illustrate from the definitions.

Properties of Matrix Multiplication.  (1) (a�  b�)A  a�A  b�A; (2) a(A  B)  
a�A  a�B; (3) (a�b�)A  a(b�A); (4) a(AB)  (a�A)B; (5) A  B  B  A; (6) (A  B)  C   
A  (B  C); (7) (AB)C  A(BC); (8) A(B  C)  AB  AC; (9) (A  B)C  AC  BC;  
(10) IA  AI  A; (11) A  0  0  A  A; (12) A  A  0; (13) A0  0A  0;  
and (14) AB  BA, even when both products are defined.

The last property deserves further comment. If A is n  m and B is m  p, then AB is 
defined, but BA is defined only if n  p (the row dimension of A equals the column di-
mension of B). If A is m  n and B is n  m, then AB and BA are both defined, but they 
are not usually the same; in fact, they have different dimensions, unless A and B are both 
square matrices. Even when A and B are both square, AB  BA, except under special 
circumstances.

Transpose
Definition D.6 (Transpose).  Let A  [aij] be an m  n matrix. The transpose of A, 
denoted A (called A prime), is the n  m matrix obtained by interchanging the rows and 
columns of A. We can write this as A  [aji].

For example,

	 A  	 2	 1	 7
	4	 5	 0,        A  	 2	 4

	1	 5
	 7	 0 .

Properties of Transpose.  (1) (A)  A; (2) (a�A)  a�A for any scalar a�; (3) (A  B)  
A B; (4) (AB)  BA, where A is m  n and B is n  k; (5) xx ​∑ i1​ 

n
  ​  ​ xi

2, where 

x is an n  1 vector; and (6) If A is an n  k matrix with rows given by the 1  k vectors  

a1, a2, …, an, so that we can write 
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A  
	 a1

	 a2

	 .
	 .
	 .
	 an

,

then A  (a1 a2 . . . an).

Definition D.7 (Symmetric Matrix).  A square matrix A is a symmetric matrix if, and 
only if, A  A.

If X is any n  k matrix, then XX is always defined and is a symmetric matrix, as 
can be seen by applying the first and fourth transpose properties (see Problem 3).

Partitioned Matrix Multiplication
Let A be an n  k matrix with rows given by the 1  k vectors a1, a2, …, an, and let B be 
an n  m matrix with rows given by 1  m vectors b1, b2, …, bn:

	 A  
	a1

	a2

	 .
	 .
	 .
	an

,  B  
	b1

	b2

	.
	.
	.
	bn

.

Then,

	 AB   ​∑ 
i1

 ​ 
n

  ​  ​ aibi,

where for each i, aibi is a k  m matrix. Therefore, AB can be written as the sum of n 
matrices, each of which is k  m. As a special case, we have

	 AA   ​∑ 
i1

 ​ 
n

  ​  ​ aiai,

where aiai is a k  k matrix for all i.

Trace
The trace of a matrix is a very simple operation defined only for square matrices.

Definition D.8 (Trace).  For any n  n matrix A, the trace of a matrix A, denoted tr(A), 
is the sum of its diagonal elements. Mathematically,

	 tr(A)  ​∑ 
i1

 ​ 
n

  ​  ​ aii.

Properties of Trace.  (1) tr(In)  n; (2) tr(A)  tr(A); (3) tr(A  B)  tr(A)  tr(B); 
(4) tr(a�A)  a�tr(A), for any scalar a�; and (5) tr(AB)  tr(BA), where A is m  n and B 
is n  m. 

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 appendix D  Summary of Matrix Algebra� 801

Inverse
The notion of a matrix inverse is very important for square matrices. 

Definition D.9 (Inverse).  An n  n matrix A has an inverse, denoted A1, provided that 
A1A  In and AA1  In. In this case, A is said to be invertible or nonsingular.  Other-
wise, it is said to be noninvertible or singular.

Properties of Inverse.  (1) If an inverse exists, it is unique; (2) (a�A)1  (1/a�)A1, if 
a�  0 and A is invertible; (3) (AB)1  B1A1, if A and B are both n  n and invertible; 
and (4) (A)1  (A1).

We will not be concerned with the mechanics of calculating the inverse of a matrix. Any 
matrix algebra text contains detailed examples of such calculations. 

D.3  Linear Independence and Rank of a Matrix
For a set of vectors having the same dimension, it is important to know whether one vector 
can be expressed as a linear combination of the remaining vectors.

Definition D.10 (Linear Independence).  Let {x1,  x2, …,  xr} be a set of n  1 vectors. 
These are linearly independent vectors if, and only if,

	 a1x1  a2x2  …  a�r xr  0� [D.2]

implies that a1  a2  …  a�r  0. If (D.2) holds for a set of scalars that are not all zero, 
then {x1, x2, …, xr} is linearly dependent.

The statement that {x1, x2, …, xr} is linearly dependent is equivalent to saying that at 
least one vector in this set can be written as a linear combination of the others.

Definition D.11 (Rank)
(i) Let A be an n  m matrix. The rank of a matrix A, denoted rank(A), is the maxi-

mum number of linearly independent columns of A.
(ii) If A is n  m and rank(A)  m, then A has full column rank.

If A is n  m, its rank can be at most m. A matrix has full column rank if its columns 
form a linearly independent set. For example, the 3  2 matrix

	
	1	 3

	2	 6
	0	 0

can have at most rank two. In fact, its rank is only one because the second column is three 
times the first column.

Properties of Rank.  (1) rank(A)  rank(A); (2) If A is n  k, then rank(A)  min(n,k); 
and (3) If A is k  k and rank(A)  k, then A is invertible.
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D.4  Quadratic Forms and Positive Definite Matrices
Definition D.12 (Quadratic Form).  Let A be an n  n symmetric matrix. The 
quadratic form associated with the matrix A is the real-valued function defined for  
all n  1 vectors x:

	 f(x)  xAx  ​∑ 
i1

 ​ 
n

  ​  ​ aiix
2
i   2 ​∑ 

i1

 ​ 
n

  ​  ​ ​∑ 
j .1

 ​ 
 

  ​aij  xi  xj.

​Definition D.13 (Positive Definite and Positive Semi-Definite)
(i) A symmetric matrix A is said to be positive definite (p.d.) if

	 xAx  0 for all n  1 vectors x except x  0.

(ii) A symmetric matrix A is positive semi-definite (p.s.d.) if

	 xAx  0 for all n  1 vectors.

If a matrix is positive definite or positive semi-definite, it is automatically assumed to be 
symmetric.

Properties of Positive Definite and Positive Semi-Definite Matrices.  (1) A 
positive definite matrix has diagonal elements that are strictly positive, while a p.s.d. matrix 
has nonnegative diagonal elements; (2) If A is p.d., then A1 exists and is p.d.; (3) If X is  
n  k, then XX and XX are p.s.d.; and (4) If X is n  k and rank(X)  k, then XX is 
p.d. (and therefore nonsingular).

D.5  Idempotent Matrices
Definition D.14 (Idempotent Matrix).  Let A be an n  n symmetric matrix. Then A is 
said to be an idempotent matrix if, and only if, AA  A.

For example,

	
 1	 0	 0

0	 0	 0
0	 0	 1 

is an idempotent matrix, as direct multiplication verifies.

Properties of Idempotent Matrices.  Let A be an n  n idempotent matrix. (1) rank(A)   
tr(A), and (2) A is positive semi-definite.

We can construct idempotent matrices very generally. Let X be an n  k matrix with 
rank(X)  k. Define

P  X(XX)1X

M  In  X(XX)1X  In  P.

Then P and M are symmetric, idempotent matrices with rank(P)  k and rank(M)  
n  k. The ranks are most easily obtained by using Property 1: tr(P)  tr[(XX)1XX] 
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(from Property 5 for trace)  tr(Ik)  k (by Property 1 for trace). It easily follows that 
tr(M)  tr(In)  tr(P)  n  k.

D.6  Differentiation of Linear and Quadratic Forms
For a given n  1 vector a, consider the linear function defined by

	 f (x)  ax,

for all n  1 vectors x. The derivative of f with respect to x is the 1  n vector of partial 
derivatives, which is simply

	 ∂f (x)/∂x  a.

For an n  n symmetric matrix A, define the quadratic form

	 g(x)  xAx.

Then,

	 ∂g(x)/∂x  2xA,

which is a 1  n vector.

D.7  Moments and Distributions of Random Vectors
In order to derive the expected value and variance of the OLS estimators using matrices, 
we need to define the expected value and variance of a random vector. As its name sug-
gests, a random vector is simply a vector of random variables. We also need to define the 
multivariate normal distribution. These concepts are simply extensions of those covered 
in Appendix B.

Expected Value
Definition D.15 (Expected Value)

(i) If y is an n  1 random vector, the expected value of y, denoted E( y), is the vector 
of expected values: E( y)  [E(y1),  E(y2),  …,  E(yn)].

(ii) If Z is an n  m random matrix, E(Z) is the n  m matrix of expected values: 
E(Z)  [E(zij)].

Properties of Expected Value.  (1) If A is an m  n matrix and b is an n  1 vector, 
where both are nonrandom, then E(Ay  b)  AE( y)  b; and (2) If A is p  n and B is 
m  k, where both are nonrandom, then E(AZB)  AE(Z)B.

Variance-Covariance Matrix
Definition D.16 (Variance-Covariance Matrix).  If y is an n  1 random vector, its 
variance-covariance matrix, denoted Var( y), is defined as
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	 Var( y)  
	s�1

2	 s�12	 . . .	 s1n

	s�21	 s�2
2	 . . .	 s2n

	 .
	 .
	 .
	s�n1	 s�n2	 . . .	 s�n

2
,

where s�j
2  Var(yj) and s�ij  Cov(yi,yj). In other words, the variance-covariance ma-

trix has the variances of each element of y down its diagonal, with covariance terms in 
the off diagonals. Because Cov(yi,yj)  Cov(yj,yi), it immediately follows that a variance-
covariance matrix is symmetric.

Properties of Variance.  (1) If a is an n  1 nonrandom vector, then Var(ay)  
a[Var(y)]a  0; (2) If Var(ay)  0 for all a  0, Var(y) is positive definite; (3) Var( y)   
E[( y  m)(y  m)], where m  E( y); (4) If the elements of y are uncorrelated, Var(y) 
is a diagonal matrix. If, in addition, Var(yj)  s2 for j  1, 2,  …,  n, then Var(y)  s�2In; 
and (5) If A is an m  n nonrandom matrix and b is an n  1 nonrandom vector, then 
Var(Ay  b)  A[Var(y)]A.

Multivariate Normal Distribution
The normal distribution for a random variable was discussed at some length in Appendix B.  
We need to extend the normal distribution to random vectors. We will not provide an 
expression for the probability distribution function, as we do not need it. It is important 
to know that a multivariate normal random vector is completely characterized by its mean 
and its variance-covariance matrix. Therefore, if y is an n  1 multivariate normal random 
vector with mean m and variance-covariance matrix , we write y ~ Normal(m,). We 
now state several useful properties of the multivariate normal distribution.

Properties of the Multivariate Normal Distribution.  (1) If y ~ Normal(m,), then 
each element of y is normally distributed; (2) If y ~ Normal(m,), then yi and yj, any 
two elements of y, are independent if, and only if, they are uncorrelated, that is, s�ij  0;  
(3) If y ~ Normal(m,), then Ay  b ~ Normal(Am  b,AA), where A and b are non-
random; (4) If y ~ Normal(0,), then, for nonrandom matrices A and B, Ay and By are 
independent if, and only if, AB  0. In particular, if   s�2In, then AB  0 is neces-
sary and sufficient for independence of Ay and By; (5) If y ~ Normal(0,s�2In), A is a k  n 
nonrandom matrix, and B is an n  n symmetric, idempotent matrix, then Ay and yBy 
are independent if, and only if, AB  0; and (6) If y ~ Normal(0,s�2In) and A and B are 
nonrandom symmetric, idempotent matrices, then yAy and yBy are independent if, and 
only if, AB  0.

Chi-Square Distribution
In Appendix B, we defined a chi-square random variable as the sum of squared inde-
pendent standard normal random variables. In vector notation, if u ~ Normal(0,In), then 
uu ~ x�n

2.
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Properties of the Chi-Square Distribution.  (1) If u ~ Normal(0,In) and A is an n  n 
symmetric, idempotent matrix with rank(A)  q, then uAu ~ x�q

2; (2) If u ~ Normal(0,In) 
and A and B are n  n symmetric, idempotent matrices such that AB  0, then uAu and 
uBu are independent, chi-square random variables; and (3) If z ~ Normal(0,C) where C 
is an m  m nonsingular matrix, then zC1z ~ x�m

2 .

t Distribution
We also defined the t distribution in Appendix B. Now we add an important property.

Property of the t Distribution.  If u ~ Normal(0,In), c is an n  1 nonrandom vector, A 
is a nonrandom n  n symmetric, idempotent matrix with rank q, and Ac  0, then {cu/
(cc)1/2}/(uAu/q)1/ 2 ~ tq.

F Distribution
Recall that an F random variable is obtained by taking two independent chi-square 
random variables and finding the ratio of each, standardized by degrees of freedom.

Property of the F Distribution.  If u ~ Normal(0,In) and A and B are n  n nonran-
dom symmetric, idempotent matrices with rank(A)  k1, rank(B)  k2, and AB  0, then 
(uAu/k1)/(uBu/k2) ~ Fk1,k2

.

Summary
This appendix contains a condensed form of the background information needed to study the 
classical linear model using matrices. Although the material here is self-contained, it is pri-
marily intended as a review for readers who are familiar with matrix algebra and multivariate 
statistics, and it will be used extensively in Appendix E. 

Key Terms
Chi-Square Random Variable
Column Vector
Diagonal Matrix
Expected Value
F Random Variable
Idempotent Matrix
Identity Matrix
Inverse
Linearly Independent Vectors

Matrix
Matrix Multiplication
Multivariate Normal 

Distribution
Positive Definite (p.d.)
Positive Semi-Definite (p.s.d.)
Quadratic Form
Random Vector
Rank of a Matrix

Row Vector
Scalar Multiplication
Square Matrix
Symmetric Matrix
t Distribution
Trace of a Matrix
Transpose
Variance-Covariance Matrix
Zero Matrix
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Problems
	 1	 i(i)	 Find the product AB using

	 A  	 2	 1	 7
	4	 5	 0 ,  B  	 0	 1	 6

	 1	 8	 0
	 3	 0	 0 .

(ii)	 Does BA exist?

	 2	 If A and B are n  n diagonal matrices, show that AB  BA.

	 3	 Let X be any n  k matrix. Show that XX is a symmetric matrix.

	 4	 (i)i  �  Use the properties of trace to argue that tr(AA)  tr(AA) for any n  m matrix A.

(ii)	 For A  	2	 0	 1
	0	 3	 0, verify that tr(AA)  tr(AA).

	 5	 (i)i  �  Use the definition of inverse to prove the following: if A and B are n  n nonsingular 
matrices, then (AB)1  B1A1.

(ii)  �  If A, B, and C are all n  n nonsingular matrices, find (ABC)1 in terms of A1, 
B1, and C1.

	 6	 (i)i  �  Show that if A is an n  n symmetric, positive definite matrix, then A must have 
strictly positive diagonal elements.

(ii)	� Write down a 2  2 symmetric matrix with strictly positive diagonal elements that is 
not positive definite.

	 7	� Let A be an n  n symmetric, positive definite matrix. Show that if P is any n  n nonsin-
gular matrix, then PAP is positive definite.

	 8	 Prove Property 5 of variances for vectors, using Property 3.

	 9	� Let a be an n  1 nonrandom vector and let u be an n  1 random vector with  

E(uu) 5 In. Show that E[tr(auua)]  ​
n
   i51​ a

2
i ·

	 10	� Take as given the properties of the chi-square distribution listed in the text. Show how those 
properties, along with the definition of an F random variable, imply the stated property of 
the F distribution (concerning ratios of quadratic forms).
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T his appendix derives various results for ordinary least squares estimation of the multiple 

linear regression model using matrix notation and matrix algebra (see Appendix D for 

a summary). The material presented here is much more advanced than that in the text.

E.1  The Model and Ordinary Least Squares Estimation
Throughout this appendix, we use the t subscript to index observations and an n to denote 
the sample size. It is useful to write the multiple linear regression model with k parameters 
as follows:

	 yt  b0  b1xt1  b2xt2  …  b�k xtk  ut, t  1, 2, …, n,� [E.1]

where yt is the dependent variable for observation t, and xtj, j  1, 2, …, k, are the indepen-
dent variables. As usual, b0 is the intercept and b1, …, b�k denote the slope parameters. 

For each t, define a 1  (k  1) vector, xt  (1, xt1, …, xtk), and let b  (b0, b1, …, 
b�k) be the (k  1)  1 vector of all parameters. Then, we can write (E.1) as

	 yt  xt b  ut, t  1, 2, …, n.� [E.2]

[Some authors prefer to define xt as a column vector, in which case xt is replaced 
with xt in (E.2). Mathematically, it makes more sense to define it as a row vector.] 
We can write (E.2) in full matrix notation by appropriately defining data vectors and 
matrices. Let y denote the n  1 vector of observations on y: the t th element of y is yt. 
Let X be the n  (k 1 1) vector of observations on the explanatory variables. In other 
words, the t th row of X consists of the vector xt. Written out in detail,

	 X 
n  (k  1)

  
	x1

	x2

	 .
	 .
	 .
	xn

  
	1	 x11	 x12	 . . .	 x1k

	1	 x21	 x22	 . . .	 x2k

	.
	.
	.
	1	 xn1	 xn2	 . . .	 xnk

.

E
appendix

The Linear Regression  
Model in Matrix Form
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Finally, let u be the n  1 vector of unobservable errors or disturbances. Then, we can 
write (E.2) for all n observations in matrix notation:

	 y  Xb  u.� [E.3]

Remember, because X is n  (k  1) and b is (k  1)  1, Xb is n  1.
Estimation of b proceeds by minimizing the sum of squared residuals, as in Section 3.2.  

Define the sum of squared residuals function for any possible (k  1)  1 parameter 
vector b as

	 SSR(b)  ​∑ 
t1

 ​ 
n

  ​​ ( yt  xtb)2.

The (k  1)  1 vector of ordinary least squares estimates, ​̂  b​  (​̂  ​0, ​̂  ​1, …, ​̂  ​k), minimizes 
SSR(b) over all possible (k  1)  1 vectors b. This is a problem in multivariable calculus. For ​
ˆ b​ to minimize the sum of squared residuals, it must solve the first order condition

	 ∂SSR( ​  b​)/∂b  0.� [E.4]

Using the fact that the derivative of ( yt  xtb)2 with respect to b is the 1  (k  1)  
vector 2( yt  xtb)xt, (E.4) is equivalent to

	 ​∑ 
t1

 ​ 
n

  ​ ​xt( yt  xt ​̂  b​)  0.� [E.5]

(We have divided by 2 and taken the transpose.) We can write this first order condition as

	​ ∑ 
t1

 ​ 
n

  ​​ ( yt  ​̂  ​0  ​̂  ​1xt1  …  ​̂  ​k xtk)  0

	​ ∑ 
t1

 ​ 
n

  ​​ xt1( yt  ​̂  ​0  ​̂  ​1xt1  …  ​̂  ​k xtk)  0

	 .
	 .
	 .

	​ ∑ 
t1

 ​ 
n

  ​​ xtk( yt  ​̂  ​0  ​̂  ​1xt1  …  ​̂  ​k xtk)  0,

which is identical to the first order conditions in equation (3.13). We want to write these 
in matrix form to make them easier to manipulate. Using the formula for partitioned 
multiplication in Appendix D, we see that (E.5) is equivalent to

	 X(y  X​̂  ​)  0� [E.6]

or

	 (XX)​̂  ​  Xy.� [E.7]

It can be shown that (E.7) always has at least one solution. Multiple solutions do not help 
us, as we are looking for a unique set of OLS estimates given our data set. Assuming that 
the (k  1)  (k  1) symmetric matrix XX is nonsingular, we can premultiply both 
sides of (E.7) by (XX)1 to solve for the OLS estimator ​̂  ​:

	 ​̂  ​  (XX)1Xy.� [E.8]
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This is the critical formula for matrix analysis of the multiple linear regression model. 
The assumption that XX is invertible is equivalent to the assumption that rank(X)   
(k  1), which means that the columns of X must be linearly independent. This is the ma-
trix version of MLR.3 in Chapter 3.

Before we continue, (E.8) warrants a word of warning. It is tempting to simplify the 
formula for ​̂  ​ as follows:

	 ​̂  b​  (XX)1Xy  X1(X)1Xy  X1y.

The flaw in this reasoning is that X is usually not a square matrix, so it cannot be inverted. 
In other words, we cannot write (XX)1  X1(X)1 unless n  (k  1), a case that vir-
tually never arises in practice.

The n  1 vectors of OLS fitted values and residuals are given by

	​   y​  X ​̂  b​, ​̂  u​  y  ​̂  y​  y  X ​̂  b​, respectively.

From (E.6) and the definition of ​̂  u​, we can see that the first order condition for ​̂  b​ is the 
same as

	 X​̂  u​  0.� [E.9]

Because the first column of X consists entirely of ones, (E.9) implies that the OLS re-
siduals always sum to zero when an intercept is included in the equation and that the 
sample covariance between each independent variable and the OLS residuals is zero. (We 
discussed both of these properties in Chapter 3.)

The sum of squared residuals can be written as

	 SSR  ​∑ 
t1

 ​ 
n

  ​​ ​̂  u​t
2  ​̂  u​​̂  u​  (y  X ​̂  b​)(y  X ​̂  b​).� [E.10]

All of the algebraic properties from Chapter 3 can be derived using matrix algebra. For ex-
ample, we can show that the total sum of squares is equal to the explained sum of squares 
plus the sum of squared residuals [see (3.27)]. The use of matrices does not provide a sim-
pler proof than summation notation, so we do not provide another derivation.

The matrix approach to multiple regression can be used as the basis for a geometrical 
interpretation of regression. This involves mathematical concepts that are even more ad-
vanced than those we covered in Appendix D. [See Goldberger (1991) or Greene (1997).]

E.2  Finite Sample Properties of OLS
Deriving the expected value and variance of the OLS estimator ​̂  b​ is facilitated by matrix 
algebra, but we must show some care in stating the assumptions.

	 Assumption E.1	 Linear in Parameters

The model can be written as in (E.3), where y is an observed n  1 vector, X is an n  (k  1)  
observed matrix, and u is an n  1 vector of unobserved errors or disturbances.
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This is a careful statement of the assumption that rules out linear dependencies among the 
explanatory variables. Under Assumption E.2, XX is nonsingular, so ​̂  ​ is unique and can 
be written as in (E.8).

	 Assumption E.2 	 No Perfect Collinearity

The matrix X has rank (k  1).

	 Assumption E.3 	 Zero Conditional Mean

Conditional on the entire matrix X, each error ut has zero mean: E(utX)  0, t  1, 2, …, n. 

In vector form, Assumption E.3 can be written as

	 E(uX)  0.� [E.11]

This assumption is implied by MLR.4 under the random sampling assumption, MLR.2. 
In time series applications, Assumption E.3 imposes strict exogeneity on the explana-
tory variables, something discussed at length in Chapter 10. This rules out explanatory 
variables whose future values are correlated with ut; in particular, it eliminates lagged 
dependent variables. Under Assumption E.3, we can condition on the xtj when we compute 
the expected value of ​̂  ​.

Unbiasedness of OLSTheorem 
E.1 Under Assumptions E.1, E.2, and E.3, the OLS estimator ​̂  ​ is unbiased for .

PROOF:  Use Assumptions E.1 and E.2 and simple algebra to write

	​   ​  (XX)1Xy  (XX)1X(X  u)

	  (XX)1(XX)  (XX)1Xu    (XX)1Xu,� [E.12]

where we use the fact that (XX)1(XX)  Ik  1. Taking the expectation conditional on X gives

	 E( ​̂  ​X)    (XX)1XE(uX)

	    (XX)1X0  ,�

because E(uX)  0 under Assumption E.3. This argument clearly does not depend on the 
value of , so we have shown that ​̂  ​ is unbiased.

To obtain the simplest form of the variance-covariance matrix of ​̂  ​, we impose the 
assumptions of homoskedasticity and no serial correlation.
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Part (i) of Assumption E.4 is the homoskedasticity assumption: the variance of ut cannot 
depend on any element of X, and the variance must be constant across observations, t. Part 
(ii) is the no serial correlation assumption: the errors cannot be correlated across observa-
tions. Under random sampling, and in any other cross-sectional sampling schemes with 
independent observations, part (ii) of Assumption E.4 automatically holds. For time series 
applications, part (ii) rules out correlation in the errors over time (both conditional on X 
and unconditionally).

Because of (E.13), we often say that u has a scalar variance-covariance matrix 
when Assumption E.4 holds. We can now derive the variance-covariance matrix of the 
OLS estimator.

	 Assumption E.4 	 Homoskedasticity and No Serial Correlation

(i) Var(utX)  s2, t  1, 2, …, n. (ii) Cov(ut,usX)  0, for all t  s. In matrix form, we can 
write these two assumptions as

	 Var(uX)  s�2In,� [E.13]

where In is the n  n identity matrix.

Variance-Covariance Matrix of the OLS Estimator

Under Assumptions E.1 through E.4,

	 Var( ​  ​X)  s2(XX)1.� [E.14]

PROOF:  From the last formula in equation (E.12), we have

	 Var( ​  ​X)  Var[(XX)1XuX]  (XX)1X[Var(uX)]X(XX)1.

Now, we use Assumption E.4 to get

	 Var( ​  ​X)  (XX)1X(s�2In)X(XX)1

	  s2(XX)1XX(XX)1  s2(XX)1. 

Theorem 
E.2

Formula (E.14) means that the variance of ​̂  ​j (conditional on X) is obtained by multiply-
ing s� 2 by the j th diagonal element of (XX)1. For the slope coefficients, we gave an 
interpretable formula in equation (3.51). Equation (E.14) also tells us how to obtain the 
covariance between any two OLS estimates: multiply s2 by the appropriate off-diagonal 
element of (XX)1. In Chapter 4, we showed how to avoid explicitly finding covari-
ances for obtaining confidence intervals and hypothesis tests by appropriately rewriting 
the model.
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The Gauss-Markov Theorem, in its full generality, can be proven.

Gauss-Markov Theorem

Under Assumptions E.1 through E.4, ​̂  ​ is the best linear unbiased estimator.

PROOF:  Any other linear estimator of b can be written as

	 b̃  Ay,� [E.15]

where A is an n  (k  1) matrix. In order for ​̃  ​ to be unbiased conditional on X, A can 
consist of nonrandom numbers and functions of X. (For example, A cannot be a function 
of y.) To see what further restrictions on A are needed, write

	 b̃  A(X   u)  (AX)  Au.� [E.16]

Then,

	 E(b̃ X)	 AX  E(AuX)

			   AX  AE(uX) because A is a function of X

			   AX because E(uX)  0.

For ​̃  ​ to be an unbiased estimator of , it must be true that E(b̃X)   for all (k  1)  1 
vectors , that is,

	A X   for all (k  1)  1 vectors .� [E.17]

Because AX is a (k  1)  (k  1) matrix, (E.17) holds if, and only if, AX  Ik  1. 
Equations (E.15) and (E.17) characterize the class of linear, unbiased estimators for .

Next, from (E.16), we have

	 Var( b̃ X)  A[Var(uX)]A  s�2AA,

by Assumption E.4. Therefore,

	Var( b̃ X)  Var( ​  ​X)  s�2[AA  (XX)1]

	  s�2[AA  AX(XX)1XA] because AX  Ik  1

	  s�2A[In  X(XX)1X]A

	  s�2AMA,

where M  In  X(XX)1X. Because M is symmetric and idempotent, AMA is positive 
semi-definite for any n  (k  1) matrix A. This establishes that the OLS estimator ​̂  ​ is 
BLUE. Why is this important? Let c be any (k  1)  1 vector and consider the linear 
combination c  c0 b0  c1b1  …  ck b�k, which is a scalar. The unbiased estimators 
of c are c​̂  ​ and c​̃  ​. But

	 Var(c​̃  ​X)  Var(c​̂  ​X)  c[Var(b̃X)  Var(​̂  b​�​X)]c  0,

because [Var( b̃X)  Var( ​  b​�​X)] is p.s.d. Therefore, when it is used for estimating any 
linear combination of , OLS yields the smallest variance. In particular, Var( ​  ​jX)  
Var( b̃jX) for any other linear, unbiased estimator of b�j.

Theorem 
E.3
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The unbiased estimator of the error variance s2 can be written as

	 ​̂  s​​2  ​̂  u​​̂  u​/(n  k  1),

which is the same as equation (3.56).

Unbiasedness of ​̂  ​2

Under Assumptions E.1 through E.4, ​̂  s​�​ 2 is unbiased for s� 2: E(​̂  s​�​ 2X)  s� 2 for all s� 2  0.

PROOF:  Write ​̂  u​  y  X​̂  ​  y  X(XX)1Xy  My  Mu, where M  In  X(XX)1X, 
and the last equality follows because MX  0. Because M is symmetric and idempotent,

	​   u​​̂  u​  uMMu  uMu.

Because uMu is a scalar, it equals its trace. Therefore,

	 E(uMuX)  E[tr(uMu)X]  E[tr(Muu)X]

	5  tr[E(Muu|X)]  tr[ME(uu|X)]

	5  tr(Ms�2In)  s2tr(M)  s2(n  k  1).

The last equality follows from tr(M)  tr(In)  tr[X(XX)1X]  n  tr[(XX)1XX]  n   
tr (Ik  1)  n  (k  1) n  k  1. Therefore,

	 E(​̂  s​�​2X)  E(uMuX)/(n  k  1)  s2.

Theorem 
E.4

E.3  Statistical Inference
When we add the final classical linear model assumption, ​̂  ​ has a multivariate normal 
distribution, which leads to the t and F distributions for the standard test statistics covered 
in Chapter 4.

Under Assumption E.5, each ut is independent of the explanatory variables for all t. In a 
time series setting, this is essentially the strict exogeneity assumption.

	 Assumption E.5 	 Normality of Errors

Conditional on X, the ut are independent and identically distributed as Normal(0, s�2). 
Equivalently, u given X is distributed as multivariate normal with mean zero and variance- 
covariance matrix s�2In: u ~ Normal(0,s�2In).
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Theorem E.5 is the basis for statistical inference involving b. In fact, along with the prop-
erties of the chi-square, t, and F distributions that we summarized in Appendix D, we can 
use Theorem E.5 to establish that t statistics have a t distribution under Assumptions E.1 
through E.5 (under the null hypothesis) and likewise for F statistics. We illustrate with a 
proof for the t statistics.

Normality of ​̂  ​

Under the classical linear model Assumptions E.1 through E.5, ​̂  ​ conditional on  
X is distributed as multivariate normal with mean  and variance-covariance  
matrix s2(XX)1.

Theorem 
E.5

distribution of t statistic

Under Assumptions E.1 through E.5,

	 ( ​  ​j  b�j)/se( ​  ​j) ~ tn  k  1, j 5 0, 1, …, k.

PROOF:  The proof requires several steps; the following statements are initially conditional on 
X. First, by Theorem E.5, ( ​  ​j  b�j)/sd( ​  ​j) ~ Normal(0,1), where sd( ​  ​j)  s​�​

__
 cjj ​, and cjj is the jth 

diagonal element of (XX)1. Next, under Assumptions E.1 through E.5, conditional on X,

	 (n  k  1) ​  s​​2/s2 ~ x2
n  k  1.� [E.18]

This follows because (n  k  1) ​  s​�​ 2/s� 2  (u/s�)M(u/s�), where M is the n  n symmetric, 
idempotent matrix defined in Theorem E.4. But u/s� ~ Normal(0,In) by Assumption E.5. It 
follows from Property 1 for the chi-square distribution in Appendix D that (u/s�)M(u/s�) ~ 
x2

nk1 (because M has rank n  k  1).
We also need to show that ​̂  ​ and ​̂  s​�​ 2 are independent. But ​̂  ​    (XX)1Xu, and ​

ˆ s​�​ 2  uMu/(n  k  1). Now, [(XX)1X]M  0 because XM  0. It follows, from Prop-
erty 5 of the multivariate normal distribution in Appendix D, that ​̂  ​ and Mu are indepen-
dent. Because ​̂  s​�​ 2 is a function of Mu, ​̂  ​ and ​̂  s​�​ 2 are also independent.

	 ( ​  ​j  b�j)/se( ​  ​j)  [( ​  ​j  b�j)/sd(​̂  ​j)]/(​̂  s​�​ 2/s�2)1/2,

which is the ratio of a standard normal random variable and the square root of a x2
n  k  1 / 

(n  k  1) random variable. We just showed that these are independent, so, by definition 
of a t random variable, (  ​  ​j  b�j)/se(  ​  ​j) has the tn  k  1 distribution. Because this distri
bution does not depend on X, it is the unconditional distribution of ( ​  ​j  b�j)/se( ​  ​j) as well.

Theorem 
E.6

From this theorem, we can plug in any hypothesized value for b�j and use the t statistic for 
testing hypotheses, as usual.

Under Assumptions E.1 through E.5, we can compute what is known as the Cramer-
Rao lower bound for the variance-covariance matrix of unbiased estimators of b (again 
conditional on X) [see Greene (1997, Chapter 4)]. This can be shown to be s2(XX)1, 
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which is exactly the variance-covariance matrix of the OLS estimator. This implies that ​
ˆ b​ is the minimum variance unbiased estimator of b (conditional on X): Var( b̃X)   
Var( ​  b​X) is positive semi-definite for any other unbiased estimator b̃; we no longer have 
to restrict our attention to estimators linear in y.

It is easy to show that the OLS estimator is in fact the maximum likelihood estimator 
of b under Assumption E.5. For each t, the distribution of yt given X is Normal(xt   b,s� 2). 
Because the yt are independent conditional on X, the likelihood function for the sample is 
obtained from the product of the densities:

	 
n

t1
 (2p�s� 2)1/2exp[(yt  xt  b)2/(2s�2)],

where  denotes product. Maximizing this function with respect to b and s2 is the same 
as maximizing its natural logarithm:

	​ ∑ 
t1

 ​ 
n

  ​​ [(1/2)log(2p�s�2)  (yt  xt b)2/(2s�2)].

For obtaining ​̂  b​, this is the same as minimizing ​∑ t1​ 
n
  ​  ​ (yt  xt b)2—the division by 2s�2

does not affect the optimization—which is just the problem that OLS solves. The estimator 
of s2 that we have used, SSR/(n  k), turns out not to be the MLE of s�2; the MLE is SSR/n, 
which is a biased estimator. Because the unbiased estimator of s2 results in t and F statistics 
with exact t and F distributions under the null, it is always used instead of the MLE.

That the OLS estimator is the MLE under Assumption E.5 implies an interesting 
robustness property of the MLE based on the normal distribution. The reasoning is simple. 
We know that the OLS estimator is unbiased under Assumptions E.1 to E.3; normality of 
the errors is used nowhere in the proof, and neither is Assumption E.4. As the next section 
shows, the OLS estimator is also consistent without normality, provided the law of large 
numbers holds (as is widely true). These statistical properties of the OLS estimator imply 
that the MLE based on the normal log-likelihood function is robust to distributional speci-
fication: the distribution can be (almost) anything and yet we still obtain a consistent (and, 
under E.1 to E.3, unbiased) estimator. As discussed in Section 17.3, a maximum likeli-
hood estimator obtained without assuming the distribution is correct is often called a quasi-
maximum likelihood estimator (QMLE).

Generally, consistency of the MLE relies on having a correct distribution in order to 
conclude that it is consistent for the parameters. We have just seen that the normal distribu-
tion is a notable exception. There are some other distributions that share this property, includ-
ing the Poisson distribution—as discussed in Section 17.3. Wooldridge (2010, Chapter 18)  
discusses some other useful examples.

E.4  Some Asymptotic Analysis
The matrix approach to the multiple regression model can also make derivations of 
asymptotic properties more concise. In fact, we can give general proofs of the claims in 
Chapter 11.

We begin by proving the consistency result of Theorem 11.1. Recall that these 
assumptions contain, as a special case, the assumptions for cross-sectional analysis under 
random sampling.
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Proof of Theorem 11.1.  As in Problem E.1 and using Assumption TS.1, we write the 
OLS estimator as

	​   b​  ​ ​∑ 
t1

 ​ 
n

  ​​ xtxt ​1
  ​ ​∑ 

t1

 ​ 
n

  ​ ​xtyt ​  ​ ​∑ 
t1

 ​ 
n

  ​​ xtxt ​1

 ​ ​∑ 
t1

 ​ 
n

  ​ ​xt(xt b  ut) ​

	5  b  ​ ​∑ 
t1

 ​ 
n

  ​​ xtxt ​1
  ​ ​∑ 

t1

 ​ 
n

  ​​ xtut ​� [E.19]

	5  b  ​ n1​∑ 
t1

 ​ 
n

  ​ ​xtxt
  ​1 

​ n1​∑ 
t1

 ​ 
n

  ​​ xtut ​.
Now, by the law of large numbers,

	 n1​∑ 
t1

 ​ 
n

  ​​ xtxt ​   p    → ​  and n1​∑ 
t1

 ​ 
n

  ​​ xtut ​   p    → ​
  0,� [E.20]

where A  E(xtxt) is a (k  1)  (k  1) nonsingular matrix under Assumption TS.2 and 
we have used the fact that E(xtut)  0 under Assumption TS.3. Now, we must use a ma-
trix version of Property PLIM.1 in Appendix C. Namely, because A is nonsingular,

	 ​ n1​∑ 
t1

 ​ 
n

  ​ ​ xtxt ​
1

 ​  
p
    → ​ A1.� [E.21]

[Wooldridge (2010, Chapter 3) contains a discussion of these kinds of convergence re-
sults.] It now follows from (E.19), (E.20), and (E.21) that

	 plim( ​  ​)    A1  0  .

This completes the proof.
Next, we sketch a proof of the asymptotic normality result in Theorem 11.2.

Proof of Theorem 11.2.  From equation (E.19), we can write

	​ 
__

 n ​ ( ​  ​  )  ​ n1​∑ 
t1

 ​ 
n

  ​ ​xtxt ​1
 ​ n1/2

​∑ 
t1

 ​ 
n

  ​ ​xtut ​
	  A1 ​ n1/2​∑ 

t1

 ​ 
n

  ​ ​xtut ​  op(1),� [E.22]

where the term “op(1)” is a remainder term that converges in probability to zero. This 

term is equal to ​ n1 ​∑ t1​ 
n
  ​  ​ xtxt ​

1
  A1 ​ n1/2​∑ t1​ 

n
  ​ ​xtut ​. The term in brackets con- 

verges in probability to zero (by the same argument used in the proof of Theorem 11.1), 
while ​ n1/2​∑ t1​ 

n
  ​ ​xtut ​ is bounded in probability because it converges to a multivariate 

normal distribution by the central limit theorem. A well-known result in asymptotic theory  
is that the product of such terms converges in probability to zero. Further, ​

__
 n ​ (​̂  ​  ) 

inherits its asymptotic distribution from A1 ​ n1/2​∑ t1​ 
n
  ​ ​xtut ​. See Wooldridge (2010, 

Chapter 3) for more details on the convergence results used in this proof. 
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By the central limit theorem, n1/2 ​∑ t1​ 
n
  ​  ​ xtut has an asymptotic normal distribution 

with mean zero and, say, (k  1)  (k  1) variance-covariance matrix B. Then, ​
__

 n ​( ​  ​  ) 
has an asymptotic multivariate normal distribution with mean zero and variance-
covariance matrix A1BA1. We now show that, under Assumptions TS.4 and TS.5,  
B  s�2A. (The general expression is useful because it underlies heteroskedasticity-
robust and serial-correlation robust standard errors for OLS, of the kind discussed in  
Chapter 12.) First, under Assumption TS.5, xtut and xsus are uncorrelated for t  s. Why? 
Suppose s  t for concreteness. Then, by the law of iterated expectations, E(xtutusxs)  
E[E(utusxtxs)xtxs]  E[E(utusxtxs)xtxs]  E[0  xtxs]  0. The zero covariances imply 
that the variance of the sum is the sum of the variances. But Var(xtut)  E(xtututxt)   
E(u2

t  xtxt). By the law of iterated expectations, E(u2
t  xtxt)  E[E(u2

t  xtxtxt)]  E[E(u2
t  xt)xtxt]   

E(s2xtxt)  s�2E(xtxt)  s�2A, where we use E(u2
t xt)  s2 under Assumptions TS.3 and 

TS.4. This shows that B  s�2A, and so, under Assumptions TS.1 to TS.5, we have

	​ 
__

 n ​ ( ​  ​  ) a~ Normal (0,s�2A1).� [E.23]

This completes the proof.
From equation (E.23), we treat ​̂  ​ as if it is approximately normally distributed with 

mean  and variance-covariance matrix s�2A1/n. The division by the sample size, n, is 
expected here: the approximation to the variance-covariance matrix of ​̂  ​ shrinks to zero 
at the rate 1/n. When we replace s�2 with its consistent estimator, ​̂  s​�2  SSR/(n 2 k 2 1),  
and replace A with its consistent estimator, n21​∑ t51​ 

n
  ​ ​xtxt XX/n, we obtain an estimator 

for the asymptotic variance of ​̂  ​:

	 ​ Avar(​̂  ​) ​  ​̂  s​�​ 2(XX)1.� [E.24]

Notice how the two divisions by n cancel, and the right-hand side of (E.24) is just the 
usual way we estimate the variance matrix of the OLS estimator under the Gauss-Markov 
assumptions. To summarize, we have shown that, under Assumptions TS.1 to TS.5—
which contain MLR.1 to MLR.5 as special cases—the usual standard errors and t statistics 
are asymptotically valid. It is perfectly legitimate to use the usual t distribution to obtain 
critical values and p-values for testing a single hypothesis. Interestingly, in the general 
setup of Chapter 11, assuming normality of the errors—say, ut given xt, ut1, xt1, ..., u1, 
x1 is distributed as Normal(0,s�2)—does not necessarily help, as the t statistics would not 
generally have exact t statistics under this kind of normality assumption. When we do not 
assume strict exogeneity of the explanatory variables, exact distributional results are dif-
ficult, if not impossible, to obtain.

If we modify the argument above, we can derive a heteroskedasticity-robust, variance-
covariance matrix. The key is that we must estimate E(u2

t xtxt) separately because this matrix 
no longer equals s�2E(xtxt). But, if the ​̂  u​t are the OLS residuals, a consistent estimator is

	 (n  k  1)1​∑ 
t1

 ​ 
n

  ​ ​​̂  u​2t xtxt,� [E.25]

where the division by n  k  1 rather than n is a degrees of freedom adjustment that typi-
cally helps the finite sample properties of the estimator. When we use the expression in 
equation (E.25), we obtain
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	 ​ Avar(​̂  ​) ​   [n/(n  k  1)](XX)1 ​ ​∑ 
t1

 ​ 
n

  ​ ​​̂  u​2t xtxt ​ (XX)1.� [E.26]

The square roots of the diagonal elements of this matrix are the same heteroskedasticity- 
robust standard errors we obtained in Section 8.2 for the pure cross-sectional case. A 
matrix extension of the serial correlation- (and heteroskedasticity-) robust standard er-
rors we obtained in Section 12.5 is also available, but the matrix that must replace (E.25)  
is complicated because of the serial correlation. See, for example, Hamilton (1994,  
Section 10.5).

Wald Statistics for Testing Multiple Hypotheses
Similar arguments can be used to obtain the asymptotic distribution of the Wald statistic 
for testing multiple hypotheses. Let R be a q  (k  1) matrix, with q  (k  1). Assume 
that the q restrictions on the (k  1)  1 vector of parameters, , can be expressed as 
H0R  r, where r is a q  1 vector of known constants. Under Assumptions TS.1 to 
TS.5, it can be shown that, under H0, 

	 [​
__

 n ​(R ​̂  ​  r)](s�2RA1R)1[​
__

 n ​(R ​̂  ​  r)] a~  2
q,� [E.27]

where A  E(xtxt), as in the proofs of Theorems 11.1 and 11.2. The intuition behind 
equation (E.25) is simple. Because ​

__
 n ​( ​̂  ​  ) is roughly distributed as Normal(0,s�2A1), 

R[​
__

 n ​(​̂  ​  )]  ​
__

 n ​ R( ​  ​  ) is approximately Normal(0,s�2RA1R) by Property 3  
of the multivariate normal distribution in Appendix D. Under H0, R   r, so  
​

__
 n ​(R ​̂  ​  r) ~ Normal(0,s�2RA1R) under H0. By Property 3 of the chi-square distri-

bution, z(s�2RA1R)1z ~ 2
q if z ~ Normal(0,s�2RA1R). To obtain the final result 

formally, we need to use an asymptotic version of this property, which can be found in 
Wooldridge (2010, Chapter 3).

Given the result in (E.25), we obtain a computable statistic by replacing A and s2 
with their consistent estimators; doing so does not change the asymptotic distribution. The 
result is the so-called Wald statistic, which, after cancelling the sample sizes and doing a 
little algebra, can be written as

	 W  (R ​̂  ​  r)[R(XX)1R]1(R ​̂  ​  r)​̂  s​​2.� [E.28]

Under H0,W a~ 2
q, where we recall that q is the number of restrictions being tested. If  

​̂  s​​2  SSR/(n  k  1), it can be shown that W/q is exactly the F statistic we obtained in 
Chapter 4 for testing multiple linear restrictions. [See, for example, Greene (1997, Chap- 
ter 7).] Therefore, under the classical linear model assumptions TS.1 to TS.6 in Chapter 10,  
W/q has an exact Fq,n  k  1 distribution. Under Assumptions TS.1 to TS.5, we only have 
the asymptotic result in (E.26). Nevertheless, it is appropriate, and common, to treat the 
usual F statistic as having an approximate Fq,n  k  1 distribution.

A Wald statistic that is robust to heteroskedasticity of unknown form is obtained by 
using the matrix in (E.26) in place of ​̂  s​​2(XX)1, and similarly for a test statistic robust 
to both heteroskedasticity and serial correlation. The robust versions of the test statistics 
cannot be computed via sums of squared residuals or R-squareds from the restricted and 
unrestricted regressions. 
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Summary
This appendix has provided a brief treatment of the linear regression model using matrix no
tation. This material is included for more advanced classes that use matrix algebra, but it is  
not needed to read the text. In effect, this appendix proves some of the results that we ei-
ther stated without proof, proved only in special cases, or proved through a more cumbersome 
method of proof. Other topics—such as asymptotic properties, instrumental variables estima-
tion, and panel data models—can be given concise treatments using matrices. Advanced texts 
in econometrics, including Davidson and MacKinnon (1993), Greene (1997), Hayashi (2000), 
and Wooldridge (2010), can be consulted for details.
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Problems
	 1	� Let xt be the 1  (k  1) vector of explanatory variables for observation t. Show that the 

OLS estimator ​̂  ​ can be written as

	 ​̂  ​  ​ ​∑ 
t1

 ​ 
n

  ​​ xtxt ​
1

  ​ ​∑ 
t1

 ​ 
n

  ​​ xtyt ​.
Dividing each summation by n shows that ​̂  ​ is a function of sample averages.

	 2	 Let ​̂  ​ be the (k  1)  1 vector of OLS estimates.
(i)	 Show that for any (k  1)  1 vector b, we can write the sum of squared residuals as

	 SSR(b)  ​̂  u​​̂  u​  ( ​  ​  b)XX( ​  ​  b).

	 {Hint: Write (y  Xb)(y  Xb)  [​̂  u​  X( ​  ​  b)][​̂  u​  X( ​  ​  b)] and use the 
fact that X​̂  u​  0.}

(ii)	� Explain how the expression for SSR(b) in part (i) proves that ​̂  ​ uniquely minimizes 
SSR(b) over all possible values of b, assuming X has rank k  1.

	 3	� Let ​̂  ​ be the OLS estimate from the regression of y on X. Let A be a (k  1)   

(k  1) nonsingular matrix and define zt  xtA, t  1, …, n. Therefore, zt is 1  (k  1) 
and is a nonsingular linear combination of xt. Let Z be the n  (k  1) matrix with rows zt. 
Let b̃ denote the OLS estimate from a regression of y on Z.
(i)	 Show that b̃  A1​̂  ​.
(ii)	� Let ​̂  y​t be the fitted values from the original regression and let ​̃  y​t be the fitted values 

from regressing y on Z. Show that ​̃  y​t  ​̂  y​t, for all t  1, 2, …, n. How do the residuals 
from the two regressions compare?

(iii)	� Show that the estimated variance matrix for b̃ is ​̂  s​�​2A1(XX)1A1, where ​̂  s​​2 is the 
usual variance estimate from regressing y on X.
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(iv)	� Let the ​̂  ​j be the OLS estimates from regressing yt on 1, xt1, …, xtk, and let the b̃j be 
the OLS estimates from the regression of yt on 1, a1xt1, …, ak xtk, where aj  0, 
j  1, …, k. Use the results from part (i) to find the relationship between the b̃j  
and the ​̂  ​j.

(v)	 Assuming the setup of part (iv), use part (iii) to show that se(b̃j)  se(​̂  ​j)/aj.
(vi)	� Assuming the setup of part (iv), show that the absolute values of the t statistics for b̃j 

and ​̂  ​j are identical.

	 4	� Assume that the model y  X  u satisfies the Gauss-Markov assumptions, let G be 
a (k  1)  (k  1) nonsingular, nonrandom matrix, and define d  G, so that d is  
also a (k  1)  1 vector. Let ​̂  ​ be the (k  1)  1 vector of OLS estimators and define ​̂  ​ 
 G ​̂  ​ as the OLS estimator of d.
(i)	 Show that E(​̂  ​X)  d.
(ii)	 Find Var(​̂  ​X) in terms of s2, X, and G.
(iii)	� Use Problem E.3 to verify that ​̂  ​ and the appropriate estimate of Var(​̂  ​X) are 

obtained from the regression of y on XG1.
(iv)	� Now, let c be a (k  1)  1 vector with at least one nonzero entry. For concreteness, 

assume that ck  0. Define u�  c, so that u� is a scalar. Define d�j  j, j  0, 1, ..., 
k  1 and d�k  u. Show how to define a (k  1)  (k  1) nonsingular matrix G so 
that d  G. (Hint: Each of the first k rows of G should contain k zeros and a one. 
What is the last row?)

(v)	 Show that for the choice of G in part (iv),

G1  
	 1	 0	 0	 .	 .	 .	 0
	 0	 1	 0	 .	 .	 .	 0
	 .
	 .
	 .
	 0	 0	 .	 .	 .	 1	 0
	c0 /ck	 c1/ck	 .	 .	 .	 ck1/ck	 1/ck

 .

		�  Use this expression for G1 and part (iii) to conclude that ​̂  u​�​ and its standard error are ob-
tained as the coefficient on xtk /ck in the regression of

	 yt on [1  (c0/ck)xtk], [xt1  (c1/ck)xtk], ..., [xt,k1  (ck1/ck)xtk], xtk/ck, t  1, ..., n.

		�  This regression is exactly the one obtained by writing b�k in terms of u� and b0, b1, ..., b�k1, 
plugging the result into the original model, and rearranging. Therefore, we can formally 
justify the trick we use throughout the text for obtaining the standard error of a linear com-
bination of parameters.

	 5	� Assume that the model y  X  u satisfies the Gauss-Markov assumptions and let ​̂  ​ be 
the OLS estimator of . Let Z  G(X) be an n  (k  1) matrix function of X and assume 
that ZX [a (k  1)  (k  1) matrix] is nonsingular. Define a new estimator of  by ​̃  ​  

(ZX)1Zy.
(i)	 Show that E(b̃X)  , so that b̃ is also unbiased conditional on X.
(ii)	� Find Var(b̃X). Make sure this is a symmetric, (k  1)  (k  1) matrix that depends 

on Z, X, and s2.
(iii)	 Which estimator do you prefer, ​̂  ​ or b̃? Explain.
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Chapter 2
Question 2.1:  When student ability, motivation, age, and other factors in u are not related 
to attendance, (2.6) would hold. This seems unlikely to be the case.

Question 2.2:  About $11.05. To see this, from the average wages measured in 1976 and 
2003 dollars, we can get the CPI deflator as 19.06/5.90  3.23. When we multiply 3.42 by 
3.23, we obtain about 11.05.

Question 2.3:  54.65, as can be seen by plugging shareA 5 60 into equation (2.28). This 
is not unreasonable: if Candidate A spends 60% of the total money spent, he or she is 
predicted to receive almost 55% of the vote.

Question 2.4:  The equation will be ​ salaryhun ​   9,631.91  185.01 roe, as is easily 
seen by multiplying equation (2.39) by 10.

Question 2.5:  Equation (2.58) can be written as Var(​̂  ​0)  ( 2n1) ​ ​∑ i1​ 
n
  ​ ​ xi

2 ​​
 ​∑ i1​ 

n
  ​ ​ (xi  ​- x​ )2 ​, where the term multiplying  2n1 is greater than or equal to one, but it is 

equal to one if, and only if, ​- x​  0. In this case, the variance is as small as it can possibly be: 
Var(​̂  ​0)  2/n.

Chapter 3
Question 3.1:  Just a few factors include age and gender distribution, size of the police 
force (or, more generally, resources devoted to crime fighting), population, and general 
historical factors. These factors certainly might be correlated with prbconv and avgsen, 
which means (3.5) would not hold. For example, size of the police force is possibly cor-
related with both prbcon and avgsen, as some cities put more effort into crime prevention 
and law enforcement. We should try to bring as many of these factors into the equation as 
possible.

Question 3.2:  We use the third property of OLS concerning predicted values and 
residuals: when we plug the average values of all independent variables into the OLS 

F
appendix

Answers to Chapter Questions
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regression line, we obtain the average value of the dependent variable. So colGPA  1.29   
.453 hsGPA  .0094 ACT   1.29  .453(3.4)  .0094(24.2)  3.06. You can check the 
average of colGPA in GPA1.RAW to verify this to the second decimal place.

Question 3.3:  No. The variable shareA is not an exact linear function of expendA 
and expendB, even though it is an exact nonlinear function: shareA  100[expendA/ 
(expendA  expendB)]. Therefore, it is legitimate to have expendA, expendB, and shareA as 
explanatory variables.

Question 3.4:  As we discussed in Section 3.4, if we are interested in the effect of x1 on y, 
correlation among the other explanatory variables (x2, x3, and so on) does not affect Var(​̂  ​1).  
These variables are included as controls, and we do not have to worry about collinearity 
among the control variables. Of course, we are controlling for them primarily because we 
think they are correlated with attendance, but this is necessary to perform a ceteris paribus 
analysis.

Chapter 4
Question 4.1:  Under these assumptions, the Gauss-Markov assumptions are satisfied:  
u is independent of the explanatory variables, so E(ux1, …, xk)  E(u), and Var(ux1,  
…, xk)  Var(u). Further, it is easily seen that E(u)  0. Therefore, MLR.4 and MLR.5 
hold. The classical linear model assumptions are not satisfied because u is not normally 
distributed (which is a violation of MLR.6).

Question 4.2:  H0: 1  0, H1: 1  0.

Question 4.3:  Because ​̂  ​1  .56  0 and we are testing against H1: 1  0, the one-sided 
p-value is one-half of the two-sided p-value, or .043.

Question 4.4:  H0: 5  6  7  8  0. k  8 and q  4. The restricted version of 
the model is

score  0  1classize  2expend  3tchcomp  4enroll  u.

Question 4.5:  The F statistic for testing exclusion of ACT is [(.291  .183)/ 
(1  .291)](680  3)  103.13. Therefore, the absolute value of the t statistic is about 
10.16. The t statistic on ACT is negative, because ​̂  ​ACT is negative, so tACT  10.16.

Question 4.6:  Not by much. The F test for joint significance of droprate and gradrate is 
easily computed from the R-squareds in the table: F  [(.361  .353)/(1  .361)](402/2)   
2.52. The 10% critical value is obtained from Table G.3a as 2.30, while the 5% critical 
value from Table G.3b is 3. The p-value is about .082. Thus, droprate and gradrate are 
jointly significant at the 10% level, but not at the 5% level. In any case, controlling for 
these variables has a minor effect on the b/s coefficient.

Chapter 5
Question 5.1:  This requires some assumptions. It seems reasonable to assume that 2  0  
(score depends positively on priGPA) and Cov(skipped,priGPA)  0 (skipped and priGPA 
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are negatively correlated). This means that 21  0, which means that plim ̃1  1. 
Because 1 is thought to be negative (or at least nonpositive), a simple regression is likely 
to overestimate the importance of skipping classes.

Question 5.2: ​   ​j  1.96se(​̂  ​j) is the asymptotic 95% confidence interval. Or, we can 
replace 1.96 with 2.

Chapter 6
Question 6.1:  Because fincdol  1,000faminc, the coefficient on fincdol will be the 
coefficient on faminc divided by 1,000, or .0927/1,000  .0000927. The standard error also 
drops by a factor of 1,000, so the t statistic does not change, nor do any of the other OLS 
statistics. For readability, it is better to measure family income in thousands of dollars.

Question 6.2:  We can do this generally. The equation is

	 log(y)  0  1log(x1)  2x2  …,

where x2 is a proportion rather than a percentage. Then, ceteris paribus, log(y)  2 x2, 
100log(y)  2(100 x2), or % y  2(100 x2). Now, because  x2 is the change in  
the proportion, 100 x2 is a percentage point change. In particular, if  x2  .01, then 
100 x2  1, which corresponds to a one percentage point change. But then 2 is the 
percentage change in y when 100 x2  1.

Question 6.3:  The new model would be stndfnl  0  1atndrte  2 priGPA  3 ACT   
4 priGPA2  5 ACT 2  6 priGPAatndrte  7 ACTatndrte  u. Therefore, the partial 
effect of atndrte on stndfnl is 1  6 priGPA  7 ACT. This is what we multiply by 
atndrte to obtain the ceteris paribus change in stndfnl.

Question 6.4:  From equation (6.21), ​
-

 R​2  1  ​̂  ​2/[SST/(n  1)]. For a given sample and 
a given dependent variable, SST/(n  1) is fixed. When we use different sets of explana-
tory variables, only ​̂  ​ 2 changes. As ​̂  ​2 decreases, ​

-
 R​2 increases. If we make ​̂  ​, and therefore ​

ˆ ​2, as small as possible, we are making ​
-

 R​2 as large as possible.

Question 6.5:  One possibility is to collect data on annual earnings for a sample of actors, 
along with profitability of the movies in which they each appeared. In a simple regres-
sion analysis, we could relate earnings to profitability. But we should probably control for 
other factors that may affect salary, such as age, gender, and the kinds of movies in which 
the actors performed. Methods for including qualitative factors in regression models are 
considered in Chapter 7.

Chapter 7
Question 7.1:  No, because it would not be clear when party is one and when it is zero. 
A better name would be something like Dem, which is one for Democratic candidates and 
zero for Republicans. Or, Rep, which is one for Republicans and zero for Democrats.

Question 7.2:  With outfield as the base group, we would include the dummy variables 
frstbase, scndbase, thrdbase, shrtstop, and catcher.
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Question 7.3:  The null in this case is H0: 1  2  3  4  0, so that there are four 
restrictions. As usual, we would use an F test (where q  4 and k depends on the number 
of other explanatory variables).

Question 7.4:  Because tenure appears as a quadratic, we should allow separate quadrat-
ics for men and women. That is, we would add the explanatory variables femaletenure 
and femaletenure2.

Question 7.5:  We plug pcnv  0, avgsen  0, tottime  0, ptime86  0, qemp86  4, 
black  1, and hispan  0 into (7.31): ​ arr86 ​   .380  .038(4)  .170  .398, or almost .4.  
It is hard to know whether this is “reasonable.” For someone with no prior convictions 
who was employed throughout the year, this estimate might seem high, but remember that 
the population consists of men who were already arrested at least once prior to 1986.

Chapter 8
Question 8.1:  This statement is clearly false. For example, in equation (8.7), the usual stan-
dard error for black is .147, while the heteroskedasticity-robust standard error is .118.

Question 8.2:  The F test would be obtained by regressing ​̂  u​2 on marrmale, marrfem, and 
singfem (singmale is the base group). With n  526 and three independent variables in 
this regression, the df are 3 and 522.

Question 8.3:  Certainly the outcome of the statistical test suggests some cause for con-
cern. A t statistic of 2.96 is very significant, and it implies that there is heteroskedasticity 
in the wealth equation. As a practical matter, we know that the WLS standard error, .063, 
is substantially below the heteroskedasticity-robust standard error for OLS, .104, and so 
the heteroskedasticity seems to be practically important. (Plus, the nonrobust OLS stan-
dard error is .061, which is too optimistic. Therefore, even if we simply adjust the OLS 
standard error for heteroskedasticity of unknown form, there are nontrivial implications.)

Question 8.4:  The 1% critical value in the F distribution with (2, ) df is 4.61. An F 
statistic of 11.15 is well above the 1% critical value, and so we strongly reject the null hy-
pothesis that the transformed errors, ui /​

__
 hi ​, are homoskedastic. (In fact, the p-value is less 

than .00002, which is obtained from the F2,804 distribution.) This means that our model for 
Var(ux) is inadequate for fully eliminating the heteroskedasticity in u.

Chapter 9
Question 9.1:  These are binary variables, and squaring them has no effect: black2  black,  
and hispan2  hispan.

Question 9.2:  When educIQ is in the equation, the coefficient on educ, say, 1, mea-
sures the effect of educ on log(wage) when IQ  0. (The partial effect of education is 
1  9IQ.) There is no one in the population of interest with an IQ close to zero. At the 
average population IQ, which is 100, the estimated return to education from column (3) is 
.018  .00034(100)  .052, which is almost what we obtain as the coefficient on educ in 
column (2).
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Question 9.3:  No. If educ* is an integer—which means someone has no education past 
the previous grade completed—the measurement error is zero. If educ* is not an integer, 
educ  educ*, so the measurement error is negative. At a minimum, e1 cannot have zero 
mean, and e1 and educ* are probably correlated.

Question 9.4:  An incumbent’s decision not to run may be systematically related to 
how he or she expects to do in the election. Therefore, we may only have a sample of 
incumbents who are stronger, on average, than all possible incumbents who could run. 
This results in a sample selection problem if the population of interest includes all in-
cumbents. If we are only interested in the effects of campaign expenditures on election 
outcomes for incumbents who seek reelection, there is no sample selection problem.

Chapter 10
Question 10.1:  The impact propensity is .48, while the long-run propensity is .48  .15   
.32  .65.

Question 10.2:  The explanatory variables are xt1  zt and xt2  zt1. The absence of per-
fect collinearity means that these cannot be constant, and there cannot be an exact linear 
relationship between them in the sample. This rules out the possibility that all the z1, …, zn 
take on the same value or that the z0, z1, …, zn1 take on the same value. But it eliminates 
other patterns as well. For example, if zt  a  bt for constants a and b, then zt1  a  
b(t  1)  (a  bt)  b  zt b, which is a perfect linear function of zt.

Question 10.3:  If {zt} is slowly moving over time—as is the case for the levels or logs 
of many economic time series—then zt and zt1 can be highly correlated. For example, the 
correlation between unemt and unemt1 in PHILLIPS.RAW is .75.

Question 10.4:  No, because a linear time trend with 1  0 becomes more and more 
negative as t gets large. Since gfr cannot be negative, a linear time trend with a negative 
trend coefficient cannot represent gfr in all future time periods.

Question 10.5:  The intercept for March is 0  2. Seasonal dummy variables are strictly 
exogenous because they follow a deterministic pattern. For example, the months do not change 
based upon whether either the explanatory variables or the dependent variable change.

Chapter 11
Question 11.1:  (i) No, because E(yt)  0  1t depends on t. (ii) Yes, because yt   
E(yt)  et is an i.i.d. sequence.

Question 11.2:  We plug inft
e  (1/2)inft1  (1/2)inft2 into inft  inft

e  1(unemt  0)   
et and rearrange: inft  (1/2)(inft1  inft2)  0  1unemt  et, where 0  10, as 
before. Therefore, we would regress yt on unemt, where yt  inft  (1/2)(inft1  inft2). 
Note that we lose the first two observations in constructing yt.

Question 11.3:  No, because ut and ut1 are correlated. In particular, Cov(ut,ut1)  E[(et   
1et1)(et1  1et2)]  1E(et

2
1)  1e

2  0 if 1  0. If the errors are serially cor-
related, the model cannot be dynamically complete.
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Chapter 12
Question 12.1:  We use equation (12.4). Now, only adjacent terms are correlated. In par- 
ticular, the covariance between xtut and xt1ut1 is xt xt1Cov(ut,ut1)  xt xt1e

2. There-
fore, the formula is

Var(​̂  ​1) 5 SSTx
2 ​  ​∑ 

t1

 ​ 
n

  ​ ​xt
2Var(ut)  2 ​∑ 

t1

 ​ 
n21

 ​ ​xt   xt1E(utut1) ​
	 5 2/SSTx  (2/SSTx

2) ​∑ 
t1

 ​ 
n21

 ​ ​e
2xt xt1

	 5 2/SSTx  e
2(2/SSTx

2) ​∑ 
t1

 ​ 
n21

 ​ ​xtxt1,

where 2  Var(ut)  e
2  1

2
 e

2  e
2(1  1

2). Unless xt and xt1 are uncorrelated in the 
sample, the second term is nonzero whenever   0. Notice that if xt and xt1 are positively 
correlated and   0, the true variance is actually smaller than the usual variance. When 
the equation is in levels (as opposed to being differenced), the typical case is   0, with 
positive correlation between xt and xt1.

Question 12.2: ​   ​  1.96se( ​  ​), where se( ​  ​) is the standard error reported in the regres-
sion. Or, we could use the heteroskedasticity-robust standard error. Showing that this is 
asymptotically valid is complicated because the OLS residuals depend on ​̂  ​j, but it can  
be done.

Question 12.3:  The model we have in mind is ut  1ut1  4ut4  et, and we want to 
test H0: 1  0, 4  0 against the alternative that H0 is false. We would run the regression 
of ​̂  u​t on ​̂  u​t1 and ​̂  u​t4 to obtain the usual F statistic for joint significance of the two lags. 
(We are testing two restrictions.)

Question 12.4:  We would probably estimate the equation using first differences, as ​̂  ​  .92  
is close enough to 1 to raise questions about the levels regression. See Chapter 18 for more 
discussion.

Question 12.5:  Because there is only one explanatory variable, the White test is easy to 
compute. Simply regress ​̂  u​t

2 on returnt1 and return​2   
t1

​ (with an intercept, as always) and 
compute the F test for joint significance of returnt1 and return​2   

t1
​. If these are jointly sig-

nificant at a small enough significance level, we reject the null of homoskedasticity.

Chapter 13
Question 13.1:  Yes, assuming that we have controlled for all relevant factors. The coef-
ficient on black is 1.076, and, with a standard error of .174, it is not statistically different 
from 1. The 95% confidence interval is from about .735 to 1.417.

Question 13.2:  The coefficient on highearn shows that, in the absence of any change in 
the earnings cap, high earners spend much more time—on the order of 29.2% on average 
[because exp(.256)  1  .292]—on workers’ compensation.

Question 13.3:  First, E(vi1)  E(ai  ui1)  E(ai)  E(vi1)  0. Similarly, E(vi 2)  0. 
Therefore, the covariance between vi1 and vi2 is simply E(vi1vi2)  E[(ai  ui1)(ai  ui2)]   
E(ai

2)  E(aiui1)  E(aiui2)  E(ui1ui2)  E(ai
2), because all of the covariance terms are 
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zero by assumption. But E(ai
2)  Var(ai), because E(ai)  0. This causes positive serial 

correlation across time in the errors within each i, which biases the usual OLS standard 
errors in a pooled OLS regression.

Question 13.4:  Because admn  admn90  admn85 is the difference in binary indica-
tors, it can be 1 if, and only if, admn90  0 and admn85  1. In other words, Washington 
state had an administrative per se law in 1985 but it was repealed by 1990.

Question 13.5:  No, just as it does not cause bias and inconsistency in a time series 
regression with strictly exogenous explanatory variables. There are two reasons it is a con-
cern. First, serial correlation in the errors in any equation generally biases the usual OLS 
standard errors and test statistics. Second, it means that pooled OLS is not as efficient as 
estimators that account for the serial correlation (as in Chapter 12).

Chapter 14
Question 14.1:  Whether we use first differencing or the within transformation, we will 
have trouble estimating the coefficient on kidsit. For example, using the within transfor-
mation, if kidsit does not vary for family i, then kïdsit  kidsit  ​


 kidsi​  0 for t  1,2,3. 

As long as some families have variation in kidsit, then we can compute the fixed effects 
estimator, but the kids coefficient could be very imprecisely estimated. This is a form of 
multicollinearity in fixed effects estimation (or first-differencing estimation).

Question 14.2:  If a firm did not receive a grant in the first year, it may or may not receive 
a grant in the second year. But if a firm did receive a grant in the first year, it could not get 
a grant in the second year. That is, if grant1  1, then grant  0. This induces a negative  
correlation between grant and grant1. We can verify this by computing a regression of 
grant on grant1, using the data in JTRAIN.RAW for 1989. Using all firms in the sample, 
we get

​ grant ​   .248  .248 grant1

	 (.035)	 (.072)

	 n  157, R2  .070.

The coefficient on grant1 must be the negative of the intercept because   ​ grant ​   0 when 
grant1  1.

Question 14.3:  It suggests that the unobserved effect ai is positively correlated with 
unionit. Remember, pooled OLS leaves ai in the error term, while fixed effects removes 
ai. By definition, ai has a positive effect on log(wage). By the standard omitted variables 
analysis (see Chapter 3), OLS has an upward bias when the explanatory variable (union) is 
positively correlated with the omitted variable (ai). Thus, belonging to a union appears to 
be positively related to time-constant, unobserved factors that affect wage.

Question 14.4:  Not if all sisters within a family have the same mother and father. Then, 
because the parents’ race variables would not change by sister, they would be differenced 
away in (14.13).
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Chapter 15
Question 15.1:  Probably not. In the simple equation (15.18), years of education is part 
of the error term. If some men who were assigned low draft lottery numbers obtained 
additional schooling, then lottery number and education are negatively correlated, which 
violates the first requirement for an instrumental variable in equation (15.4).

Question 15.2:  (i) For (15.27), we require that high school peer group effects carry over 
to college. Namely, for a given SAT score, a student who went to a high school where 
smoking marijuana was more popular would smoke more marijuana in college. Even if 
the identification condition (15.27) holds, the link might be weak.

(ii) We have to assume that percentage of students using marijuana at a student’s high 
school is not correlated with unobserved factors that affect college grade point average. 
Although we are somewhat controlling for high school quality by including SAT in the 
equation, this might not be enough. Perhaps high schools that did a better job of preparing 
students for college also had fewer students smoking marijuana. Or marijuana usage could 
be correlated with average income levels. These are, of course, empirical questions that 
we may or may not be able to answer.

Question 15.3:  Although prevalence of the NRA and subscribers to gun magazines are 
probably correlated with the presence of gun control legislation, it is not obvious that they 
are uncorrelated with unobserved factors that affect the violent crime rate. In fact, we might 
argue that a population interested in guns is a reflection of high crime rates, and controlling 
for economic and demographic variables is not sufficient to capture this. It would be hard to 
argue persuasively that these are truly exogenous in the violent crime equation.

Question 15.4:  As usual, there are two requirements. First, it should be the case that 
growth in government spending is systematically related to the party of the president, after 
netting out the investment rate and growth in the labor force. In other words, the instru-
ment must be partially correlated with the endogenous explanatory variable. While we 
might think that government spending grows more slowly under Republican presidents, 
this certainly has not always been true in the United States and would have to be tested us-
ing the t statistic on REPt1 in the reduced form gGOVt  0  1REPt1  2INVRATt   
3gLABt  vt. We must assume that the party of the president has no separate effect on 
gGDP. This would be violated if, for example, monetary policy differs systematically by 
presidential party and has a separate effect on GDP growth.

Chapter 16
Question 16.1:  Probably not. It is because firms choose price and advertising expendi-
tures jointly that we are not interested in the experiment where, say, advertising changes 
exogenously and we want to know the effect on price. Instead, we would model price and 
advertising each as a function of demand and cost variables. This is what falls out of the 
economic theory.

Question 16.2:  We must assume two things. First, money supply growth should appear 
in equation (16.22), so that it is partially correlated with inf. Second, we must assume that 
money supply growth does not appear in equation (16.23). If we think we must include 
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money supply growth in equation (16.23), then we are still short an instrument for inf. Of 
course, the assumption that money supply growth is exogenous can also be questioned.

Question 16.3:  Use the Hausman test from Chapter 15. In particular, let ​̂  v​2 be the OLS 
residuals from the reduced form regression of open on log(pcinc) and log(land). Then, use 
an OLS regression of inf on open, log(pcinc), and ​̂  v​2 and compute the t statistic for signifi-
cance of ​̂  v​2. If ​̂  v​2 is significant, the 2SLS and OLS estimates are statistically different.

Question 16.4:  The demand equation looks like

	 log(fisht)  0  1log(prcfisht)  2log(inct)

	  3log(prcchickt)  4log(prcbeeft)  ut1,

where logarithms are used so that all elasticities are constant. By assumption, the demand 
function contains no seasonality, so the equation does not contain monthly dummy vari-
ables (say, febt, mart, …, dect, with January as the base month). Also, by assumption, 
the supply of fish is seasonal, which means that the supply function does depend on at 
least some of the monthly dummy variables. Even without solving the reduced form for 
log(prcfish), we conclude that it depends on the monthly dummy variables. Since these 
are exogenous, they can be used as instruments for log(prcfish) in the demand equation. 
Therefore, we can estimate the demand-for-fish equation using monthly dummies as the 
IVs for log(prcfish). Identification requires that at least one monthly dummy variable 
appears with a nonzero coefficient in the reduced form for log(prcfish).

Chapter 17
Question 17.1:  H0: 4  5  6  0, so that there are three restrictions and therefore 
three df in the LR or Wald test.

Question 17.2:  We need the partial derivative of (​̂  ​0  ​̂  ​1nwifeinc  ​̂  ​2educ   
​̂  ​3exper  ​̂  ​4exper2  …) with respect to exper, which is ()(​̂  ​3  2​̂  ​4exper), where () 
is evaluated at the given values and the initial level of experience. Therefore, we need to 
evaluate the standard normal probability density at .270  .012(20.13)  .131(12.3)   
.123(10)  .0019(102)  .053(42.5)  .868(0)  .036(1)  .463, where we plug in the 
initial level of experience (10). But (.463)  (2)1/2 exp[(.4632)/2]  .358. Next, we 
multiply this by ​̂  ​3  2​̂  ​4exper, which is evaluated at exper  10. The partial effect us-
ing the calculus approximation is .358[.123  2(.0019)(10)]  .030. In other words, at 
the given values of the explanatory variables and starting at exper  10, the next year of 
experience increases the probability of labor force participation by about .03.

Question 17.3:  No. The number of extramarital affairs is a nonnegative integer, which 
presumably takes on zero or small numbers for a substantial fraction of the population. It 
is not realistic to use a Tobit model, which, while allowing a pileup at zero, treats y as be-
ing continuously distributed over positive values. Formally, assuming that y  max(0,y*), 
where y* is normally distributed, is at odds with the discreteness of the number of extra-
marital affairs when y  0.

Question 17.4:  The adjusted standard errors are the usual Poisson MLE standard errors 
multiplied by ​̂  ​  ​

__
 2 ​  1.41, so the adjusted standard errors will be about 41% higher. 
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The quasi-LR statistic is the usual LR statistic divided by ​̂  ​ 2, so it will be one-half of the 
usual LR statistic.

Question 17.5:  By assumption, mvpi  0  xi   ui, where, as usual, xi  denotes a 
linear function of the exogenous variables. Now, observed wage is the largest of the mini-
mum wage and the marginal value product, so wagei  max(minwagei,mvpi), which is very 
similar to equation (17.34), except that the max operator has replaced the min operator.

Chapter 18
Question 18.1:  We can plug these values directly into equation (18.1) and take expecta-
tions. First, because zs  0, for all s  0, y1    u1. Then, z0  1, so y0    0  
u0. For h  1, yh    h1  h  uh. Because the errors have zero expected values, 
E(y1)  , E(y0)    0, and E(yh)    h1  , for all h  1. As h → , h → 0. 
It follows that E(yh) →  as h → , that is, the expected value of yh returns to the expected 
value before the increase in z, at time zero. This makes sense: although the increase in z 
lasted for two periods, it is still a temporary increase.

Question 18.2:  Under the described setup, yt and xt are i.i.d. sequences that are inde-
pendent of one another. In particular, yt and xt are uncorrelated. If ​̂  ​1 is the slope coef-
ficient from regressing yt on xt, t  1, 2, …, n, then plim ​̂  ​1  0. This is as it should be, 
as we are regressing one I(0) process on another I(0) process, and they are uncorrelated. 
We write the equation yt  0  1xt  et, where 0  1  0. Because {et} is inde-
pendent of {xt}, the strict exogeneity assumption holds. Moreover, {et} is serially uncor-
related and homoskedastic. By Theorem 11.2 in Chapter 11, the t statistic for ​̂  ​1 has an 
approximate standard normal distribution. If et is normally distributed, the classical linear 
model assumptions hold, and the t statistic has an exact t distribution.

Question 18.3:  Write xt  xt1  at, where {at} is I(0). By assumption, there is a linear 
combination, say, st  yt  xt, which is I(0). Now, yt  xt1  yt  (xt  at)  st  
at. Because st and at are I(0) by assumption, so is st  at.

Question 18.4:  Just use the sum of squared residuals form of the F test and assume 
homoskedasticity. The restricted SSR is obtained by regressing hy6t  hy3t1  (hy6t1   
hy3t2) on a constant. Notice that 0 is the only parameter to estimate in hy6t  0  
0hy3t1  (hy6t1  hy3t2) when the restrictions are imposed. The unrestricted sum 
of squared residuals is obtained from equation (18.39).

Question 18.5:  We are fitting two equations: ​̂  y​t  ​̂  ​  ​̂  ​t and ​̂  y​t  ​̂  ​  ​̂  ​yeart. We 
can obtain the relationship between the parameters by noting that yeart  t  49. Plug-
ging this into the second equation gives ​̂  y​t  ​̂  ​  ​̂  ​(t  49)  ( ​  ​  49​̂  ​)  ​̂  ​t. Matching  
the slope and intercept with the first equation gives ​̂  ​  ​̂  ​—so that the slopes on t and 
yeart are identical—and ​̂  ​  ​̂  ​  49​̂  ​. Generally, when we use year rather than t, the in-
tercept will change, but the slope will not. (You can verify this by using one of the time 
series data sets, such as HSEINV.RAW or INVEN.RAW.) Whether we use t or some 
measure of year does not change fitted values, and, naturally, it does not change forecasts 
of future values. The intercept simply adjusts appropriately to different ways of including 
a trend in the regression.
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Statistical Tables

G
appendix

T a b l e  G . 1   Cumulative Areas under the Standard Normal Distribution
z 0 1 2 3 4 5 6 7 8 9

3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019

2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026

2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084

2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110

2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294

1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367

1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985

1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148

0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

(continued )
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T a b l e  G . 1   (Continued)
z 0 1 2 3 4 5 6 7 8 9

0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
   0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
   0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
   0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
   0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
   0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
   0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
   0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
   0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
   0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
   0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
   1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
   1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
   1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
   1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
   1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
   1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
   1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
   1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
   1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
   1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
   2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
   2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
   2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
   2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
   2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
   2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
   2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
   2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
   2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
   2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
   3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Examples: If Z ~ Normal(0,1), then P(Z  1.32)  .0934 and P(Z  1.84)  .9671.

Source: This table was generated using the Stata® function normprob.
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Examples: The 1% critical value for a one-tailed test with 25 df is 2.485. The 5% critical value for a two-tailed test with large  
( 120) df is 1.96.

Source: This table was generated using the Stata® function invttail.

T ABLE     G . 2   Critical Values of the t Distribution
Significance Level

1-Tailed: .10 .05 .025 .01 .005
2-Tailed: .20 .10 .05 .02 .01

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750
40 1.303 1.684 2.021 2.423 2.704
60 1.296 1.671 2.000 2.390 2.660
90 1.291 1.662 1.987 2.368 2.632

120 1.289 1.658 1.980 2.358 2.617
 1.282 1.645 1.960 2.326 2.576
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Example: The 10% critical value for numerator df  2 and denominator df  40 is 2.44.

Source: This table was generated using the Stata® function invFtail.

T ABLE     G . 3 a   10% Critical Values of the F Distribution

Numerator Degrees of Freedom

1 2 3 4 5 6 7 8 9 10

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32

11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25

12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19

13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14

14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10

15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06

16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03

17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00

18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98

19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96

20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94

21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92

22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90

23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89

24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88

25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87

26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86

27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85

28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84

29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83

30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82

40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76

60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71

90 2.76 2.36 2.15 2.01 1.91 1.84 1.78 1.74 1.70 1.67

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65

 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60
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