
From PRGs to PRFs
A two-dimensional hybrid argument

—Lecture 8—
Christopher Brzuska

March 4, 2024

1 Overview

Gprg0
G

Parameters
λ: security par.
s(λ): length-exp.
G: function

State
y: image value

SAMPLE()
assert y = ⊥

x←$ {0, 1}λ

y ← G(x)
return y

Gprg1
s

Parameters
λ: security par.
s(λ): length-exp.

State
y: random value

SAMPLE()
assert y = ⊥

y ←$ {0, 1}λ+s(λ)

return y

Figure 1: SAMPLE oracles of the
games Gprg0

G and Gprg1
s

Today, we show that pseudo-random
generators (PRGs) imply pseudorandom
functions (PRFs). In particular, we are
going to cover

(1) how to construct a PRF from a
length-doubling pseudorandom gen-
erator (PRG) via the Goldreich-
Goldwasser-Micali (GGM) construc-
tion.

(2) two-dimensional telescopic argu-
ments

(3) reductions that depend on the num-
ber of adversarial queries

On Exercise Sheet 7, we prepare for the
Goldreich-Levin hardcore bit proof which
we will cover next week. In order to pre-
pare for this, in the very end of this lec-
ture, we also cover

(4) averaging arguments (Markov)

(5) tail bounds (Chernoff)

In addition, the Exercise Sheet 7 will
cover a simplified version of the Goldreich-Levin proof.

1

MS-E1687 - Advanced topics in cryptography Lecture Notes 8

2 Definitions
Gprf0

f

Package Parameters
λ: security parameter
keyl: key length
in: input length
out: output length
f : (keyl, in, out)-PRF

Package State
k: key

EVAL(x)
assert x ∈ {0, 1}in(λ)

if k = ⊥ :

k ←$ {0, 1}keyl(λ)

y ← f(k, x)
return y

Gprf1
keyl,in,out

Package Parameters
λ: security param.
keyl: key length
in: input length
out: output length

Package State
T : table [bitstring→

bitstring]

EVAL(x)
assert x ∈ {0, 1}in(λ)

if T [x] = ⊥

T [x]←$ {0, 1}out(λ)

y ← T [x]
return y

Figure 2: EVAL(x) oracles of the ideal
Gprf1

keyl,in,out and the real Gprf0
G games

We recall that a pseudoran-
dom function (PRF) is a func-
tion that is indistinguishable
from a truly random func-
tion. The definition is given
in Figure 3. Recall that
we use the notation A EVAL→
Gprf0

f for denoting that the
adversary interacts with the
EVAL oracle of the real PRF
game Gprf0

f and the notation
A EVAL→ Gprf1

keyl,in,out for de-
noting that the adversary in-
teracts with the EVAL ora-
cle of the ideal PRF game
Gprf1

keyl,in,out. In these ex-
pressions, the adversary can
call the EVAL oracle multiple
times, and a secure pseudo-
random function should have
the property that the adver-
sary cannot distinguish the
oracle outputs produced by
the real pseudorandom func-
tion from the oracle outputs
produced by an ideal random
function. As before, we cap-
ture distinguishing by measuring how likely it is that adversary returns 1 in
either of the settings. Recall that we denote by

Pr
[
1 = A EVAL→ Gprf0

f

]
the probability that A returns 1 when interacting with the EVAL oracle of the
Gprf0

f game. The probability here is over drawing k uniformly at random from
{0, 1}λ as well as the adversary’s own randomness. I.e., probability denotes the
fraction of these strings that yields answer 1 from the adversary. We denote by

Pr
[
1 = A EVAL→ Gprf1

keyl,in,out

]
the probability that A returns 1 when interacting with the EVAL oracle of the
Gprf1

keyl,in,out game. The probability here is over drawing the answers in EVAL
uniformly at random each time that the oracle is called as well as the adversary’s
own randomness. Indistinguishability sais that these two probability should be
roughly equal. Recall that each algorithm gets the security parameter implicitly.

Definition 2.1 (Pseudorandom Function). A deterministic, polynomially-time
computable function f : {0, 1}∗ ×{0, 1}∗ → {0, 1}∗ is a pseudorandom function
with keyl, in, and out if it satisfies the following:

2

MS-E1687 - Advanced topics in cryptography Lecture Notes 8

• Length-condition: For all λ ∈ N, for all k ∈ {0, 1}keyl(λ), x ∈ {0, 1}in(λ),
|f(k, x)| = out(λ).

• Pseudorandomness: For all PPT A,

AdvA,f
PRF(λ) :=

∣∣∣Pr
[
1 = A EVAL→ Gprf0

f

]
− Pr

[
1 = A EVAL→ Gprf1

keyl,in,out

]∣∣∣
is negligible in λ.

Remark Throughout this lecture, we use keyl(λ) = in(λ) = out(λ) = λ.
Recall that a pseudorandom generator (PRG) is a deterministic function that
takes a truly random bitstring and turns it into a longer, pseudorandom bit-
string. Today, we only need a length-doubling PRG G, i.e, s(λ) = 2λ. As last
week, we use real game Gprg0

G and ideal game Gprg1
s(λ)=λ which both expose an

oracle SAMPLE to model PRG security of G and ask that for all PPT adversaries
A, the difference

AdvPRG
G,A(λ) :=

∣∣∣Pr
[
1 = A SAMPLE→ Gprg0

G

]
− Pr

[
1 = A SAMPLE→ Gprg1

s(λ)=λ

]∣∣∣
is negligible in λ.

3 The Goldreich-Goldwasser-Micali (GGM) con-
struction

The Goldreich-Goldwasser-Micali (GGM) construction constructs a pseudoran-
dom function from a length-doubling pseudorandom generator as illustrated in
Figure 3.

f(k, x)
s0 ← k

for i from 1 to |x| :
si ← Gx[i](s0)

return s|x|

Figure 4: GGM con-
structs PRF f from
length-doubling PRG
G = G0||G1

Recall the intuition of the GGM construction. In-
tuitively, a PRF needs to generate a pseudorandom
value for each x ∈ {0, 1}λ. The GGM construction
does so by building a binary tree of depth |x|. On
level 0, there is only 20 = 1 value, namely the key
k. On level 1, there are then 21 = 2 values, namely
G0(k) and G1(k). On level 2, there are 22 = 4 val-
ues, namely1 G0 ◦G0(k), G1 ◦G0(k), G0 ◦G1(k) and
G1 ◦G1(k). On level 3, there are 23 = 8 values and on
level n, there are the desired number 2λ value. How-
ever, storing all 2λ values takes exponential space.
Thus, instead of storing all these values, the function
f just computes them on-the-fly when evaluated on
an input x ∈ {0, 1}λ. The input x here then represents the address in the binary
tree. This way, each evaluation of f only corresponds to |x| = λ evaluations of
the PRG G.

Theorem (Goldreich-Goldwasser-Micali (GGM)). Let G be a pseudorandom
generator (PRG) with |G(s)| = 2|x|. We write G(s) = G0(s)||G1(s), where

1We here use the ◦ notation so we can avoid brackets, i.e., we write G0 ◦ G1(k) instead of
G0(G1(x))

3

MS-E1687 - Advanced topics in cryptography Lecture Notes 8

k

G

y0 y1

G G

y00 y01 y10 y11

G G

y000 y001 y010 y011

G G

y100 y101 y110 y111

yx

Figure 3: The GGM construction of a PRF f(k, ·) based on a length-doubling
PRG G. Here, the output f(k, x) is marked as yx. The path through the tree
corresponds to the bits of the input x of the PRF, whereas the key of the PRF
becomes the input of the PRG. This is important, because PRG security only
holds when the PRG’s input is uniformly random (or pseudorandom). The key
k is uniformly random, whereas the input x is not.

|G0(s)| = |G1(s)| = |x|. Then, f is a pseudorandom function, where f is defined
in Figure 4. In particular, for every polynomial q(λ), there is a PPT reduction
R such that for all PPT adversaries A that make at most q(λ) queries, it holds
that

AdvPRF
f,A (λ) ≤ λ · q(λ) · AdvPRG

G,A→R(λ),

i.e.,∣∣∣Pr
[
1 = A EVAL→ Gprf0

f

]
− Pr

[
1 = A EVAL→ Gprf1

λ,λ,λ

]∣∣∣
=(q(λ))2 ·

∣∣∣Pr
[
1 = A EVAL→ R SAMPLE→ Gprg0

G

]
− Pr

[
1 = A EVAL→ R SAMPLE→ Gprg1

s(λ)=λ

]∣∣∣
For the theorem to be meaningful, it would suffice to prove 6=, but we actually
prove equality. Note that the reduction R needs to “know” q(λ), the number of
queries made by A, or at least an upper bound on that number. We now turn
to the proof of Theorem 3. Similar to last week, the idea is to have a hybrid
argument which slowly moves from outputs of the real PRF f to outputs from
a uniformly random function. Interestingly, this time, we carry out a hybrid
over the depth of the GGM tree and over the number of queries made by the
adversaries. I.e., the hybrid games are indexed by a pair (d, j). The idea of the

4

MS-E1687 - Advanced topics in cryptography Lecture Notes 8

Hd,j

EVAL(x)
assert |x| = λ

if c = ⊥ then
c← 0

if T [x[1..d-1]] = ⊥ then
c← c + 1
if c ≤ j then

y0 ←$ {0, 1}λ

y1 ←$ {0, 1}λ

if c > j then

s←$ {0, 1}λ

y0 ← G0(s)
y1 ← G1(s)

T [x[1..d-1]](0)← y0

T [x[1..d-1]](1)← y1

sd ← T [x[1..d-1]](x[d])
for i from d + 1 to |x| :

si ← Gx[i](si-1)
return sλ

Rj

EVAL(x)
assert |x| = λ

if c = ⊥ then
d←$ {1, .., λ}
j ←$ {1, .., q(λ)}
c← 0

if T [x[1..d-1]] = ⊥ then
c← c + 1
if c < j then

y0 ←$ {0, 1}λ

y1 ←$ {0, 1}λ

if c = j then
y0||y1 ← SAMPLE

if c > j then

s←$ {0, 1}λ

y0 ← G0(s)
y1 ← G1(s)

T [x[1..d-1]](0)← y0

T [x[1..d-1]](1)← y1

sd ← T [x[1..d-1]](x[d])
for i from d + 1 to |x| :

si ← Gx[i](si-1)
return sλ

Rd,j

EVAL(x)
assert |x| = λ

if c = ⊥ then

c← 0
if T [x[1..d-1]] = ⊥ then

c← c + 1
if c < j then

y0 ←$ {0, 1}λ

y1 ←$ {0, 1}λ

if c = j then
y0||y1 ← SAMPLE

if c > j then

s←$ {0, 1}λ

y0 ← G0(s)
y1 ← G1(s)

T [x[1..d-1]](0)← y0

T [x[1..d-1]](1)← y1

sd ← T [x[1..d-1]](x[d])
for i from d + 1 to |x| :

si ← Gx[i](si-1)
return sλ

Figure 5: Hybrid game Hd,j , reduction R and reduction Rd,j

5

MS-E1687 - Advanced topics in cryptography Lecture Notes 8

reduction is to work level by level, i.e., first replace the root layer application
of the PRG by a uniformly random string, then replace the PRG application
on the second layer by a random string and so on. We do not replace all 2i

applications of the PRG by a uniformly random string, but rather, we only
replace the application at the points where the adversary makes a query since
this is some polynomial q(λ) rather than some exponential value. Therefore, we
have that

1 ≤ d ≤ λ

0 ≤ j ≤ q(λ)

Gprf0
f

EVAL(x)
assert x ∈ {0, 1}λ

if k = ⊥ :

k ←$ {0, 1}λ

y ← f(k, x)
return y

Gprf1
λ,λ,λ

EVAL(x)
assert x ∈ {0, 1}λ

if T [x] = ⊥

T [x]←$ {0, 1}λ

y ← T [x]
return y

Figure 6: EVAL(x) oracles of the ideal
Gprf1

λ,λ,λ and the real Gprf0
f games.

We now make this proof idea for-
mal. Let A be a PPT adversary
against the PRF f which makes
at most q(λ) queries to the EVAL
oracle. Then, for 1 ≤ d ≤ λ
and 0 ≤ j ≤ q(λ), we define the
game Hd,j as in Figure 5. We now
need to show the following three
claims:

Claim 1 (Extreme Hybrids).

A EVAL→ H1,0
code≡ A EVAL→ Gprf0

f

A EVAL→ Hλ,q(λ)
code≡ A EVAL→ Gprf1

λ,λ,λ

Claim 2 (Compatible Hybrids
across layers). For all 1 ≤ d ≤ λ:

A EVAL→ Hd−1,q(λ)
code≡ A EVAL→ Hd,0

Note that both, Claim 1 and Claim 2 include the adversary into the statement,
since it is important that the adversary makes at most q(λ) queries. Else, the
two games would actually not be equivalent. The third claim relates to the
existence of a reduction for steps within a single layer.

Claim 3 (Reduction). For all 1 ≤ d ≤ λ, 1 ≤ j ≤ q(λ):

A EVAL→ Rd,j
SAMPLE→ Gprg0

G

code≡ A EVAL→ Hd,j-1 (1)

A EVAL→ Rd,j
SAMPLE→ Gprg1

λ

code≡ A EVAL→ Hd,j , (2)

where Rd,j is defined in Figure 5.

We first state them, then show why they suffice (using the telescopic sum argu-
ment over pairs) and then prove each of the claims.
Claim 1 states that the extreme variants of the hybrid game H1,0 and Hλ,q(λ)
are equivalent to Gprf0

f and Gprf1
λ,λ,λ, respectively—as long as the adversary

A makes at most q queries. In the proof of the equivalence between Gprf1
λ,λ,λ

and Gprf1
λ,λ,λ, we rely on the number of queries.

6

MS-E1687 - Advanced topics in cryptography Lecture Notes 8

Claim 2 states that the last hybrid game of layer d-1 is code-equivalent to the
first hybrid game of layer d. In this equivalence proof, we again rely on the
number of queries.
Finally, Claim 3 shows that that we can use the reduction Rd,j to show that
two subsequent hybrids are indistinguishable.
We now show why Claim 1, Claim 2 and Claim 3 suffice to prove Theorem 3.
The first equality follows by Claim 1. The second equality is a telescopic sum
over the layers, i.e., due to Claim 2 all terms except for the extreme terms
cancel out, making the telescopic sum equal to the previous line. Similarly,
the third equality is a telescopic sum within each layer and thus, per layer, all
except for the extreme hybrids cancel out. Then, we rely on Claim 3 to re-
write Hd,j in terms of the reduction. Then, we split the two sums and multiply
by 1 = λ·q(λ)

λ·q(λ) . Finally, for the last equality, we observe that the probability
over drawing d ←$ {1, .., λ} and j ←$ {1, .., q(λ)} that R = Rd,j is 1

s(λ) . In
fact, verifying this equality works best when thinking about it in the inverse
direction. I.e., start with R and then observer that R draws a specific d with
probability 1

λ and a specific j with probability 1
q(λ) .

∣∣∣Pr
[
1 = A EVAL→ Gprf0

f

]
− Pr

[
1 = A EVAL→ Gprf1

λ,λ,λ

]∣∣∣
=

∣∣∣Pr
[
1 = A EVAL→ H1,0

]
− Pr

[
1 = A EVAL→ Hλ,q(λ)

]∣∣∣ (Claim 1)

=

∣∣∣∣∣∣
∑

1≤d≤λ

Pr
[
1 = A EVAL→ Hd,0

]
− Pr

[
1 = A EVAL→ Hd,q(λ)

]∣∣∣∣∣∣ (Telescope I + Claim 2)

=

∣∣∣∣∣∣
∑

1≤d≤λ,1≤j≤q(λ)

Pr
[
1 = A EVAL→ Hd,j-1

]
− Pr

[
1 = A EVAL→ Hd,j

]∣∣∣∣∣∣ (Telescope II)

=

∣∣∣∣∣∣
∑

1≤d≤λ,1≤j≤q(λ)

Pr
[
1 = A EVAL→ Rd,j

SAMPLE→ Gprg0
G

]
− Pr

[
1 = A EVAL→ Rd,j

SAMPLE→ Gprg1
λ

]∣∣∣∣∣∣ (Claim 3)

=
∣∣λ · q(λ) ·

 ∑
1≤d≤λ,1≤j≤q(λ)

1
λ·q(λ) · Pr

[
1 = A EVAL→ Rd,j

SAMPLE→ Gprg0
G

]
− λ · q(λ)

 ∑
1≤d≤λ,1≤j≤q(λ)

1
λ·q(λ) · Pr

[
1 = A EVAL→ Rd,j

SAMPLE→ Gprg1
λ

] ∣∣
=λ · q(λ) ·

∣∣∣Pr
[
1 = A EVAL→ R SAMPLE→ Gprg0

G

]
− Pr

[
1 = A EVAL→ R SAMPLE→ Gprg1

λ

]∣∣∣
We can prove Claim 1 via code comparison and omit it from these lecture
notes. It is analogous to the code comparison for the extreme hybrids that we
considered last week.
We prove Claim 3 via inlining on page 8 and page 9. The left column contains
the code of Rd,j . The second column contains the code of Rd,j+1 with Gprg1

G.
From column 2 to column 3, we then merge the if-condition for c < j and c = j,
since the both sample y0 and y1 each independently and uniformly at random
from {0, 1}λ. The code of column 3 is the code of Hd,j which concludes the proof

7

MS-E1687 - Advanced topics in cryptography Lecture Notes 8

of the first equation of Claim 2. For the second equation of Claim 2, see page
9. This time, we merge the if-condition c = j-1 and c > j-1.
We sketch the proof of Claim 2 by comparing Hd−1,j and Hd,0 (see page 9). In
the last column, j = 0 and thus, it is easy to see that c < 0 never occurs and
thus, the first for loop can be omitted. In turn, in the first column, j = q(λ)
and we rely on the adversary not making more than q(λ) queries to ensure
that the case c > j = q(λ) never happens and thus, the second for loop can
be omitted. We can now join the for loop and the case c = j and thus can
remove all assignments and operations on the counter c. While their code is not
identical, their input-output behaviour of the resulting code is. We omit the
details.

Rd,j

EVAL(x)
assert |x| = λ

if c = ⊥ then
c← 0

if T [x[1..d-1]] = ⊥ then
c← c + 1
if c < j then

y0 ←$ {0, 1}λ

y1 ←$ {0, 1}λ

if c = j then
y0||y1 ← SAMPLE

if c > j then

s←$ {0, 1}λ

y0 ← G0(s)
y1 ← G1(s)

T [x[1..d-1]](0)← y0

T [x[1..d-1]](1)← y1

sd ← T [x[1..d-1]](x[d])
for i from d + 1 to λ :

si ← Gx[i](si-1)
return sλ

Rd,j
SAMPLE→ Gprg1

λ

EVAL(x)
assert |x| = λ

if c = ⊥ then
c← 0

if T [x[1..d-1]] = ⊥ then
c← c + 1
if c < j then

y0 ←$ {0, 1}λ

y1 ←$ {0, 1}λ

if c = j then

y0||y1 ←$ {0, 1}2λ

if c > j then

s←$ {0, 1}λ

y0 ← G0(s)
y1 ← G1(s)

T [x[1..d-1]](0)← y0

T [x[1..d-1]](1)← y1

sd ← T [x[1..d-1]](x[d])
for i from d + 1 to λ :

si ← Gx[i](si-1)
return sλ

Hd,j

EVAL(x)
assert |x| = λ

if c = ⊥ then
c← 0

if T [x[1..d-1]] = ⊥ then
c← c + 1
if c ≤ j then

y0 ←$ {0, 1}λ

y1 ←$ {0, 1}λ

if c > j then

s←$ {0, 1}λ

y0 ← G0(s)
y1 ← G1(s)

T [x[1..d-1]](0)← y0

T [x[1..d-1]](1)← y1

sd ← T [x[1..d-1]](x[d])
for i from d + 1 to λ :

si ← Gx[i](si-1)
return sλ

8

MS-E1687 - Advanced topics in cryptography Lecture Notes 8

Rd,j

EVAL(x)
assert |x| = λ

if c = ⊥ then
c← 0

if T [x[1..d-1]] = ⊥ then
c← c + 1
if c < j then

y0 ←$ {0, 1}λ

y1 ←$ {0, 1}λ

if c = j then
y0||y1 ← SAMPLE

if c > j then

s←$ {0, 1}λ

y0 ← G0(s)
y1 ← G1(s)

T [x[1..d-1]](0)← y0

T [x[1..d-1]](1)← y1

sd ← T [x[1..d-1]](x[d])
for i from d + 1 to λ :

si ← Gx[i](si-1)
return sλ

Rd,j
SAMPLE→ Gprg0

G

EVAL(x)
assert |x| = λ

if c = ⊥ then
c← 0

if T [x[1..d-1]] = ⊥ then
c← c + 1
if c < j then

y0 ←$ {0, 1}λ

y1 ←$ {0, 1}λ

if c = j then

s←$ {0, 1}λ

y0||y1 ← G(s)
if c > j then

s←$ {0, 1}λ

y0 ← G0(s)
y1 ← G1(s)

T [x[1..d-1]](0)← y0

T [x[1..d-1]](1)← y1

sd ← T [x[1..d-1]](x[d])
for i from d + 1 to λ :

si ← Gx[i](si-1)
return sλ

Hd,j-1

EVAL(x)
assert |x| = λ

if c = ⊥ then
c← 0

if T [x[1..d-1]] = ⊥ then
c← c + 1
if c ≤ j-1 then

y0 ←$ {0, 1}λ

y1 ←$ {0, 1}λ

if c > j-1 then

s←$ {0, 1}λ

y0 ← G0(s)
y1 ← G1(s)

T [x[1..d-1]](0)← y0

T [x[1..d-1]](1)← y1

sd ← T [x[1..d-1]](x[d])
for i from d + 1 to λ :

si ← Gx[i](si-1)
return sλ

9

MS-E1687 - Advanced topics in cryptography Lecture Notes 8

Hd-1,q(λ)

EVAL(x)
assert |x| = λ

if c = ⊥ then
c← 0

if T [x[1..d-2]] = ⊥ then
c← c + 1
if c ≤ q(λ) then

y0 ←$ {0, 1}λ

y1 ←$ {0, 1}λ

if c > q(λ) then

s←$ {0, 1}λ

y0 ← G0(s)
y1 ← G1(s)

T [x[1..d-2]](0)← y0

T [x[1..d-2]](1)← y1

sd-11 ← T [x[1..d-2]](x[d-11])
for i from d to λ :

si ← Gx[i](si-1)
return sλ

Hd,0

EVAL(x)
assert |x| = λ

if c = ⊥ then
c← 0

if T [x[1..d-1]] = ⊥ then
c← c + 1
if c ≤ 0 then

y0 ←$ {0, 1}λ

y1 ←$ {0, 1}λ

if c > 0 then

s←$ {0, 1}λ

y0 ← G0(s)
y1 ← G1(s)

T [x[1..d-1]](0)← y0

T [x[1..d-1]](1)← y1

sd ← T [x[1..d-1]](x[d])
for i from d + 1 to λ :

si ← Gx[i](si-1)
return sλ

4 Markov and Chernoff Bound
Next week, we want to perform some statistical analysis of algorithms, and we
will need several statistical tools in order to do this. For an algorithm A that
takes λ random coins r and returns a natural number or a real number, we can
define the expectation of A as

E(A) :=
∑

r∈{0,1}λ

2−λA(r),

which is the average value that A returns when taking a uniformly random r
as input. We have seen such probability statements already many times in the
course in the case where the algorithm (adversary) A returns 0 or 1. Note that
each r is chosen with probability 2−λ. We call an algorithm that maps random
strings to a real number a random variable. We will now see two bounds that
tell us whether a random variable is likely to be far from its expectation, and if
so, how likely. To appreciate the quality of the different bounds, let us consider
the following example:

Example: We flip a coin which has a 0 on one side and a 1 on the
other side, such that the probability of getting 0 is 1

2 . Now, if we

10

MS-E1687 - Advanced topics in cryptography Lecture Notes 8

flip a coin 1000 times, we get 500 zeroes in expectation. How likely
is it that we get much more than this, say, that we get 750 zeroes?

My intuition says that this should be quite unlikely. Let’s now look at some
popular tail bounds and see what they say about our example. The first bound
is the Markov bound that is valid for all random variables that are positive. In
the lemma, we replace the explicit notation Prr←${0,1}n [A(r) ≥ v] by the implicit
notation Pr[A ≥ v], since this allows us to speak about arbitrary randomized al-
gorithms/random variables without making explicit how long the random string
is.

Lemma 1 (Markov Bound). For all non-negative random variables A and all
positive real numbers v, we have

Pr[A ≥ v] ≤ E(A)
v

and
Pr[A ≥ v · E(A)] ≤ 1

v
.

The expectation of a random variable gives some information about a random
variable, but not necessarily very much. For instance, the Markov bound only
tells us some very weak relation between a random variable and its expecta-
tion. The Markov bound is not particularly good for repeated, independent
experiments such as our example. However, Markov bound only tells us that
this probability is lower than 2

3 (which is not very informative). Therefore, we
need better bounds such as the Chernoff bound (below) which tells us that the
probability is really small. We now turn to repeated experiments with 0 − 1
random variables Exp, i.e, random variables that either return 0 or 1 such as
our security experiments.

Lemma 2 (Chernoff Bound). For all p ≤ 1
2 , for all Exp1, Exp2, ..., Expn in-

dependent 0-1 random variables so that for all i Pr[Expi = 1] = p, for all ε,
0 < ε ≤ p(1− p), we have

Pr
[∣∣∣∣∑n

i=1 Expi

n
− p

∣∣∣∣ > ε

]
< 2 · e−ε2n

and

Pr
[

n∑
i=1

Expi > (p + ε)n
]

< 2 · e−ε2n

In our example, p = 1
2 , n = 1000 and ε = 1

4 , which yields that the probability
of obtaining more than 750 zeroes is very small.

11

	Overview
	Definitions
	The Goldreich-Goldwasser-Micali (GGM) construction
	Markov and Chernoff Bound

