
Lecture 9: Goldreich-Levin Hardcore Bit
Christopher Brzuska

March 11, 2024

Before moving on, let us quickly remind ourselves of the context of the theo-
rems we prove. Namely, in the first half of the basic crypto course, we discussed
(but did not prove) that one-way functions (OWFs) imply pseudorandom gen-
erators (PRGs), that PRGs imply pseudorandom functions (PRFs), that PRFs
imply unforgeable message authentication codes (MAC) and confidential sym-
metric encryption schemes (ENC), and that MACs and confidential encryption
schemes together can be used to build authenticated encryption. As all of the
aforementioned cryptographic primitives imply one-way functions, they are all
equivalent, i.e., one exists if and only if all of the other primitives exist:

OWF⇔ PRG⇔ PRF⇔ MAC⇔ ENC (MiniCrypt)

Since one-way function are a minimal assumption for (computationally se-
cure) cryptography, if (computationally secure) cryptography exists at all, then
all of these primitives must exist. Thus, Impagliazzo, in his essay on average-case
complexity (see https://www.karlin.mff.cuni.cz/~krajicek/ri5svetu.pdf),
names this world MiniCrypt.

In the basic cryptography course, we proved that PRFs imply MACs, ENC
and AE, but we only stated (and did not prove) that OWFs imply PRGs and
that PRGs imply PRFs. In the last two weeks, we proved

PRG⇒ PRF (Lecture 7 & Lecture 8)

This week and next week, we prove

OWF⇒ PRG (Lecture 9 & Lecture 10). (1)

Namely, in the basic cryptography course, we showed that

length-preserving, bijective OWF + HB⇒ PRG (basic cryptography course).

Now, if we can show that

OWF⇒ length-preserving, bijective OWF + HB,

then we have proven Implication (1). In this lecture, we show

OWF⇒ OWF + HB.

There is a small gap to prove Implication (1), because it is known that one-
way functions do (most likely) not imply length-preserving, bijective one-way

1

https://www.karlin.mff.cuni.cz/~krajicek/ri5svetu.pdf

MS-E1687 - Advanced topics in cryptography Lecture Notes s

functions1. Thus, we only prove an easier statement than Implication (1), as we
started from length-preserving, bijective one-way functions. We aim to cover
(the essence of) the full proof of the Implication (1) in Lecture 10. It is not
an easy proof and will be the hardest part of the course2. The original proof
by Hastad, Impagliazzo, Leving and Luby is available here https://www.nada.
kth.se/~johanh/prgfromowf.pdf, but we will present an easier proof due to
Vadhan and Zheng https://eccc.weizmann.ac.il/report/2011/141/.

Existence of one-way functions with hardcore bits We now turn to
proving that if one-way functions exist, then there exist one-way functions with
hardcore bits. More precise, we show that if fbase is a one-way function, the
Goldreich-Levin hardcore bit is a hardcore bit for

f :{0, 1}2∗ → {0, 1}∗

(x, r) 7→ fbase(x)||r

Recall the the Goldreich-Levin hardcore-bit was defined by flipping a random
bit ri for each index i and then taking the xor over all indices of x, where ri is
equal to 1:

bGL :{0, 1}2∗ → {0, 1}
(x, r) 7→ (x1 ∧ r1)⊕ ...⊕ (x|x| ∧ r|x|)

Technical Tricks
Before we turn to the proof of the Goldreich-Levin hardcore bit, we introduce
five technical ideas:

(1) Distinguishing vs. predicting

(2) Averaging arguments

(3) Chebychev: a Chernoff-type bound for pairwise independent random vari-
ables

(4) Constructing n pairwise independent bitstrings from log n uniformly ran-
dom, independent bitstrings

(5) Linearity of the Goldreich-Levin hardcore bit bGL

1see Chapter 9 of Rudich’s PhD thesis http://www2.eecs.berkeley.edu/Pubs/TechRpts/
1988/CSD-88-468.pdf, and also see one of the exercises on Exercise Sheet 3 that suggests to
prove that length-preserving, bijective one-way functions imply hard problems in NP ∩ coNP,
which we do not expect to be true for one-way functions generally, because it is not clear how
to find a short witness that a value is not in the image of a one-way function.

2If you are unfamiliar with complexity theory, then Lecture 11 and Lecture 12 are difficult,
too, but the proof techniques will be a little less advanced than the techniques used in Lecture
10, in my opinion.

2

https://www.nada.kth.se/~johanh/prgfromowf.pdf
https://www.nada.kth.se/~johanh/prgfromowf.pdf
https://eccc.weizmann.ac.il/report/2011/141/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1988/CSD-88-468.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1988/CSD-88-468.pdf

MS-E1687 - Advanced topics in cryptography Lecture Notes s

ExpHB,0
f,b,A(1n)

w ←$ {0, 1}n

y ← f(w)
z ← b(w)
d∗ ←$A(1n, y, z)
return d∗

ExpHB,1
f,b,A(1n)

w ←$ {0, 1}n

y ← f(x)
z ←$ {0, 1}
d∗ ←$A(1n, y, z)
return d∗

Figure 1: Distinguishing Security
experiment for hardcore bits.

Distinguishing vs. predicting We
formulated the security experiments for
the hardcore bit as distinguishing experi-
ments. Once could also ask an adversary
to predict a hardcore bit and demand that
for all PPT adversaries A, the following
probability is negligible:

Adv(A; ExpHBPRE
f,b,A)(n)

:= Prw←${0,1}n [A(1n, f(w)) = b(w)]− 1
2

where the probability is over the sampling
of x and the randomness of A (kept im-
plicit in the experiment). We know that Adv(A; ExpHBPRE

f,b,A)(n) is negligible for
all PPT adversaries A, if and only if∣∣∣Pr

[
1 = ExpHB,0

f,b,A(1n)
]
− Pr

[
ExpHB,1

f,b,A(1n)
]∣∣∣ (2)

is negligible for all PPT adversaries A. The reason is, intuitively, that if one
has a prediction algorithm, then one can also build a distinguishing algorithm,
since the distinguisher can simply compare its input with the prediction of the
prediction algorithm. In the other direction, if one has a distinguisher, then
one can build a prediction algorithm that feeds a random trial input bit to the
distinguisher and makes its prediction based on whether the distinguisher sais
that its input was “good” or not. If you want to explore the proof in greater
depth, you can do so on Exercise Sheet 3.

Averaging Arguments A second trick we need is a so-called averaging ar-
gument. Namely, imagine we know that an algorithm A predicts the Goldreich-
Levin hardcore bit with probability

Prx←${0,1}n,r←${0,1}n

[
A(12n, f(x, r)) = bGL(x, r)

]
≥ 3

4 . (3)

How many x ∈ {0, 1}n have the property that

Prr←${0,1}n

[
A(12n, f(x, r)) = bGL(x, r)

]
≥ 3

4 ?

It turns out that there might be only very, very few x, where this is the case,
possibly even a single x only, see Appendix A for an example. However, there
must quite some x such that

Prr←${0,1}n

[
A(12n, f(x, r)) = bGL(x, r)

]
≥ 5

8 .

This is what the averaging argument states more generally.

Lemma 1 (Averaging Argument). Let ε(n) ≥ 0, and assume that

Prx←${0,1}n,r←${0,1}n

[
A(12n, f(x, r)) = bGL(x, r)

]
≥ 1

2 + ε(n).

Then we have that for at least ε(n)
2 2n many x ∈ {0, 1}n that

Prr←${0,1}n

[
A(12n, f(x, r)) = bGL(x, r)

]
≥ 1

2 + ε(n)
2 .

We prove the general averaging lemma (stated in Lecture 2) on Exercise Sheet
2 and give the proof of Lemma 1 in Appendix B.

3

MS-E1687 - Advanced topics in cryptography Lecture Notes s

Chebychev The Chernoff bound tells us that if we repeat an experiment with
0-1-outcome, independently, many times, and each experiments has probability
of, say, 1

2 + ε(n)
2 of being 1 and probability 1

2 −
ε(n)

2 of being 0, then we are going
to have roughly a fraction of 1

2 + ε(n)
2 of our independent experiments that return

1. The Chebychev bound tells us that a similar statement is true even when not
all experiments are independent, but rather, they are only pairwise independent,
i.e., for each pair of experiments Expi and Expj with i 6= j, it holds that

Pr
[
Expi = 1 ∧ Expj = 1

]
= Pr[Expi = 1] · Pr

[
Expj = 1

]
.

Lemma 2 (Chebychev). Let 1
2 ≥ ε ≥ 0, and assume that we have m pairwise

independent experiments Exp1,...,Expm such that for each of the experiments

Pr[Expi = 1] ≥ 1
2 + ε(n)

2 .

Then, we have the following inequality:

Pr
[

m∑
i=1

Expi < 1
2 m

]
<

1− ε2

ε2 ·m

In particular, when m = n2 · 1
ε2 , we have that

Pr
[

m∑
i=1

Expi < 1
2 m

]
<

1− ε2

n2 <
1
n2

See Foundations of Cryptography I, Chapter 1.2.2 for the proof of Lemma 2.

Pairwise Independent Bitstrings For each pair of non-empty subsets I, J ⊆
{1, .., log m} such that I 6= J , we have that sampling log m uniformly random
strings ri and xoring the bitstrings with indices in I and J , respectively, yields
two independent, uniform bitstrings⊕

i∈I

ri and
⊕
j∈J

rj

The reason is that if I and J are non-empty and distinct, then one of them,
say, J , contains an index, say, j0 that is contained in J but not in I. If we first
sample all bitstrings except for rj0 , then (a) we know the value of

⊕
i∈I ri (since

j0 is not contained in I), and (b) when we now sample rj0 , we get a uniformly
random value for

⊕
j∈J rj . In Appendix C, we express the same argument in

terms of probability analysis.
The pairwise independent argument will be useful, since out of log m in-

dependent, uniformly random strings r1, .., rlog m, we can now build m pair-
wise independent, uniformly random strings rI , one for each non-empty subset
I ⊆ {1, .., log m}.

Linearity of bGL The Goldreich-Levin bin is linear in its second entry, i.e.,
for all r, r′ ∈ {0, 1}n, it holds that

bGL(x, r)⊕ bGL(x, r′) = bGL(x, r ⊕ r′).

4

MS-E1687 - Advanced topics in cryptography Lecture Notes s

We can calculate that this is indeed true:

bGL(x, r)⊕ bGL(x, r′)
= ((x1 ∧ r1)⊕ ..⊕ (xn ∧ rn))⊕ ((x1 ∧ r′1)⊕ ..⊕ (xn ∧ r′n))
=(x1 ∧ (r1 ⊕ r′1))⊕ ..⊕ (xn ∧ (rn ⊕ r′n))
=bGL(x, r ⊕ r′),

where the first and last equality follows by definition and the middle equality
follows, since (xi ∧ ri)⊕ (xi ∧ r′i) is equal to xi when exactly one out of ri and
ri′ is 0. Else, (xi ∧ ri)⊕ (xi ∧ r′i) is equal to 0, regardless of the value xi.

We will use this linearity for the string e1 = 10..0 and
⊕

i∈I ri for some
strings ri to be defined later. Namely, we will use that

bGL(x, e1 ⊕
⊕
i∈I

ri)⊕ bGL(x,
⊕
i∈I

ri) = bGL(x, e1),

since
⊕

i∈I ri cancels out.

Goldreich-Levin Proof
Theorem 1 (Goldreich-Levin). Let fbase be a one-way function. Then, the
predicate bGL is a hardcore predicate for f .

bGL :{0, 1}2∗ → {0, 1} f :{0, 1}2∗ → {0, 1}∗

(x, r) 7→ (x1 ∧ r1)⊕ ...⊕ (x|x| ∧ r|x|) (x, r) 7→ fbase(x)||r

By our discussion of predicting vs. decision, we need to show that if fbase is
a one-way function, then for all PPT adversaries A, it holds that

Adv(A; ExpHBPRE
f,b,A)(2n) = Prx←${0,1}n,r←${0,1}n

[
A(12n, f(x, r)) = bGL(x, r)

]
− 1

2

is negligible3. We proceed by contradiction. I.e., we assume towards con-
tradiction that there exists a PPT adversary A and a constant c ≥ 1 such that
Adv(A; ExpHBPRE

f,b,A)(2n) ≥ n−c for infinitely many n. Assuming this, we then
construct a PPT adversary RA such that for these n, it holds that

Advow
fbase,RA

(2n) (4)

= Prx←${0,1}n,y←fbase(x)

[
RA(y, 12n) $→ x′ ∈ f−1

base(y) ∧ |x| = n
]
≥ 1

4 n−3c−2.

If we are able to show Inequality 4, then we reached a contraction and thus,
an adversary A such that Adv(A; ExpHBPRE

f,b,A)(2n) ≥ n−c cannot exist.
3Let’s ignore that these values are only defined for even numbers 2n. We can fix this by

always ignoring the last bit of the input when there is an odd number, so that for all n, we
have Adv(A; ExpHBPRE

f,b,A)(2n + 1) = Adv(A; ExpHBPRE
f,b,A)(2n).

5

MS-E1687 - Advanced topics in cryptography Lecture Notes s

B(12n, y)
r1, .., rlog m ←$ {0, 1}n

b1, .., blog m ←$ {0, 1}
for ∅ 6= I ⊆ {1, .., log m}

bI ←
⊕
i∈I

bi; rI ←
⊕
i∈I

ri

for j from 1 to n

for ∅ 6= I ⊆ {1, .., log m}

rj,I ← ej ⊕ rI

d∗ ←$A(y, rj,I , 1n)

sj,I ← bI ⊕ d∗

x∗
j ← MAJI⊆{0,1}∗ sj,I

return x∗
1||..||x∗

n

Figure 2: m = n2 · p(n) ·
q(n). ei denotes an n-
bitstring which is 1 at posi-
tion i and 0, else. MAJ de-
notes the majority function.

So, let us start with assuming that the ad-
vantage Adv(A; ExpHBPRE

f,b,A)(2n) ≥ n−c and step-
by-step build an algorithm RA such that In-
equality 4 holds. The code of reduction RA is
given in Figure 2 but requires some motivation
to understand it and analyze its success proba-
bility.

Firstly, by our averaging argument, we know
that there exist 1

2nc 2n many x ∈ {0, 1}n such
that

Prr←${0,1}n

[
A(12n, f(x, r)) = bGL(x, r)

]
≥ 1

2 + 1
2nc

Let us now focus on such values x. Our goal
is to recover x bit by bit. Let us now focus
on the first bit x1 of x. If we could somehow
obtain the value bGL(x, r) for r = 10...0, then
we would be done, because this value is equal
to (x1 ∧ 1) ⊕ (x2 ∧ 0) ⊕ ... ⊕ (xn ∧ 0) = x1.
Unfortunately, A is only good on a random r
and might fail on e1 = 10..0. However, if we
pick uniformly random values r1, .., rlog m, then
r1,I ← e1 ⊕

⊕
i∈I ri is a uniformly random value.

(1) If we now run d∗ ←$A(y, r1,I , 1n) and

(2) if d∗ = bGL(x, r1,I) (recall that r1,I ← e1 ⊕
⊕

i∈I ri) and

(3) if we somehow knew b1 = bGL(x,
⊕

i∈I ri,I)

(4) then we could compute x1 as d∗ ⊕ b1 by the linearity of bGL.

In particular, we could perform this operation not only for j = 1, but also for
all 1 ≤ j ≤ n.

For (2), we know that d∗ = bGL(x, 1i
I) holds with probability at least 1

2 +
1

2nc . If we know all of the values bi, we could simply run A(y, r1,I , 1n) for
all subsets I ⊆ {1, .., log m} and obtain m pairwise independent guesses for
x1. By Chebychev inequality, we then obtain the correct value of x1 with high
probability, namely

Pr
[

m∑
i=1

Expi < 1
2 m

]
<

1− ε2

n2 <
1
n2

by Lemma 2, if we choose m = n2 · n2c.
The key question, now, is how do we obtain the values bi for all subsets I ⊆

{1, .., log m}? The solution is that we simply guess the value for b{1},..,b{log m}.
If these values are correct, then by linearity of the Goldreich-Levin predicate, we
can compute bi as

⊕
i∈I bi. The probability that we guess all the b{1},..,b{log m}

correctly is (1
2)log m.

In summary, the reduction RA recovers the first bit x1 correctly if

6

MS-E1687 - Advanced topics in cryptography Lecture Notes s

(a) x is in the “good” set (probability greater than 1
2nc),

(b) we guess b{1},..,b{log m} correctly (probability equal to (1
2)log m = n−2−2c)

(c) the small failure probability of Chebychev does not occur (probability
1− 1

n2)

Now, consider the code of RA in Figure 2, and let us determine the probability
that RA recovers the entire string x correctly, not just the first bit. Firstly note
that we lose the 1

2nc factor for x being in the “good” set only once. Secondly,
notice that RA guesses b{1},..,b{log m} only once, and thus, we lose this proba-
bility only once. In turn, the Chebychev failure probability, we lose for each of
the bits xi. Thus, in summary we obtain the following inversion probability:

Advow
fbase,RA

(2n) ≥ 1
2 n−c · n−2−2c · (1− n · 1

n2) ≥ 1
4 n−2−3c,

since (1−n· 1
n2) is lower bounded by 1

2 . This concludes the proof of Inequality 4.

Concluding Reflections The Goldreich-Levin hardcore bit proof is one an
example of amplification. I.e., we take a very weak predication algorithm and
run it many times on cleverly chosen inputs such that we learn not only a specific
bit but actually n bits with some reasoneable probability. If you enjoyed this
proof, you might enjoy classes by Parinya Chalermsook, Petteri Kaski, Jara
Uitto and Jukko Suomela at the CS Department and Lasse Leskelä at the MS
Department. This proof is central to understanding the equivalence between the
hardness of inverting and building hard distinguishing problems (PRGs, PRFs,
symmetric encryption) that most of our cryptographic applications rely on.
Thus, one-wayness, a very weak version of hardness, implies pseudorandomness,
a very strong version of hardness. The remaining proofs in this course will
involve significantly less probability analysis than the proof of the Goldreich-
Levin Hardcore bit proof.

A Example for averaging argument
There could be only a single xgood such that

Prr←${0,1}n [A(1n, f(xgood, r)) = bGL(xgood, r)] = 1,

while for all other xbad ∈ {0, 1}n \ {xgood}, it holds that

Prr←${0,1}n [A(1n, f(xbad, r)) = bGL(xbad, r)] = 3
4 − 2−2n < 3

4 .

Indeed, if this is the case, then Inequality 3 still holds, since

Prx←$,r←${0,1}n [A(1n, f(x, r)) = bGL(x, r)]

=
∑

x∈{0,1}n

2−n · Prr←${0,1}n [A(1n, f(x, r)) = bGL(x, r)]

=2−n · 1 +
∑

xbad∈{0,1}n\{xgood}

2−n Prr←${0,1}n [A(1n, f(xbad, r)) = bGL(xbad, r)]

=2−n + (1− 2−n) · (3
4 − 2−2n)

≥2−n + 3
4 − 2−2n − 3

4 2−n

≥ 3
4

7

MS-E1687 - Advanced topics in cryptography Lecture Notes s

B Proof for averaging argument
Recall that we are given some ε(n) ≥ 0 such that

Prx←${0,1}n,r←${0,1}n [A(1n, f(x, r)) = bGL(x, r)] ≥ 1
2 + ε(n). (5)

Let us denote by p(x) the following probability:

p(x) := Prr←${0,1}n [A(1n, f(x, r)) = bGL(x, r)].

Now, let us assume towards contradiction that there are strictly less than ε(n)
2 2n

many x ∈ {0, 1}n such that

Prr←${0,1}n [A(1n, f(x, r)) = bGL(x, r)] ≥ 1
2 + ε(n)

2 . (6)

We will now derive from this a contradiction with Inequality 5 by showing that
if there are less that ε(n)

2 2n many x ∈ {0, 1}n for which Inequality 6 holds, then
Prx←${0,1}n,r←${0,1}n [A(1n, f(x, r)) = bGL(x, r)] is strictly smaller than 1

2 + ε(n)
in contradiction to Inequality 5.

Prx←${0,1}n,r←${0,1}n [A(1n, f(x, r)) = bGL(x, r)]

=
∑

x∈{0,1}n

2−n Prr←${0,1}n [A(1n, f(x, r)) = bGL(x, r)]

=
∑

x∈{0,1}n

2−np(x)

=
∑

x∈{0,1}n: p(x)<
1
2 +

ε(n)
2

2−np(x) +
∑

x∈{0,1}n: p(x)≥ 1
2 +

ε(n)
2

2−np(x)

≤
∑

x∈{0,1}n: p(x)<
1
2 +

ε(n)
2

2−np(x) +
∑

x∈{0,1}n: p(x)≥ 1
2 +

ε(n)
2

2−n · 1

<
∑

x∈{0,1}n: p(x)<
1
2 +

ε(n)
2

2−n

(
1
2 + ε(n)

2

)
+

∑
x∈{0,1}n: p(x)≥ 1

2 +
ε(n)

2

2−n · 1

<

(
2n − ε(n)

2 2n

)
· 2−n

(
1
2 + ε(n)

2

)
+

(
ε(n)

2 2n

)
2−n · 1

=1
2 + ε(n)

2 − ε(n)
2 ·

(
1
2 + ε(n)

2

)
+ ε(n)

2

<
1
2 + ε(n)

The first equality follows by noticing that there are 2n values x ∈ {0, 1}n, each
of which is chosen with probability 2−n. The second equality follows by applying
the definition of p(x). The third equality consists in splitting the sum in two
disjoint sets, as for each x ∈ {0, 1}n, it must either hold that p(x) < 1

2 + ε(n)
2 or

that p(x) ≤ 1
2 + ε(n)

2 . The next inequality follow from the p(x) ≥ 1
2 + ε(n)

2 below
the second sum sign which implies that 1 is an upper bound for p(x). Note that
we do not know whether 1 is a strict upper bound, and thus, the inequality is not

8

MS-E1687 - Advanced topics in cryptography Lecture Notes s

strict. The subsequent strict inequality follows from the strict inequality below
the second sum sign. The subsequent strict inequality follows from assuming
(towards contradiction) that there are strictly less than ε(n)

2 2n many x ∈ {0, 1}n

such that Inequality 6 holds. The next equality step is basic arithmetic, and the
final strict inequality follows from removing the term − ε(n)

2 ·
(

1
2 + ε(n)

2

)
which

is a negative number since ε(n) is strictly positive.

C Probability Analysis for Pairwise Independence
Let w0, w1 ∈ {0, 1}n. To show pairwise independence of

⊕
i∈I ri and

⊕
j∈J rj ,

we need to show that the probability that
⊕

i∈I ri = w0 and that
⊕

j∈J rj = w1
is equal to 2−n · 2−n. Let i0 be a value contained in I, and let j0 be a value
contained in J \ I. We denote by S the set {1, .., log m} \ {i0, j0}. Before the
proof, for simplicity, we perform a variable renaming, and rename i0 to 1 and j0
to 2. Then, we have that S = {3, .., log m} which contains log m − 2 elements.
We have to make a case distinction whether 1 is contained in J or not. Let us
start with the case that 2 is not contained in J :

Prr1,..,rlog m←${0,1}n

w0 =
⊕
i∈I

ri ∧ w1 =
⊕
j∈J

rj


=

∑
r3,..,rlog m∈{0,1}(log m−2)n

2−(log m−2)n Prr1←${0,1}n,r2←${0,1}n

w0 =
⊕
i∈I

ri ∧ w1 =
⊕
j∈J

rj


=

∑
r3,..,rlog m∈{0,1}(log m−2)n

2−(log m−2)n Prr1←${0,1}n,r2←${0,1}n

w0 ⊕
⊕

i∈I\{1}

= r1 ∧ w1 ⊕
⊕

j∈J\{2}

= r2


=

∑
r3,..,rlog m∈{0,1}(log m−2)n

2−(log m−2)n Prr1←${0,1}n,r2←${0,1}n [w′0 = r1 ∧ w′1 = r2]

=
∑

r3,..,rlog m∈{0,1}(log m−2)n

2−(log m−2)n2−n · 2−n

=2−n · 2−n ·
∑

r3,..,rlog m∈{0,1}(log m−2)n

2−(log m−2)n1

=2−n · 2−n

In the third inequality, we rename w0 ⊕
⊕

i∈I\{1} to w′0, because it is a fixed
value w.r.t. the probability, and we rename we rename w1 ⊕

⊕
j∈J\{2} to w′1,

because it is a fixed value w.r.t. the probability.

9

MS-E1687 - Advanced topics in cryptography Lecture Notes s

For the case that 1 is contained in J , the third equality will read

∑
r3,..,rlog m∈{0,1}(log m−2)n

2−(log m−2)n Prr1←${0,1}n,r2←${0,1}n

w0 ⊕
⊕

i∈I\{1}

= r1 ∧ w1 ⊕
⊕

j∈J\{2}

= r1 ⊕ r2


=

∑
r3,..,rlog m∈{0,1}(log m−2)n

2−(log m−2)n Prr1←${0,1}n,r2←${0,1}n [w′0 = r1 ∧ w′1 = r1 ⊕ r2]

=
∑

r3,..,rlog m∈{0,1}(log m−2)n

2−(log m−2)n
∑

r1∈{0,1}n

2−n Prr2←${0,1}n [w′0 = r1 ∧ w′1 = r1 ⊕ r2]

=
∑

r3,..,rlog m∈{0,1}(log m−2)n

2−(log m−2)n
∑

r1∈{0,1}n

2−n Prr2←${0,1}n [w′0 = r1 ∧ w′1 ⊕ w′0 = r2]

=
∑

r3,..,rlog m∈{0,1}(log m−2)n

2−(log m−2)n · 2−n Prr2←${0,1}n [w′1 ⊕ w′0 = r2]

=
∑

r3,..,rlog m∈{0,1}(log m−2)n

2−(log m−2)n · 2−n · 2−n

where the second but last equality follows since there is only exactly one r1 ∈
{0, 1}n that is equal to w′0.

10

	Example for averaging argument
	Proof for averaging argument
	Probability Analysis for Pairwise Independence

