
Lecture 11: From OWFs to PRGs
Chris Brzuska, Christoph Egger

March 2024

1 Overview over techniques
Today, we are going to see how to construct pseudorandom generators from
one-way functions. This overview is experimentally written, and we welcome
feedback on the writing. We try to hint at core technical issues early on, before
going into all the details of the constructions, all the parameters etc.. We per-
sonally dislike handling parameters and try to highlight what we find interesting
and important. It might be that this first section is more readable after reading
the rest of the lecture notes. In any case, let us know what you think (Exercise
1 on Exercise Sheet 10).

Pseudo-entropy. We’ll start with the observation that the function

G(x) := f(x)||x

is a so-called next-bit pseudo-entropy generator if f is a one-way function. This
means that given some prefix of the output of G(x), it will be “somewhat hard”
to guess the next bit. This makes sense, because if from every prefix of G(x) the
next bit is easy to determine, then given f(x), we could just recover x bit-by-bit
(Get x1 from f(x), get x2 from f(x)||x1, then x3 from f(x)||x1||x2 and so on),
so there need to be some bits which are hard to guess.

How many bits of x need to be hard to recover?

Well, if it’s only logarithmically many, one could guess them with probability
2− logn = 1

n which would be too high probability, since it would allow to invert
the one-way function also with probability 1

n (which is non-negligible).
So, there need to be slightly more than logarithmically many bits of x which

are hard to predict from f(x) (and some prefix of x). To speak about the
hardness of prediction or the entropy of the next bit, it will be useful to actually
use formal notions of entropy. In Section 2, we revisit entropy, discuss the
differences between min-entropy and its average-case version, the classic (but
somehow more cumbersome) Shannon entropy. Moreover, we also define next-bit
entropy, which will be a (computational) variant of Shannon entropy. Finally,
we recall (a special case of) the leftover hash-lemma which gives us an extractor
which takes as input (a public random input and) a random variable Z with
min-entropy k and allows us to extract k− superlog(n) many bits from Z which
are almost uniformly distributed, i.e., their statistical distance from the uniform
distribution is 2−superlog(n) which is negligible in n.

1

Chernoff. Unfortunately, a one-way function f only ensures that G has Shan-
non next-bit entropy, but not min-entropy. This is annoying, because we want
to build a PRG, so we want to use an extractor on something to get some nearly
uniform bits. But extractors need min-entropy. Here, our friend Chernoff comes
to help again (in a new variant), and we review the Chernoff bound which we
need in Section 3. Exercise Sheet 10 also has a nice fill-in exercise for proving
one variant of the Chernoff bound so that these Chernoff bounds become a lit-
tle less obscure1. Maybe, in a future course, we also prove this more general
variant, if we find a nice and concise proof of it.

We will see that using a general Chernoff bound (for independent random
variables which are not Booleans), we can show that if we sample a couple of
random variables Z = (X1, .., Xt) and look at all of their outputs together,
then their min-entropy is quite similar to their “expected” uncertainty, a.k.a.
Shannon entropy. Concretely, Chernoff bound helps us to show that if we have
sufficiently many independent random variables, then their sum is close to their
expectation. However, now, the random variables that we consider and sum of
are the entropies of the Xi, i.e., we consider the expectation of

Z :=
∑
i

− log pi(Xi),

where pi(z
i) := Pr

[
Xi = zi

]
. The expectation E(Z) is equal to the sum of

the Shannon entropies H(Xi) and we find that with overwhelming probability,∑
i− log pi(Xi) is close to

∑
i H(Xi).

Hybrid arguments. The proof uses two hybrid arguments. One of them is
very similar to the one in Lecture 7 in that it iterates a PRG to get more and
more random bits. However, this time, instead of iterating a PRG with 1 bit
stretch, we iterate a so-called Z-seeded PRG G. G gets as input the output of a
random variable Z and outputs a pair (Z ′, y) such that they are computationally
indistinguishable from (Z, z), where z is a string drawn uniformly at random
from {0, 1}|y|. In other words, the seed of G is not distributed uniformly at
random, only the additional output y is distributed uniformly at random. In
Section 4, we see2 that we can use the exact same argument as in Lecture 7 to
show that iterating this Z-seeded PRG yields a proper PRG.

The other hybrid argument is over the bits of Gnb(x) = f(x)||x. The reason
is that we want to benefit from each bit of Gnb(x) = f(x)||x, but next-bit
pseudo-entropy only states “Cut the last couple of bits of Gnb(x) and then
look at the entropy of the next bit”, i.e., it is an argument only for a single
bit. Thus, we use a hybrid argument, where step-by-step, we make the bits of
Gnb(x) “disappear” from the distribution, starting with the last bit, so that we
can use entropy arguments where only previous bits are known.

1Spoiler: The proof of the Chernoff bound for n independent binary random variables Xi

with Pr[Xi = 1] = p is simply by exponentiating both sides of the inequality
∑

Xi > pn+ εn
and then applying the Markov bound which sais that for each positive a > 0 and any random
variable Z, Pr[Z ≥ a] ≤ E[Z]

a
.

2Well, we’ll actually omit the proof, but hopefully, you can get convinced yourself...

2

Averaging. For the last approach, consider the case that the last bit of Gnb(x)
has no next-bit pseudoentropy whatsoever, e.g., it might be that it is a copy
of the first bit of Gnb(x). Then, we cannot extract randomness from that bit.
Therefore, we will average over all positions of Gnb(x) in the proof. See Section 6
for a description of the construction of the Z-seeded PRG.

2 Notions of Entropy
2.1 Min-Entropy
Entropy measures how “random” a distribution is, and it measures entropy in
bits. I.e., all entropy measures are defined such that the uniform distribution
over n bits will have entropy n. One of the most important notions of entropy
in cryptography is min-entropy. It measures the worst-case entropy, i.e., looks
at the most likely element in a distribution.

Definition 1 (Min-Entropy). Let D be a distribution. Then, its min-entropy
H∞(D) is defined as

H∞(D) := − log2 maxx(Pr[D = x]).

Example. Consider Dexample which returns

0n with probability 1

2

a uniformly random string from {0, 1}n with probability 1

2
.

We can compute the min-entropy of H∞(Dexample) by looking at its most likely
element, which is 0n and occurs with probability 1

2 (well, actually, even with
slightly higher probability 1

2 +2−n, but let us ignore this for sake of simplicity).
Then, log2(

1
2) is equal to −1 and −(−1) = 1, so Dexample has 1 bit of min-

entropy, i.e., H∞(Dexample) = 1.

2.2 Shannon Entropy
Looking at Dexample, we might think that min-entropy is a rather wasteful and,
in some way, inaccurate way of measuring “how much randomness” is contained
in a distribution, since it just ignores that there is a lot of randomness in the
distribution Dexample. Maybe, it would be more accurate to consider the average
entropy rather than the min-entropy. Shannon formalized this notion of average
entropy and it is named after him.

Definition 2 (Shannon Entropy). Let D be a distribution. Then, its Shannon
entropy H(D) is defined as

H(D) := −
∑
x

Pr[D = x] · log2(Pr[D = x]).

3

Note that now, in the formula for H(D), we replaced maxx by
∑

x Pr[D = x],
i.e., we now average over all possible values x and weigh by their probability.
How much Shannon entropy does our example Dexample have? Since the all-zero
string (at least intuitively) does not contribute much entropy, let’s look at the
other strings. Their probability is 1

2 · 2
−n. Now, for any of such string x, we

have
log2(Pr[D = x]) = log2(

1
2 · 2

−n) = −(n+ 1).

For these strings,
∑

x Pr[D = x] sums up to (almost) 1
2 (We would again need

to remove the all-zero string and would only get 1
2 − 2−n, but let’s ignore this.),

and so, we obtain that the Shannon entropy of Dexample is H(Dexample) ≈ n+1
2 .

2.3 Next-Bit Pseudo-entropy
A next-bit pseudo-entropy generator Gnb is a function where it is hard to predict
some of the bits, given the previous bits of the output of the function, i.e., there
are some random variables Y i such that they are indistinguishable from the
actual next bit of Gnb

Gnb(x)[1..i]
comp
≈ Gnb(x)[1..i− 1]||Y i

and such that the Y i have real entropy, i.e., the sum of the entropies of Y i is
higher than the entropy of x. In particular, we will ask that if x is a uniformly
random bitstring of length n, then the sum of the entropies of the Y i should be
n+ log2(n), that is, log2(n) bits greater than the actual entropy.

Definition 3 (Pseudo-entropy Generator). A polynomial-time computable, de-
terministic function Gnb : {0, 1}∗ → {0, 1}∗, with ∀x ∈ {0, 1}∗ absGnb(x) = 2|x|
has n + log2 n bits next-bit pseudo-entropy if for all n ∈ N, there are random
variables Y 1, .., Y 2n with Y i ∈ {0, 1} and jointly distributed with x such that
the following holds:

Entropy
∑2n

i=1 Ex←${0,1}n [H(Y i|Gnb(x)[1..i− 1])] = n+ log2 n

Indistinguishability For all pairs of PPT A1,A2, the following advantage is
negligible in n:

|Prx←${0,1}n,i←$A1(1n)

[
AO(·)

2 (1n, Gnb(x)[1..i])
]

−Prx←${0,1}n,i←$A1(1n),y←$Y i

[
AO(·)

2 (1n, Gnb(x)[1..i− 1]||y)
]
|,

where O(j) can be called repeatedly, samples x′ ←$ {0, 1}n and y′ ←$ Y j

and returns Gnb(x
′)[1..j − 1]||y′. Gnb(x)[1..i] denotes the first i bits of

Gnb(x).

First, recall that we can assume without loss of generality that a one-way
function is length-preserving (by appending zeroes or ignoring some input bits),
see Goldreich, Foundations of Cryptography I for a complete proof.

4

Lemma 1 (Length-preserving OWFs (Goldreich)). If OWFs exist, then length-
preserving OWFs exist.

Lemma 2 (Vadhan-Zheng). If f is a length-preserving one-way function, then

Gnb(x) := f(x)||x

has next-bit pseudo-entropy n+ log2 n.

We will not prove this lemma (at least in this year’s edition of the course),
since we do not feel sufficiently comfortable with the notion of KL-divergence
yet which is used in the proof of the lemma. However, we refer back to Section 1
for an explanation of why n+ log2 n is a plausible bound. Interestingly, Miikka
Tiainen proved in his master thesis, that the same statement is true if f is a
distributional one-way function.

Lemma 3 (Tiainen). If f is a length-preserving distributional (1 − negl(n))
one-way function, then

Gnb(x) := f(x)||x

has next-bit pseudo-entropy n+ log2 n.

For the rest of this lecture, we will work based on a function Gnb which has
n+ log2 n bits pseudo-entropy.

2.4 Randomness Extractors
Recall that a randomness extractor takes the entropy of a distribution and turns
it into something uniformly random. Randomness extractors are rather picky
and needy—they only work with the min-entropy of a distribution. Moreover,
they also need a public uniformly random and independent salt. Compare Lec-
ture 5 for a more extensive discussion of randomness extractors, their needs
and limitations. We now recall the definition of statistical distance, then the
definition of extractors and then the leftover hash-lemma (cf. Lecture 5).

Definition 4 (Statistical Distance). For two random variables X and Y , we
define the statistical distance between X and Y as

SD(X,Y) := 1
2

∑
z∈Supp(X)∪Supp(Y)

|Pr[X = z]− Pr[Y = z]|,

where the support Supp(X) denotes the set of values z where Pr[X = z] > 0.

Definition 5 (Strong extractor). A function ext : {0, 1}r × {0, 1}` → {0, 1}m
is an (k, ε)-strong extractor if for all random variable X with H∞(X) ≥ k, we
have that

SD((ext(X,S), S), (Um, S)) ≤ ε.

Here, the set Rm is a set of randomness which depends on m.

5

Alternative formulation of indistinguishability One might also define an
extractor by requiring that all adversaries (even inefficient ones) have at most
distinguishing advantage ε in distinguishing the following two experiments.

RealD,ext

x←$ D

s←$ {0, 1}`

y ← ext(s, x)

return (s, y)

RealD,ext

s←$ {0, 1}`

y ←$ {0, 1}m

return (s, y)

Lemma 4 (Leftover Hash Lemma, Proof in Lecture. 5). Let t and n be natural
numbers. Let h : {0, 1}tn × {0, 1}` → {0, 1}m be a 2-universal hash-function.
Then h is also a strong (k, ε) extractor as long as m ≤ k − 2 · log2(1ε).
In particular, for m ≤ k − superlog(n), ε(n) is negligible in n.

We only added the text in pink to the lemma as compared to Lecture 5 and
replace the input length by tn instead of n to match it to the scenario which we
will use later in the proof today.

3 Chernoff Bound
Lemma 5 (Chernoff). Let X1,..,Xm be m independent random variables such
that for all i, 0 ≤ Xi ≤ ` and such that E[

∑
i Xi] = µ. Then, for all δ,

Pr

[
m∑
i=1

Xi ≤ (1− δ)µ

]
≤ e−

δ2µ2

m`2 (1)

In particular, for µ = t(n+log2(n)), ` = 2log(n), m = tn and δ =
log2(n)−

superlog(n)
t

n+log2(n)
,

we have that

(1− δ)µ = (1− δ)t(n+ log2(n))

=

(
1−

log2(n)−
superlog(n)

t

n+ log2(n)

)
t(n+ log2(n))

=

(
n+ log2(n)− log2(n) +

superlog(n)
t

n+ log2(n)

)
t(n+ log2(n))

=

(
n+ superlog(n)

t

n+ log2(n)

)
t(n+ log2(n))

=

(
n+

superlog(n)

t

)
t

= tn+ superlog(n) (2)

6

and

e−
δ2µ2

m`2 = exp

− 1

tn

(
(log2(n)−

superlog(n)
t)t(n+ log2(n))

(n+ log2(n)) · 2log(n)

)2

= exp

− 1

tn

(
(log2(n)−

superlog(n)
t)t

2log(n)

)2

= exp

(
− 1

tn

(
(t log2(n)− superlog(n))

2 log2 n

)2
)

= exp

(
− 1

2n2superlog(n)

(
(2n log2(n) · superlog(n)− superlog(n))

2 log2 n(n)

)2
)

using t = 2n · superlog(n)

≤ exp

(
− 1

2n2superlog(n)

(
n log2(n) · superlog(n)

2 log2 n

)2
)

= exp

(
− 1

8n2superlog(n)
(n · superlog(n)))2

)
= exp

(
− superlog(n)

8

)
= negl(n)

4 Z-seeded PRG
Definition 6 (Z-seeded PRG). Let Z(1n) be an efficiently sampleable distribu-
tion. Let G be a polytime-computable deterministic function. G is a Z-seeded
pseudorandom generator if for all PPT adversaries A, the following advantage
is negligible:∣∣Prz←$Z(1n)[A(1n, G(z))]− Prz←$Z(1n),r←${0,1}[A(1n, z||r)]

∣∣
Lemma 6 (Z-seeded PRG). Let Z be a poly-time sampleable distribution
which gets as input a security parameter 1λ and uses p(λ) uniformly random
bits to sample its output, where p(λ) is a polynomial and also (w.l.o.g.) injective
and such that given p(λ), computing λ := p−1(p(λ)) is easy.

If G is a Z-seeded PRG, then the following function PRG is a standard
PRG.

7

PRG(r)
s← empty string

λ← p−1(|r|)

z ← Z(1λ; r)
for i = 1..|r|+ 1

y ← G(z)

z ← y[1..|r|]
s← s||y[|r|+ 1]

return s

The proof of Lemma 6 follows exactly the same hybrid proof strategy which
we also used for length-expansion in an earlier lecture. We thus omit the proof.

5 Main Theorem and Proof
Theorem 1. If one-way functions exist, then PRGs exist.

The proof consists of three main steps. Note that in the lecture video, we
referred to these steps as Lemma 1, Lemma 2 and Lemma 3, but now here, the
numbering is different. The first lemma we rely on is Lemma 2 which states that
if there is a one-way function, then there is a poly-time computable function Gnb

which is length-doubling and has n+log2 n bits of next-bit pseudo-entropy. The
second lemma we need is that from such a next-bit pseudo- entropy generator
Gnb, we can construct a Z-seeded PRG. The proof of this statement is rather
complex and we thus call it a theorem, provide a construction in Section 6 and
prove its security in Section ?? (not yet in the lecture notes, sorry!).

Theorem 2. If Gnb is a next-bit pseudo-entropy generator, then the construc-
tion G provided in Section 6 is a Z-seeded PRG.

Finally, once we have a Z-seeded PRG, we can use Lemma 6 to turn the Z-
seeded PRG into a standard PRG. Thus, all which remains to show is Theorem 1

6 Construction
In this section, we provide the construction of the Z-seeded PRG G. The picture
below illustrates the main idea. See the lecture video for motivation. We here
provide the pseudo-code for formality.

8

y[1]

y[2]

y[3]

y[4]

y[5]

y[6]

y[7]

y[8]

y[9]

y[10]

y[11]

y[12]

y
’[

1]

y
’[

2]

y
’[

3]

y
’[

4]

y
’[

5]

y
’[

6]

...

n

n

n

t

We first describe the distribution Z.

Z(1n)
for i = 1..2n

xi ←$ {0, 1}n

wi ←$ {0, 1}n

h←$H
// hash-function

// Construction of square

for i = 1..2n

for τ = 1..t

for i = 1..2n

if τ > i : a(τ, i) a(τ, i)Gnb(x)

..

..

9

