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Definition

Both problem are related to find a cycle.

TSP and Hamiltonian Cycle reduction:

• For a graph G = (V ,E), build a complimentary graph G′;

• For every pair of nodes (u, v) without an edge in G, add an edge in G′.

• If edge (u, v) exist in G, set the weight to zero, otherwise assign weight equal
to one.
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Figure: G and complimentary G′
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Polynomial Reduction

The graph G has a Hamiltonian cycle if there is a cycle in G′ passing through all
nodes only once with combined weight equal to zero.

If the cycle passes through all nodes and the combined weight is zero, it means
that the cycle only contains edges present in G. Hence, a Hamiltonian cycle
exists in G.

If there is a Hamiltonian cycle in G, it also forms a cycle in G′ with combined
weight equal to zero. Hence, a solution for TSP exists in G′.
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Definition

A 3-SAT is composed from three-literal clauses. The goal is to reduce a clique of
size k in a group of k clauses ϕ.

• Building a graph G of k clusters with a maximum of 3 nodes in each cluster;

• Each cluster corresponds to a clause in ϕ;

• Each node in a cluster is labeled with a literal from the clause;

• An edge is put between all pairs of nodes in different cluster except for pairs
of the form (x, x̄);

• No edge is put between any pair of nodes in the same cluster.
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Given the following clause:

ϕ = (x2 + x1 + x̄3)(x̄1 + x̄2 + x4)(x2 + x̄4 + x3)

Figure: 3-SAT to clique
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If two nodes are connected, it means that the literal can be simultaneously true.

If two literals, not in the same clause can be assigned true simultaneously; hence,
the nodes are also connected.
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G has k-size clique, if ϕ is satisfiable.

If G has a clique of size k, the clique has exactly one node in from each cluster.
Hence, all corresponding literals can be assigned true with each literal belong to an
individual k clauses. Then, ϕ is satisfiable.

If ϕ is satisfiable, there is a combination of nodes corresponding to it. Let the set
of nodes be A. From each clause, there are some literals that are true, that there
are also in A. Remembering that two literals cannot be from the same clause,
a clique can be formed by connecting a single node from each clause forming a
clique.
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Definition

Both problems can be traced to covering problems.

If a graph G has an independent set S, it also has a vertex cover V − S.
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If S is an independent set, there is no edge (u, v) ∈ G, such that both v and u are
in S. Therefore, either v or u has to be in V − S.

If V − S is a vertex cover, between any pair of nodes u, v ∈ S, the edge connecting
them would not exist in V − S, otherwise it violates the definition of such vertex
cover. Hence, no pair in S can be reached by a single edge, creating an
independent set.

Remark: Independent Set of size k corresponds to a Vertex Cover of size V − |k|.
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