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CHAPTER 1
NP-Completeness

In the problem analyses over the last two lectures, it was hinted that a problem in the class NP can be
expressed as another problem in the same class. In this lecture, we are formalizing this process:
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f (x1)
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f (x2)
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To sum up, (X1,Y1) polynomially transforms to (X2Y2) if there exists polynomial function p1 : X1 → X2

such that:

p1(x1) ∈ Y2 for all x1 ∈ Y1 and

p1(x1) ∈ X2 \ Y2 for all x1 ∈ X1 \ Y1

Hence, yes-instances are mapped to yes-instances, no-instances are mapped to no-instances. Also,
(X1,Y1) is at most as hard as (X2,Y2) and for general polynomial function p2: polynomial reduction.

Using the definition of NP-Completeness allows us to claim that if (X ,Y ) ∈ NP, such problem is called
NP-complete if all other problems in NP polynomially transform to (X ,Y ).

NP-complete problems are the "hardest" problems in NP. However, if one NP-complete problem is solvable
in polynomial time, all are (P = NP). This leads to the final question:

Do NP-complete problems actually exist?

The basic problem for NP-Complete is the Satisfiability Problem (SAT), defined as:

literal: a binary variable, e.g. x , or its negation, e.g. ¬x
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clause: a disjunction of literals, e.g.
x1 ∨ ¬x2

CNF: conjunctive normal form, a conjunction of disjunction, e.g.

(x1 ∨ ¬x2) ∧ (x2 ∨ x3) ∧ ¬x4

SAT: satisfiability problem: Can a boolean formula, given as CNF, be satisfied?

This problem was initially fully described and categorized as an NP by Stephen Cook in 1971.

Proof 1 (SAT)

• show that for any nondeterministic algoritm an equivalent SAT instance can be constructed in
polynomial time

N Need "narrow" definition of algorithms;

Since then, many (thousand of) problems have been shown to be NP-complete. Karp’s original 21
NP-complete problems is a list of several NP-problems which was curated by Karp, R.M. (1975), in On the
complexity of combinatorial problems. Networks 5 (1975), 45–68.

As an alternative to solve such problems, integer linear programming is used. However, it is important to
note that ILP is NP-complete.

Proof 2 (ILP)

• idea: (X ,Y )⇝ SAT⇝ integer linear programming

• check given solution in polynomial time⇒ integer linear programming is in NP

• let F be a formula in CNF, construct ILP P

– for each variable xi of F construct a binary variable yi for P

– for each clause C introduce one constraint to P:∑
i : xi∈C yi +

∑
i : ¬xi∈C(1− yi) ≥ 1

• P is feasible ⇐⇒ F is satisfiable

Remark: A problem that can be formulated as an integer linear program is not automatically NP-complete.

Recalling the Knapsack problem, considered S as a multiset of positive integers. Can you partition S into
S1, S2 such that:

∑
s∈S1

s =
∑
s∈S2

s?

This version is known to be NP-complete.
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The decision version of knapsack problem is where items I with weight wi , value ci , i ∈ I, maximum weight
B, minimum value C and the goal is to find I′ ⊂ I with:

∑
i∈I

wi ≤ B∑
i∈I

ci ≥ C?

How can you show that knapsack is NP-complete?

Another category is NP-Hardness. A problem P is called NP-hard if all problems in NP polynomially
reduce to P .

Remark: P not necessarily in NP.

Some examples are:

• (optimization version of) knapsack

• multi-commodity flows

• travelling salesperson problem

• uncapacitated facility location

Back again, the main question is: P ̸= NP?

Showing whether P = NP or P ̸= NP is one of the Millennium Prize Problems and many researchers
have spent their lives working on this question. Most of them believe that P ̸= NP. However, if P = NP,
this would have a large influence on the (cyber) security of cryptography.

NP

P

NP-complete
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CHAPTER 2
NP-Complete Proof

Based on the discussion from the previous lecture, the "recipe" to categorize a novel problem as NP-
complete is as follows:

• Show it is in NP:
Verify that if a candidate solution is valid in polynomial time;

• Show it is NP-Hard:
Reduce to a known NP-Complete problem −→ polynomial reduction.

With these two steps, a novel problem can be considered a NP-Complete problem.

The most challenging task is finding an efficient way to reduce one problem to another. A few examples are
displayed below.

2.1 CLIQUE AND INDEPENDENT SET

Knowing that both clique and independent set are NP-Complete, there is a simple transformation between
them:

• For a graph G = (V ,E), build a complementary graph G′;

Figure 2.1: G and complimentary G′

• For every v ∈ V , it creates another set of nodes v ∈ V ′;
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• Add an edge in G′ for every edge not in G.

Remark: Complimentary graph can be calculated in polynomial time.

If there is an independent set of size k in the complement graph G′, no two nodes share an edge in G′.
Hence, all of those edges share an edge in G forming a clique of size k .

If there is a clique of size k in the graph G, all nodes share an edge in G, implying that there is no two
nodes share an edge in G′. Hence, all of those edges share an edge in G′, forming an independent set
of size k .

2.2 TSP AND HAMILTONIAN CYCLE

Another example involves TSP and Hamiltonian cycle, in which both problems are related to finding a cycle.
A quick transformation between them is:

• For a graph G = (V ,E), build a complementary graph G′;

Figure 2.2: G and complimentary G′

• For every pair of nodes (u, v) without an edge in G, add an edge in G′.

• If edge (u, v) exists in G, set the weight to zero; otherwise, assign weight equal to one.

The graph G has a Hamiltonian cycle if there is a cycle in G′ passing through all nodes only once with
combined weight equal to zero.

If the cycle passes through all nodes and the combined weight is zero, it means that the cycle only contains
edges present in G. Hence, a Hamiltonian cycle exists in G.

If there is a Hamiltonian cycle in G, it also forms a cycle in G′ with a combined weight equal to zero. Hence,
a solution for TSP exists in G′.

2.3 INDEPENDENT SET AND VERTEX COVER

In this example, both problems can be traced to covering problems. In addition, if a graph G has an
independent set S, it also has a vertex cover V − S.
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If S is an independent set, there is no edge (u, v) ∈ G, such that both v and u are in S. Therefore, either v
or u has to be in V − S.

Suppose V −S is a vertex cover between any pair of nodes u, v ∈ S, the edge connecting them would not
exist in V − S. Otherwise, it violates the definition of such vertex cover. Hence, a single edge can reach no
pair in S, creating an independent set.

Remark: Independent Set of size k corresponds to a Vertex Cover of size V − |k |.

2.4 3-SAT TO CLIQUE

A 3-SAT (as a particular case of SAT) comprises three literal clauses. The goal is to reduce a clique of size
k in a group of k clauses φ. The following steps assist in this reduction:

• Building a graph G of k clusters with a maximum of 3 nodes in each cluster;

• Each cluster corresponds to a clause in φ;

• Each node in a cluster is labeled with a literal from the clause;

• An edge is put between all pairs of nodes in different cluster except for pairs of the form (x , x̄);

• No edge is put between any pair of nodes in the same cluster.

Given the following clause, as an example:

φ = (x2 + x1 + x̄3)(x̄1 + x̄2 + x4)(x2 + x̄4 + x3)

Figure 2.3: 3-SAT to clique

If two nodes are connected, it means that the literal can be simultaneously true.

If two literals, not in the same clause, can be assigned true simultaneously, the nodes are also connected.

Using the polynomial reduction, we can prove that if G has k -size clique, φ is satisfiable.

Proof 3
If G has a clique of size k, the clique has exactly one node in from each cluster. Hence, all corresponding
literals can be assigned true with each literal belonging to an individual k clauses. Then, φ is satisfiable.
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If φ is satisfiable, a combination of nodes corresponds to it. Let the set of nodes be A. Some literals are
true from each clause and are also in A. Remembering that two literals cannot be from the same clause,
a clique can be formed by connecting a single node from each clause, forming a clique.
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