
Ellipsometry X-ray reflectivity

CHEM-L2000

Eero Kontturi 4th March 2024

Learning objectives

- To roughly understand the principles of ellipsometry and XRR
- To be aware of their applications and restrictions when analysing polymeric (soft) materials
- To be able to point out what kind of information one can gain from applying ellipsometry and XRR on soft materials

Outline

- (1) General aspects of both techniques
- (2) Ellipsometry
 - theory
 - measuring / interpreting
 - applications
- (3) X-ray Reflectivity (XRR)
 - theory
 - measuring / interpreting
 - applications

Important requirements

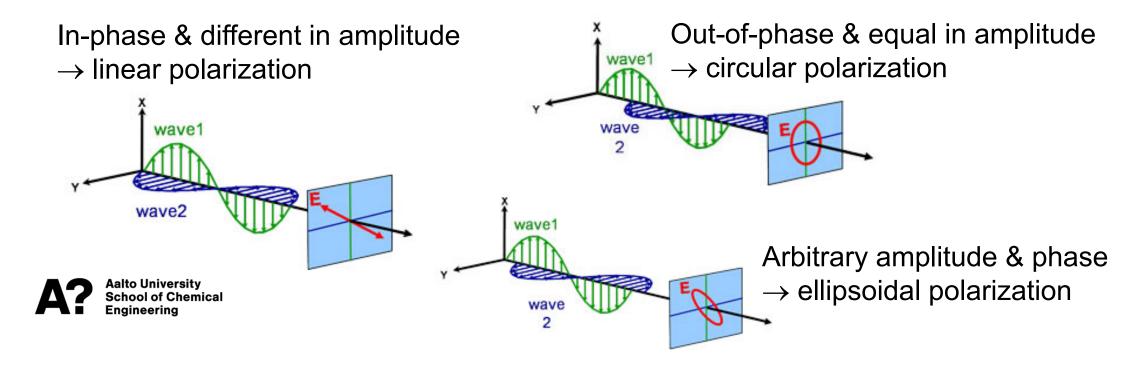
- Both ellipsometry and XRR are analytical techniques for supported ultrathin films
- The substrate (support) must reflect light (ellipsometry) or X-rays (XRR)
- Free-standing films (without a reflecting substrate) cannot be analyzed by either of the techniques

General applications

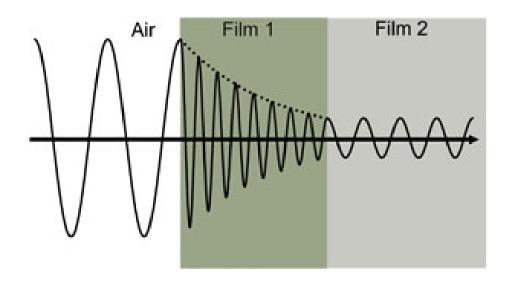
- Both ellipsometry and XRR are generally used for inorganic ultrathin films (hard materials)
- Soft, organic materials like natural polymers are less frequently analyzed and the interpretation methods for inorganic materials do not necessarily work for organic materials

Ellipsometry

General considerations


- Ellipsometry analyzes the dielectric properties of a supported ultrathin film
- Usually, film thickness and/or optical constants (like refractive index) are qualities measured with an ellipsometer

Theory: polarization


- Electric field of an electromagnetic wave is always perpendicular to its direction
- Polarized light: electric field follows a specific path with a distinct shape at any point

Two orthogonal light waves travelling at z-direction:

Theory: interaction between light and material

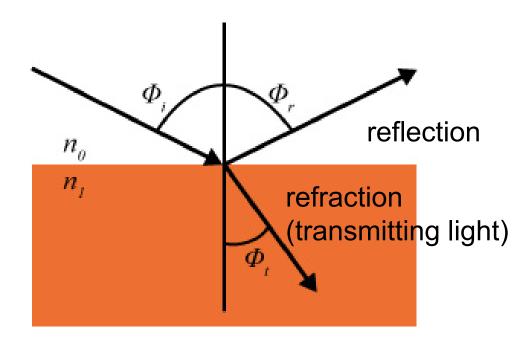
- Light slows when it becomes in contact with material
- Because the energy of light stays the same, its frequency increases and, therefore, the wavelength decreases

Complex refractive index:

$$\tilde{n} = n + ik$$

n – refractive index

k – extinction coefficient

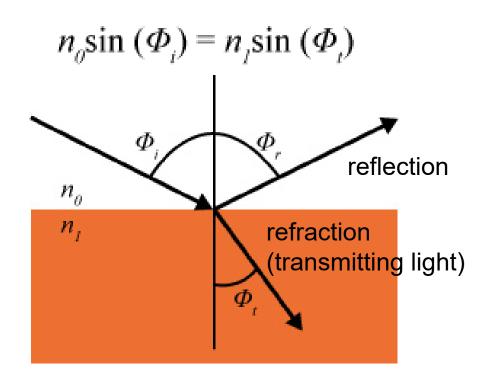


Theory: interaction between light and material

At an interface, part of the light reflects and the remained transmits and refracts.

Snell's law:
$$n_0 \sin(\Phi_i) = n_1 \sin(\Phi_i)$$

The mathematical expression of the phenomena of reflection/refraction is simple.



Theory: interaction between light and material In terms of wave mechanics, the

In terms of wave mechanics, the mathematical expression is more complex.

Snell's law:

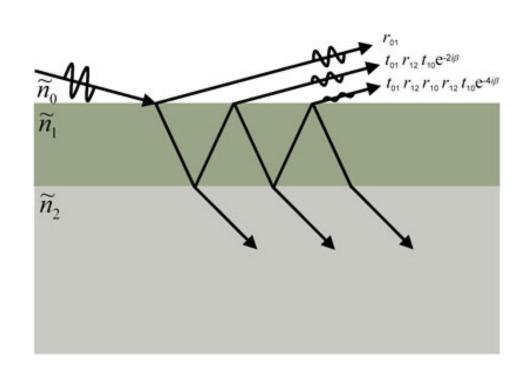
Fresnel equations

$$r_{\rm s} = \left(\frac{E_{\rm 0r}}{E_{\rm 0i}}\right)_{\rm s} = \frac{n_{\rm i} \cos\left(\Phi_{\rm i}\right) - n_{\rm t} \cos\left(\Phi_{\rm t}\right)}{n_{\rm i} \cos\left(\Phi_{\rm i}\right) + n_{\rm t} \cos\left(\Phi_{\rm t}\right)}$$

$$r_{p} = \left(\frac{E_{0r}}{E_{0i}}\right)_{p} = \frac{n_{t}\cos\left(\Phi_{i}\right) - n_{i}\cos\left(\Phi_{t}\right)}{n_{i}\cos\left(\Phi_{t}\right) + n_{t}\cos\left(\Phi_{i}\right)}$$

$$t_{s} = \left(\frac{E_{0t}}{E_{0i}}\right)_{s} = \frac{2n_{i}\cos\left(\Phi_{i}\right)}{n_{i}\cos\left(\Phi_{i}\right) + n_{t}\cos\left(\Phi_{t}\right)}$$

$$t_{p} = \left(\frac{E_{0t}}{E_{0i}}\right)_{p} = \frac{2n_{i}\cos\left(\Phi_{i}\right)}{n_{i}\cos\left(\Phi_{t}\right) + n_{t}\cos\left(\Phi_{i}\right)}$$


r – reflectance; t - transmittance

p – parallel; s – perpendicular

E – electric field

Theory: interaction between light and material In terms of wave mechanics, the

In terms of wave mechanics, the mathematical expression is more complex.

Fresnel equations

$$r_{\rm s} = \left(\frac{E_{\rm 0r}}{E_{\rm 0i}}\right)_{\rm s} = \frac{n_{\rm i} \cos\left(\Phi_{\rm i}\right) - n_{\rm t} \cos\left(\Phi_{\rm t}\right)}{n_{\rm i} \cos\left(\Phi_{\rm i}\right) + n_{\rm t} \cos\left(\Phi_{\rm t}\right)}$$

$$r_{p} = \left(\frac{E_{0r}}{E_{0i}}\right)_{p} = \frac{n_{t}\cos\left(\Phi_{i}\right) - n_{i}\cos\left(\Phi_{t}\right)}{n_{i}\cos\left(\Phi_{t}\right) + n_{t}\cos\left(\Phi_{i}\right)}$$

$$t_{s} = \left(\frac{E_{0t}}{E_{0i}}\right)_{s} = \frac{2n_{i}\cos\left(\Phi_{i}\right)}{n_{i}\cos\left(\Phi_{i}\right) + n_{t}\cos\left(\Phi_{t}\right)}$$

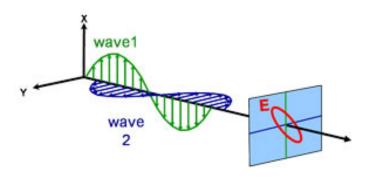
$$t_{p} = \left(\frac{E_{0t}}{E_{0i}}\right)_{p} = \frac{2n_{i}\cos\left(\Phi_{i}\right)}{n_{i}\cos\left(\Phi_{t}\right) + n_{t}\cos\left(\Phi_{i}\right)}$$

r – reflectance; t - transmittance

p – parallel; s – perpendicular

E – electric field

Measurements

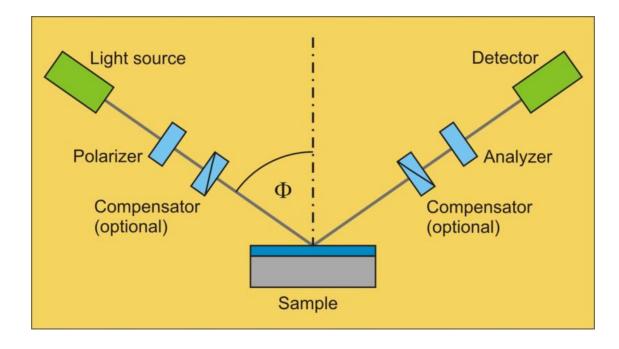

Ellipsometry actually measures the complex reflectance ratio (ρ), which can be denoted also as the ratio of the amplitudes of p (parallel) and s (perpendicular) components after reflection (r_p/r_s):

$$\rho = \frac{r_p}{r_s} = \tan(\psi)e^{i\Delta}$$

 $tan(\psi)$ – amplitude ratio upon reflection Δ - phase shift upon reflection

Change in polarization upon reflection

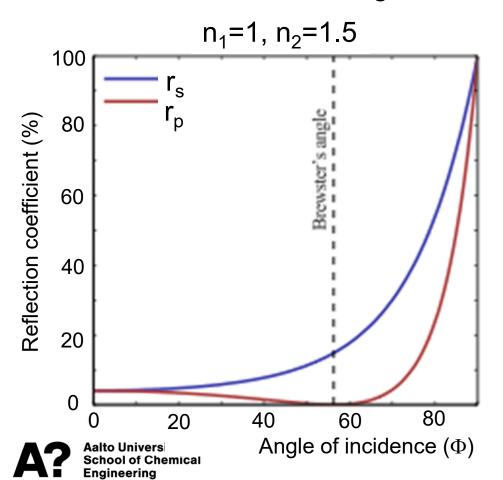
Remember



arbitrary amplitude & phase→ ellipsoidal polarization

- Ellipsometry is an indirect method
- Reflectance ratio (r_p/r_s) does not yield any concrete physical information on the sample
- Modelling is required to yield actual physical values
- → One must iterate values for k (extinction coefficient) and n (refraction coefficient) which would give a reasonable fit to the measurement values
- → Values for film thickness

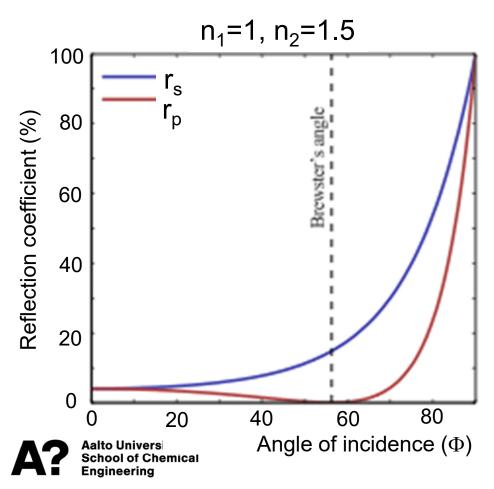
Experimental setup



In a conventional ellipsometry measurement mode:

- monochromatic wavelength is used
- incident angle (Φ) is varied manually by a goniometer
 (Spectroscopic ellipsometry is based on varying the wavelength of light)

The actual data that you get out of an ellipsometry measurement is the reflection coefficient as a function of angle of incidence for s- and p-components.


Reflectance coefficient is the ratio of light that has reflected from the sample, i.e., that has not been transmitted:

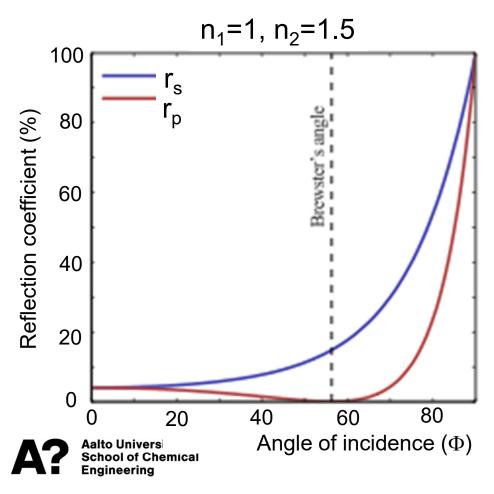
$$r_s = 1 - t_s$$

$$r_p = 1 - t_p$$

Note: when p-component is zero, the angle is called *Brewster's angle*.

The actual data that you get out of an ellipsometry measurement is the reflection coefficient as a function of angle of incidence for s- and p-components.

$$n_0 \sin(\Phi_i) = n_1 \sin(\Phi_i)$$


$$\tilde{n} = n + ik$$

n – refractive index

k – extinction coefficient

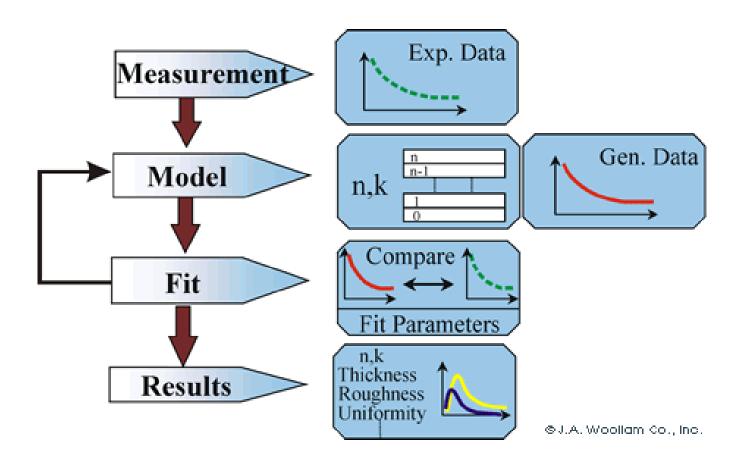
Modelling: n and k values are iterated to simulate the reflection curve with Fresnel equations.

The actual data that you get out of an ellipsometry measurement is the reflection coefficient as a function of angle of incidence for s- and p-components.

Fresnel equations

$$r_{\rm s} = \left(\frac{E_{\rm 0r}}{E_{\rm 0i}}\right)_{\rm s} = \frac{n_{\rm i} \cos\left(\Phi_{\rm i}\right) - n_{\rm t} \cos\left(\Phi_{\rm t}\right)}{n_{\rm i} \cos\left(\Phi_{\rm i}\right) + n_{\rm t} \cos\left(\Phi_{\rm t}\right)}$$

$$r_{p} = \left(\frac{E_{0r}}{E_{0i}}\right)_{p} = \frac{n_{t}\cos\left(\Phi_{i}\right) - n_{i}\cos\left(\Phi_{t}\right)}{n_{i}\cos\left(\Phi_{t}\right) + n_{t}\cos\left(\Phi_{i}\right)}$$


$$t_{s} = \left(\frac{E_{0t}}{E_{0i}}\right)_{s} = \frac{2n_{i}\cos\left(\Phi_{i}\right)}{n_{i}\cos\left(\Phi_{i}\right) + n_{t}\cos\left(\Phi_{t}\right)}$$

$$t_{p} = \left(\frac{E_{0t}}{E_{0i}}\right)_{p} = \frac{2n_{i}\cos\left(\Phi_{i}\right)}{n_{i}\cos\left(\Phi_{t}\right) + n_{t}\cos\left(\Phi_{i}\right)}$$

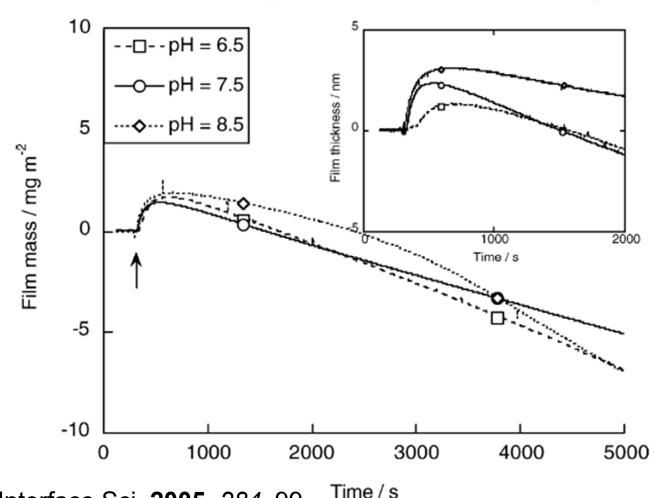
r – reflectance; t - transmittance

p – parallel; s – perpendicular

E – electric field

Important practical notions

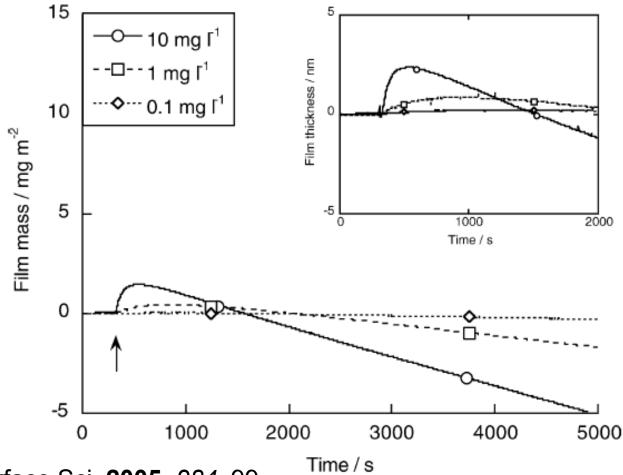
- Probably the most common use of ellipsometry is to determine the film thickness
- Film thickness can be probed from a submonolayer (<nm) thickness to several micrometers
- It helps if you know what you are measuring: if you know the refractive index (n) of the film material, you only have to iterate the k-value
 - → more reliable modelling of the reflectivity graph
 - → more reliable film thickness value



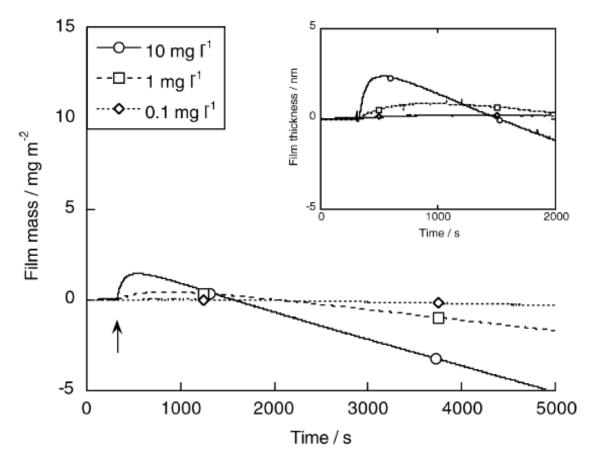
- Cellulase enzymes degrade cellulose into sugars
- Mechanisms of degradation are complex and difficult to interpret
- → Ultrathin model films can provide clarification to degradation mechanisms
- The enzymes first adsorb on cellulose, after which degradation begins
- This can be followed with in situ ellipsometry

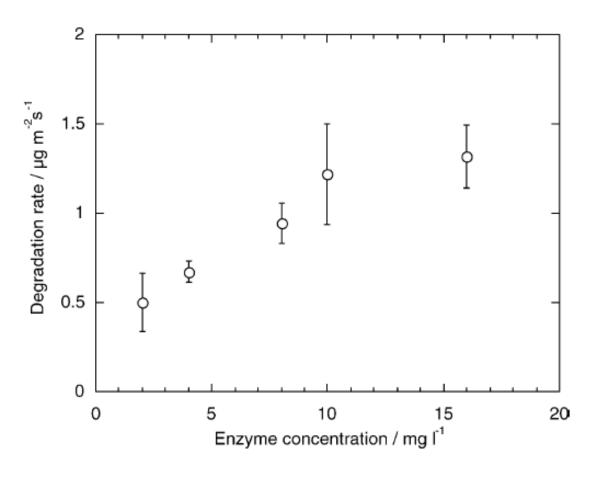
$$\Gamma = 3d_1 \frac{\frac{n_1 - n_0}{(n_1^2 + 2)(n_0^2 + 2)}}{\frac{A}{M} - v \frac{n_0^2 - 1}{n_0^2 + 2}} (n_1 - n_0).$$

- (1) The enzymes adsorb
- → increase in film mass
- (2) The enzymes start to degrade cellulose
- → decrease in film mass

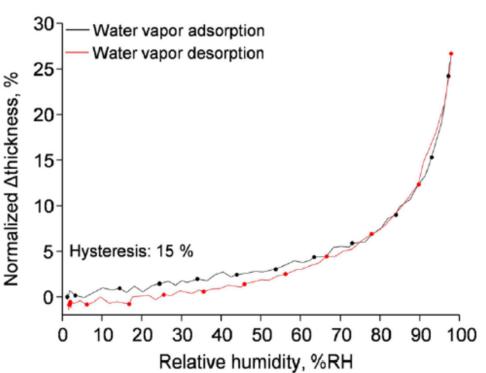


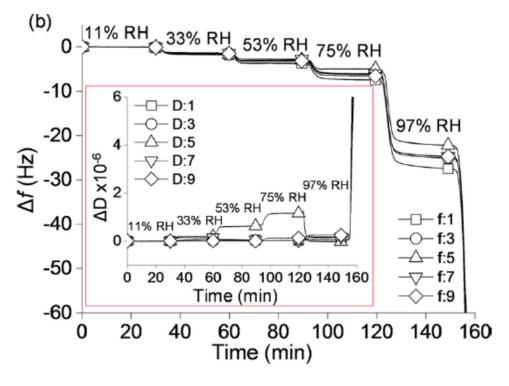
- (1) The enzymes adsorb
- → increase in film mass
- (2) The enzymes start to degrade cellulose
- → decrease in film mass


Effect of temperature


- (1) The enzymes adsorb
- → increase in film mass
- (2) The enzymes start to degrade cellulose
- → decrease in film mass

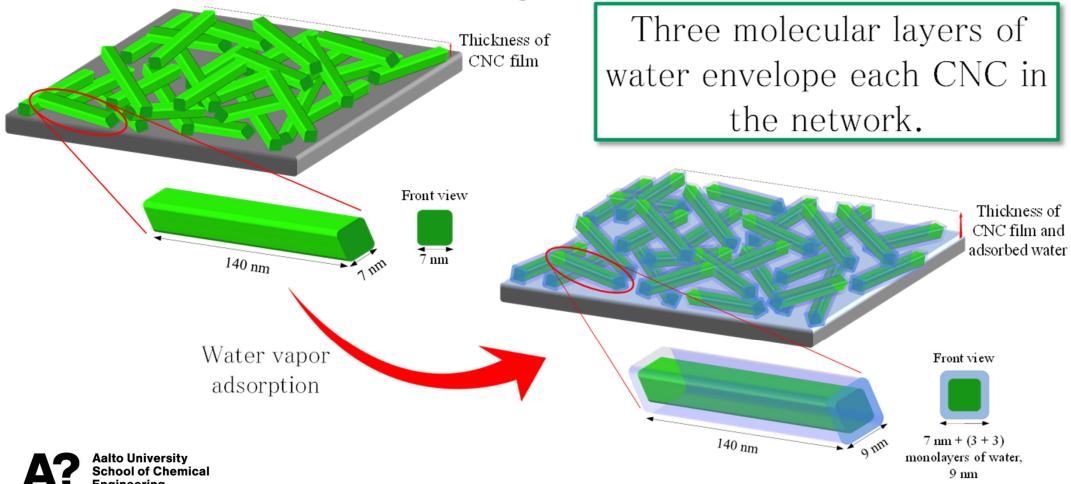
Effect of enzyme concentration


With ellipsometry data, it is easy to calculate the degradation rate of cellulose exposed to the enzymes.



Application example: swelling of cellulose nanocrystal film in vapor

Spectroscopic ellipsometry: thickness change Quartz crystal microbalance: mass change



Decrease in frequency

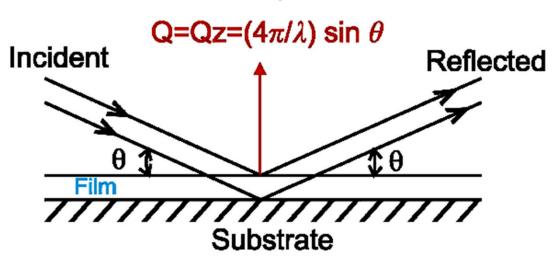
→ Increase in mass

Application example: swelling of cellulose nanocrystal film in vapor

Niinivaara et al. *Langmuir* **2015**, *31*, 12170.

Note on adsorption and ellipsometry

- Because of ambiguities in interpretation and the scant availability of in situ setups, ellipsometry is not used very often in in situ adsorption studies
- QCM and SPR are nowadays for more common in solution-based adsorption studies
- Ellipsometry is a good complementary technique



X-ray reflectivity (XRR)

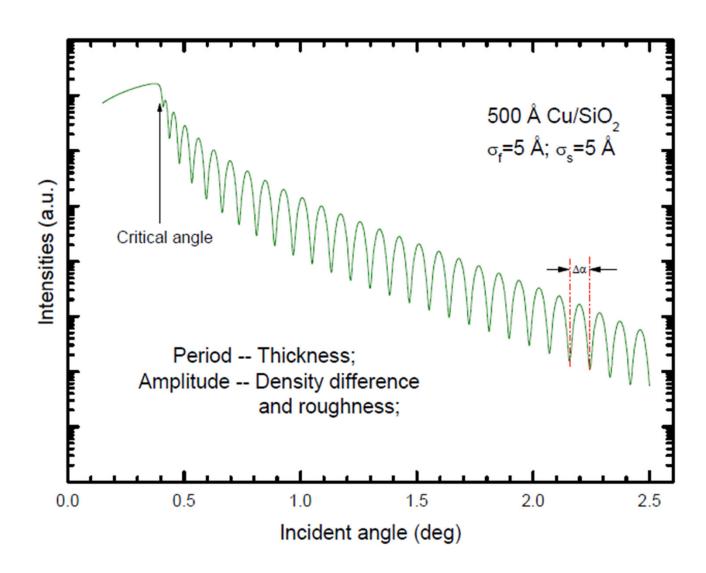
- Sample is exposed to monochromatic X-rays coming in at grazing angle
- The reflected intensity is plotted as a function of scattering vector (or reflection angle θ)

Scattering vector

Reflectivity presents periodical oscillations in reciprocal space. Reason: constructive interference at substrate-film and

substrate-air interface.

Result: accurate determination of film thickness.


First, total reflection occurs with very small reflection angles.

After the **critical angle** (α_c), interference fringes occur.

Note: the interference fringes are also called *Kiessig fringes*.

Example: 50 nm Cu film on silica (SiO₂)

Complex refractive index:

$$n = 1 - \delta - i\beta$$

Note that refraction depends also on mass density of the film.

$$\delta = \left(\frac{2\pi}{k_0^2}\right) r_e N_a \rho \left(\frac{Z + f'}{M_a}\right)$$

$$\beta = \left(\frac{2\pi}{k_0^2}\right) r_e N_a \rho \left(\frac{f''}{M_a}\right)$$

 $k_0=2\pi/\lambda$ (with λ being the wavelength) is the length of the x-ray wave vector r_e is the classical electron radius

 N_a is Avogadro's number

 ρ is the mass density

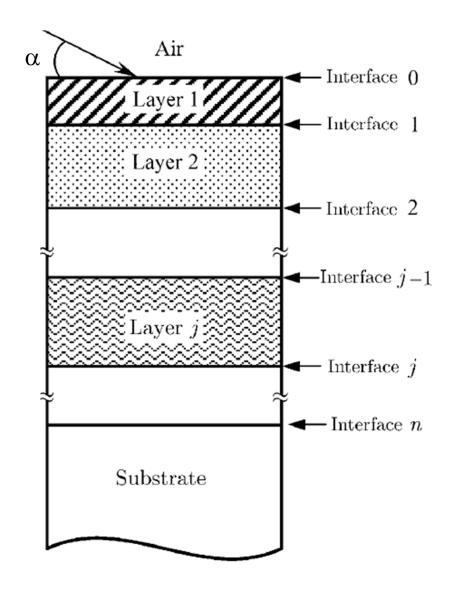
Z is the atomic number

 M_a is the atomic mass

f' is the real part of the dispersion coefficient

f'' is the imaginary parts of the dispersion coefficient

Reflectance coefficient (R_F):

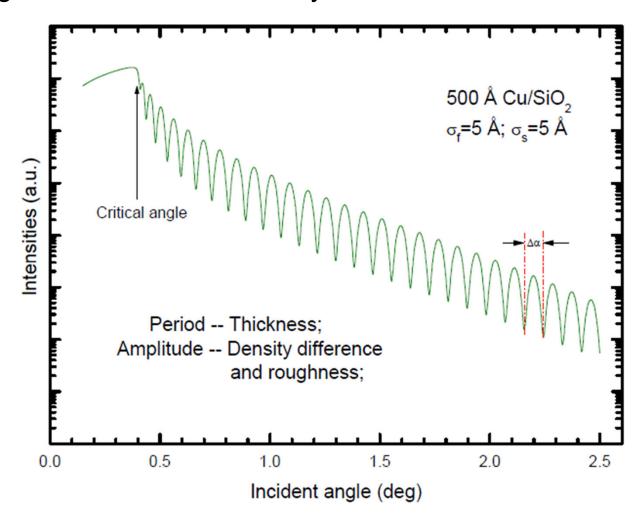

$$R_{F} = \left| \frac{r_{0}^{N-C} F_{0} + r_{1}^{N-C} F_{1} \exp(-i2k_{0} f_{1} h)}{1 + r_{0}^{N-C} r_{1}^{N-C} F_{0} F_{1} \exp(-i2k_{0} f_{1} h)} \right|^{2} = \left| \frac{R_{F}'}{R_{F}''} \right|$$

h – film thickness

$$r_j^{N-C} = \exp(-2k_0^2 \sigma_j^2 f_j f_{j+1})$$

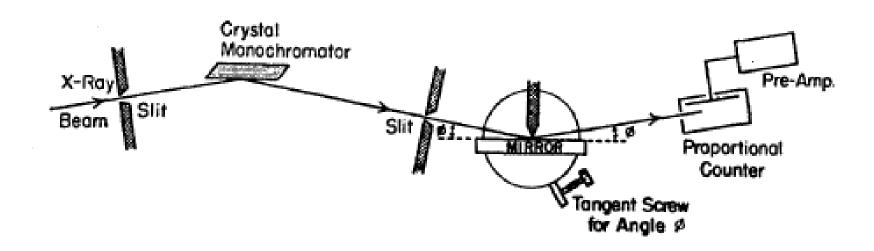
Roughness factor

$$F_{j} = \frac{f_{j} - f_{j+1}}{f_{j} + f_{j+1}}$$



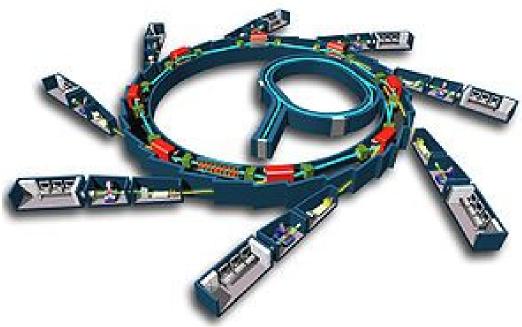
$$f_j = \sqrt{\alpha^2 - 2\delta_j - i2\beta_j}$$

Dependence on incident angle and $f_i = \sqrt{\alpha^2 - 2\delta_i - i2\beta_i}$ Dependence on incident angle and complex refractive index (incl. mass **density**)


Overall, the determining factors for the reflectivity curve are:

- film thickness
- film roughness
- mass density of the film

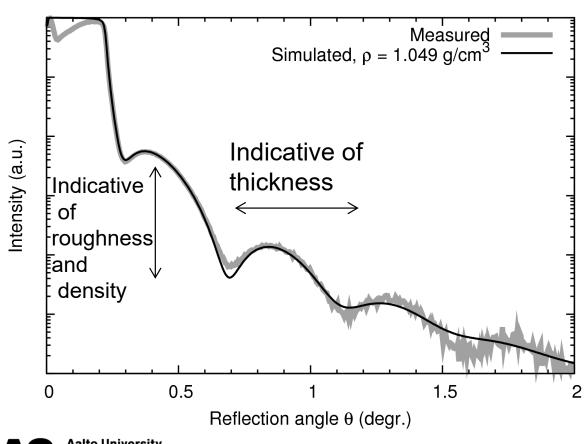
Instrumentation


- Angle of incidence is varied manually during the measurement
- The sample area should be maximized
- XRR is usually feasible to operate with an X-ray diffractometer

Instrumentation

 X-ray reflectivity may also be performed at a synchrotron facility (particle accelerator that produces an x-ray beam of unusual intensity)

 Synchrotron sources are expensive and laborious to use but the data quality is excellent



Interpretation of data

- Like ellipsometry, XRR is an indirect method
- Reflected intensity does not yield any concrete physical information on the sample
- Modelling is required to yield actual physical values
- → One must iterate values for thickness, density, and n roughness which would give a reasonable fit to the measurement values
- → Values for film thickness, density, and roughness
- In general, the values for film thickness are highly reliable, but the values for mass density are less reliable, particularly with soft materials

Example of simulating the reflectivity curve

Polystyrene-blockpolyethyleneoxide

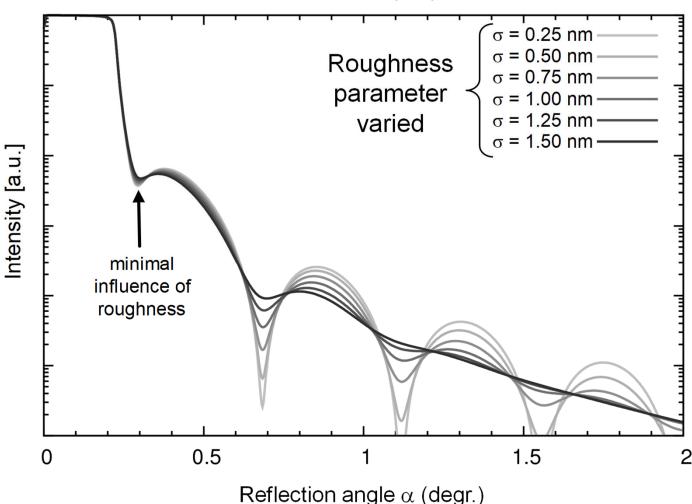
Thickness: 9.9 nm Roughness: 1.8 nm Density: 1.05 g cm⁻³

Mass density of organic thin films

PROBLEM WITH SOFT MATERIALS IN DENSITY APPROXIMATION

Different density values yield very similar fits.

XRR profile of 20 nm cellulose film



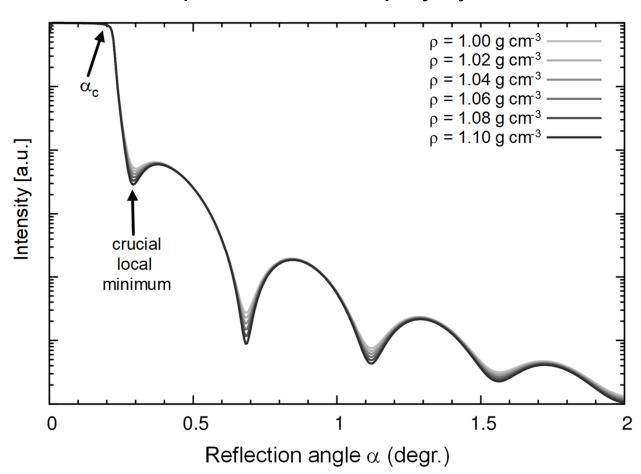
Why the density fit is unreliable

Thickness = 10 nm density of polystyrene ~1.05

Roughness affects the positions of local minima more than density does.

Simulated XRR curve of polystyrene-like material

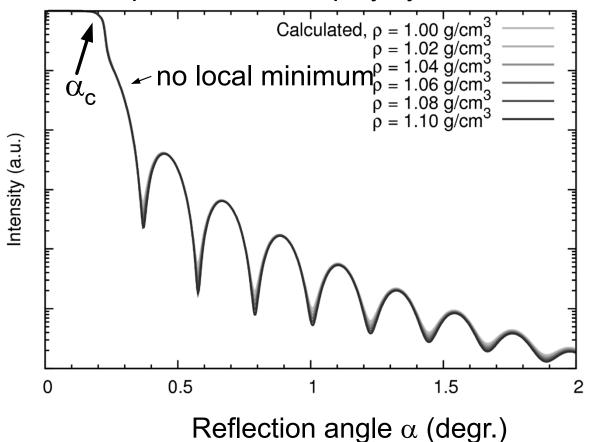
Can the density fit be reliable?


DISCOVERY: DENSITY DETERMINATION RELIABLE AT CERTAIN FILM THICKNESS VALUES (e.g. 5-17 nm)

XRR profile of 10 nm polystyrene film

In ca. 10 nm films, small changes in density parameter yield already different fits.

Reliable density determination at 5-17 nm film thickness.



Can the density fit be reliable?

DISCOVERY: DENSITY DETERMINATION UNRELIABLE AT MANY THICKNESS VALUES (e.g. 20-40 nm)

Local minimum just next to α_c must be present – otherwise the density determination is unreliable.

XRR profile of 20 nm polystyrene film

Experimental data on density

Sample	Thickness [nm]	Roughness [nm]	Density [g cm ⁻³]	Density in bulk [g cm ⁻³]
Polystyrene	15.0	0.39	1.03	1.047 ^a
Poly(methyl methacrylate)	16.4	0.62	1.15	1.188 ^a
Polystyrene- block- polyethyleneoxide	9.9	1.18	1.05	1.065 ^b
Cellulose	6.7	0.52	1.51	1.52°
Trimethylsilyl cellulose	14.7	0.55	0.99	n.a.
Carboxymethyl cellulose	17.0	0.15	1.56	1.59 ^a

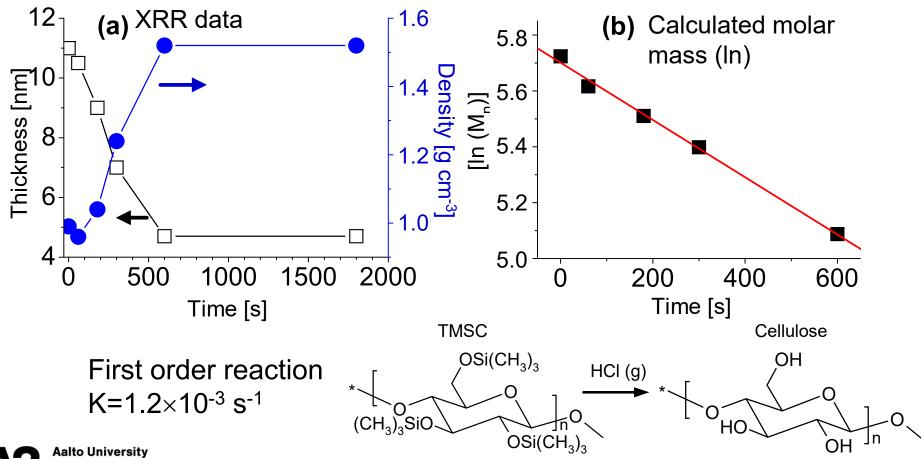
Application example: following reaction kinetics in ultrathin film

Example: Hydrolysis of trimethylsilyl cellulose (TMSC) to cellulose

TMSC Cellulose
$${}^* \underbrace{ \begin{pmatrix} OSi(CH_3)_3 \\ (CH_3)_3SiO \end{pmatrix} }_{OSi(CH_3)_3} \underbrace{ \begin{pmatrix} OH \\ OOSi(CH_3)_3 \\ OOSi(CH_3)_3 \end{pmatrix} }_{OSi(CH_3)_3} \underbrace{ \begin{pmatrix} OH \\ OOSi(CH_3)_3 \\ OOSi(CH_3)_3 \end{pmatrix} }_{OH} \underbrace{ \begin{pmatrix} OH \\ OOSi(CH_3)_3 \\ OOSi(CH_3)_3 \end{pmatrix} }_{OH} \underbrace{ \begin{pmatrix} OH \\ OOSi(CH_3)_3 \\ OOSi(CH_3)_3 \end{pmatrix} }_{OH} \underbrace{ \begin{pmatrix} OH \\ OOSi(CH_3)_3 \\ OOSi(CH_3)_3 \end{pmatrix} }_{OH} \underbrace{ \begin{pmatrix} OH \\ OOSi(CH_3)_3 \\ OOSi(CH_3)_3 \end{pmatrix} }_{OH} \underbrace{ \begin{pmatrix} OH \\ OOSi(CH_3)_3 \\ OOSi(CH_3)_3 \end{pmatrix} }_{OOSi(CH_3)_3} \underbrace{ \begin{pmatrix} OH \\ OOSi(CH_3)_3 \\ OOSi(CH_3)_3 \end{pmatrix} }_{OOSi(CH_3)_3} \underbrace{ \begin{pmatrix} OH \\ OOSi(CH_3)_3 \\ OOSi(CH_3)_3 \end{pmatrix} }_{OOSi(CH_3)_3} \underbrace{ \begin{pmatrix} OH \\ OOSi(CH_3)_3 \\ OOSi(CH_3)_3 \end{pmatrix} }_{OOSi(CH_3)_3} \underbrace{ \begin{pmatrix} OH \\ OOSi(CH_3)_3 \\ OOSi(CH_3)_3 \end{pmatrix} }_{OOSi(CH_3)_3} \underbrace{ \begin{pmatrix} OH \\ OOSi(CH_3)_3 \\ OOSi(CH_3)_3 \\ OOSi(CH_3)_3 \end{pmatrix} }_{OOSi(CH_3)_3} \underbrace{ \begin{pmatrix} OH \\ OOSi(CH_3)_3 \\ OOSi(CH_3)_3$$

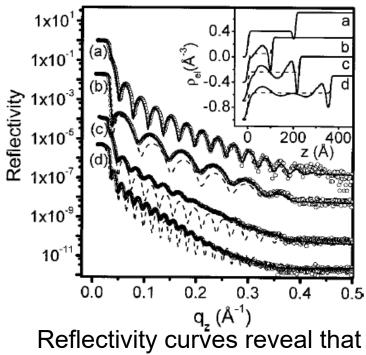
With 0.5 M HCl, the reaction spans ~10 min.

Reaction kinetics with XRR

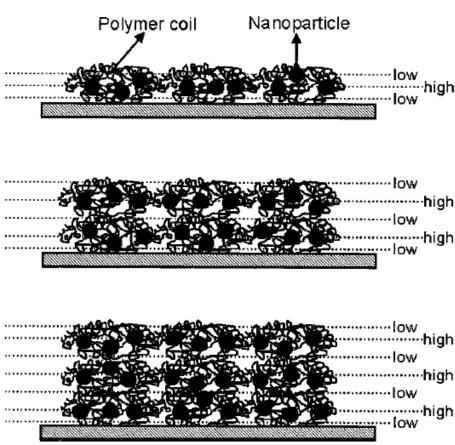

$$M_{n} = M_{0} - \frac{h_{0}d_{0} - h_{n}d_{n}}{h_{0}d_{0} - h_{k}d_{k}} (M_{0} - M_{k})$$

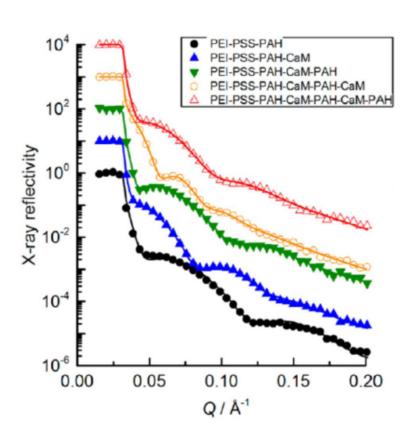
 M_0 is the molar mass of the starting material M_k is the molar mass of the final material h_0 is the initial film thickness, d_0 is the initial mass density of the film h_k is the final film thickness, d_k is the final density of the film h_n is the film thickness at a certain point of the reaction d_n is the mass density of the film at a certain point of the reaction

Reaction kinetics with XRR


Hydrolysis of TMSC to cellulose with 0.5 M HCl was followed at RT

Application example: ordered

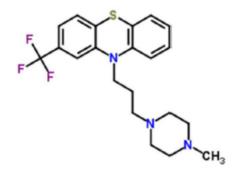

nanocomposites


Reflectivity curves reveal that polyacrylamide spin coated with CdS nanoparticles to an

ultrathin film is an ordered nanocomposite (discrete layers).

Application: Layer-by-layer films with polymers

Protein called calmodulin (CaM) is mixed in an LbL film of cationic (PEI, PAH) and anionic (PSS) polyelectrolytes


multilayer	d/Å
PEI-PSS-PAH	79
PEI-PSS-PAH-CaM	116
PEI-PSS-PAH-CaM-PAH	89
PEI-PSS-PAH-CaM-PAH-CaM	173
PEI-PSS-PAH-CaM-PAH-CaM-PAH	96

Application: Layer-by-layer films with polymers

- Layer thickness values within the multilayers are probed by XRR
- It turns out CaM thickness inside the multilayer is very little affected by trifluoperazine (TFP), a ligand that changes CaM conformation in bulk

deposition unit	$\Delta d/\text{Å}$ by XR
PEI-PSS-PAH	$+62 \pm 14 (23)$
PEI-(PSS-PAH) ₂	
first CaM	$+50 \pm 21 (7)$
first CaM(TFP)	$+49 \pm 18 (11)$
second CaM	$+87 \pm 15 (3)$
second CaM(TFP)	$+74 \pm 8 (3)$
CaM-PAH	$+14 \pm 7 (17)^c$

Summary

- Ellipsometry and XRR are both based on electromagnetic radiation reflecting from a substrate of an ultrathin film
- Both yield data for film thickness with excellent accuracy
- With ellipsometry, it helps if you know the refractive index of the material;
 with XRR you don't need any preliminary information of the sample
- XRR gives you roughness and density of the film with precautions
- An XRR measurement is generally slower than spectroscopic ellipsometry; it is therefore not used often as an in situ technique
- Both are extensively used for film thickness characterization

