X-Ray Photoelectron Spectroscopy

Ultrathin Films (CHEM-L2000), XPS lecture, 28.02.2024

XPS

X-Ray Photoelectron Spectroscopy

OUTLINE:

- 1. Background
 - 1. Phenomenon
 - 2. Instrumentation
- 2. Typical measurement data
 - **1**. Qualitative analysis & spectral features
 - 2. Peak identification
- 3. Analysis and results
 - 1. Quantitative analysis & effects of sample
 - 2. Chemical environment & peak fitting
- 4. Technical issues & Auxiliary features
 - **1**. Surface contamination & charging
 - 2. Ion beam sputtering & depth profiling
 - 3. Angle resolved XPS
 - 4. Small area analysis and imaging

The photoelectric effect

Emission of electrons when light is shone onto a material:

- Photoelectrons
- Metal plate irradiated by UV light emits charged particles: H. Hertz, 1887
- Shown to be electrons: J. J. Thompson, 1899
- Theory on photon quanta: A. Einstein, 1905
- Verified through experiments: R. Millikan, 1915

The electromagnetic spectrum

Aalto University School of Chemi Engineering

Ultrathin Films (CHEM-L2000), XPS lecture, 28.02.2024

Photoemission as an analytical tool

Electron Spectroscopy for Chemical Analysis (ESCA)

• Kai Siegbahn, 1957 (Nobel Prize 1981)

Widely used technique for surface analysis:

- **XPS**: X-Ray Photoelectron Spectroscopy
- **ESCA**: Electron Spectroscopy for Chemical Analysis
- **UPS**: Ultraviolet Photoelectron Spectroscopy
- PES: Photoemission Spectroscopy

Requirement:

Monochromatic & High energy photon source

Electron energy (any surface):

 $E_k = hf - (E_k)$

*E*_k = kinetic energy E_h = binding energy

Instrumentation

- X-ray source (typically Mg or Al anode)
- Electron energy analyzer
- Electronics & computer system
- Vacuum system (ultra-high vacuum)
- Extras:
 - Ion gun for etching (argon ions)
 - Neutralizer (flood gun, non-conductive samples)
 - Cooling system (lots of heat from X-ray source)

Ultrathin Films (CHEM-L2000), XPS lecture, 28.02.2024

Degree of vacuum

Improved vacuum:

- Increases the mean free path for photons and electrons
- Removes adsorbed gases from the sample
- Eliminates adsorption of contaminants on sample surface

Low vacuum	10 ³ – 10 ⁰ mbar
Medium vacuum	10 ⁰ – 10 ⁻³ mbar
High vacuum	10 ⁻³ – 10 ⁻⁶ mbar
Very high vacuum	10 ⁻⁶ – 10 ⁻⁹ mbar
Ultra-high vacuum	10 ⁻⁹ – 10 ⁻¹² mbar

Example:

•
$$p = 10^{-6} \text{ mbar}$$

• $O_2 (M=32)$ \longrightarrow $R = 4.7 \cdot 10^{14} \frac{1}{\text{cm}^2 \text{s}}$
• $T = 300 \text{ K}$
• $k = 1.381 \cdot 10^{-23} \text{ J/K}$

Complete coverage: $1ML \sim 1 \cdot 10^{15} atoms/cm^2$

• Surface will be clean for about 1 second...

AXIS 165 / AXIS Ultra^{DLD} at Aalto CHEM 1995-2021 (L-S Johansson)

• Analysis on > 200 samples / year

Cellulosic materials (ca 50 % of samples):

- Pulps surface analysis & process evaluations
- Paper coatings, contamination, fundamentals
- Model surfaces, mono/multicomponent film formation, and reaction dynamics
- Cellulose nanofibrils, whiskers& bacterial cellulose, fundamentals & applications
- Wood hydrothermal modification, adhesion
- Derivatives: TEMPO, click, CMC, silvlation...
- Functional surfaces: bio-interfaces, biological surfaces, biomimetic materials
- Composites of cellulose and derivatives: polymers, clay, lignin, chitosan, graphene, CNTs
- Textiles: flax, cotton, MMC, synthetic fibers
- Carburized celluloses: e.g. catalysis

Other materials (50 % samples):

- Ultra-thin inorganic and organic films: ALD deposited, spin-coated, LB films, CVD, plasma, graphenes, CNTs, DLCs
- Surface analysis of metals, alloys, oxides, composites, polymers, powders, fibers, deposits
- Contamination analyses: e.g. semiconductor devices, quality control

XPS in applied surface science

Quantification of elements at the surface of materials:

- Detection of all elements (except for hydrogen and helium)
- Chemical identification
- Surface distribution of elements (such as films vs islands)
- Easy sample preparation
- Non-destructive (no particle bombardment, only soft X-rays)

Limitations:

- XPS can only analyze the outermost surface layers (0-10 nm)
- It will not tell you the average bulk composition
- Surface contamination is a big issue
- Samples must tolerate Ultra High Vacuum (<10⁻⁹ mbar)

Samples:

- Almost any type of solid sample : Wafers, powders, fibers, composites, organic/biological specimens, etc.
- Allows for insulating, conducting or heterogeneous materials.
- Sample preparation: As little as possible.
- Secured on holder with springs or UHV-tape.

XPS

X-Ray Photoelectron Spectroscopy

OUTLINE:

- 1. Background
 - 1. Phenomenon
 - 2. Instrumentation
- 2. Typical measurement data
 - **1**. Qualitative analysis & spectral features
 - 2. Peak identification
- 3. Analysis and results
 - **1.** Quantitative analysis & effects of sample
 - 2. Chemical environment & peak fitting
- 4. Technical issues & Auxiliary features
 - **1.** Surface contamination & charging
 - 2. Ion beam sputtering & depth profiling
 - 3. Angle resolved XPS
 - 4. Small area analysis and imaging

Experiment

Measurement:

- Retarding potential is stepwise decreased
- Dwell time for each step: a few 100 ms
- Number of electrons measured for each energy

Results:

- Photoemission spectrum
- High intensity peaks at core level binding energies
- Survey spectra large range, low resolution
- High-resolution spectra small range, high resolution

Binding energies

Core level energies are specific for each element:

 Each peak in the survey spectrum can be assigned to the binding energy of electrons from a specific energy level and element

Identification:

- Start with the strongest peaks find energy level that matches (C 1s, O 1s + Auger lines are usually present)
- Compare other energy levels in element with spectrum – assign peaks
- Usually fixed ratios between peak heights for same element
- If there is a strong peak, but the other lines for that element do not appear – try to find another element!

Z	El	1s _{1/2} K	2s _{1/2} L ₁	2p1/2 L2	2p _{3/2} L ₃	3s _{1/2} M ₁	3p1/2 M2	3p _{1/2} M ₃	3d _{3/2} M4	3d _{5/2} M5
1	н	14								
2	He	25								
3	Li	55								
4	Be	111								
5	в	188		5						
6	С	284		6						
7	N	399		9)					
8	0	532	24	7						
9	F	686	31	5)					
10	Nc	867	45	1	8					
11	Na	1072	63	3	1	1				
12	Mg	1305	89	5	2	2				
13	MI	1560	118	74	73	1				
14	Si	1839	149	100	99	8				
15	P	2149	189	136	135	16	1	0		
16	S	2472	229	165	164	16	1	8		
17	Cl	2823	270	202	200	18		7		
18	Ar	3202	320	247	245	25	1	2		
19	K	3608	377	297	294	34	1	8		
20	Ca	4038	438	350	347	44	2	6		5
21	Sc	4493	500	407	402	54	3	2		7
22	Ti	4965	564	461	455	59	3	4		3
23	v	5465	628	520	513	66	3	8		2
24	Cr	5989	695	584	757	74	4	3	3	2
25	Mn	6539	769	652	641	84	4	19		4
26	Fe	7114	846	723	710	95	5	6		6
27	Co	7709	926	794	779	101	6	0	1	3
28	Ni	8333	1008	872	855	112	6	8		4
29	Cu	8979	1096	951	932	120	7	4		2
30	Zn	9659	1194	1044	1021	137	9	0		9
31	Ga	10367	1299	1144	1117	160	10	06	2	20
42	Mo	20000	2866	2625	2520	505	410	393	208	205
46	Pd	24350	36304	3330	3173	670	559	531	340	335
48	Ag	25514	3806	3523	3351	718	602	571	373	367
73	Ta*	67416	6 11681 11136 11544 *566 *464 *403						*24	•22
79	Au*	80724	14352	13733	14208	*763	*643	*547	*88	*84

* 4s, 4p et 4f levels indicated, respectively

Survey

- Peaks can now be labeled
- When all peaks are accounted for, elemental constituents have been found
- Some features are not necessarily discrete peaks from core level electrons:
- Double peaks
- Broad peaks in bunches
- Etc...

Spin-orbit splitting

Before ionization

- Inner shells are filled
- No spin-orbit interactions

After ionization

- Un-paired electrons in inner shells
- Spin-orbit coupling
 - Interaction between magnetic moments from electron spin and orbit affects final energies

Spin-orbit splitting results in the formation of **doublets**:

- Fixed intensity ratios between peaks
- For the same element ΔE_b will be approx. constant in different compounds
- Can be used for identification of elements!

Kristoffer Meinander

Parallel spins i = l + s

Auger electrons

- Atoms are in transitional excited states after core electrons are ejected
- Auger electrons can be emitted when excited states are relaxed
- *E*_k is independent of Xray photon energy
- Position in *E*_b scale will depend on X-ray source

Characteristic X-rays

Different X-rays:

- Binding energy constant $E_k = hf (E_b + \phi)$
- Kinetic energy for Auger electrons constant:
 - Auger transition ("binding") energy varies

	Line	Energy (eV)	Width (eV)			
	Υ <i>Μ</i> ζ	132.3	0.47			
8	Zr <i>M</i> ζ	151.4	0.77			
	Cr L _a	572.8	3.0			
	Cu L _a	929.7	3.8			
	Mg K_{α}	1253.6	0.7			
	Al K _α	1486.6	0.85			
	Si K _α	1739.5	1.0			
	Cu K _α	8048.0	2.6			

Typical Ag spectra:

Intrinsic loss features:

• "Shake-up" satellites

 Finite probability that the ion formed in the photoemission process will be excited – lower E_k

Extrinsic loss features:

• Plasmons

 Photoelectrons travelling in a solid will interact with other electrons – lower E_k

X-ray effects:

• Satellites

• Minor X-ray components from anode material – higher $E_0=hf$

• Ghosts

• X-rays from other elements (very rare)

	Line	a ₁₂	a ₃	α4	α_5	a ₆	β
s of	Separation (eV)	0.0	8.4	10.2	17.5	20	48.5
٩	Relative Intensity	100	8.0	4.1	0.55	0.45	0.5

XPS

X-Ray Photoelectron Spectroscopy

OUTLINE:

- 1. Background
 - 1. Phenomenon
 - 2. Instrumentation
- 2. Typical measurement data
 - 1. Qualitative analysis & spectral features
 - 2. Peak identification
- 3. Analysis and results
 - **1.** Quantitative analysis & effects of sample
 - 2. Chemical environment & peak fitting
- 4. Technical issues & Auxiliary features
 - **1.** Surface contamination & charging
 - 2. Ion beam sputtering & depth profiling
 - 3. Angle resolved XPS
 - 4. Small area analysis and imaging

Aalto University School of Chemical Engineering

Ultrathin Films (CHEM-L2000), XPS lecture, 28.02.2024

Reference tables

ł.

Table 1. Line Positions^{a)} from Mg X-rays, by Element

Table 3. Line Positions from Mg X-rays, in Numerical Order

17 H	lf 4f, (2) 102	Si2p,	(1)	206 Nb3d₅	(3)	1 359	Lu 4p₃	(53)	i 575	Te3d₅	(10)	863	Ne 1s	•
23 C) 2s	105	Ga3p,	(3)	208 Kr3p3	(8)	359	Hg 4d,	(20)	577	Cr2p₃	(9)	872	Cd (A)	
25 T	a4f, (2) 108	Ce4d	(4)	213 Hf4d,	(11)	362	Gd (A)		594	Ce (A)		875	N (A)	
30 F	2s	110	Rb3d	(1)	229 S 2s		364	Nb3p,	(15)	599	F (A)		882	Ce3d₅	(18)
31 G	Ge3d₅ (1)) 113	Be 1s		229 Ta4d,	(12)	368	Ag3d₅	(6)	618	Cd 3p ₃	(34)	897	Ag (A)	
34 V	V4f, (2) 11:	3 Ge (A)		230 Mo3d,	(3)	378	K2s		619	13d,	(11)	920	Sc (A)	
40 V	/ 3p	114	Pr 4d		238 Rb3p3	(9)	380	U4f,	(11)	632	La (A)		928	Pd (A)	
41 N	le 2s	118	3 TI4f,	(4)	241 Ar2p3	(2)	385	TI4d₅	(21)	641	Mn2p₃	(11)	930	Pr3d₅	(20)
43 F	Re 4f, (2)) 119	Al 2s	` '	245 W4d	(12)	396	Mo3p	(17)	657	Ba (A)		934	Cu2p ₃	(20)
44 A	As 3d. (1	120) Nd 4d		263 Re 4d	(14)	402	N 1s	. ,	666	In 3p ₃	(38)	954	Rh (A)	
45 C	Cr3p (1	124	Ge3p,	(4)	264 Na (A))	402	Eu (A)		670	Mn (A)		961	Ca (A)	
48 N	An 3p. (1	13	Sm 4d		265 Zn (A)		402	Sc 2p	(5)	672	Xe 3d	(13)	970	U (A)	
50 I	4d. (2	13	8 P2p	(1)	269 Sr3D,	(11)	405	Cd 3d	(7)	677	Th 4d	(37)	980	Nd 3d	(21)
51 N	/a 2p	133	Sr3d.	(2)	270 CI 2s	• •	410	Ni (A)	.,	684	Cs (A)	. ,	981	Ru (A)	17
52 C)s4f, (3) 136	Eu 4d	(-/	279 Os4d	(15)	413	Pb 4d	(22)	686	F1s		993	C (À)	
55 F	e3p, (1	138	B Pb4f	(5)	282 Ru 3d	(4)	435	Ne (Å)	. ,	710	Fe2p ₃	(13)	1003	K (A)	
56 L	i 1s	143	As3p	(5)	284 Tb 4p	(33)	439	Ca 2s		711	Xe (A)		1005	Th (Á)	
57 S	Ge 3d. (1) 150) Tb 4d		287 C1s		440	Sm (A)		715	Sn 3p ₃	(42)	1022	Zn 2p	(23)
61 C	Co 3p3 (2) 15	3 Si 2s		293 Dy 4p3	(36)	443	Bi4d₅	(24)	724	Cs3d₅	(14)	1035	Ar (A)	
62 Ir	r4f ₇ (3)) 154	Dy 4d		293 K 2p3	(3)	445	In 3d₅	(8)	729	Cr (A)		1071	CI (A)	
63 X	(e4d, (2) 158	3 Y3d₅	(2)	297 Ir4d5	(16)	458	Ti 2p ₃	(6)	737	I (A)		1072	Na 1s	
64 N	la 2s	159	Bi4f,	(5)	301 Y3p3	(12)	463	Ru3p ₃	(22)	739	U4d₅	(42)	1082	B (A)	
67 N	Vi3p ₃ (2)) 16	Ho 4d		306 Ho4p,	(39)	·483	Co (A)		743	O (A)		1083	Sm3d₅	(27)
69 B	Br3d ₅ (1) 16	Se3p	(6)	309 Rh 3d,	(5)	486	Sn 3d₅	(8)	765	Te (A)		1088	Nb (A)	
73 P	Pt4f, (3) 16	5 S2p3	(1)	316 Pt 4d.	(17)	498	Rh 3p ₃	(24)	768	Sb3p ₃	(46)	1103	S (A)	
74 A	Al 2p	169	Er 4d		319 Ar 2s	• •	501	Sc 2s		780	Ba3d₅	(15)	1117	Ga2p ₃	(27)
75 C	Cs4d ₅ (2) 180) Tm 4d		320 Er 4p3	(42)	515	V2p ₃	(8)	781	Co2p ₃	(15)	1136	Eu 3d	(30)
77 C	Cu3p, (2) 18	Zr3d,	(2)	331 Zr3p	(14)	519	Nd (A)	.,	784	V (Å)	. ,	1155	Bi (A)	• •
85 A	44f, (4	18	Br3p	(7)	333 Tm 4p	(45)	530	Sb 3d	(9)	794	Sb (A)		1162	Pb (A)	
87 Z	n3p, (3) 18	Yb4d	(9)	335 Th4f,	(9)	531	0 1s		819	Sn (A)		1169	TI (A)	
88 K	(r3d, (1) 189) Ga (A)		336 Au 4d	(18)	534	Pd 3p ₃	(27)	822	Te 3p	(51)	1176	Hg (A)	
90 B	3a4d, (2) 19	B1s		337 Pd 3d.	(5)	553	Fe (A)		834	La3d,	(17)	1184	Au (A)	
90 N	/lg 2s	19	P 2s		337 Cu (A)	. /	555	Pr (A)		839	Ti (A)	. ,	1186	Gd 3d	(33)
100 H	lg4f, (4) 19	/ Lu 4d.	(10)	342 Yb 4p	(50)	565	Ti 2s		846	In (A)		1192	Pt (A)	/
101 L	a4d, (3) 19	Cl 2p	(2)	347 Ca2p	(3)	573	Ag 3p	(31)	855	Ni2p ₃	(18)		. 7	
				. /		. ,			. ,			. ,			

An A in parentheses denotes Auger line. Numbers in parentheses are spin doublet separations in electron volts. The sharpest Auger line and the two most intense photoelectron lines per element are included in the table. For brevity, 2p₃ equals 2p₃₂, 3d₅ equals 3d₃₂, etc.

186 PHYSICAL ELECTRONICS

Survey spectra: example 1

Table 3. Line Positions from Mg X-rays, in №

17	Hf4f ₇	(2)	102	Si2p3	(1)	206	Nb3d₅	(3)	359	Lu 4p3	(53)
23	0 2s		105	Ga3p,	(3)	208	Kr3p ₃	(8)	359	Hg 4d₅	(20)
25	Ta4f,	(2)	108	Ce4d₅	(4)	213	Hf4d₅	(11)	362	Gd (A)	
30	F25		110	Rb3d₅	(1)	229	S2s		364	Nb3p3	(15)
31	Ge3d₅	(1)	113	Be 1s		229	Ta4ds	(12)	368	Ag3d₅	(6)
34	W4f,	(2)	113	Ge (A)		230	Mo3ds	(3)	378	K2s	
40	V 3p		114	Pr 4d		238	Rb3p3.	(9)	380	U4f,	(11)
41	Ne 2s		118	TI 4f ₇	(4)	241	Ar2p ₃	(2)	385	TI 4ds	(21)
43	Re4f ₇	(2)	119	Al 2s		245	W4ds	(12)	396	Mo3p ₃	(17)
44	As 3d	(1)	120	Nd 4d		263	Re4ds	(14)	402	N 1s	
45	Cr3p ₁	(1)	124	Ge3D,	(4)	264	Na (A)		402	Eu (A)	
48	Mn 3p	(1)	132	Sm 4d	• /	265	Zn (A)		402	Sc2p ₃	(5)
50	14d,	(2)	133	P2p1	(1)	269	Sr3p ₃	(11)	405	Cd 3d	(7)
51	Ma 2p	17	133	Sr3d.	(2)	270	CI 2s		410	Ni (A)	
52	Os4f,	(3)	136	Eu 4d		279	Os4ds	(15)	413	Pb4ds	(22)
55	Fe3p	(1)	138	Pb4f,	(5)	282	Bu3ds	(4)	435	Ne (A)	
56	Li 1s	(7	143	As3D	(5)	284	Tb 4p1	(33)	439	Ca 2s	
57	Se3d.	(1)	150	Tb 4d	(1)	287	C1s		440	Sm (A)	
61	Co3p,	(2)	153	Si 2s		293	Dy 4p	(36)	443	Bi4ds	(24)
62	Ir4f,	(3)	154	Dy 4d		293	N 201	(3)	445	In 3d	(8)
63	Xe4d.	(2)	158	Y3d	(2)	297	Ir4d.	(16)	458	Ti2p	(6)
64	Na 2s	()	159	Bi4f,	(5)	301	Y3D,	(12)	463	Ru3p	(22)
67	Ni3p	(2)	161	Ho 4d	(-7	306	Ho4p	(39)	-483	Co (A)	
69	Pr3d.	(1)	163	Se3p	(6)	309	Rh 3d.	(5)	486	Sn 3d.	(8)
73	Pt4f	(3)	165	S20-	(1)	316	Pt4d	(17)	498	Rh3p,	(24)
74	AI 2p	(-)	169	Er 4d	1.7	319	Ar 2s	()	501	Sc 2s	(/
75	Cs4d	(2)	180	Tm 4d		320	Er 4p-	(42)	515	V2p	(8)
77	Cu3p.	(2)	181	Zr3d.	(2)	331	7r30	(14)	519	Nd (A)	(9)
85	Au4f.	(4)	182	Br3n.	(7)	333	Tm 4n-	(45)	530	Sb3d.	(9)
87	7n3n-	(3)	185	Yh4d.	(9)	335	Th 4f.	(9)	531	0.1s	(3)
88	Kr3d.	(1)	189	Ga (A)	(0)	336	Au 4d-	(18)	534	Pd 3p	(27)
90	Ba4d.	(2)	191	B 1s		337	Pd3d	(5)	553	Fe (A)	(=-)
90	Ma 2s	(-)	191	P 2s		337	Cu (A)	(0)	555	Pr (A)	
100	Ho 4f.	(4)	197	111.4d	(10)	342	Yh 4n	(50)	565	Ti 2s	
101	La4d.	(3)	199	GI 20.	(2)	347	Ca2n	(3)	573	Ag3n.	(31)

An A in parentheses denotes Auger line. Numbers in parentheses are spin doublet separations in electron volts. The photoelectron lines per element are included in the table. For brevity, 2p₃ equals 2p_{3/2}, 3d₅ equals 3d_{5/2}, etc.

186 PHYSICAL ELECTRONICS

Ultrathin Films (CHEM-L2000), XPS lecture, 28.02.2024

XPS

X-Ray Photoelectron Spectroscopy

OUTLINE:

- 1. Background
 - **1**. Phenomenon
 - 2. Instrumentation
- 2. Typical measurement data
 - **1.** Qualitative analysis & spectral features
 - 2. Peak identification
- 3. Analysis and results
 - 1. Quantitative analysis & effects of sample
 - 2. Chemical environment & peak fitting
- 4. Technical issues & Auxiliary features
 - **1.** Surface contamination & charging
 - 2. Ion beam sputtering & depth profiling
 - 3. Angle resolved XPS
 - 4. Small area analysis and imaging

Quantification

 Peak intensity proportional to surface concentration:

 $I_i \propto N_i a_i$

- *I*_i = peak intensity
- $N_{\rm i}$ = atomic concentration
- a_i = atomic sensitivity factor
- Stoichiometry can be calculated using intensities and sensitivity factors
- Peak areas are best measure of intensity

Atomic sensitivity factors (ASF)

- Sensitivity will vary greatly for different elements
- Combination of several factors:

$$a_i = \sigma_i \lambda_i$$

- *σ*_i Scofield cross-section
 - Probability of X-ray producing photoelectron
- λ_i Inelastic mean free path
 - Probability that the photoelectron will make it to the surface

Elemental Symbol

Inelastic mean free path – λ

Mean free path (Å)

- Core level peaks only account for a small part of all photoelectrons reaching the analyzer
 - Number of electrons (intensity) reaching surface with core level energy decreases exponentially with depth of photoionization
- Slight dependence on electron energy and elements in surface
- Most important reason for surface sensitivity of XPS analysis

Background removal

How is peak intensity measured?

- Peak heights can sometimes be used
- Result not very good shapes not always the same
- Area is almost always used
- But background is not constant (nor linear) near peak
- Shirley background is most commonly used

- With ASF's: accuracy better than 15 %
- With standard samples on same instrument: ~5 %
- Reproducibility (precision) better than 2 %

Surface morphologies

Traditional XPS quantification assumes:

- Outer surface of sample is homogeneous
- Outer surface concentration is directly proportional to the main peak intensity
- Depending on the depth and lateral distribution of emitting atoms the background can change dramatically

XPS

X-Ray Photoelectron Spectroscopy

OUTLINE:

- 1. Background
 - **1**. Phenomenon
 - 2. Instrumentation
- 2. Typical measurement data
 - **1.** Qualitative analysis & spectral features
 - 2. Peak identification
- 3. Analysis and results
 - **1.** Quantitative analysis & effects of sample
 - 2. Chemical environment & peak fitting
- 4. Technical issues & Auxiliary features
 - **1.** Surface contamination & charging
 - 2. Ion beam sputtering & depth profiling
 - 3. Angle resolved XPS
 - 4. Small area analysis and imaging

Chemical effect in XPS

Chemical shift:

 Changes in the chemical bonding of an element will cause changes in the binding energy of core electrons

Core binding energies are determined by:

- Electrostatic interaction between electron and nucleus
- All other electrons (including valence) shield nuclear charge
- Removal or addition of electronic charge will alter this shielding

- Withdrawal of negative charge (oxidation) – increase in E_b
- Addition of negative charge – decrease in E_b

Chemical shift

Oxides compared to metals:

- Binding energy is lower in pure metals due to screening by conduction electrons
- Binding energy higher in metal oxides because electron density is lost to oxygen
- Ionic compounds: binding energy shift 1 eV / oxidation state!

Peak fitting

Measured peaks usually contain signals from atoms in many different chemical environments

- Chemical species can be deconvoluted from spectra using peak fitting algorithms
- Gaussian (70 %) –Lorentzian (30 %) peak shapes (other GL ratios also common)

- Fixed ΔE_b and peak area ratios for doublets
- Known energies and FWHM (reference data)

Complex bonding

Complex bonding environments are typical for many materials

- A single compound will give an asymmetric peak shape
- Several GL peaks have to be fitted in order to get reproducibility

Iron, Fe Atomic 26

NIST database

NIST X-ray Photoelectron Spectroscopy Database

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated by

Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell

National Institute of Standards and Technology

- srdata.nist.gov/xps/
- Large database with reference XPS data
- Very useful for determining chemical states
- Literature references for all given data

Search Menu Data Field Definitions Version History Disclaimer Acknowledgments Contact Information FAQs Rate Our Products

Introduction

St	ep 1. Choose type of data:
•	Binding Energy
С	Auger Kinetic Energy
С	Auger Parameter
С	Doublet Separation
С	Surface/Interface Core-Level Shift
C	Chemical Shift:

Со	2p3/2	[N(C2H5)4]2CoBr4	780.10	Click
Co	2p3/2	[N(C2H5)4]2CoCl4	780.60	Click
Со	2p3/2	[N(C4H9)4]2[Co(NCC(S)C(S)CN)2]	780.00	Click
Co	2p3/2	[N(C4H9)4]2[Co(NCC(S)C(S)CN)2]	780.20	Click
Co	2p3/2	[N(CH3)4]2[CoSe(CN)4]	779.40	Click
Со	2p3/2	Al2CoO4	781.10	Click
Со	2p3/2	Al2CoO4	780.60	Click
Со	2p3/2	Al2CoO4	780.80	Click
Co	2p3/2	Co	778.30	Click
Co	2p3/2	Co	777.90	Click
Со	2p3/2	Co	778.32	Click
Co	2p3/2	Co	778.50	Click
Со	2p3/2	Co	778.10	Click
Co	2p3/2	Co	778.50	Click
Co	2p3/2	Co	778.20	Click
Co	2p3/2	Co	777.80	Click
Со	2p3/2	Co	778.00	Click
Со	2p3/2	Co	778.30	Click
Co	2p3/2	Co((C6H5)3PO)2(NO3)2	781.20	Click
Co	2p3/2	Co(NH3)6Cl3	781.10	Click
Co	2p3/2	Co(NH3)6Cl3	782.20	Click

Step 2. Select an element for binding energy:

IA		IIA	IIIB	IVB	VB	VIB	VI	IB	B VIII		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1H	I														² He			
³ L	i	⁴ <u>Be</u>	⁴ Be Metals										5 <u>B</u>	6 <u>C</u>	7 <u>N</u>	8 <u>0</u>	⁹ <u>F</u>	¹⁰ <u>Ne</u>
¹¹ <u>N</u>	<u>la</u>	¹² <u>Mg</u>	Mg Transition metals Mg Nonmetals									¹³ <u>A1</u>	¹⁴ Si	¹⁵ <u>P</u>	16 <u>S</u>	¹⁷ <u>Cl</u>	¹⁸ Ar	
¹⁹ E	K	²⁰ <u>Ca</u>	²¹ <u>Sc</u>	²² <u>Ti</u>	$^{23}\underline{V}$	²⁴ <u>Cr</u>	²⁵ <u>Mn</u>	²⁶ <u>Fe</u>	²⁷ <u>Co</u>	²⁸ <u>Ni</u>	²⁹ <u>Cu</u>	³⁰ <u>Zn</u>	³¹ <u>Ga</u>	³² <u>Ge</u>	³³ <u>As</u>	³⁴ <u>Se</u>	³⁵ <u>Br</u>	³⁶ <u>Kr</u>
³⁷ <u>R</u>	<u>tb</u>	³⁸ <u>Sr</u>	³⁹ Y	⁴⁰ <u>Zr</u>	⁴¹ <u>Nb</u>	⁴² <u>Mo</u>	⁴³ Tc	⁴⁴ <u>Ru</u>	* <u>Ri</u>	⁴⁶ <u>Pd</u>	⁴⁷ <u>Ag</u>	⁴⁸ <u>Cd</u>	⁴⁹ <u>In</u>	⁵⁰ <u>Sn</u>	⁵¹ <u>Sb</u>	⁵² <u>Te</u>	⁵³ I	⁵⁴ <u>Xe</u>
55 <u>C</u>	<u>Cs</u>	⁵⁶ <u>Ba</u>	⁵⁷ La	$^{72}\mathrm{Hf}$	⁷³ <u>Ta</u>	⁷⁴ <u>W</u>	⁷⁵ <u>Re</u>	⁷⁶ Os	⁷⁷ <u>Ir</u>	⁷⁸ <u>Pt</u>	⁷⁹ <u>Au</u>	⁸⁰ <u>Hg</u>	⁸¹ <u>T1</u>	⁸² <u>Pb</u>	⁸³ <u>Bi</u>	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ F	Fr	⁸⁸ Ra	⁸⁹ <u>Ac</u>	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt									
	lar	nthanide	es	⁵⁸ <u>Ce</u>	⁵⁹ <u>Pr</u>	⁶⁰ <u>Nd</u>	⁶¹ <u>Pm</u>	⁶² <u>Sm</u>	⁶³ <u>Eu</u>	⁶⁴ <u>Gd</u>	⁶⁵ <u>Tb</u>	⁶⁶ <u>Dy</u>	⁶⁷ <u>Ho</u>	⁶⁸ <u>Er</u>	⁶⁹ <u>Tm</u>	⁷⁰ Yb	⁷¹ Lu	
	actinides			⁹⁰ <u>Th</u>	⁹¹ <u>Pa</u>	⁹² <u>U</u>	⁹³ <u>Np</u>	⁹⁴ <u>Pu</u>	⁹⁵ <u>Am</u>	⁹⁶ <u>Cm</u>	⁹⁷ <u>Bk</u>	⁹⁸ <u>Cf</u>	⁹⁹ Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lr	

Practical example – Cellulose

Large area survey scan from cellulose:

- Carbon and oxygen
- Elemental composition can be calculated
- O/C ratio measured
- Trace level impurities detected nitrogen
- Zooming in on individual peaks will give you a lot more information!

Practical example – Cellulose

High resolution spectra:

- C 1s
- More components than a single Gaussian

Understanding the material greatly improves the analysis

- Locating peaks
- Assigning peak energies

Cellulose vs lignin

<u>Cellulose</u>:

• O/C atomic ratio: 0.83

• C-C at.%: 0 %

Lignin (monolignols):

• O/C atomic ratio: 0.33

C-C at.%: 49 %

O/C vs. C_1/C_{tot} for 254 measurements

[L.-S. Johansson, et al., Appl. Surf. Sci. 144-145 (1999) 92-95.]

XPS

X-Ray Photoelectron Spectroscopy

OUTLINE:

- 1. Background
 - **1**. Phenomenon
 - 2. Instrumentation
- 2. Typical measurement data
 - **1.** Qualitative analysis & spectral features
 - 2. Peak identification
- 3. Analysis and results
 - **1.** Quantitative analysis & effects of sample
 - 2. Chemical environment & peak fitting
- 4. Technical issues & Auxiliary features
 - **1**. Surface contamination & charging
 - 2. Ion beam sputtering & depth profiling
 - 3. Angle resolved XPS
 - 4. Small area analysis and imaging

Surface contamination

Surface contamination is always a big problem

- Oxidation
- Advantageous carbon

Carbon contamination

• Exists on all samples that have not been prepared in vacuum!

Sources:

- Organic molecules in air
- In situ:
 - Contamination due to pumping oil
 - Desorption from other samples in chamber

Surface charging

Electrons are continuously removed from the surface of the sample:

- Metals: electron loss is compensated
- Insulators: surface will collect (non-uniform) charge

Low energy electron flood gun:

- Introduces excess electrons
- May affect surface bonding
- Not always reliable for maintaining a constant surface charge...

Energy calibration

Reference peaks can be used for calibration of peak positions on insulating samples

 All spectra can be shifted to align a certain peak with known binding energy

Adventitious carbon:

- C-C bonding in C 1s spectrum: 284.8 eV
- NOTE: Polymer scientist sometimes use 285.0 eV

Gold surface:

• Au 4f_{7/2}: 84.0 eV

Other peaks with known position in sample

Ion beam sputtering

Ar-ion guns are often included in XPSanalysis chambers

Ion energies usually 0-10 keV

Removal of surface layers:

- Surface contamination
- Oxide removal
- Depth analysis
- NOTE: May affect surface chemistry and composition of materials
- Not always a good idea for XPS

Ultrathin Films (CHEM-L2000), XPS lecture, 28.02.2024

Kristoffer Meinander

🔶 Si 2p %

Radiation induced effects

Several factors affect accuracy and depth resolution when using ion beams:

- Non-uniform ion beam intensity/impurity ions
- Re-deposition of sputtered species
- Adsorption of residual gases
- Surface roughness (original and ion-induced)
- Crystalline structure and defects
- Preferential sputtering
- Atomic mixing in layered materials
- Ion implantation
- Decomposition of compounds

Energy from ion impacts can be distributed over a large volume in the sample

Angle resolved XPS

Alternative means for depth profiling:

- Consecutive XPS measurements are done while tilting the sample at increasing angles
- Escape depth for electrons decreases with increasing angle
- Higher surface sensitivity
- Reliable results only if surface is smooth enough!

Imaging methods

Image:

- Positions x and y scanned
- *x,y*-position vs photoelectron intensity
- Resolution: ~50 μm

(2) Use of scanning plates

Image:

- Voltages V_x and V_y scanned
- Photoelectron intensity collected from different points in time sequence
- $\circ\,$ Resolution: ~10 μm

XPS study of paint

Ultrathin Films (CHEM-L2000), XPS lecture, 28.02.2024

XPS study of paint – chemical state

Cross-sectional microscopy image Mapping Area Polyethylene Substrate Adhesion Layer Clear Coat 695 x 320µm

C 1s chemical state maps.

695 x 320mm

Aalto University School of Chemi Engineering

Ultrathin Films (CHEM-L2000), XPS lecture, 28.02.2024

Aalto University School of Chemical Engineering

Ultrathin Films (CHEM-L2000), XPS lecture, 28.02.2024

X-Ray production

- X-ray tubes:
 - Continuous Bremsstrahlung
 - Characteristic peaks that depend on the anode material
- Unnecessarily large X-ray load & unwanted satellites in the spectra
- Solution: Monochromator

X-Ray monochromator

Advantages of X-monochromator:

Electron gun

Narrow peak width, focusing of beam

Binding energy (eV) ')

1500

 $\theta = 78.5^{\circ}$

X-ray

anode

11000

(a)

O Auger

OIS

Si2s

Si2p

unfiltered

Si2p

Si2s

Satellites

10ev

Synchrotron sources

- High intensity and resolution, energy tunability, polarization, pulsed beam, focused beam
- Big facilities: high cost shared facilities

Aalto University School of Chemic Engineering

Ultrathin Films (CHEM-L2000), XPS lecture, 28.02.2024