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2nd part: molecular modelling

Chapters 6.5.-6.9



Revision: Potential energy surface

• Defined by force-field for each molecule or molecule system

• Each point represents a molecular conformation



From molecular conformations to measurable 
averages

• We have: Potential energy 
surface

• We need: A measurable 
quantity

• Obtaining the measurable
quantity
– Molecular dynamics: 

deterministic sampling

– Monte Carlo: stochastic sampling



• Potential energy functional E (function of nuclei positions) -> 
Force on each nuclei

Revision: 
Basics of molecular dynamics

time

Force for each particle calculated at discrete time intervals
Particle positions updated assuming particle moves with 
this force (acceleration) in the direction of force for 
the entire (short) time interval
New forces calculated with updated positions
loop-as-long-as-wanted (typically as long as possible)

1

2

3
4

5
t0 t0+dt  t0+2dt    ...



• Potential energy functional E (function of nuclei positions) -> 
Force on each nuclei

Force-field basics
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Molecular dynamics in brief: sequence 
of static images

time

t0 t0+dt  t0+2dt    ...



Molecular dynamics 

• Thermodynamic quantities, conformation properties as 
ensemble average using numerical integration

• M number of time steps
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From quantum mechanics to molecular mechanics

• Understanding complex mixtures, assembly structures, macromolecular systems, biological 
phenomena, … requires considering systems with a large number of atoms for long time 
windows.

• Forces acting between atoms and molecules are very complex.
• A very fast method of evaluations molecular interactions is needed to achieve these goals.

• Many molecular systems unfortunately too large to be considered by quantum mechanics
• Force-field methods (molecular mechanics) ignore electronic motion and calculate the 

energy of the system as a function of nuclei positions (molecular subunit positions in 
coarse-grained force-fields)
– Enables treating large number of atoms (up to ~106-107)
– Looses most electron based characteristics (conductivity, i.e., band-gaps, most often also reaction 

kinetics*, all chemical reactions* and charge re-distribution*) 

* Typically. That is, some specific force-fields are designed to reproduce also reaction barriers and limited reactions 
(typically bond-order type advanced force fields) and some enable charge re-distribution (polarization) to some extent



Brief glimpse on where F comes from: Typical representation of a force-field (Potential 
energy surface)

Dialanine peptide in implicit (continuum) solvent



Next: How to get to the sequence of static
images from a potential energy (force-field)

time

t0 t0+dt  t0+2dt    ...



Molecular dynamics

• Ԧ𝐹 = 𝑚 Ԧ𝑎

•
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• Discrete potentials, constant force models
– Analytical calculation until next collision, relatively simple

• Identify next collision
• Calculate positions at next collision
• Determine new velocities after collision (conservation of momentum)
• Loop

• Continuous potentials
– Discrete stepwise integration (finite difference)
– Attention here!

time

t0 t0+dt  t0+2dt    ...



Finite difference methods for time propagation: 
Molecular dynamics of continuous potentials

• Basis of all algorithms: Taylor’s series

𝑟 𝑡 + 𝛿𝑡 = 𝑟 𝑡 + 𝑣 𝑡 𝛿𝑡 +
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t0 t0+dt  t0+2dt    ...



Finite difference methods for time propagation: 
Molecular dynamics of continuous potentials
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Most simple:
Euler algorithm



Finite difference methods for time propagation: 
Molecular dynamics of continuous potentials

• Basis of all algorithms: Taylor’s series

𝑟 𝑡 + 𝛿𝑡 = 𝑟 𝑡 + 𝑣 𝑡 𝛿𝑡 +
1

2
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𝑣(𝑡 + 𝛿𝑡) = 𝑣 𝑡 + 𝑎 𝑡 𝛿𝑡

time

t0 t0+dt  t0+2dt    ...

Most simple:
Euler algorithm



Molecular dynamics integration algorithm should be

• Fast

• Use little memory

• Allow a long time step dt

• Reproduce the correct path (note: never possible)

• Conserve energy (&reversible in time)

• Be easy to implement

• Contain only one force evaluation/time step

time

t0 t0+dt  t0+2dt    ...



Molecular dynamics integration algorithm should be

• Fast

• Use little memory

• Allow a long time step dt

• Reproduce the correct path (note: never possible)

• Conserve energy (&reversible in time)

• Be easy to implement

• Contain only one force evaluation/time step

time

t0 t0+dt  t0+2dt    ...

Euler algorithm:

𝑟 𝑡 + 𝛿𝑡 = 𝑟 𝑡 + 𝑣 𝑡 𝛿𝑡 +
1

2
𝑎 𝑡 𝛿𝑡2

𝑣(𝑡 + 𝛿𝑡) = 𝑣 𝑡 + 𝑎 𝑡 𝛿𝑡

Note that Euler is
1) Not energy conserving
2) Not reversible in time

-> Not recommended for molecular 
dynamics simulations, other simulations 
can employ (for example, common 
choice in Brownian dynamics / Langevin
dynamics simulations)



Actual options in molecular dynamics simulations: 
1. Verlet algorithm: Taylor series developed at two different times

𝑟 𝑡 + 𝛿𝑡 = 𝑟 𝑡 + 𝑣 𝑡 𝛿𝑡 +
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𝑟 𝑡 − 𝛿𝑡 = 𝑟 𝑡 − 𝑣 𝑡 𝛿𝑡 +
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𝑟 𝑡 + 𝛿𝑡 = 2𝑟 𝑡 − 𝑟 𝑡 − 𝛿𝑡 + 𝑎 𝑡 𝛿𝑡2

time

t0 t0+dt  t0+2dt    ...

positions
No velocity!

accelerations
Verlet L. Computer “Experiments” on 
Classical Fluids. I. Thermodynamical 
Properties of Lennard-Jones Molecules. 
Phys Rev. 1967;159: 98–103. 
doi:10.1103/PhysRev.159.98

SUM

https://doi.org/doi:10.1103/PhysRev.159.98


Actual options in molecular dynamics simulations: 
1. Verlet algorithm: Taylor series developed at two different times

𝑟 𝑡 + 𝛿𝑡 = 𝑟 𝑡 + 𝑣 𝑡 𝛿𝑡 +
1
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𝑟 𝑡 + 𝛿𝑡 = 2𝑟 𝑡 − 𝑟 𝑡 − 𝛿𝑡 + 𝑎 𝑡 𝛿𝑡2

time

t0 t0+dt  t0+2dt    ...

positions
No velocity!

accelerations
Verlet L. Computer “Experiments” on 
Classical Fluids. I. Thermodynamical 
Properties of Lennard-Jones Molecules. 
Phys Rev. 1967;159: 98–103. 
doi:10.1103/PhysRev.159.98

SUM

Disadvantages: 
needs 2 sets of positions (also at t=0), 
acceleration term much smaller than 
position terms (loss of precision)
Velocities

𝑣 𝑡 = 𝑟 𝑡 + 𝛿𝑡 − 𝑟(𝑡 − 𝛿𝑡) /2𝛿𝑡

𝑣 𝑡 +
1

2
𝛿𝑡 = 𝑟 𝑡 + 𝛿𝑡 − 𝑟(𝑡) /𝛿𝑡

disadvantage: velocities ½ step off from 
positions

https://doi.org/doi:10.1103/PhysRev.159.98


𝑟 𝑡 + 𝛿𝑡 = 𝑟 𝑡 + 𝑣 𝑡 +
1

2
𝛿𝑡 𝛿𝑡

v(t+
1

2
𝛿𝑡)= v(t−

1

2
𝛿𝑡) +𝑎 𝑡 𝛿𝑡

Now, velocities explicitly present but ½ time step off from positions! Kinetic energy 
/ temperature off by ½ time step.

No summation of small dt2 terms ☺

Actual options in molecular dynamics simulations: 
2. Verlet leap-frog algorithm: Positions and velocities leap by ½ 

step over each other (=a better choice)

M.P. Allen and D.J. Tildesley, ”Computer simulations of Liquids”, Oxford Science Publications  (1987)

positions

Velocity ½ step 
mismatched!

accelerations



Actual options in molecular dynamics simulations: 
3. Velocity Verlet: positions, velocities and accelerations at the 

same moment (=the most used choice)

𝑟 𝑡 + 𝛿𝑡 = 𝑟 𝑡 + 𝑣 𝑡 𝛿𝑡 +
1

2
𝑎 𝑡 𝛿𝑡2

Calculate 𝑎 𝑡 + 𝛿𝑡 using  new positions 𝑟 𝑡 + 𝛿𝑡
Use both 𝑎 𝑡 and 𝑎 𝑡 + 𝛿𝑡 to calculate

𝑣 𝑡 + 𝛿𝑡 = 𝑣 𝑡 +
1

2
𝑎 𝑡 + 𝑎 𝑡 + 𝛿𝑡

time-reversible and energy conserving
Mathematically equivalent to original Verlet algorithm but much more stable (longer time step ok)
Due to its simplicity and stability the Velocity Verlet is the most widely used algorithm in molecular dynamics simulations.



Revision: Molecular dynamics integration algorithm 
should be

• Fast

• Use little memory

• Allow a long time step dt

• Reproduce the correct path (note: never possible)

• Conserve energy (&reversible in time)

• Be easy to implement

• Contain only one force evaluation/time step

time

t0 t0+dt  t0+2dt    ...



In Gromacs simulations software (=the exercises), 
you choose integration algorithm in the mdp file:

integrator = md
; A leap frog algorithm

integrator = md-vv
;  A velocity Verlet algorithm

integrator = md-vv-avek
; A velocity Verlet algorithm same as md-vv except the kinetic energy is calculated as the 
average of the two half step kinetic energies. More accurate than the md-vv.

integrator = sd
;  An accurate leap frog stochastic dynamics integrator.

integrator = bd
; A Euler integrator for Brownian or position Langevin dynamics.

You have this, no need to change 
in exercise



Error in molecular dynamics simulation time
propagation: energy conservation and time steps

300 Cu atoms at 300K

Figure: http://www.physics.helsinki.fi/courses/s/atomistiset/lecturenotes/lecture04.pdf
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(numerical 
precision) 
dominates

Integration time step

Origins of finite time integration error

☺ In practise, here (=compromise in 
accuracy vs time used)

En
e

rg
y

time



Choosing a time step

Too short! Too long!
☺

Outcome: Typical time steps in atomistic simulations
Atoms 10fs
Rigid molecules 5fs
Flexible molecules (bonds with H const.) 2fs
Flexible molecules, flexible bonds 0.5-1fs

Larger time step allows to run simulation faster, but accuracy decreases.

•Verlet family integrators are stable for time steps 𝛿𝑡 <≤
1

𝜋𝑓
 where. 𝑓 is oscillation frequency

•Vibrations hydrogen bonds have period of 10 fs 

•Bond vibrations involving heavy atoms and angles involving hydrogen atoms have period of 20 fs 

•Stretching of bonds with the lightest atom H is the fastest motion. 

•As period of oscillation of a C-H bond is about 10 fs, Verlet integration is stable for time steps < 3.2 fs

(In practice, 1 fs time step is recommended for this). 

•Time step can be doubled by constraining bonds with hydrogens. Your exercises do this!

•Further increase of time step requires constraining bonds between all atoms and angles involving 

hydrogen atoms 



In Gromacs simulations software (=the exercises), 
you choose simulation time step in the mdp file:

dt = 0.002
; Time step, ps, (2 ns)

nsteps = 500000
; Number of steps to simulate, this is now 1 ns 

tinit = 0
; Time of the first step

You have these in the 
production run, no need to 

change in exercise



Constraint algorithms (to extend time step)

• SETTLE
– Very fast analytical solution for small molecules. 
– Widely used to constrain bonds in water molecules.

• SHAKE
– Iterative algorithm that resets all bonds to the 

constrained values sequentially until the desired 
tolerance is achieved.

– Simple and stable, it can be applied for large molecules.
– Works with both bond and angle constraints.
– Slower than SETTLE and hard to parallelize.
– SHAKE may fail to find the constrained positions when 

displacements are large.
– Extensions of the original SHAKE algorithm: RATTLE, 

QSHAKE, WIGGLE, MSHAKE, P-SHAKE.

• LINCS
– Linear constraint solver
– 3-4 times faster than SHAKE and easy to parallelize.
– The parallel LINCS (P-LINCS) allows to constrain all bonds 

in large molecules.
– Not suitable for constraining both bonds and angles.

• To constrain bond length in a simulation the equations of 
motion must be modified.

• The goal is to constrain some bonds without affecting 
dynamics and energetics of a system.

• One way to constrain bonds is to apply constraint force 
acting along a bond in opposite direction.

• In constrained simulation first the unconstrained step is 
done, then corrections are applied to satisfy constraints.
• As bonds in molecules are coupled satisfying all 

constraints in a molecule becomes increasingly 
complex for larger molecules.

• Several algorithms have been developed for use 
specifically with small or large molecules.

Source: https://computecanada.github.io/molmodsim-md-
theory-lesson-novice/aio/index.html



In Gromacs simulations software (=the exercises), you choose constraint 
algorithm in the mdp file (also in topology file for some constraints, not 

shown here):

constraints = h-bonds
; Constrain bonds with hydrogen atoms

constraints = all-bonds
; Constrain all bonds

constraints = h-angles
; Constrain all bonds and additionally the angles that involve hydrogen atoms

constraints = all-angles
; Constrain all bonds and angles

constraint-algorithm = LINCS
; Use LINCS

constraint-algorithm = SHAKE
; Use SHAKE

shake-tol = 0.0001
;  Relative tolerance for SHAKE, default value is 0.0001.

You have this, no need to change in exercise

You have this, no need to change in exercise



Molecular dynamics in practise

• Next: things to consider



Molecular dynamics in practice: Computational 
efficiency

• System size: How large?

• Simulation box

– Boundary conditions, simulation box shape

• Cut-off schemes

– Do we need to calculate every single particle interaction with all the 
other particles? 

– If not, how to define which?

– Cut-off errors



Why periodic boundary conditions?

•Simulating a system in realistic environment, such as 
solution. 
•How would you simulate a droplet of water? A boundary 
to contain water, control temperature, pressure, and 
density needed. 
•Periodic boundary conditions allow approximating an 
infinite system by using a small part (unit cell). 

•Unit cell is surrounded by an infinite number of 
translated copies in all directions (images).
•A particle moving across the boundary reappears on the 
opposite side.
•Each molecule always interacts with its neighbors even 
though they may be on opposite sides of the simulation 
box.
•Artifacts caused by a vacuum are replaced with the PBC 
artifacts which are in general much less severe.



Computational efficiency: simulation box and simulation box size

• Typically: periodic boundary conditions
• Small is good for computational efficiency
• BUT: Box must large enough that the system properties 

are not affected by size
– Finite size effects
– Not always achievable!!!

• Rule of thumb: Molecule cannot see its own influence 
as image over periodic boundary, box must be over L/2 
in shortest dimension

• For solutes in solvent (water) the minimum box size in 
atomistic detail modelling should be 1 nm from the 
solute

• Distance comes from force-field cut-offs (practical 
choice, not absolute rule)

• Distance different in oil solvents (charge screening 
difference)

    

              

   

 

           



Computational efficiency: simulation box size

http://mathworld.wolfram.com/Space-FillingPolyhedron.html

Cube vs.
Rhombic dodecahedron:

Consider a solvation 
simulation of a spherical 
molecule which cannot see 
(effectively) its own image 
through the periodic box 
images: Cube contains 
approx 30% more water then 
rhombic dodecahedron for 
same solute molecule 
minimum image distance!



Boundary conditions in simulations (simulation box 
size)

http://mathworld.wolfram.com/Space-FillingPolyhedron.html

Commonly used cells:
Cube
Truncated octahedron
Hexagonal prism
Rhombic dodecahedron



Minimum image convention of periodic boundary 
conditions 

• Particle sees at most just 
one image every atom in 
the system (does not see 
itself)

• Energy or force 
calculated to closest 
image

• Typically interaction cut-
off radius involved

Fig: http://www.cs.utah.edu/~pitcher/Team10/userman/



Cut-off schemes in calculating interactions

• Truncating the potential and 
neighbor lists
– Bonded interactions have limited 

number of particles involved and 
scale as O(N) (N number of 
particles)

– Non-bonded (in principle) 
interactions involve all 
combinations of N particles in an 
N particle system. Scales as 
O(N2). PROBLEM!



Let’s take a look at Lennard-Jones 
potential: Decays as r-6

𝑉 𝑟𝑖𝑗 = 4𝜀
𝜎

𝑟𝑖𝑗
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−
𝜎

𝑟𝑖𝑗

6

Potential well depth

zero-separation

s rm=21/6s

U
 (
e)

e

1% of value at well bottom at 2.5s separation



Cut-off schemes in calculating interactions

• Minimum image convention: at max 
½ of smallest box side

• Lennard-Jones: 2.5s corresponds to 
1% error

• Coulombic interactions: any kind of 
cut-off has been shown to cause 
artifacts: Long range electrostatics 
such as PME of multipole expansions 
preferred, reaction field type 
methods use ~1nm switch cut-off

• More about long-range electrostatics 
later



Fine-tuning the truncation scheme

• Typically just cut-off, but 
discontinuity in energy / 
force may be problem

• To remove discontinuity 
energy function may be
– shifted to zero at cut-off 
– switched to zero at cut-off 

(switching function)

• To remove force 
discontinuity, the 
derivative values may be 
modified at cut-off region



Fine-tuning the truncation scheme

• Potential shifted to zero at cut-off 
– v’(r)=v(r)-v(rcut), r<rcut

– v’(r)=0, r>rcut

– Does not affect force 

• Force has discontinuity at cut-off: drop from finite 
value to zero
– Force discontinuity can be avoided by setting derivative 

zero at cut-off

– v’(r)=v(r)-v(rcut)-
𝑑𝑣(𝑟)

𝑑𝑟 r=rcut 𝑟 − 𝑟𝑐𝑢𝑡 , r<rcut

– v’(r)=0, r>rcut

– May be complicated to implement in many body 
potentials



Fine-tuning the truncation scheme
Lennard-Jones as example of shifted potential

Potential energy
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Fine-tuning the truncation scheme

• Potential switched to zero either over r< rcut or  
over a short region before rcut (switching function). 
– Switching function v’(r)=v(r)S(r), r<rcut

– v’(r)=0, r>rcut

– S(r=0)= 1  S(rcut)=0

– Affects force 

• Preferentially 1st and 2nd derivative values at onset 
of switching and at rcut zero!! (No “jumps” in force)

• Correcting for switching function “jumps” critical in 
reactive force-fields



Computational efficiency: How to define which particles are 
interacting if there is a cut-off?

• If we need to calculate distances to all the particles (minimum image convention), the computational 
effort is almost as large as calculating all the energies without cut-off

• Most neighbors stay same on consequent steps

• How does one define, which particles are within cut-off distance of each particle?

?



Common solution: Verlet neighbor list

• For each particle i, a list of all particles j 
within cut-off distance rcut + neighbor 
list skin thickness distance rm

– The list is updated only every M time 
steps

– M and rm-rcut are chosen such that

• rm-rcut>Mvdt, where v is a typical atom 
velocity and dt the time step

• Update interval M can be 1) constant 
interval (simplest),  2) coupled to 
average v (better) or 3) coupled to 
maximum displacement of particles 
kept track with (best)



• Construction with 1 array

Verlet neighbor list: version 1

4 42 3 63 1 3 4



• Construction with 1 array

Verlet neighbor list: version 1

4 42 3 63 1 3 4

Example: 64 atom system, each atom has 4 neighbors



• Construction with 1 array

• Note: Course book uses 2 
arrays for the same algorithm

Verlet neighbor list: version 1



• Construction with 1 pointer list (head) and 1 
array (list)

Verlet neighbor list: version 2

P( head) L (List)

1 8 0

2 10 0

3 0

4 3

5 0

6 4

7 5

8 7

9 6

10 9

Particle 1 has particles 8, 7, 
and 5 as neighbors.
Which particles are 
neighbors of particle 2?



• Construction with 1 pointer list (head) and 1 
array (list)

Verlet neighbor list: version 2

P( head) L (List)

1 8 0

2 10 0

3 0

4 3

5 0

6 4

7 5

8 7

9 6

10 9



• Construction with 1 pointer list (head) and 1 
array (list)

Verlet neighbor list: version 2

P( head) L (List)

1 8 0

2 10 0

3 0

4 3

5 0

6 4

7 5

8 7

9 6

10 9

Particle 1 has particles 8, 7, 
5, and 1 as neighbors.
Particle 2 has particles 10, 9, 
6, 4, and 3 as neighbors



Computational efficiency: all pairs versus neighbor 
lists

Neighbor listsAll pair method Cell subdivision

Limiting numbers of neighbors can be done either with 
neighbor lists or cell subdivision
Cell subdivision follows similar Verlet construction



Cut-offs

• Same neighbor list commonly used for different interactions (van der 
Waals cut-off, electrostatics real space cut-off,…)

• Water dimer



Estimating errors in simulations

• Same set of initial conditions -> same results

• But there is both systematic & statistical error

– Simulation model

– Algorithm

– Time steps, truncation, shifts & algorithm modifications

– Rounding error (numerical error)

• Even if all systematic error is eliminated, statistical error 
remains!!!



Estimating errors in simulations

• Standard deviation and method of blocks



Electrostatics

• Computationally, electrostatics poses a major challenge 

– long-ranged and decays as 1/r

– In general, we define a long-range interaction as one for which V (r) ∼
1/ra, where a < d, and d is the dimension of space

• Cut-off, reaction-field, Ewald-type methods, multipole
expansions, …



Effect of truncating electrostatic interactions in lipid bilayer: 
radial distribution function

M. Patra et al., Biophys. J., 84:3636-3645, 2003

Bare truncation of Coulomb interactions 
is likely to cause major error 



Reaction field electrostatics

• Explicit electrostatics with r<rcut. 

• For r > rcut the system is treated on a mean-field level and is 
thus completely described by its dielectric constant e . 



Ewald summation

• Ewald converted 1927 the slowly, conditionally convergent sum 
for the Coulomb potential in infinite lattice into two sums that 
converge rapidly and absolutely, one in real space another in 
reciprocal space

1

𝑟
=
𝑓(𝑟)

𝑟
+
1 − 𝑓(𝑟)

𝑟



Ewald sum: periodicity



Ewald sum

• UEwald=Ur+Um+U0

– Ur Real space sum

– Um Reciprocal space sum

– U0 Constant term

A.Y. Toukmaji, J.A. Board Jr./Computer Physics Communications 95 (1996) 73-92



counterion

polyelectrolyte

Ewald summation convergence: Example

Convergence 

Region (plateau)



Electrostatics

• Computationally, electrostatics poses a major challenge 

– long-ranged and decays as 1/r

– In general, we define a long-range interaction as one for which V (r) ∼
1/ra, where a < d, and d is the dimension of space

• Cut-off, reaction-field, Ewald-type methods, multipole
expansions, …



Dimensionless units

• Advantages

– numerical values ~1, instead of typically very small values associated 
with atomic scale

– simplification of equations of motion (absorption of parameters 
defining the model into units)

– possibility of scaling results of single simulation for a whole class of 
systems described by same model



Dimensionless units
Example: Lennard-Jones 12-6

𝝋 𝑟𝑖𝑗 = 4𝜀′
𝜎

𝑟𝑖𝑗
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∗

𝟏𝟐

−
𝟏

𝒓
∗

𝟔

𝜀 = 4𝜀’



Initial velocities for MD simulations

• Random initial velocities such that total momentum vanishes 
average conforms to desired temperature

• Initial distribution of velocity components may be

– Uniform between –vmin and +vmax

– Gaussian:



Molecular dynamics in brief: sequence 
of static images



Note: Average may not be 
representative



Example: Sup35 protein configurations and 
periodicity



Movies for visualizing molecular modelling

• Materials simulations (metals, surfaces, shear flows, liquids, 
some molecular materials...)

– http://lammps.sandia.gov/movies.html

• Biomolecules

– http://www.ks.uiuc.edu/Gallery/Movies/

http://lammps.sandia.gov/movies.html
http://www.ks.uiuc.edu/Gallery/Movies/


Example: Sodium dodecyl sulfate

A B C
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