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Weekly schedule (6 weeks)

Exercise sessions A, Monday–Tuesday
Homework based on previous week’s lectures (+everything before)

Lectures, Wednesday & Thursday 8-10, Hall D

Exercise sessions B, Wednesday–Friday
Homework based on the Wednesday lecture (+everything before)

Lecture notes, exercises, solutions (and everything) in
https://mycourses.aalto.fi/course/view.php?id=40608

Caveat: Group H03 has the B session already on Wednesday, so H03
recommended for those who can study the material in advance from the
lecture notes.

Also: In Laskutupa you can solve homework and ask for help from
various teachers: https://math.aalto.fi/en/studies/laskutupa/

(Mon–Fri almost 10–18, see exact schedule online)
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Literature

Kenneth Rosen: Discrete Mathematics and its Applications.

(Kenneth Bogart: Combinatorics Through Guided Discovery.)

(Richard Hammack: Book of Proof.)

Lecture notes Available on the course page, updated during the
course
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Course content

Set theory and formal logic

Relations and equivalence

Enumerative combinatorics

Graph theory

Modular arithmetics, elementary number theory

But more importantly:

The fundamental notions, notations and methods of mathematics
(definition, theorem, proof, example...)
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Part 1: Sets and formal logic

1.1 Sets
1.2 Formal logic
1.3 Proof techniques
1.4 Relations
1.5 Functions and cardinalities
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Sets

All mathematical structures are sets, and all statements about them
can be described in terms of sets.

Example

N = {0, 1, 2, 3, . . . } is the set of natural numbers.

Z = {. . . ,−2,−1, 0, 1, 2, . . . } is the set of integers.

Q = { pq : p, q ∈ Z, q 6= 0} is the set of rational numbers.

R is the set of real numbers.

{∆ABC : A,B,C ∈ R2} is the set of triangles in the plane.

The members (elements) of a set can be whatever:

A = {skateboard, paperclip, 16, π, infinity}

is a set.
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Sets

The most important notion in set theory is the symbol ∈.

x ∈ A if “the element x belongs to the set A”.
x 6∈ A if “the element x does not belong to the set A”.

Example

my car ∈ {cars}.
5 ∈ Z.

5 ∈ R.

5 6∈ R2.

π ∈ R.

π 6∈ Z.
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Defining a set

Listing the elements: {2, 4, 5, 7}, the set with elements 2, 4, 5, 7.

Ellipsis: {10, 11, 12, . . . , 20}, the set of integers from 10 to 20.

Set-builder notation:

{expression : condition}

is a set containing all elements described by the expression
such that the condition is satisfied for them.

{x2 : x ∈ Z, 2 < x < 10} = {9, 16, 25, 36, 49, 64, 81}.
{x ∈ R : −1 ≤ x ≤ 1} = [−1, 1] (a closed interval of reals)

Special notation for empty set: ∅ = {} is a set that has no
elements.
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Cardinality

|A| denotes the number of elements in a finite set A.

This is called the cardinality of A.

The cardinality is always a natural number (nonnegative integer).

Example

|∅| = 0

|{∅}| = 1

|{a, b, c}| = |{a, c , c , b, a, c , b, b, a}| = 3.

But note that not all sets are finite (e.g. N,Z,R). Later we will also
define talk about cardinalities of infinite sets.
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Equality of sets

Two sets are the same if they contain the same elements.

For example: {2, 3, 4} = {4, 2, 4, 3}.
Sets do not have “order”, nor “multiplicity”.

Thus, there is only one “empty set” ∅.

If A = B, then also |A| = |B| (but not vice versa)

Proof techniques:

To prove that A = B: Show that whenever x ∈ A, also x ∈ B. And
show that whenever x ∈ B, also x ∈ A.

To prove that A 6= B: One method just to exhibit one element that
is on one of the sets but not in the other. Another method (for finite
sets) is to show that the sets have different numbers of elements.
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Subset

A ⊆ B (“A is a subset of B”) if all elements of A are also in B.

e.g. ∅ ⊆ {1, 2, 3} ⊆ Z ⊆ R.
∅ is a subset of every set.
Every set is a subset of itself.
If A ⊆ B, then also |A| ≤ |B| (but not vice versa)

So A = B if
A ⊆ B and B ⊆ A.

If A ⊆ B and A 6= B, then A is a proper subset of B.
Denoted A ( B, or sometimes A ⊂ B.

Proof techniques:
To prove that A ⊆ B: Show that whenever x ∈ A, also x ∈ B.
To prove that A * B: One method just to exhibit one element that
is in A but not in B. Or (for finite sets) just show that A has more
elements than B.
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Elementary set operations

Union: x ∈ A ∪ B if x ∈ A or x ∈ B.

Intersection: x ∈ A ∩ B if x ∈ A and x ∈ B.

Set difference: x ∈ A \ B if x ∈ A but x 6∈ B.

Complement: x ∈ Ac = Ω \ A if x 6∈ A
(but x is in the “universe” Ω, which is understood from context).
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Set operations: Cartesian product

A× B is the set of ordered pairs

{(a, b) : a ∈ A, b ∈ B}.

{a, b, c} × {1, 2} = {(a, 1), (a, 2), (b, 1), (b, 2), (c , 1), (c , 2)}.
R× R = R2 (“the xy -plane”)
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Set operations: Power set

Power set: P(A) is the set of all subsets of A.

P({1, 2}) = {∅, {1}, {2}, {1, 2}}.
P({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.
P(∅) = {∅} 6= ∅.

Here we have sets whose elements are sets. Be careful that you
understand what this means! For example, 1 is not an element of
{{1, 2}, {2, 3}}.
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Cardinality of union

If |A| = 9 and |B| = 5, what can we say about |A ∪ B|?

9 ≤ |A ∪ B|.
|A ∪ B| ≤ 14.
|A ∪ B| ∈ N.

In general, |A ∪ B| = |A|+ |B| − |A ∩ B|.
If S ⊆ T , then |S | ≤ |T |.
So

max(|S |, |T |) ≤ |S ∪ T | ≤ |S |+ |T |.
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Enumeration: Cardinality of Cartesian product

Let |S | = n and |T | = m.

An ordered pair (s, t), where s ∈ S and t ∈ T , can be chosen in nm
ways.

So |S × T | = nm = |S | · |T |.

Theorem

Let A1, . . . ,Ak be finite sets. Then

|A1 × · · · × Ak | = |A1| · · · · · |Ak |.
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Enumeration: Cardinality of product set

A subset A of {1, 2, · · · , n} is determined by, for each 1 ≤ i ≤ n,
whether or not i ∈ A.

So a subset of {1, 2, · · · , n} can be described by a string of n bits:
symbols 0 (“out”) and 1 (“in”).

Example: The string 001101 corresponds to the set

{3, 4, 6} ⊆ {1, . . . , 6}.

We will talk more about bits and integers later on the course. The bit string 001101 can be

understood as the integer 8 + 4 + 0 + 1 = 13.
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Enumeration: Cardinality of product set

A subset of {1, 2, · · · , n} corresponds to a string of n symbols 0/1,
which is the same as an element of

{0, 1}n = {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
n factors

It follows that

|P({1, . . . , n})| = |{0, 1}n| = |{0, 1}|n = 2n.

Theorem

Let A be a finite set. Then

|P(A)| = 2|A|.
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Useful properties

Subsets, unions and intersections have some properties that are almost
“obvious”, but very useful as “steps” in proofs.

Some examples: For any two sets A,B,

A ⊆ A ∪ B

A ∩ B ⊆ A

A ∩ B = B ∩ A (symmetry, or “commutativity”)

A ∩ B ⊆ A ∪ B

Make sure you understand why these are true (can you prove them from
the elementary definitions?).

From the third one, it follows that the union never has fewer elements
than the intersection. (Obvious?) Useful with so-called Jaccard similarity.
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More useful properties

Commutative laws:

A ∩ B = B ∩ A
A ∪ B = B ∪ A

Associative laws:

(A ∩ B) ∩ C = A ∩ (B ∩ C)
(A ∪ B) ∪ C = A ∪ (B ∪ C)

Distributive law:

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)
(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)

Proof via Venn diagrams (on blackboard).
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Jaccard similarity and distance

How similar are two (finite) sets, if you look at their elements?

E.g. animals and plants described by sets of features. How similar are
Cat and Dog? What about Seagull and Penguin?

Cat = {tail, fourlegged,meows, breastfeeds}
Dog = {tail, fourlegged, barks, breastfeeds}

Seagull = {wings, layseggs, flies}
Penguin = {wings, layseggs}
Ostrich = {wings, layseggs}

Platypus = {tail, fourlegged, layseggs, breastfeeds}

Idea: count how many common elements they have (cardinality of
intersection). Then normalize by how many they could share at most
(cardinality of union).

RF, JK MS-A0402 22 / 338



Sets and formal logic
Combinatorics
Graph theory

Number theory

Sets
Formal logic
Proof techniques
Relations
Functions and cardinalities

Jaccard similarity and distance

Jaccard similarity J and distance dJ

J(A,B) =
|A ∩ B|
|A ∪ B|

dJ(A,B) = 1− J(A,B)

(Work out the similarities of the animals.)

(Need a special definition when both sets empty. Then say similarity is 1,
thus distance 0.)
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Indexed family of sets

Let A1,A2,A3, · · ·Ak ⊆ Ω be sets.

We say that
{Ai : 1 ≤ i ≤ k}

is an indexed family of sets

k⋃
i=1

Ai = {x ∈ Ω : x ∈ Ai for some 1 ≤ i ≤ k}.

k⋂
i=1

Ai = {x ∈ Ω : x ∈ Ai for every 1 ≤ i ≤ k}.

This is union and intersection of more than two sets.
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Indexed family of sets

Example

Let A1 = {0, 2, 5}, A2 = {1, 2, 5}, A3 = {2, 5, 7}.

3⋃
k=1

Ak = {0, 1, 2, 5, 7}.

3⋂
k=1

Ak = {2, 5}.
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Indexed family of sets

We can do the same for infinitely large families of sets.

Let A1,A2,A3, · · · ⊆ Ω be sets.

We say that
{Ai : i ≥ 1}

is an indexed family of sets

∞⋃
i=1

Ai = {x ∈ Ω : x ∈ Ai for some i ∈ I}.

∞⋂
i=1

Ai = {x ∈ Ω : x ∈ Ai for every i ∈ I}.
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Indexed family of sets

Example

Let Ω = R, and let Ak be the closed interval Ak = [0, 1
k ] for k ≥ 1.

∞⋃
k=1

Ak = [0, 1].

∞⋂
k=1

Ak = {0}.

Proof on the blackboard.
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Indexed family of sets

We can do the same for other indexing sets as well. Let I be a set.

Let Ai ⊆ Ω be a set, for each i ∈ I .

{Ai : i ∈ I}

is an indexed family of sets⋃
i∈I

Ai = {x ∈ Ω : x ∈ Ai for some 1 ≤ i}.

⋂
i∈I

Ai = {x ∈ Ω : x ∈ Ai for every 1 ≤ i}.
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Russel’s paradox

“A male barber in the village shaves the beards of precisely those
men, who do not shave their own beard.”

Does the barber shave his own beard?

Whether he does or does not, we get a contradiction.

This is an instance of the problem of self-reference in set theory.

RF, JK MS-A0402 29 / 338



Sets and formal logic
Combinatorics
Graph theory

Number theory

Sets
Formal logic
Proof techniques
Relations
Functions and cardinalities

Russel’s paradox

For every man x in the village, there is a set Sx consisting of all the
men whose beards he shaves.

For the barber B,
SB = {x : x 6∈ Sx}.

In particular,
B ∈ SB ⇔ B 6∈ SB ,

which is a contradiction!

We are not allowed to use the set S in the formula that defines S!
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Russel’s paradox

For every “universe” Ω and every statement P (without
self-reference),

{x ∈ Ω : P(x)} ⊆ Ω

is a set.

Let Ω be “the set of all sets”, and let

S = {A ∈ Ω : A 6∈ A}.

Is S an element of itself? Again we get a contradiction.
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Russel’s paradox

To avoid this kind of contradictions, we decide:

The “set of all sets” does not exist.

No set is allowed to be an element of itself.

All sets must be constructed from “safe and well-understood sets”
(like R) by taking

Subsets.
Cartesian products.
Power sets.
Unions.
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Propositions (statements)

A proposition (or statement) is a sentence that claims something,
and is either true or false.

We say that a proposition has a truth value, which is either “true”
or “false”. Commonly denoted by letters T, F or integers 1, 0.
Let’s use the integers: nice connection with arithmetic.

Compare:

5 + 3 is an arithmetic expression, with integer value 8
5 > 3 is a logical expression (proposition), with truth value 1 (true)

In mathematics, we are mostly interested in propositions that have a
clear meaning and a well-defined truth value — whether or not we
know the value, we think the value exists and is in principle
knowable.
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Some propositions

Example

2 ∈ Z
2 + 2 > 10

Sixty is divisible by three without remainder.

The millionth decimal of π is 7.

Every human (Homo sapiens) has two eyes.

The housecat (Felis domesticus) is a mammal.

Less than half of white clovers have four leaves.

Image: Vinayaraj
Wikimedia Commons

CC BY-SA 4.0

Observe: Propositions can be about math or about real world. Even
purely mathematical claims might be expressed in words.
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Some non-propositions

A “sentence” in natural language (e.g. English) is not necessarily a
“proposition” in our sense.

Example

1 “Is 2+2 = 4?” (question – does not claim a fact)

2 “Solve this equation!” (command – does not claim a fact)

3 “This sentence is false.” (it is not possible for this sentence to have
either truth value)

4 “x is an integer.” (open sentence – we have not specified what x is)
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Shades of definiteness

Real-world propositions often have some vagueness or ambiguity.

Example

A million is a big number. (no clear boundary for “big”)

Orange juice tastes good. (opinion)

Running is good for health. (in what sense? for whom, when?)

There are many lakes in Finland. (perhaps, but what is “many”?)

There are exactly 187 888 lakes in Finland. (what is a lake? when is
a lake in Finland?)

It rains right now in Espoo. (where? how many drops is rain?)

Usually we are fine with such claims, as long as we do not think they are
more definite than they are. If necessarily, we can make them more
definite (e.g. “by lake we mean this kind of waterbody”).
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Open and closed sentences

Propositions are also called closed sentences.

A predicate or open sentence is a sentence containing one or more
variables (e.g. x , y), such that if we define their values, then the
sentence becomes a definite proposition (true or false).

For easy reference, we can give a name to a predicate, e.g. P(x , y),
where x , y are its variables (arguments).

Example

−1 ≤ y ≤ 1.

5 ≤ y ≤ 2.

E (x): x is an even integer.

P(x): the millionth decimal of π is x .

Q(n, x): the nth decimal of π is x .
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“Closing” an open statement

There are two ways to convert an open sentence into a proposition. Let,
for example, P(x) be the open sentence “x > 0”.

Assign a value to the variables.

P(5) is the proposition 5 > 0 (whose value is true)
P(−3) is the proposition −3 > 0 (whose value is false)
You can think of the open sentence P as a function, whose argument
is (here) a number, and the value is a proposition, either true or
false. Indeed they are sometimes called “propositional functions”.

Quantify over the variables.

“There exists a real number x such that x > 0” is a true proposition.
“For every real number x we have x > 0” is a false proposition.
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Quantifiers

“For all x ∈ A, P(x) holds” is denoted formally

∀x ∈ A : P(x).

“There exists some x ∈ A, for which P(x) holds” is denoted formally

∃x ∈ A : P(x).

Note:
∀, “for All”, also called universal quantifier
∃, “Exists”, also called existential quantifier
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Quantifiers

Example

Which of the following propositions are true?

∀x ∈ R : x2 > 0.
∃a ∈ R : ∀x ∈ R : ax = x .
∀n ∈ Z : ∃m ∈ Z : m = n + 5.
∃n ∈ Z : ∀m ∈ Z : m = n + 5.
On every party, there are two guests who know the same number of
other guests.

2 and 3 are true, 1 and 4 are false.

We will revisit 5 later in the course.
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Finite quantifying

A quantifier over a finite set can be understood as “and” or “or”. Let,
for example, A = {1, 2, 3, 4}, and P(x) some predicate (eg. x < 3).

∀x ∈ A : P(x) means that “P(1) and P(2) and P(3) and P(4)” (we
are claiming that all of these propositions are true)

∃x ∈ A : P(x) means that “P(1) or P(2) or P(3) or P(4)” (we are
claiming that at least one of these propositions is true)

When quantifying over an infinite set (e.g. N), this interpretation would
require an infinitely long sentence, but at least mentally one can use this
interpretation.

The ∃ quantifier says nothing about the number of suitable x ’s — just
one is enough, but there could be more (perhaps even all).
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Proving quantified sentences

“Easy” cases:

∃x ∈ A : P(x) can be proven by exhibiting (just one) value of x that
makes the claim true.

∀x ∈ A : P(x) can be proven false by exhibiting (just one) value of x
that makes the claim false!

“Difficult” cases:

∃x ∈ A : P(x) can be proven false by proving that there isn’t any x
that would make P(x) true.

∀x ∈ A : P(x) can be proven true by proving that there isn’t any x
that would make P(x) false.

If A is finite, one could tackle the difficult cases by simply trying every
possibility and observing “I didn’t find any such x”. Otherwise we need
some stronger tools → later on this course.
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More than one quantifier

If a statement contains more than one quantifier, their order is crucial for
the meaning! Consider following examples (all in integers).

Example

∃x : ∃y : x + y = 7 says we can choose an x , and then choose an y
such that x + y = 7. By choosing x = 3, y = 4 we see this is true.

∀x : ∀y : x + y = 7 says it should be true no matter what x and y
we choose. By choosing x = 2, y = 3 we see it is false.

∀x : ∃y : x + y = 7 is true; whatever x is chosen, we can then
choose y = 7− x , making the claim true. We have a “strategy” for
the ∃, that works no matter what happens in the ∀.

∃y : ∀x : x + y = 7 is false: we cannot choose an x which would
make x + y = 7 true for all y . (Elaborate!)

Observe: ∃∃ can be swapped, ∀∀ can be swapped, but ∃∀ not.
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Connectives

Propositions can be composed with logical connectives:

negation ¬ “not”
conjunction ∧ “and”
disjunction ∨ “or”
implication → “implies”, “if ... then ...”
equivalence ↔ “if and only if”
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“And” Connectives (∧, conjunction)

The meanings of connectives are defined via truth tables (cf. defining
“times” by a multiplication table).

Let’s start with the and connective ∧, which connects two elementary
propositions. For every possibility, we define the result.

A B A ∧ B
0 0 0
0 1 0
1 0 0
1 1 1

Observe: Connecting two propositions, so 22 = 4 rows, one for each
value combination.

Think of a connective as an “operation” similar to arithmetic.

In fact, ∧ is a familiar arithmetical operation if our truth values are
integers 0 and 1. Which one?
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“Or” connective (∨, disjunction)

A B A ∨ B
0 0 0
0 1 1
1 0 1
1 1 1

∨ claims that at least one of the elementary propositions is true (possibly
both), so-called inclusive or.

E.g. “you can take this ride if you are at least 18 years or accompanied
by someone who is” — we are not excluding adults who have company.

Think: what is the truth table for exclusive or (“exactly one of the
elementary propositions is true”)?

Think: can ∨ be seen as an arithmetic operation?
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“Not” connective (¬, negation)

A ¬A
0 1
1 0

Negation simply reverses the truth value. Because it involves only one
input, there are just two rows in the table.

Is it a simple arithmetic operation?
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Equivalence, ↔
Equivalence claims that the two elementary propositions have the same
truth value, either both true or both false. Read “if and only if”, or “is
equivalent to”.

A B A↔ B
0 0 1
0 1 0
1 0 0
1 1 1

Often combined with quantifiers. For example:

∀x ∈ N :
(

(x2 > 100)↔ (x > 10)
)

Note. For some x both sides are true (e.g. x = 11), and for some x both
are false (e.g. x = 4), but we cannot find an x where the sides have
different truth. Thus the universal claim is true.
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Implication, →

Implication A→ B is a bit surprising.

Can be understood as a “promise” that if A is true, then so is B.

This promise is broken, or “false”, if A is true but B is false.

In all other three cases we say the promise holds (is true).

A B A→ B
0 0 1
0 1 1
1 0 0
1 1 1
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Implication, making sense of

Implication is often used with a quantifier (and then its meaning better
matches the natural language “if”).
Consider the claim “if x exceeds 3, then its square exceeds 9”.

∀x ∈ R :
(
(x > 3)→ (x2 > 9)

)
.

We have different kinds of cases:

e.g. for x = 4, both sides are true

e.g. for x = 0, both sides are false

e.g. for x = −4, left side is false and right side is true

In fact all x ∈ R are similar. In all cases our “promise” holds.
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Implication, making sense of

More examples:

“If your exam points are at least 50%, you pass the course.”

I’m not saying you couldn’t pass with lower points.

Equivalent contrapositive form: “If you don’t pass the course, then
your exam points are below 50%.”

“If I am elected in March, the taxes will be lowered next year.”

I’m not saying what happens if I am not elected.

Equivalent contrapositive form: “If taxes are not lowered next year,
then I was not elected in March.”
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Tautologies

A tautology is a (composed) proposition that is True regardless of
the truth values of the elementary propositions that it is composed
of.

Example

The following propositions are tautologies:

(¬¬P)→ P (double negation)

P ∨ (¬P) (excluded middle)

(P → Q)↔ (¬Q → ¬P) (contrapositive)

(P ↔ Q)↔ ((P → Q) ∧ (Q → P)) (equivalence law)

These can be proven via truth tables (like on the blackboard).

If A→ B is a tautology (where A and B are composed
propositions), then we write

A⇒ B.
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Tautologies

This gives us a way to “calculate” with propositions.

If A ⇐⇒ B (ie A↔ B is a tautology), then we can replace A by B
everywhere in our logical reasoning.

Often useful in math to replace an implication P → Q by its
contrapositive (¬Q)→ (¬P).

Example

The contrapositive (for x ∈ R) of

if x3 6= 0 then x 6= 0

is
if x = 0 then x3 = 0.

They claim the same thing. Do you find the latter easier to prove?
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Treasures

Example

Before you are three chests. They all have an inscription.

Chest 1: Here is no gold.
Chest 2: Here is no gold.
Chest 3: Chest 2 contains gold.

We know that one of the inscriptions is true. The other two are false.

If we can only open one chest, which one should we open?
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Treasures

Example

Axiom: One of the inscriptions is true. The other two are false.

Let Pi be the proposition “Chest i contains gold”.

Chest 1: Here is no gold. Q1 := ¬P1

Chest 2: Here is no gold. Q2 := ¬P2

Chest 3: Chest 2 contains gold. Q3 := P2

The axiom says

[
Q1 ∧ (¬Q2) ∧ (¬Q3)

]
∨
[
(¬Q1) ∧ Q2 ∧ (¬Q3)

]
∨
[
(¬Q1) ∧ (¬Q2) ∧ Q3

]
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Treasures

Example

Axiom: One of the inscriptions is true. The other two are false.

The axiom says

[
Q1 ∧ (¬Q2) ∧ (¬Q3)

]
∨
[
(¬Q1) ∧ Q2 ∧ (¬Q3)

]
∨
[
(¬Q1) ∧ (¬Q2) ∧ Q3

]
⇐⇒[

(¬P1) ∧ (¬¬P2) ∧ (¬P2)
]
∨
[
(¬¬P1) ∧ (¬P2) ∧ (¬P2)

]
∨
[
(¬¬P1) ∧ (¬¬P2) ∧ P2

]
.

⇐⇒[
¬P1 ∧ P2 ∧ ¬P2)

]
∨
[
P1 ∧ ¬P2 ∧ ¬P2

]
∨
[
P1 ∧ P2 ∧ P2

]
.

⇐⇒[
P1 ∧ ¬P2

]
∨
[
P1 ∧ P2

]
.

⇐⇒

P1
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Treasures

The axiom “One of the inscriptions is true. The other two are
false.” ⇐⇒ “Chest 1 contains gold”.

Lesson 1: Open the first chest.

Lesson 2: Manipulating propositions (by the tautology rule) is
“mechanical”. Mathematical reasoning without quantifiers can be
automated.
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Negation of quantifiers

What is the negation (opposite) of

∀x ∈ A : P(x)?

Example

A = {mathematicians}, P(x) =“x is bald”.

∀x ∈ A : P(x) means “all mathematicians are bald”.

The opposite is “some mathematicians are not bald”.

So
¬∀x ∈ A : P(x)

is equivalent to
∃x ∈ A : ¬P(x).
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Computing with logical symbols

(¬¬P) ⇐⇒ P

(P → Q) ⇐⇒ (¬Q → ¬P)

∃x ∈ Ω : ¬P(x) ⇐⇒ ¬∀x ∈ Ω : P(x)

In constructive mathematics, one only has the right implication

∃x ∈ Ω : ¬P(x)⇒ ¬∀x ∈ Ω : P(x)

in the last line.

This is philosophically interesting, and also interesting in some
algorithmic applications, but will not be relevant in this course.
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Sets and predicate logic

To any predicate P(x) corresponds a set {x ∈ Ω : P(x)}.
To the set S ⊆ Ω corresponds the predicate x ∈ S .

Sometimes mathematical statements are easier to think about in
terms of sets, sometimes in terms of logical symbols.
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Sets and predicate logic

To any predicate P(x) corresponds a set SP = {x ∈ Ω : P(x)}.
To the predicate P(x) ∧ Q(x) corresponds the set

SP∧Q = {x ∈ Ω : P(x) and Q(x)}
= {x ∈ Ω : P(x)} ∩ {x ∈ Ω : Q(x)} = SP ∩ SQ .

To the predicate P(x) ∨ Q(x) corresponds the set

SP∨Q = {x ∈ Ω : P(x) or Q(x)}
= {x ∈ Ω : P(x)} ∪ {x ∈ Ω : Q(x)} = SP ∪ SQ .
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Why formal logic?

We learn formal logic:

To define precise meanings of “and”, “not”, “or”,...
To transform complicated statements to equivalent but easier
statements, so that we can . . .
. . . assure ourselves and others that a thing is true;
. . . understand why a thing is true.
Because it is the glue that holds mathematical statements together.

We do not learn it in order to:

Write everything in symbols ∨,∧,∀, ∃, · · ·
Formal logic is in the background of all mathematics, not the
forefront.

If one wants to go “fully formal”: consider mathematical logic,
axiomatic set theory, and proof checkers (computer programs that
require and check fully formal proofs)
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Defining even

Next we’ll talk about even and odd integers. Let’s define what we mean.

Definition

An integer n is even if there is an integer k such that n = 2k.

After this we can say “m and n are even integers”, and understand
(and exploit) the mathematical meaning. (Beware of symbol clash!
What is the “k” here? BLACKBOARD)

Often a mixture of natural (but precise) language, and symbols.
Easier than symbols only.

Often (in definitions) we say “if” but mean “if and only if”. A
manner of speech — avoid outside definitions!

Often an unspoken quantifier: we said “an integer”, meaning “for all
integers”
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Defining even, more formally

Let’s try to write the definition more formally.

Definition

We define the predicate Even(x) as follows:

∀n ∈ Z :
(
Even(x)↔ ∃k ∈ Z : n = 2k

)
.

RF, JK MS-A0402 64 / 338



Sets and formal logic
Combinatorics
Graph theory

Number theory

Sets
Formal logic
Proof techniques
Relations
Functions and cardinalities

Defining odd

Definition

An integer n is odd if there is an integer k such that n = 2k + 1.

We have now defined both “even” and “odd” as existential claims. What
does it now mean to be “not even” or “not odd”? It means “there is no
such k that. . . ”

We could prove that every integer is indeed either even or odd, but not
both. (But we’ll postpone this.) We could use any arithmetical laws that
we already know. Perhaps using proof techniques such as induction (later
this lecture).
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Guessing vs. knowing vs. understanding

Suppose we are interested in how the parities of n and n2 are related. We
could run a small “experiment”. Evens are red and odds are black.

n 0 1 2 3 4 5 . . .
n2 0 1 4 9 16 25 . . .

It “seems” that when n is even, so is n2, and when n is odd, so is n2. We
know this (by our calculations) for 0 ≤ n ≤ 5.

We don’t know (yet) for n = 6 or n = 1279. Also, perhaps we don’t
understand “why” this rule would always hold.

A proof might help, both for knowing for sure, and for understanding.
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Proof techniques

In the most abstract version, a mathematical theorem has an axiom
(or conjunction of axioms) P, and a conclusion Q.
A proof consists of a sequence of statements such that each row is
either

An axiom or a definition.
Tautologically implied by the previous rows.

if previous rows say p1, . . . , pk , and (p1 ∧ · · · ∧ pk)→ q
is a tautology, then the next row may say q.

Obtained from previous lines by “quantifier calculus”:

∀x : ¬P(x)⇔ ¬∃x : P(x)

∃x : ¬P(x)⇔ ¬∀x : P(x)

A special case of a previous row.
if one row says ∀xP(x), then the next row may say P(c).

An existential consequence of previous rows.
if one row says P(c), then the next row may say ∃x : P(x).
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Proof techniques

In the most abstract version, a mathematical theorem has an axiom
(or conjunction of axioms) P, and a conclusion Q.

Most mathematical proofs uses one of the following tautologies:

(P ∧ (P → Q))⇒ Q (Direct proof)
(P ∧ (¬Q → ¬P))⇒ Q (Contrapositive proof)
(P ∧ ((P ∧ ¬Q)→ False)⇒ Q (Proof by contradiction)
((P1 ∨ P2) ∧ (P1 → Q) ∧ (P2 → Q))⇒ Q (Proof by cases)

...and / or the following ways to prove existence:

P(c)⇒ ∃x : P(x) (Constructive proof)
(¬P(c)→ ∃x : P(x))⇒ ∃x : P(x) (Nonconstructive proof)

Next, we will see examples of all these proof techniques.
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Direct proof

Example

For all even integers n, also n2 is even.

Proof.

Let n be an arbitrary even integer.

That means n = 2k for some integer k .

Then
n2 = (2k)2 = 4k2 = 2(2k2)

.

Since 2k2 is an integer, this means that n2 is even.
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Direct proof

Example

For all odd integers n, also n2 is odd.

Proof.

Let n be an arbitrary odd integer.

That means n = 2k + 1 for some integer k .

Then

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

Since 2k2 + 2k is an integer, this means that n2 is odd.
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Contrapositive proof

Example

For all integers n, if n2 is odd, then n is also odd.

Proof.

First attempt (direct proof):

n2 = 2k + 1 for some integer k .

So n = ±
√

2k + 1, and n is an integer.

No obvious way to write n = 2`+ 1.
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Contrapositive proof

Example

For all integers n, if n2 is odd, then n is also odd.

Proof.

New attempt (contrapositive proof):

Need to prove that if n is not odd, then n2 is not odd.

So assume n = 2k even.

Then n2 = 4k2 = 2(2k2) is even, so not odd.

Thus, if n were odd, then n2 must also be odd.
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Proof by contradiction

Example
√

2 6∈ Q.

Proof.

Assume the claim was not true, so
√

2 ∈ Q.

Then we could write
√

2 = p
q , where p and q are integers with no

common divisor.

Then 2q2 = p2, so p2 is even.

So p is even, and we can write p = 2r , r ∈ Z
So q2 = p2

2 = 2r2 is even.

Now p and q are both even. But this contradicts our assumption
that they had no common divisor.

Thus the assumption was false, so
√

2 6∈ Q.
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Proof by cases

Example

For all real numbers x , y , it holds that |xy | = |x | · |y |.

Recall:

|a| =

{
a if a ≥ 0
−a if a < 0
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Proof by cases

Example

For all real numbers x , y , it holds that |xy | = |x | · |y |.

Proof.

Three cases:

Both numbers ≥ 0, so xy ≥ 0: |xy | = xy = |x | · |y |.
Both numbers < 0, so xy > 0: |xy | = xy = (−x)(−y) = |x | · |y |.
The numbers have different sign, so xy ≤ 0. Without loss of
generality (WLOG) x < 0 ≤ y :

|xy | = −xy = (−x)y = |x | · |y |.

These cases cover all possibilities, so the claim is true for all
x , y ∈ R.
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Constructive existence proof

Example

There exist integers that can be written as a sum of two cubes in more
than one way.

Proof.

123 + 13 = 1728 + 1 = 1729 = 1000 + 729 = 103 + 93
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Nonconstructive existence proof

Example

There exist irrational numbers x , y 6∈ Q such that xy ∈ Q.

Proof.

The number a =
√

2
√

2
is of the form xy , where x = y =

√
2 6∈ Q.

If a is not rational, then a
√

2 is also of the form xy , where x = a 6∈ Q
and y =

√
2 6∈ Q.

But

a
√

2 = (
√

2

√
2
)
√

2 =
√

2
(
√

2·
√

2)
=
√

2
2

= 2 ∈ Q.

So either x = y =
√

2 is an example of numbers with the desired
property, or x = a, y =

√
2 is.

So some irrational numbers with this desired property exist.
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Induction proofs

A proof technique that is very useful for number sequences (but also
in many other parts of mathematics)

Goal: Prove a statement P(n) for all natural numbers n ∈ N.

Technique:

First (base case) prove the first case P(0).
Then (induction step) prove that, for an arbitrary m ∈ N,
IF P(m) holds, THEN P(m + 1) also holds.
These two steps together prove that the statement P(n) holds for
any n ∈ N.

P(0)⇒ P(1)⇒ P(2)⇒ P(3)⇒ P(4)⇒ · · · .
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Induction proofs

Example

Let an be recursively defined by a0 = 0 and an+1 = 2an + 1. Then
an = 2n − 1 for all n ∈ N.

Proof.

Base case: a0 = 0 = 1− 1 = 20 − 1, so the statement is true for
n = 0.

Induction step: Assume (induction hypothesis) that am = 2m − 1.
Then

am+1
def
= 2am + 1

IH
= 2 · (2m − 1) + 1 = 2m+1 − 2 + 1 = 2m+1 − 1,

so the statement is also true for n = m + 1.

It follows that the statement an = 2n − 1 is true for all n ∈ N.
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Induction proofs

Example

Prove that, for every n ∈ N,

n∑
i=1

(2i − 1) = n2.

Proof.

Base case (n = 0):

0∑
i=1

(2i − 1) =
∑
i∈∅

(2i − 1) = 0 = 02.
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Induction proofs

Example

Prove that, for every n ∈ N,

n∑
i=1

(2i − 1) = n2.

Continued.

Induction step: Assume (IH) that
∑m

i=1(2i − 1) = m2. Then

m+1∑
i=1

(2i − 1)
def
= (2(m + 1)− 1) +

m∑
i=1

(2i − 1)

IH
= m2 + 2(m + 1)− 1 = m2 + 2m + 1 = (m + 1)2,

so the statement is also true for n = m + 1.
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Induction proofs

Goal: Prove a statement P(n) for all natural numbers n ∈ N.

More general technique:

First (base case) prove the k first cases P(0), . . . ,P(k).
Then (induction step) prove that, for an arbitrary m ∈ N,
IF P(m − k), . . . ,P(m) holds, THEN P(m + 1) also holds.
These two steps together prove that the statement P(n) holds for
any n ∈ N.

(P(0)∧· · ·∧P(k))⇒ (P(1)∧· · ·∧P(k+1))⇒ (P(2)∧· · ·∧P(k+2))⇒ · · · .

How large k needs to be, may depend on the problem.
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Induction proofs

Example

The Fibonacci numbers are defined by f0 = 0, f1 = 1 and
fn = fn−1 + fn−2. For all n ∈ N holds fn < 2n.

Proof.

Base case: f0 = 0 < 1 = 20 and f1 = 1 < 2 = 21.

Induction step: Assume (induction hypothesis) that fm < 2m and
fm−1 < 2m−1 . Then

fm+1
def
= fm + fm−1

IH
< 2m + 2m−1 < 2 · 2m = 2m+1,

so the statement is also true for n = m + 1.

It follows that the statement fn < 2n is true for all n ∈ N.

RF, JK MS-A0402 83 / 338



Sets and formal logic
Combinatorics
Graph theory

Number theory

Sets
Formal logic
Proof techniques
Relations
Functions and cardinalities

More about knowing and understanding

A famous problem from 1852 is the Four Color Problem.

Question

Is it true that any division of the plane into connected regions
(“countries”) can be colored in four colors, so that two regions sharing a
boundary do not use the same color?

Many failed attempts to prove (positive or negative).
Famous flawed proof (positive) by Kempe in 1879. Flaw noticed 11
years later by Heawood.
First complete (?) proof (positive) by Appel and Haken in 1976.
Using “proof by cases” — in fact 1 834 cases, with a computer.
Much discussion about “is it a valid proof? is it a good proof”?
Later more formal computer-assisted proofs (Werner and Gonthier
2005, using Coq)
Still no “simple” proof known. Perhaps we can claim we “know” it
is true, but how well do we understand it?

RF, JK MS-A0402 84 / 338

https://mathworld.wolfram.com/Four-ColorTheorem.html


Sets and formal logic
Combinatorics
Graph theory

Number theory

Sets
Formal logic
Proof techniques
Relations
Functions and cardinalities

Relations

Relations are used in all parts of mathematics.

Important applications outside of mathematics: Relational
databases, automated translation,. . .

Example

y = x2. x , y ∈ R.

S ⊆ T . S ,T ∈ P(Ω).

5|x − y , i.e. x ≡ y (mod 5). x , y ∈ Z.

x and y are siblings. x , y ∈ {humans}.
x ≤ y . x , y ∈ R.

x |y , i.e. y is divisible by x . x , y ∈ Z.
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Relations

A relation can be defined in any of two different ways (which we will
use interchangably):

A relation on a set A is a subset R ⊆ A× A.
A relation is an open statement R(x , y) that has a truth value for
every x , y ∈ A.

Recall: To the predicate R(x , y) corresponds the set

{(x , y) ∈ A2 : R(x , y)}.

This set is sometimes also denoted R.
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Relations

Example

Let A = {1, 2, 3, 4}.
The equality relation x = y on A is given by the set

{(1, 1), (2, 2), (3, 3), (4, 4)} ⊆ A2.

The order relation x < y on A is given by the set

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} ⊆ A2.

The divisibility relation x |y on A is given by the set

{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)} ⊆ A2.
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Relations

A relation R on A can also be represented by a directed graph.

Nodes corresponding to the elements x ∈ A.
Arcs x → y if R(x , y) holds.
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Relations

A relation on a set A is a subset R ⊆ A2 = A× A.

Question: If
|A| = n,

how many relations are there on A?

Answer: |P(A2)| = 2|A×A| = 2|A|·|A| = 2n2

different relations.
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Relations

We can also define a relation “from a set A to a set B”:

As a subset R ⊆ A× B.
As an open statement R(x , y) that has a truth value for every
x ∈ A, y ∈ B.

Example

x ∈ S . x ∈ Ω, S ∈ P(Ω).

x has shoes in size y . x ∈ {humans}, y ∈ R.

x is born in year n. x ∈ {humans}, n ∈ N.

RF, JK MS-A0402 90 / 338



Sets and formal logic
Combinatorics
Graph theory

Number theory

Sets
Formal logic
Proof techniques
Relations
Functions and cardinalities

Relations

Definition

A definition ∼ on A is called:

reflexive if
∀x ∈ A : x ∼ x .

symmetric if
∀x , y ∈ A : x ∼ y ↔ y ∼ x .

antisymmeric if

∀x , y ∈ A : (x ∼ y ∧ y ∼ x)→ x = y .

transitive if

∀x , y , z ∈ A : (x ∼ y ∧ y ∼ z)→ x ∼ z .
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Relations

Definition

A relation ∼ on A is called:

reflexive if
∀x ∈ A : x ∼ x .

Example

x ≤ y on R
x |y on Z
x = y on any set

x ≡ y (mod n) on Z
NOT reflexive: x < y on R
NOT reflexive: x is a father of y on {humans}
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Definition

A relation ∼ on A is called:

symmetric if
∀x , y ∈ A : x ∼ y ↔ y ∼ x .

Example

x and y are siblings on {humans}
|x − y | ≤ 1 on R
NOT symmetric: x − y ≤ 1 on R
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Definition

A relation ∼ on A is called:

antisymmeric if

∀x , y ∈ A : (x ∼ y ∧ y ∼ x)→ x = y .

Example

x ≤ y x , y ∈ R
S ⊆ T S ,T ∈ P(Ω)
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Definition

A relation ∼ on A is called:

transitive if

∀x , y , z ∈ A : (x ∼ y ∧ y ∼ z)→ x ∼ z .

Example

x − y ∈ Z x , y ∈ R
x ≤ y x , y ∈ R
NOT transitive: x and y have a parent in common.

x , y ∈ {Humans}.
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Equivalence relations

Definition

A relation ∼ is an equivalence relation if it is reflexive, symmetric, and
transitive.

Example

x = y on any set.

x ≡ y (mod n) x , y ∈ Z.

x − y ∈ Z x , y ∈ R.

|S | = |T | S ,T ∈ P(Ω).

x and y have the same biological mother x , y ∈ {Humans}.
NOT an equivalence relation: x ≤ y x , y ∈ R.

NOT an equivalence relation: |x − y | ≤ 1. x , y ∈ R.
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Equivalence relations

An equivalence relation usually describes “sameness” in some sense.

Every equivalence relation on A divides A into disjoint equivalence
classes of elements that are “same”.

Definition

Let ∼ be an equivalence relation on A.

The equivalence class of a ∈ A is

[a] = [a]∼ = {x ∈ A : x ∼ a}.
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Equivalence relations

Definition

Let ∼ be an equivalence relation on A.

The equivalence class of a ∈ A is

[a] = [a]∼ = {x ∈ A : x ∼ a}.

Example

Let ∼ be congruence modulo 2, on Z.

x ≡ y if 2|x − y .

Then

[0] = {. . . ,−4,−2, 0, 2, 4, . . . } and [1] = {. . . ,−3,−1, 1, 3, . . . }.
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Equivalence relations

Theorem

Let ∼ be an equivalence relation on A, and let x , y ∈ A.

If x ∼ y, then [x ] = [y ].

If x 6∼ y, then [x ] ∩ [y ] = ∅.

Proof.

Blackboard
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Equivalence relations

Theorem

Let ∼ be an equivalence relation on A, and let x , y ∈ A.

If x ∼ y, then [x ] = [y ].

If x 6∼ y, then [x ] ∩ [y ] = ∅.

This shows that the equivalence classes form a partition of A: Every
element in A is in exactly one equivalence class.

Definition

A partition of a set A is a collection of subsets Ai ⊆ A, i ∈ I such that:

A =
⋃

i∈I Ai .

Ai ∩ Aj = ∅ for all i 6= j .
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Equivalence relations

How many equivalence relations are there on a set with n elements.

This is the Bell number Bn. (outside the scope of this course)

The first few Bell numbers are

B0 = 1,B1 = 1,B2 = 2,B3 = 5,B4 = 15,B5 = 52,B6 = 203,B7 = 877.

The numbers can be computed recursively in a Bell triangle.

No “closed formula” known.
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Definition

A relation � on A is an order relation if it is reflexive, antisymmetric, and
transitive.

Example

x ≤ y on R
x |y on N
S ⊆ T on P(Ω).

An order relation is sometimes called a partial order.

If a � b and a 6= b, then we write a ≺ b.
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Partial orders

Definition

Let � be an order relation on A.

Let a, b ∈ A be elements such that:

a ≺ b
¬∃x ∈ A : a ≺ x ≺ b.

Then we say that b covers a, written al b.

Example

18 l 19 in the order (Z,≤).

3 l 6 in the order (Z, |).

{a, b, c}l {a, b, c , d} in the order (P(Ω),⊆).

In the order (R,≤), there are no covering pairs al b.
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Partial orders

Theorem

Let � be an order relation on a finite set A, a, b ∈ A.

a ≺ b if and only if there exist a1, a2, . . . , an ∈ A such that

al a1 l a2 l · · ·l an l b.

Proof.

Blackboard.

In other words, the order relation is uniquely defined if we know the
corresponding covering relation

Note: This is not true if A is infinite.
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Hasse diagram

So we can represent a finite order relation (A,�) as a directed graph
where we only draw the arcs corresponding to covering pairs:

Nodes are elements of A.
Arc a→ b if a l b.

Because of antisymmetry, this graph has no directed cycles:
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Hasse diagram

When there are no directed cycles, we can draw the directed graph
so that all arcs point upwards

This representation of a finite order relation is called its Hasse
diagram.

Example
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Hasse diagram

The head of the arcs are usually not drawn in the Hasse diagram, as
we already know that the arcs point upwards.

Example

The divisibility relation on {0, 1, 2, . . . , 12}.
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Linear extensions

An order relation is called linear, or total, if for every x , y holds that
x ≤ y or y ≤ x .

A totally ordered set is also called a chain.

Example

The ordinary order relation (N,≤) is linear, because for every two
integers, if they are not the same, then one is smaller than the other.

The divisibility relation (N, |) is not linear, because (for example)
5 6 |7 and 7 6 |5.
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Linear extensions

A linear relation ≤ on a set P is compatible with a partial order �
on the same set, if for every x , y ∈ P such that x � y , also holds
that x ≤ y .

We say that ≤ is a linear extension of �

Example

The ordinary order relation on {1, 2, 3, 4} is a linear extension of the
partial order

1 � 2, 1 � 3, 1 � 4, 2 � 4, 3 � 4.

Another linear extension of the same partially ordered set would be

1 ≤ 3 ≤ 2 ≤ 4.
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Linear extensions

Example

The ordinary order relation on N \ {0} = {1, 2, 3, 4, . . . } is a linear
extension of the divisibility relation.

A positive integer can never be divisible by any larger integer

The ordinary order relation on N = {0, 1, 2, 3, . . . } is not a linear
extension of the divisibility relation.

Zero is divisible by any positive integer n (because 0 = 0 · n),
although 0 ≤ n.
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Linear extensions

A partial order � can describe the dependencies of tasks. (Task T �
Task S if the outcome of S is needed in order to begin T.)

Then, a linear extension of � is an order in which the tasks can be
performed.

RF, JK MS-A0402 112 / 338



Sets and formal logic
Combinatorics
Graph theory

Number theory

Sets
Formal logic
Proof techniques
Relations
Functions and cardinalities

Functions

A function f : A→ B is a relation “f (x) = y”, such that for each
element a ∈ A, there is a unique element b ∈ B for which f (a) = b
holds.

A is the domain of the function, and B is the codomain.

The range of f is the set f (A)
def
= {f (x) : x ∈ A} ⊆ B.
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Functions

Functions can thus be seen as a special case of relations:

Every element in the domain is related with some element in the
codomain.

A function f from A to B is compactly denoted f : A→ B.

Sometimes a function does not need a name; in such case we write
a 7→ b (“a maps to b”) rather than f (a) = b.
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Functions

When considering a relation as a subset of D × E , the set
corresponding to f is its graph

{(x , f (x)) : x ∈ D} ⊆ D × E .

A function is often represented geometrically by its graph, especially
when the domain and codomain are both (subsets of) R.
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Functions

Example

The function

f :Z→ Z
x 7→ 4x + 5

(also written f (x) = 4x + 5) has:

Domain (määrittelyjoukko) Z.

Codomain (maalijoukko) Z.

Range (arvojoukko)

{4x + 5 : x ∈ Z} = {. . . ,−7,−3, 1, 5, 9, . . . }.

Graph (kuvaaja)

{(x , y) : y = 4x + 5} ⊆ Z2.
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Equality of functions

The mathematical view to a function, from A to B, is as a relation
between A and B, that is, a collection of value pairs:

{(x , f (x)) : x ∈ A} ⊆ A× B.

Two functions f and g (both from A to B) are considered same (equal,
identical, f = g) if their values agree, f (x) = g(x), for every x ∈ A.

Details in how (by what expression, method, algorithm) the functions
were defined does not matter. (6= the view in computer programming)

Example

All of the following functions N→ N are the same:

f (x) = 2x

g(u) = 2u

h(x) = ((4x + 3)− 3)/2

k(x) = |2x |
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Non-functions

A relation R, or a collection of pairs (x , y) ∈ A× B, can fail to be a
function in two ways:

For some x ∈ A, there exists no y ∈ B such that R(x , y)

For some x ∈ A, there exist several y ∈ B such that R(x , y)

A variant of the first is when we try to define a function by some “rule”
of mapping x to y , but for some x , we have y /∈ B!

Example

f (x) = x − 5 is not a function from N to N.

If we have verified that some rule really gives a function with the intended
domain and codomain, we often say that the function is well-defined.
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Composition of functions

Two functions f : A→ B and g : B → C can be composed into a
function g ◦ f : A→ C , (g ◦ f )(x) = g(f (x)).

Example

The function h(x) = 2(x + 3) can be written as g ◦ f , where
f (x) = x + 3 and g(y) = 2y .

Obs. notation: in g ◦ f , it is meant that f is applied first (to the
argument), and then g is applied to the result of f .
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Composition is not commutative

It is not generally true that g ◦ f would be the same function as f ◦ g .

Example

Consider g(y) = 2y and f (x) = x + 3 (both R→ R).

h(x) = (g ◦ f )(x) = g(f (x)) = 2(x + 3) = 2x + 6

k(x) = (f ◦ g)(x) = f (g(x)) = (2x) + 3 = 2x + 3

Clearly h 6= k, because they disagree at some (in fact many) points.

A single example is enough: h(1) = 8 6= k(1) = 5.
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Functions of many arguments

A function that “takes” two or more arguments can be understood a
function from a Cartesian product, so it takes in “one” argument that
is actually a pair or a tuple.

Example

Define f : (R× R)→ R : (x , y) 7→ x − y .

Then f (7, 2) can be understood as taking the argument (x , y) = (7, 2)
and giving the value x − y = 5.

[There are other ways of defining such things, e.g. “currying”, where a function of one argument

gives out a new function, to which the next argument is applied; often used in formal logic and

computer science, but we won’t bother with that here.]
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Injection, surjection, bijection

Definition

A function f : A→ B is called

Injective (or one-to-one) if

∀x , y ∈ A : f (x) = f (y)⇒ x = y .

Surjective (or onto) if

∀b ∈ B : ∃a ∈ A : f (a) = b.

Bijective (or invertible) if it is injective and surjective.
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Inverse functions

Definition

The inverse of the bijective function f : A→ B is the function
g = f −1 : B → A such that

f (a) = b ⇐⇒ g(b) = a.

This defines the inverse function f −1 uniquely.

If f : A→ B is not bijective, then it can not have an inverse B → A.

Warning: Do not mistake the function f −1 for the number
f (x)−1 = 1

f (x) .

The notation f−1 is also used in a different meaning (preimage of a set), which we shall discuss shortly.
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Why study functions and XXXjections?

For math, obviously.

For applications.

Note: Relations & functions need not be numbers to numbers.

E.g. assignment of jobs to workers, and . . .

make sure every job gets done? (“function”)
make sure no worker receives two jobs? (“injection”)
make sure no worker is idle? (“surjection”)

Inverse functions often needed — bijection ensures it

ALSO, a nice tool for comparing sets (NEXT TOPIC)
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Cardinalities

Example

Let A and B be finite sets.

If there is an injection A = {a1, . . . , an} → B, then f (a1), . . . , f (an)
are all different elements of B.

So A→ B injective ⇒ n = |A| ≤ |B|.
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Cardinalities

Example

Let A and B be finite sets.

If there is a surjection A→ B = {b1, . . . , bm}, then there are
different elements a1, . . . am ∈ A such that f (ai ) = bi for
i = 1, . . . ,m.

So A→ B surjective |A| ≥ |B| = m.
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Cardinalities

For finite sets, there is an injective map A→ B precisely if B has at
least as many elements as A.

For general sets, we take this as the definition of cardinality (i.e.
“number of elements”)

Definition

Let A and B be sets. We say that:

|A| = |B| if there exists a bijection A→ B.

|A| ≤ |B| if there exists an injection A→ B.

|A| < |B| if |A| ≤ |B| and not |A| = |B|.

Fact: There is a surjection B → A if and only if there is an injection
A→ B.
For finite sets this is relatively easy. For infinite sets, this requires a technical axiom about sets, called the axiom of choice. Do
not worry about this.
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Cardinalities

|A| = n if there is a bijection A→ {1, 2, . . . , n}.
The set A is finite if |A| = n for some n ∈ N. Otherwise it is infinite.

For any infinite set A, there is an injection N→ A. So |N| = ℵ0 is
“the smallest infinite cardinality”.

The set A is countable if |A| = |N|. If |A| > |N|, then we say that A
is uncountable.
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Cardinalities

Theorem

|N| = |{0, 2, 4, 6, 8, . . . }|

Proof.

Define f : N→ {0, 2, 4, 6, 8, . . . } by f (n) = 2n for all n ∈ N.

Then f is a bijection.

Inverse function m 7→ m
2 ∈ N for m ∈ {0, 2, 4, 6, 8, . . . }.

Note: for infinite sets A,B, it is very possible that |A| = |B| even
when A ( B.
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Infinite cardinalities

Example (Hilbert’s hotel)

David Hilbert is checking in to a hotel with infinitely many rooms
(numbered 0, 1, 2, . . . )

Unfortunately, every room is already occupied.

Solution: All guests move rooms: The guest who used to stay in
room k moves to room k + 1 for all i ∈ N.

Now, Hilbert can move into room 0.
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Infinite cardinalities

Example (Hilbert’s hotel)

The next day a bus arrives to the hotel, bringing infinitely (but
countably) many new guests.

Unfortunately, every room is already occupied.

Solution: All guests move rooms: The guest who used to stay in
room k moves to room 2k for all i ∈ N.

Now, the bus tourists can move into all odd numbered rooms.
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Infinite cardinalities

Example (Hilbert’s hotel)

The next day, infinitely many buses (numbered 1, 2, 3, . . . ) arrive to
the hotel, all bringing infinitely (but countably) many new guests.

Solution: All previous guests move to odd numbered rooms.

Now, the passengers on bus number k can move into rooms
numbered 2k , 2k · 3, 2k · 5, 2k · 7, . . . .
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Theorem

The relation |A| = |B| (between pairs of sets) is an equivalence relation
(on P(Ω)).

Proof.

Reflexivity: The identity map ι : A→ A is a bijection.

Symmetry: If f : A→ B is a bijection, then f −1 : B → A is a
bijection.

Transitivity: If f : A→ B and g : B → C are bijections, then
g ◦ f : A→ C is a bijection.
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Theorem

|N| = |Z|

Proof.

Define f : N→ Z by

f (0) = 0, f (2k) = k and f (2k − 1) = −k for k ≥ 1.

Then f is a bijection.
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Theorem

|N| = |Q|

Proof.

Order the numbers p
q , p, q ∈ Z, q > 0, as in the figure:

Let f (n) be the nth “new” number in the sequence, for n ∈ N.

Then f : N→ Q is a bijection.
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Theorem

|N| 6= |R|

Proof.

Assume for a contradiction that we can “list” the real numbers as in
the figure
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Continued.

Change the i th decimal digit of the i th number, in any way you want.

The “diagonal number” (in the example 7.56254 . . . ) was not in the
original list.

Contradiction, so |N| 6= |R|.
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Recall: |A| ≤ |B| if there exists an injection A→ B.

Theorem

|A| ≤ |B| ≤ |C | =⇒ |A| ≤ |C |.

Proof.

If f : A→ B and g : B → C are injections, then g ◦ f : A→ C is an
injection.
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Theorem (Not proved in this course)

If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.
This is a nice and challenging problem - Try it at home!

For any sets A and B holds that |A| ≤ |B| or |B| ≤ |A|.
This is a deep fact, and not true in constructive mathematics - Do
not try it at home!

RF, JK MS-A0402 140 / 338



Sets and formal logic
Combinatorics
Graph theory

Number theory

Sets
Formal logic
Proof techniques
Relations
Functions and cardinalities

Cardinalities — Summary

Sets can be roughly classified into three classes by cardinality.

Finite sets. Inside this class, there are many different cardinalities.

Countably infinite sets. This class contains surprisingly many sets,
for example N, Z, Q, “even integers”, “squares of integers”,
“integers bigger than 100”, Z× Z, . . . , all of which have the
same cardinality (because ∃ bijections between them).

Uncountably infinite sets. Some examples are R, R2 and P(N),
which have (surprisingly) the same cardinality.
OTOH there are uncountable sets with bigger cardinalities, for
example P(R) and P(P(N)) (see exercises 3B6+3B8).
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Part 2: Combinatorics

2.1 Enumerative combinatorics
2.2 Binomial coefficients
2.3 Inclusion exclusion principle
2.4 Permutations
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Principles of counting

Some basic principles are very useful in counting (finding finite
cardinalities).

addition principle (rule of sum): A1, . . . ,Ak are pairwise disjoint,
then

|A1 ∪ · · · ∪ Ak | = |A1|+ · · ·+ |Ak |.

multiplication principle (rule of product):

|A1 × · · · × Ak | = |A1| · · · |Ak |.

bijection: If we can establish a bijection A→ B, then |A| = |B|.
Recall that |A| = m means (by definition) that there is a bijection
A→ {1, 2, . . . ,m}. In this light, the addition and multiplication
principles are (easy, but not trivial) theorems.
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Principles of counting

Example

A bookshelf contains five physics books, seven chemistry books, and
ten mathematics books. In how many ways can you choose two
books about different subjects from the shelf?
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Combining the rules

Example

Let P,C ,M be the sets of physics, chemistry, and math books
respectively. |P| = 5, |C | = 7, |M| = 10.

A pair of two books about different subjects is an element of

(P × C ) ∪ (P ×M) ∪ (C ×M).

The number of choices is

|(P × C ) ∪ (P ×M) ∪ (C ×M)|
= |P||C |+ |P||M|+ |C ||M|
= 5 · 7 + 5 · 10 + 7 · 10

= 155.
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Successive choices — Same possibilities each time

Using shorthand notation: [n] = {1, 2, . . . , n}

Eg. counting tuples of integers (a, b, c), where each of a, b, c is an
integer ranging from 1 to 10.

In other words, cardinality of [10]× [10]× [10].

In other words, integer solutions (a, b, c) to the system of inequalities

0 ≤ a ≤ 10 ∧ 0 ≤ b ≤ 10 ∧ 0 ≤ c ≤ 10

By rule of product, the answer is 10 · 10 · 10 = 103. More generally,

|Ak | = |A× · · · × A| = (|A|)k .
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Successive choices — Decreasing possibilities

E.g. counting tuples of integers (a, b, c), each between 1 and 10, but all
different.

10 possibilities for a.

Whatever value a has, 9 possibilities left for b.

Whatever values a, b have, 8 possibilities left for c .

Rule of product: 10 · 9 · 8 such tuples.

More generally, if initially we have n choices, and we choose k different
items in order, the count is the falling product

nk = n(n − 1)(n − 2) · · · (n − k + 1).

Obs: exactly k factors in the product. The last is not n − k (beware of
fencepost error!)
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Overcounting and adjustment

How many integer pairs (a, b) chosen from [10], subject to extra
requirement a < b?

Several methods, but one is overcounting.
(BLACKBOARD)
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Counting linear orders

In how many ways can we order the letters a,b,c in a linear order?

abc, acb, bac, bca, cab, cba.

The first letter could be chosen in 3 ways.

Regardless of the first letter, the second letter can be chosen in 2
ways, and after this, the third letter can be chosen in only one way.

So the number of linear orders is 3 · 2 · 1 = 6
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Counting linear orders

In how many ways can we order n objects a1, a2, · · · , an in a linear
order?

The first object could be chosen in n ways.

Regardless of the first i objects, the (i + 1)th object can be chosen
in (n − i) ways, 0 ≤ i ≤ n − 1.

So the number of linear orders is n! = n · (n − 1) · (n − 2) · · · 2 · 1.

This number is denoted n!, read “n factorial”

By convention, 0! = 1 (“the empty product”). Makes sense because
there is one way to write a list of no objects: the empty list ( ).

Also, we now have the recurrence

(n + 1)! = n!× (n + 1)

valid for all n ∈ N (including zero, try it!). We could have defined
factorials by starting from 0! = 1 and the above recurrence defining
all the rest.
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Counting combinations

In how many ways can we select a committee of 5 members from a
party of 11?

Call this number
(

11
5

)
. (read: “11 choose 5”)

If we also order the committee members, and order the
non-members, we would get 11! possible orders total.

First committe member can be chosen in 11 ways, second committee
member i 10 ways, ... , last committee member in 7 ways, first
non-member in 6 ways, second non-member in 5 ways and so on.

Every committee can be ordered in 5! ways, and the non-members
can be ordered in 6! ways.

We get
(

11
5

)
· 5! · 6! = 11!, so(

11

5

)
=

11!

6! · 5!
= 462.
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Counting combinations

We can generalize this: How many “combinations” (subsets) of k
elements are there in a set B of n elements?

This number is denoted
(
n
k

)
. (read: “n choose k”)

The number of ways to select a set A with k elements and then
order both A and B \ A is(

n

k

)
· k! · (n − k)!,

but it is also n! by the same argument as on the last slide.

We get (
n

k

)
=

n!

k! · (n − k)!
.
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Counting combinations

Example

How many sequences of five cards (drawn from an ordinary 52 card
deck) are there, if we know that it contains exactly two kings?

The word “sequence” impies that the order matters, so
♣3,♥5,♦K,♣K,♥Q is a different sequence than ♥Q,♥5,♦K,♣3,♣K

RF, JK MS-A0402 153 / 338



Sets and formal logic
Combinatorics
Graph theory

Number theory

Enumerative combinatorics
Binomial coefficients
Inclusion exclusion principle
Permutations

Counting combinations

Example

♣3,♥5,♦K ,♣K ,♥Q

The positions of the kings can be chosen in
(

5
2

)
ways

The first king can be chosen in 4 ways, the second king in 3 ways.

The first non-king can be chosen in 48 ways, the next in 47 ways,
and the last in 46 ways.

By the multiplication principle there are(
5

2

)
· 4 · 3 · 48 · 47 · 46 = 12453120

possible sequences.
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Counting combinations

There are
(
n
k

)
ways to choose k balls from a box containing n balls.

Refining according to whether or not our favourite (red) ball is
chosen: (

n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
.
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Counting combinations

We can also prove the same identity “algebraically”:

(
n − 1

k − 1

)
+

(
n − 1

k

)
=

(n − 1)!

(n − k)!(k − 1)!
+

(n − 1)!

(n − 1− k)!k!

=
(n − 1)!

(n − 1− k)!(k − 1)!
·
[

1

n − k
+

1

k

]
=

(n − 1)!

(n − 1− k)!(k − 1)!
· n

(n − k)k

=
n!

(n − k)!k!

=

(
n

k

)
.
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Counting combinations

Clearly,
(
n
0

)
=
(
n
n

)
= 1.

So the binomial coefficients
(
n
k

)
are the entries in the recursively

defined Pascal’s triangle:
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Counting combinations

Recall that, if |A| = n, then |P(A)| = 2n:

Order A = {a1, a2, . . . , an}.
{0, 1}n = {0, 1} × · · · × {0, 1} is the set of length n bitstrings.

Define f : P(A)→ {0, 1}n by f (S) = (f1, . . . , fn), where

fi =

{
1 if ai ∈ S
0 if ai 6∈ S

f is a bijection, so

|P(A)| = |{0, 1}n| = |{0, 1}|n = 2n.
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Counting combinations

On the other hand, if |A| = n, then P(A) = P0 ∪P1 ∪ · · · ∪Pn, where

Pk = {S ⊆ A : |S | = k}.

|Pk | =
(
n
k

)
, so

2n = |P(A)| =
n∑

k=0

|Pk | =
n∑

k=0

(
n

k

)
.
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Counting combinations with repetition

Example

A box contains (many) blue, red and green balls.

In how many ways can I select 5 balls from this box, if the order
does not matter?

So ••••• is the same selection as •••••.
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Counting combinations with repetition

Example (Continued)

Solution: Represent any selection by always lining up the balls blue
first, then red, then green.

••••• ••••• •••••

If we separate the different colors by bars, then we can reconstruct
the colors from the position of the bars.

The three selections above are now represented as

• • •| • | • • • || • • • | • • • • • |

A selection is given by placing bars in two out of 7 positions in a
sequence, and placing balls in the other 5 positions.

So there are
(

7
2

)
different selections.
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Counting combinations with repetition

More generally, assume we have n different kinds of balls, and want
to select k from these.

Like in the previous example, this can be represented by a
configuration of k balls and n − 1 bars ordered in a sequence.

So there are (
n + k − 1

k

)
=

(
n + k − 1

n − 1

)
different ways to select.

Note: This is also the number of non-negative integer solutions to
the equation

x1 + · · ·+ xn = k ,

where xi represents the number of balls of the i th kind.
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Binomial theorem

Theorem (Binomial theorem)

For all n ∈ N and all x , y ∈ R holds

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k .

Combinatorial proof.

Expand the product (x + y)n into a sum of 2n monomial terms.

Each term corresponds to a way to select either x or y from each of
the n parentheses.

The monomial term xkyn−k corresponds to selecting x from k of the
parentheses, and y from n − k of the parentheses.

This can be done in
(
n
k

)
=
(

n
n−k
)

ways.
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Binomial theorem

Theorem (Binomial theorem)

For all n ∈ N and all x , y ∈ R holds

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k .

Induction proof.

Base case n = 0:

(x + y)0 = 1 =

(
0

0

)
x0y0−0.

Base case n = 1:

(x + y)1 = x + y =
1∑

k=0

(
1

k

)
xky1−k .
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Binomial theorem

Induction proof.

Induction step: Assume true for n = M.

Then

(x + y)M+1 = (x + y)(x + y)M

IH
= (x + y)

M∑
k=0

(
M

k

)
xkyM−k

=
M∑
j=0

(
M

j

)
x j+1yM−j +

M∑
k=0

(
M

k

)
xkyM−k+1

=
M+1∑
k=1

(
M

k − 1

)
xkyM−(k−1) +

M∑
k=0

(
M

k

)
xkyM−(k−1)
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Binomial theorem

Induction proof.

= xM+1 +
M∑
k=1

((
M

k − 1

)
+

(
M

k

))
xkyM+1−k + yM+1

= xM+1 +
M∑
k=1

(
M + 1

k

)
xkyM+1−k + yM+1

=
M+1∑
k=0

(
M + 1

k

)
xkyM+1−k .

By the induction principle,

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k for all n ∈ N.
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Binomial theorem

Example

This shows in a new way that

2n = (1 + 1)n =
∑
k

(
n

k

)
1k1n−k =

∑
k

(
n

k

)
.

Similarily,

3n = (2 + 1)n =
∑
k

(
n

k

)
2k1n−k =

∑
k

2k

(
n

k

)
.
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Inclusion exclusion principle

The inclusion exclusion principle for two sets:

|A ∪ B| = |A|+ |B| − |A ∩ B|.

Example

How many 8 bit strings start or end with two zeroes?

Answer: 26 + 26 − 24 = 112.
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Inclusion exclusion principle for three sets

The inclusion exclusion principle for three sets:

|A ∪ B ∪ C | = |A|+ |B|+ |C |
− |A ∩ B| − |A ∩ C | − |B ∩ C |
+ |A ∩ B ∩ C |.
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Inclusion exclusion principle for three sets

Example

A martial arts club has courses in aikido, boxing and capoeira.

There are 30 aikido students, 25 boxers and 35 capoeira dancers.

5 people do both aikido and boxing, 19 do both aikido and capoeira,
and 7 boxers also do capoeira.

One student (Chuck Norris) studies all martial arts at once.

How many martial artists does the club have?
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Inclusion exclusion principle for three sets

Example

Let A, B and C be the sets of students of the respective martial arts.

|A| = 30, B = 25, |C | = 35.

|A ∩ B| = 5, |A ∩ C | = 19, |B ∩ C | = 7

|A ∩ B ∩ C | = |{Chuck Norris}| = 1

The total number of martial artists is

|A ∪ B ∪ C | = |A|+ |B|+ |C |
− |A ∩ B| − |A ∩ C | − |B ∩ C |
+ |A ∩ B ∩ C |

= 30 + 25 + 35− 5− 19− 7 + 1

= 60.
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Inclusion exclusion principle for three sets

Example

How many permutations a1a2, a3, a4 of the set {1, 2, 3, 4} are such
that ai+1 6= ai + 1 for all i ∈ {1, 2, 3}?
In other words, the string a1a2, a3, a4 must not contain “12”, “23”,
or “34”.

For example, the permutation 1432 satisfies the property, but the
permutation 1423 does not.

A permutation containing “12” can be thought of as a permutation
of {‘12′, 3, 4}. There are 3! = 6 such permutations.

Similarily, there are 3! = 6 permutations that contain “23”, and
3! = 6 permutations that contain “34”.
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Inclusion exclusion principle for three sets

Example

Permutations that contain both “12” and “23” correspond to
permutations of {‘123′, 4}. There are 2! = 2, such permuations,
namely 1234 and 4123.

Similarily, there are 2 permutations that contain both “23” and
“34”, and 2 permutations that contain both “12” and “34”.

The only permutations that contains all the “forbidden pairs” is
1234.

So there are

4!− 3 ∗ 3! + 3 ∗ 2!− 1 = 24− 18 + 6− 1 = 7

permutations with the desired property.
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Inclusion exclusion principle

In the three set case, denote

s1 = |A1|+ |A2|+ |A3|
“count elements that are in one of the sets, one set at a time”.
s2 = |A1 ∩ A2|+ |A1 ∩ A3|+ |A2 ∩ A3|
“count elements that are in two sets, one pair of sets at a time”.
s3 = |A1 ∩ A2 ∩ A3|
“count elements that are in three sets, (one triple of sets at a time)”.

Then the inclusion exclusion principle says

|A1 ∪ A2 ∪ A3| = s1 − s2 + s3 =
3∑

k=1

(−1)k−1sk .
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Inclusion exclusion principle

For a collection of finite sets A1, . . . ,An, let

sk =
∑
|B|=k

∣∣∣∣∣⋂
i∈B

Ai

∣∣∣∣∣ ,
where the sums are taken over subsets of {1, . . . , n}.

Theorem

If A1, . . . ,An are finite sets, and s1, . . . , sk are as above, then

|A1 ∪ · · · ∪ An| =
n∑

k=1

(−1)k−1sk .
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Inclusion exclusion principle

Theorem

If A1, . . . ,An are finite sets, and s1, . . . , sk are as above, then

|A1 ∪ · · · ∪ An| =
n∑

k=1

(−1)k−1sk .

Proof.

Let x ∈ A1 ∪ · · · ∪ An, and let

Ix = {i : x ∈ Ai} ⊆ {1, . . . , n}

be the indices of the sets containing x . Let m = |Ix |
x belongs to the set

⋂
i∈B Ai if and only if B ⊆ Ix .
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Inclusion exclusion principle

Proof.

So on the right hand side, x is counted

m∑
k=1

(
m

k

)
(−1)k−1 = −

m∑
k=1

(
m

k

)
(−1)k

= 1−
m∑

k=0

(
m

k

)
(−1)k−1

= 1− (1− 1)m = 1 times.

Hence each element x ∈ A1 ∪ · · · ∪ An is counted exactly once on
each side of the equation

|A1 ∪ · · · ∪ An| =
n∑

k=1

(−1)k−1sk .
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Counting surjections

Let n ≥ m, consider sets [n] := {1, . . . , n} and [m] := {1, . . . ,m}.
How many ways to place n distinct balls in m boxes so that no box
is empty?

How many surjections exist [n]→ [m]?

How many m-tuples from numbers 1, . . . , n, repetition allowed, and
each number must appear? Eg. n = 3 and m = 2: tuples

112, 121, 122, 211, 212, 221 (6 of them)

Same question in three forms! Let’s denote this count L(n,m).
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Counting surjections

For i = 1, . . . ,m, let Ai be the set of maps

ϕ : X → {1, . . . ,m}

that “miss i”, i.e. ϕ(x) 6= i for all x ∈ X .

Ai1 ∩ · · · ∩ Aik is the set of maps

X → {1, . . . ,m} \ {i1, . . . , ik}.

|Ai1 ∩ · · · ∩ Aik | = (m − k)n.

sk =
∑
|B|=k

∣∣∣∣∣⋂
i∈B

Ai

∣∣∣∣∣ =

(
m

k

)
(m − k)n.
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Counting surjections

The number of maps X → {1, . . . ,m} is mn.

The number of non-surjections is

|A1 ∪ · · · ∪ Am| =
m∑

k=1

(−1)k−1sk

=
m∑

k=1

(−1)k−1

(
m

k

)
(m − k)n.

So the number of surjections is

L(n,m) = mn −
m∑

k=1

(−1)k−1

(
m

k

)
(m − k)n

=
m∑

k=0

(−1)k
(
m

k

)
(m − k)n.
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Counting surjections

Example

A secret Santa has brought 6 gifts to a christmas party with 4
guests.

In how many ways can the gifts be distributed, so that all guests get
at least one gift?

This is the number of surjections from the set of gifts to to the set
of guests.

L(6, 4) =
4∑

k=0

(−1)k
(

4

k

)
(4− k)6

= 46 − 4 · 36 + 6 · 26 − 4 · 16

= 1560.
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Counting surjections

The number of surjective maps {1, 2, 3, 4, 5, 6} → {1, 2, 3, 4} is

L(6, 4) = 1560 = 24 · 65.

Is it a coincidence that L(6, 4) is divisible by 4! = 24?
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Surjections vs. partitions

If we want to place 6 numbered balls into 4 numbered boxes, leaving
no box empty, we can do it in two phases:

1 Partition the balls into 4 nonempty parts. The parts do not have a
“number”, we simply note which balls belong together. Call the
number of possible partitions S(6, 4).

2 Then number the 4 parts (so they become numbered boxes). This
can be done in 4! ways.

3 Apply the rule of product: L(6, 4) = S(6, 4) · 4!.

S(n, k) is called the Stirling number of the second kind.
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Counting the partitions by recursion

S(n, k): Given n numbered balls 1, . . . , n. How many ways to partition it
into k nonempty parts?

Base cases S(n, 1) = S(n, n) = 1.

Recursion for 1 < k < n: Consider the last ball (number n). Two
possibilities:

The last ball is its own part. Other n − 1 balls can be partitioned
into k − 1 parts in S(n − 1, k − 1) ways.
The last ball is with some other balls. First partition the other balls
into k parts: S(n− 1, k) ways. Then put the last ball in one of these
parts: k ways.

Applying the rules of sum and product we get

S(n,m) = S(n − 1, k − 1) + k · S(n − 1, k)
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Counting partitions by recursion

Stirling numbers S(n, k) in a triangle:

k = 1 2 3 4 5 6 7 row sum
n = 1 1 1

2 1 1 2
3 1 3 1 5
4 1 7 6 1 15
5 1 15 25 10 1 52
6 1 31 90 65 15 1 203
7 1 63 301 350 140 21 1 877

E.g.: S(6, 4) = S(5, 3) + 4 · S(5, 4) = 25 + 4 · 10 = 65.

Note: Sum of nth row = total number of ways to partition a n-element
set into any number of nonempty parts. This is the Bell number Bn we
saw earlier.
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Permutations

Definition

A bijection π : A→ A from a set to itself is called a permutation.

Example

Let π : {1, 2, 3, 4} → {1, 2, 3, 4} be defined by:

π1 = 3, π2 = 2, π3 = 4, π4 = 1.

In two line notation this is denoted:

π =

(
1 2 3 4
3 2 4 1

)
=

(
4 1 3 2
1 3 4 2

)
= · · · .
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Permutations

As a permutation is a bijection, it also has an inverse.

In the two line notation, the inverse of a permutation is obtained by
changing the place of the first and second row (and reordering the
columns according to the first row).

π =

(
1 2 3 4
3 2 4 1

)
.

π−1 =

(
3 2 4 1
1 2 3 4

)
=

(
1 2 3 4
4 2 1 3

)
.
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Permutations

Permutations can be composed as functions. Let

π =

(
1 2 3 4
3 2 4 1

)
,

σ =

(
1 2 3 4
3 2 1 4

)
.

The two line notation of the permutation σ ◦ π is computed as
follows:

σ ◦ π =

 1 2 3 4
3 2 4 1
1 2 4 3

 =

(
1 2 3 4
1 2 4 3

)
.

The first two rows are aligned according to π; The last two rows
according to σ.

RF, JK MS-A0402 188 / 338



Sets and formal logic
Combinatorics
Graph theory

Number theory

Enumerative combinatorics
Binomial coefficients
Inclusion exclusion principle
Permutations

Permutations

π =

(
1 2 3 4
3 2 4 1

)
, σ =

(
1 2 3 4
3 2 1 4

)
.

σ ◦ π =

 1 2 3 4
3 2 4 1
1 2 4 3

 =

(
1 2 3 4
1 2 4 3

)
.

π ◦ σ =

 1 2 3 4
3 2 1 4
4 2 3 1

 =

(
1 2 3 4
4 2 3 1

)
.

“Multiplication” πσ = π ◦ σ of permutations is not commutative
(πσ 6= σπ).
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Cycle notation

Permutations can be represented by cycle notation.

Consider

α =

(
1 2 3 4 5 6 7
2 4 1 3 5 7 6

)
.

Here, 1 7→ 2 7→ 4 7→ 3 7→ 1. This is a cycle, which is denoted (1243).

Because α5 = 5, there is also a cycle (5).

Finally, 6 7→ 7 7→ 6, so there is a cycle (67) .

On cycle notation we get

α = (1243)(67) = (4312)(76) = (5)(1243)(67) = · · ·
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Cycle notation

The inverse of a cyclic permutation is easy to compute:

(a1 · · · ak)−1 = (ak · · · a1).

In any group it holds that

(π · σ)−1 = σ−1π−1.

So for example, when

π = (145)(27)(3698),

we can compute

π−1 = (8963)(72)(541) = (154)(27)(3896).
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All permutations of a set

The set of all permutations of A is denoted SA.

The set of all permutations of {1, 2, . . . n} is denoted Sn.

Note: |SA| = |A|!, and |Sn| = n!.

The identity permutation

ι =

(
1 2 · · · n
1 2 · · · n

)
is such that ιπ = πι = π holds for all π ∈ Sn.

π−1π = ππ−1 = ι.

(πσ)τ = π(στ)

holds for all π, σ, τ ∈ Sn (associativity).
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Cycle notation, example S3

Example

All permutations in S3 can be represented by a single cycle (together
with some trivial cycles):

123 = (1)(2)(3) = ι

132 = (1)(23) = (23)

213 = (12)(3) = (12)

231 = (123)

312 = (132)

321 = (13)(2) = (13)
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Cycle notation, example S4

All permutations in Sn can be written as a product of disjoint cycles.

If (a1, . . . , ak) and (b1, . . . , b`) are disjoint, then

(a1, . . . , ak)(b1, . . . , b`) = (b1, . . . , b`)(a1, . . . , ak)

Example

The permutations in S4 are:

ι
(12) (13) (14) (23) (24) (34)
(123) (132) (124) (142) (134) (143) (234) (243)
(12)(34) (13)(24) (14)(23)
(1234) (1243) (1324) (1342) (1423) (1432)
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Permutation groups

The set of permutations of {1, 2, . . . n} is denoted Sn.

Note: |Sn| = n!.

We often write π ∈ Sn using one line notation (without parentheses):

π =

(
1 2 · · · n
π1 π2 · · · πn

)
= π1π2 · · ·πn
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All permutations, as a group

Definition (Group)

Let G be a set, and · : G × G → G . The pair (G , ·) is called a group, if
the following holds:

Associativity:

(a · b) · c = a · (b · c) for all a, b, c ∈ G .

Neutral element: There exists e ∈ G such that e · a = a · e = a for
all a ∈ G .

Inverse: For every a ∈ G , there exists a−1 ∈ G such that

a · a−1 = a−1 · a = e.

The symmetric group (Sn, ◦), whose elements are all n! permutations of
[n], is a group, whose neutral element is the identity permutation ι.
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Powers of a single permutation

We define all integer powers of π. If n is a positive integer,

πn = ππ · · ·π︸ ︷︷ ︸
n times

(composition)

π0 = ι (identity)

π−n = (πn)−1 = (π−1)n (inversion)

With these definitions, powers of a permutation π behave just like powers
of numbers, e.g. (πa)(πb) = πa+b, and π1 = π.

It makes sense because (πa)(πb) means “apply π first b times and then a
more times”.
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Every element returns to itself, sooner or later

Let π be a permutation over a finite set A, with |A| = n.

What happens to a particular element a ∈ A when π is applied n times?

a 7→ π(a) 7→ π2(a) 7→ . . . πn(a)

Those n + 1 elements of A cannot all be different!

⇒ ∃ two different integers j , k , with 0 ≤ j < k ≤ n, such that

πk(a) = πj(a).

Now apply π−j on both sides . . .

πk−j(a) = a,

So we found . . . an m ∈ {1, 2, . . . , n} s.t. πm(a) = a. Namely m = k − j .
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Some elements may return later than others

The order of an element, o(a), is the smallest m ≥ 1 s.t. πm(a) = a.

On the previous slide we saw that o(a) exists and ≤ n. Different
elements can have different orders.

Example

Let π = (a b)(c d e). Then o(a) = o(b) = 2, but
o(c) = o(d) = o(e) = 3.

There is some positive integer m which is divisible by all element orders.
(For example, their product.)

Here the smallest such m is 6: π6 returns each element to itself, that is,
π6 = ι.

The order of a permutation, o(π), is the smallest m ≥ 1 s.t. πm = ι.
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Every permutation returns to identity, sooner or later

Example

Consider the 26 English letters A = {a, b, c , . . . , x , y , z}, and permutation

π = (abc)(defgh)(ijklmno)(pqrstuvwxyz).

The cycles have different lengths 3, 5, 7, 11, and the smallest positive
multiple of these numbers is

3 · 5 · 7 · 11 = 1155,

so o(π) = 1155.

If you take a long text, and apply π repeatedly to all its letters (a
“substitution cipher”), after 1155 repetitions you will certainly have your
original text back!
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Order and divisibility

Consider

a set A, of cardinality n

the set of all its permutations, of cardinality n!

We know that o(a) ≤ n, but it could be basically any number between 1
and n. (Previous slide: n = |A| = 26; o(a) = 3, o(q) = 11.)

We know that o(π) could be quite big, but it is finite. In fact o(π) | n!.
(Proof: Consider the longest cycle of π . . . )

Example

Previous slide; 1155 | 26! (try in SageCell).

Caesar cipher has order 26, which divides 26!

ROT13 cipher has order 2, which divides 26!
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A group of permutations, generated from one permutation

Given one permutation π (e.g. Caesar cipher), we can consider the group
generated by π,

〈π〉 = {πn : n ∈ Z}.

This is also a group (associativity, neutral element, inverse!) but possibly
much smaller than Sn. It is a subgroup of Sn.

Example

By iterating the ROT13 cipher, we obtain only 26� 26! different
permutations.

By iterating the Caesar cipher, we obtain only 26� 26! different
permutations.
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A group of permutations, generated from several
permutations

Consider a combination lock with positions (a, b) ∈ P = {0, 1, . . . , 9}2,
and two “elementary” permutations:

Rotating 1st dial, f (a, b) = ((a + 1) mod 10, b)

Rotating 2nd dial, g(a, b) = (a, (b + 1) mod 10)

Generally, any permutation π of P rotates the first dial by some +s
positions, and the second dial by some +t positions.

It is not difficult to see that π = f s g t , so every permutation can be
expressed as a combination of these two “elementary” permutations.

The set of permutations obtainable from f and g is called the group
generated by f and g , and written 〈f , g〉.

In algebra, there is much more to learn about groups, subgroups and
generating, but we stop here.
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Conjugates

In any group G , two elements π, σ ∈ G are conjugates if π = τστ−1

for some τ ∈ G .

The conjugate relation is an equivalence relation. (proof on
blackboard)

Example

(1234) and (1243) are conjugates in S4, because

(1234) = (123)(1243)(132) = (123)(1243)(123)−1.
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Conjugates

If τ ∈ Sn is a permutation and (a1, . . . , ak) is a cycle, then

τ(a1 . . . ak)τ−1 = (τ(a1) · · · τ(ak)).

If π and σ are conjugates, then they have the same number of cycles
of length k .

In the symmetric group Sn, the conjugate relation can thus be
equivalently defined as follows:

π, σ ∈ Sn are conjugates, if and only if they have equally many
k-cycles for each k = 1, . . . , n.
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Conjugates

The conjugates σ and τστ−1 in Sn have “the same structure”, but
the elements of the ground set {1, . . . n} are in different places in
the cycles.
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Conjugates

Example

The elements of S4 are:

ι
(12) (13) (14) (23) (24) (34)
(123) (132) (124) (142) (134) (143) (234) (243)
(12)(34) (13)(24) (14)(23)
(1234) (1243) (1324) (1342) (1423) (1432)

The conjugate classes are the rows of this table.

The group S4 has five conjugate classes.

How many conjugate classes does Sn have? There is no known
closed formula (in terms of n).
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Cycle notation

A cycle (ab) of length 2 is called a transposition.

Theorem

Every permutation π ∈ Sn can be written as the product of
transpositions.

Proof.

It is enough to show that every cycle (a1 . . . ak) is the product of
transpositions.

(a1a2 . . . , ak−1ak) = (a1ak)(a1ak−1) · · · (a1a3)(a1a2).
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Cycle notation

Theorem

Every permutation π ∈ Sn can be written as the product of
transpositions.

The same permutation can be written as a product of transpositions
in many different ways.

Example

(1234) = (12)(23)(34) = (14)(13)(12) = (12)(24)(23) = . . . .
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Cycle notation

Theorem

1 Every permutation π ∈ Sn can be written as a product using the
transpositions (1 2), (1 3), . . . , (1 n).

2 Every permutation π ∈ Sn can be written as a product using the
transpositions (1 2), (2 3), . . . , (n − 1 n).

Proof.

It is enough to write every transposition as such a product.

(k `) = (1 k)(1 `)(1 k). This proves 1.

(1 k) = (k−1 k)(k−2 k−1) · · · (2 3)(1 2)(2 3) · · · (k−2 k−1)(k−1 k).

This proves 2.
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Even and odd permutations

Theorem

For a permutation π ∈ Sn, its representations as a product of
transpositions either all use an even number of transpositions, or they all
use an odd number of transpositions.

If π ∈ Sn is the product of an even number transpositions, then we
say that π is an even permutation, and that it has sign ε(π) = +1.

If π ∈ Sn is the product of an odd number of transpositions, then we
say that π is an odd permutation, and that it has sign ε(π) = −1.
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Even and odd permutations

Example

A transposition

(j k) = (1 j)(1 k)(1 j) = (1 3)(3 j)(1 3)(1 2)(2 k)(1 2)(1 j) = · · ·

is odd.

The identity permutation ι = (j k)(j k) is even.

The set of even permutations is denoted An.
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Even and odd permutations

Example

A cycle

(a1, a2, . . . , ak−1ak) = (a1ak)(a1ak−1) · · · (a1a3)(a1a2)

is even if its length k is odd, and it is odd if its length is even.
(ANNOYING!)

ε(σπ) = ε(σ)ε(π)

even · even = odd · odd = even.
even · odd = odd · even = odd.

So compositions of permutations is a map

An × An → An,

and so the even permutations form a subgroup An ⊆ Sn. (the
alternating group).
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Even and odd permutations

Theorem

For a permutation π ∈ Sn, its representations as a product of
transpositions either all use an even number of transpositions, or they all
use an odd number of transpositions.

For the proof, we need the following definition:

Definition

An inversion in π ∈ Sn is a pair i < j such that πi > πj .

inv π is the number of inversions in π ∈ Sn.

Example

The inversions in 13542 ∈ S5 are (2, 5), (3, 4), (3, 5), (4, 5).

13542 13542 13542 13542
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Even and odd permutations

Lemma

Let ω = (a b) ∈ Sn be a transposition, with a < b.

Then inv π ◦ ω − inv π is odd.

Proof (illustration).
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Even and odd permutations

Lemma

Let ω = (a b) ∈ Sn be a transposition, with a < b.

Then inv π ◦ ω − inv π is odd.

Proof.

If i , j 6∈ {a, b}, then (i j) is an inversion in π if and only if it is an
inversion in πω.

If a < i < b and either πi ≤ min(πa, πb) or πi ≥ max(πa, πb), then
exactly one of the pairs (a, i) and (i , b) is an inversion, both in π
and in πω.
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Even and odd permutations

Lemma

Let ω = (a b) ∈ Sn be a transposition, with a < b.

Then inv π ◦ ω − inv π is odd.

Proof (continued).

Let a < i < b and

min(πa, πb) ≤ πi ≤ max(πa, πb).

Then the pairs (a, i) and (i , b) are both inversions in one of the
permutations (either in π or in πω), and in the other one neither of
them is an inversion.
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Even and odd permutations

Lemma

Let ω = (a b) ∈ Sn be a transposition, with a < b.

Then inv π ◦ ω − inv π is odd.

Proof (continued).

So the difference between the numbers of inversions

|{(i , j) : (i , j) inversion in π but not in ωπ, (i , j) 6= (a, b)}|
− |{(i , j) : (i , j) inversion in ωπ but not in π, (i , j) 6= (a, b)}|

is even.

(a, b) is an inversion in either π or πω, and not in the other.
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Even and odd permutations

Lemma

inv π ◦ ω − inv π is an odd number if ω is a transposition

Theorem

For a permutation π ∈ Sn, its representations as a product of
transpositions either all use an even number of transpositions, or they all
use an odd number of transpositions.

By the lemma, if π is the product of an odd (even)number of
transpositions, then inv π is odd (even).

But the number of inversions is well defined.

So the parity of the permutation is also well defined.
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Fixed points of permutations

Example

Each of n guests have brought gifts to a party, and these guests
should be redistributed among the guests.

Let r(x) be the guest that gets the gift brought by x .

We want
r : {Guests} → {Guests}

to be surjectve (everyone should get a gift).

We want r(x) 6= x for all x (nobody should get back the same gift
that they brought to the party).

In how many ways can we redistribute the gifts with these rules?
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Fixed points of permutations

Recall that a permutation is a bijection X → X .

The set of permutations of X = {1, . . . , n} is the symmetric
group Sn.

A fixed point of π ∈ Sn is an element x ∈ X such that π(x) = x .

A permutation that has no fixed points is called a derangement.

How many derangements are there in Sn?
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Fixed points of permutations

Use the inclusion exclusion principle.

For i ∈ X , let Ai = {π ∈ Sn : π(i) = i}.
The number of permutations with k prescribed fixed points is

|Ai1 ∩ · · · ∩ Aik | = (n − k)!,

because the n − k other elements must be permuted internally.

For k = 1, . . . , n,

sk =
∑
|B|=k

∣∣∣∣∣⋂
i∈B

Ai

∣∣∣∣∣ =

(
n

k

)
(n − k)! =

n!

k!
.
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Fixed points of permutations

The number of non-derangements is

|Ai ∪ · · · ∪ An| =
n∑

k=1

(−1)k−1sk

=
n∑

k=1

(−1)k−1 n!

k!

So the number of derangements is

n!− |Ai ∪ · · · ∪ An| =
n∑

k=0

(−1)k
n!

k!

= n!
n∑

k=0

(−1)k
1

k!
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Fixed points of permutations

Fact from Calculus 1:
∞∑
k=0

tk
1

k!
= et .

So the number of derangements of n elements is

Dn = n!
n∑

k=0

(−1)k
1

k!
= n!e−1 −

∞∑
k=n+1

(−1)k
n!

k!
.

∣∣∣∣Dn −
n!

e

∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

(−1)k
n!

k!

∣∣∣∣∣ ≤ n!

(n + 1)!
=

1

n + 1
<

1

2

So Dn is the closest integer to n!/e.
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Fixed points of permutations

Example

Each of n guests have brought gifts to a party, and put them in a
pile on a table.

Secret Santa comes and gives a (uniformly) random gift from the
table to each guest.

The probability that no guest gets her own gift back is (very very
close to)

1/e ≈ 0.368

regardless of the number of guests!
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Part 3: Graph theory

3.1 Basics on graphs
3.2 Graph coloring
3.3 Graph isomorphism
3.4 Adjacency matrix
3.5 Planar graph coloring
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Motivation I

“...networks may be used to model a huge array of phenomena across all
scientific and social disciplines. Examples include the World Wide Web,

citation networks, social networks (e.g., Facebook), recommendation
networks (e.g., Netflix), gene regulatory networks, neural connectivity
networks, oscillator networks, sports playoff networks, road and traffic

networks, chemical networks, economic networks, epidemiological
networks, game theory, geospatial networks, metabolic networks, protein

networks and food webs, to name a few.”

(Grady & Polimeni, Discrete Calculus, Springer 2010.)
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This course: A small glimpse of graph theory

Graph theory is a broad topic, big enough for several university-level
courses. We are touching the topic in one week.

Compare:

Computer science courses: focus often in algorithms (e.g. routing,
finding spanning trees etc.)

Our focus: graphs as mathematical objects, using tools of discrete
mathematics — functions, bijections, matrices . . .
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Graph

A graph is a pair (V ,E ), where

V is a set of vertices (also called nodes, points).

E is some set of two-element sets {u, v}, where u, v ∈ V and u 6= v .
These are called edges, arcs or links.

Vertices connected by an edge are called neighbors.

Example

V = {1, 2, 3, 4, 5}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}
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Variations

Many variants of the idea, applicable in different situations.

We might allow . . .

. . . one-vertex edges {u}, understood as a connection from a vertex
to itself (graph with loops)

. . . multiple edges between two vertices (multigraph)

. . . directed edges: ordered pairs (u, v), understood as a connection
from u to v — directed graph or digraph

Caveat. Terminology varies. Sometimes people use simple graph to rule
out loops, and undirected graph to say that edges are undirected (sets)
instead of directed (pairs).
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Motivation II

Graphs can represent many things, both in math and in real world.

Concrete locations and physical connections.

cities and road network

islands and bridges (Bridges of Königsberg)

electrical components and wires

More abstractly, states of some process and transitions

money in wallet and wins/losses (gambling, stock market)

games and movements/plays (chess, go, . . . )

chessboard squares and knight movements (Knight’s tour)

More abstractly, “some relation” between things

V=people, E=“have met”

V = people ∪ articles, (x , y) ∈ E if x is an author of y
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Some examples: Complete graph

Complete graph (or clique) Kn:

n vertices, e.g. V = {1, 2, . . . , n}
Every pair u 6= v has an edge, so

(
n
2

)
= n(n − 1)/2 edges

Check: What are K1, K2, K3, K4, K5?
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Some more examples

Path graph Pn (n ≥ 1) has n consecutive vertices, e.g. {1, . . . , n}:
with edges {1, 2}, {2, 3}, . . . , {n − 1, n}
Cycle graph Cn (n ≥ 3) similar, but one more edge {n, 1}
C3 called “triangle”, C4 called “square”

Star graph Sn has a central vertex, and n others connected to it
(n + 1 vertices total)

Empty graph has n vertices but no edges!

Vertices (corners) and edges of a polyhedron, such as cube.

Also many other named graphs, but these are the most common.

Different names can refer to the same structure (e.g. K2 and P2 and
S1), more about structural similarity later.
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Paths, distance, connected

We often think that two vertices, even if not neighbors, can be
“indirectly connected” via other vertices.

A path is an ordered sequence of vertices

(v0, v1, . . . , vn)

such that any two consecutive vertices vi and vi+1 are neighbors.

This path has length n, the number of “steps” (edges). Note that it has
n + 1 vertices (beware of fencepost).

This path is from v0 to vn, and it connects those two vertices.

A graph is connected if every pair of vertices has some path that
connects them. Otherwise the graph is disconnected. Examples: Empty
graph, disjoint cycles, . . .

The distance or path length between u and v is the length of the
shortest path that connects them. (Examples on blackboard: Cycle
graph, cube)
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Degree

The degree d(v) of a node v is the number of edges that have v as one
of their endpoints.

Example

In the graph below, d(1) = d(2) = d(4) = d(5) = 2, and d(3) = 4.
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Handshaking lemma

Theorem

In any graph we have

2 · |E | =
∑
v∈V

d(v).

Proof.

The sum counts each edge {u, v} twice: once in the degree of u, and
once in the edgree of v .

This simple fact is sometimes very useful. Example: Can we create a
graph that has an odd number of odd-degree vertices? (No, because the
sum of degrees is always even.)
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Regular graph

A graph is k-regular if all vertices have degree k .

Example

complete graph Kn is (n − 1)-regular

cycle graph Cn is 2-regular

empty graph of n vertices is 0-regular

path graph Pn is not regular when n ≥ 3:
The endpoints have degree 1, others have degree 2.
But note boundary cases P1, P2.

Handshaking lemma ⇒ An odd-regular graph cannot have an odd
number of vertices. (Consider k = 1, k = 3)

RF, JK MS-A0402 237 / 338



Sets and formal logic
Combinatorics
Graph theory

Number theory

Basics on graphs
Graph coloring
Graph isomorphism
Adjacency matrix
Planar graph coloring

Subgraph

If G = (V ,E ) and G ′ = (V ′,E ′) are graphs, G ′ is a subgraph of G if
V ′ ⊆ V and E ′ ⊆ E .

I.e. take some of the original graph’s vertices, and some of the edges
between them (perhaps all).

Existence/Nonexistence of certain kinds of subgraphs is important in
applications. E.g. a graph is acyclic if it does not contain any cycle.

Example

1 Cycloalkanes are hydrocarbons that contain one cycle; typically
different chemical properties than acyclic hydrocarbons

2 In computer science, genetics etc. we often study trees, which are
acyclic connected graphs.

3 Finding subgraphs that are cliques (Kn) is important e.g. in social
networks, graph coloring etc.
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Vertex coloring

Definition

A (vertex) k-coloring of the graph G = (V ,E ) is a function

γ : V → {1, 2, . . . , k}

such that
if {u, v} ∈ E then γ(u) 6= γ(v).

The chromatic number χ(G ) is the smallest number k such that
there is a k-coloring of G .

Often {1, 2, . . . k} called “colors”. Here is a 4-coloring of K4.
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Chromatic number examples

χ(Kn) = n

χ(Pn) = 2 (for n ≥ 2). Proof: alternating colors

χ(Cn) = 2 if n even, but 3 if n odd (!)
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Subgraphs and coloring

Theorem

If H is a subgraph of G, then χ(G ) ≥ χ(H).

In particular, if G contains a k-clique (complete k-element subgraph),
then χ(G ) ≥ k .

The clique number ω(G ) is the size of the largest clique in G . So
lower bound

χ(G ) ≥ ω(G )

Generally, subgraphs (cliques or others) are often useful for proving lower
bounds on χ(G ) (“at least this many colors needed”).
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Coloring and partition

A k-coloring is equivalent to partitioning the vertices into k parts, such
that there are no edges inside any part.
G = (V ,E ) is bipartite, if we can partition V = V1 ∪ V2 so that all
edges are between the parts. Equivalently, this is a 2-coloring.

Sometimes we know a partition from the outset because we have two
different kinds of vertices, and the graph represents a relation between
the two parts.

Example

vertices: people ∪ books, edge = “x is an author of y”

vertices: bus lines ∪ stops, edge = “x stops at y”

Sometimes we don’t know a partition (or coloring), and finding it is the
task.

RF, JK MS-A0402 242 / 338



Sets and formal logic
Combinatorics
Graph theory

Number theory

Basics on graphs
Graph coloring
Graph isomorphism
Adjacency matrix
Planar graph coloring

Conflict graphs

Example

Six students Alice, Bob, Camilla, David, Erika, Fred are doing six
different projects in the following groups:

1 A,B,C,F
2 B,D,E
3 C,F
4 B,E
5 A,C,F
6 D,E,F

Each project requires one day to complete, which the participants
have to spend together. In how many days can all the projects be
completed?
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Conflict graphs

Example (Continued)

Construct the conflict graph, G = (V ,E ) whose nodes are the tasks,
and whose edges represent pairs of tasks that can not be completed
on the same day.

If γ : V → {1, . . . , k} is a graph coloring, then we can complete
each task v on day number γ(v).

So the smallest number of days needed is χ(G ).
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Conflict graphs

Example (Continued)

We can color the graph with 4 colors as below, so χ(G ) ≤ 4.

On the other hand, the nodes {1, 2, 3, 6} are pairwise connected, so
need four different colors.

Thus, χ(G ) = 4.
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Greedy algorithm

Finding the chromatic number of a graph is a difficult problem.

There is no known algorithm whose complexity grows polynomially
with the number of vertices.

Any known coloring gives an upper bound of χ(G ).

The following greedy algorithm often gives useful upper bounds
(“this many colors is enough”).

Requires an ordering {v1, . . . , vn} of the vertices of V .

The number of colors needed may depend on the ordering.
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Greedy algorithm

Let V = {v1, . . . , vn}.
Let γ(v1) = 1

If v1, . . . , vk−1 have already been colored, let

γ(vk) = min{i ≥ 1 : γ(vj) 6= i for all j < k for which {vj , vk} ∈ E}.
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Greedy algorithm

Example

Color the previous conflict graph with the greedy algorithm.

The vertices are already labelled 1, . . . 6.

Visualize the “colors” 1, 2, 3, 4 as red, blue, green, yellow, in that
order.
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Greedy algorithm

Example

Color the following graph with the greedy algorithm.

Depending on how you order the nodes, you need either two or three
colors.

1 2 3 4

5 6

1 5 6 4

3 2
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Greedy algorithm

Theorem

Let G = (V ,E ) be a graph with χ(G ) = k.

Then there exists an ordering v1, v2, . . . , vn of the vertices such that
the greedy algorithm colors the graph with k colors, if coloring the
vertices in this order.

So if we can perform the greedy algorithm for all possible orderings
of V , we can compute the chromatic number exactly.

But there are n! possible ways to order V , so this is not an efficient
algorithm.
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Greedy algorithm

Sketch of proof.

Let γ : V → {1, 2, . . . , k} be some coloring of G with χ(G ) = k
colors.

Let Vi ⊆ V be the set of vertices with γ(v) = i . So there are no
edges between two nodes in Vi .

Order the vertices such that all nodes in V1 come first, then all
nodes in V2, and so on.

Let δ : V → {1, 2, . . . , k} be a greedy graph coloring with respect to
this ordering.

By induction: δ(v) ≤ i for all v ∈ Vi .

So the greedy algorithm colors V = V1 ∪ V2 ∪ · · · ∪ Vk with k
colors.
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Maximum degree gives upper bound

Theorem

Let G be a graph, where all nodes have degree ≤ d.

Then χ(G ) ≤ d + 1.

Proof.

Order the vertices arbitrarily, and color the graph using the greedy
algorithm.

For each vertex vk , the set {vj : j < k , {j , k} ∈ E} has size ≤ d , so
at most d colors are used for those vertices.

So vk can be colored with at least one of the colors 1, 2, . . . , d + 1.

So the greedy algorithm requires at most d + 1 colors, so
χ(G ) ≤ d + 1.

RF, JK MS-A0402 252 / 338



Sets and formal logic
Combinatorics
Graph theory

Number theory

Basics on graphs
Graph coloring
Graph isomorphism
Adjacency matrix
Planar graph coloring

Greedy algorithm

Theorem

Let G be a graph, where all nodes have degree ≤ d.

Then χ(G ) ≤ d + 1.

Theorem (Brooks’ Theorem, 1941)

Let G be a graph, where all nodes have degree ≤ d.

If χ(G ) = d + 1, then G is either a complete graph Kn or an odd
cycle.
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Bounds could be very loose

Example

Star graph Sn has max degree n, giving upper bound n + 1, but in reality
χ = 2

Example

Mycielski graphs have clique number 2 (no triangles at all!), giving lower
bound 2, but in reality χ can be arbitrarily large
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Isomorphism

When do two graph have “the same structure”?

The four graphs above look different, still they are all “complete on 4
vertices”, and share the “same structure”.

The following definition makes the notion precise, so that we can
(hopefully) prove that two graphs have the same or different structures.
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Isomorphism

Definition

An isomorphism between two graphs G = (V ,E ) and G ′ = (V ′,E ′) is a

bijection f : V → V ′

such that all neighborhood relations are identical:

∀u, v ∈ V : {u, v} ∈ E ←→ {f (u), f (v)} ∈ E ′.

If there exists an isomorphism between G and G ′, we say the graphs are
isomorphic and write G ' G ′.

These four graphs are all isomorphic.
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Being isomorphic is a strong property

If G ' G ′, this implies many things:
|V | = |V ′|, otherwise no bijection at all!
Every vertex v maps to a vertex f (v) of the same degree.
Corollary: For each possible degree, G and G ′ have the same
number of vertices of that degree
Corollary: |E | = |E ′| (same total number of edges)
Every subgraph of G maps to a subgraph of G ′ with the same
structure

every 3-cycle maps to a 3-cycle
every K4 maps to a K4

These are often helpful in proving that two graphs are not isomorphic:
e.g. if G has two vertices of degree 4, but G ′ has only one such vertex,
then G 6' G ′.

But remember how implication works. Having the same number of
vertices, edges etc. is not a proof of isomorphism. For a conclusive proof,
construct an isomorphism!
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Isomorphism examples

Example

Two complete graphs of same size are isomorphic.

Two path graphs of same length are isomorphic.

Two cycle graphs of same length are isomorphic.

The graphs below are isomorphic; ϕ is an isomorphism.
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Non-isomorphism examples

Example

Pn and Cn have same number of vertices, but number of edges is
enough to see they are not isomorphic.

Adding a diagonal to C6 in two ways: Both have |E | = 7, and same
number of vertices of each degree, yet nonisomorphic

6-cycle vs. union of two disjoint 3-cycles: Each graph has 6 edges,
and same number of vertices of each degree

If easy methods fail to show nonisomorphism, we simply need to prove,
by whatever means, that no bijection between the vertices can be an
isomorphism. This could be difficult.

The last resort would be to try all possible n! bijections and test if one of
them is an isomorphism! (An extreme “proof by cases”.)
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Deciding isomorphism could be hard

Which of the following four graphs are isomorphic and which are not?
Why?

Brute force method: We could just try all 5! = 120 bijections and check
if neighborhoods are preserved.

Saving work: If ϕ is an isomorphism, then d(v) = d(φ(v)), which
severely restricts which vertices can be mapped where.
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Algorithmic complexity

It is currently not known exactly how difficult it is to determine (by a
computer program) if two graphs are isomorphic. See Graph isomorphism
problem.

However, practical algorithms and computer programs exist for very large
graphs.
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Isomorphism is an equivalence

Theorem

The isomorphism relation ' is an equivalence.

Proof.

Reflexivity: G ' G by identity function

Symmetry: if there is an isomorphism f : G → G ′, then its inverse
function is an isomorphism f −1 : G ′ → G .

Transitivity: If f1 : G → G ′ and f2 : G ′ → G ′′ are isomorphisms, then
so is (f2 ◦ f1) : G → G ′′.
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Isomorphism classes

Recall that an equivalence relation groups objects into equivalence
classes. Here a class contains all graphs that have “the same structure”.

Our earlier examples Kn (complete), Cn (cycle), Pn (path) and so on, are
not in fact “graphs”, but descriptions of graph structure.

The vertices of a complete graph K4 could be named, or labeled in many
ways, giving different but isomorphic graphs. We can say that each of
these graphs is “a K4” (with indefinite article).
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Unlabeled graph examples

Here are all unlabeled connected graphs of 5 vertices, that is, all such
graph structures.

Each could be labeled in several ways.
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How many graphs exist?

Let the vertices be V = {1, 2, . . . , n}. How many (a) graphs, (b)
unlabeled graphs, (c) unlabeled connected graphs exist?

(a) Easy: 2(n
2) = 2k(k−1)/2, because

(
n
2

)
possible edges, see A006125

(b,c) Harder, only known up to n = 19, see A000088 and A001349

n (a) graphs (b) unlab. graphs (c) unlab. conn. graphs
2 21 = 2 2 1
3 23 = 8 4 2
4 26 = 64 11 6
5 210 = 1 024 34 21
6 215 = 32 768 156 112
7 221 = 2 097 152 1 044 853

Demo: https://sagecell.sagemath.org/?q=mweiqo
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Adjacency matrix

Let G = (V ,E ) be a graph, and V = {v1, . . . , vn}.
The adjacency matrix of G is the n × n matrix A with

A(j , k) =

{
1 if {vj , vk} ∈ E
0 otherwise

So the adjacency matrix has an entry 1 in the i th row and jth

column if the vi and vj are neighbours.
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Adjacency matrix

Example

The adjacency matrix of the graph

is

A =


0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
0 0 1 0 1
0 0 1 1 0


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Adjacency matrix

As in Matrix Algebra, the product of two n × n matrices A and B is
the n × n matrix AB with

AB(i , j) =
n∑

k=1

A(i , k)B(k , j).

In other words, AB(i , j) is the scalar product of the i th row of A and
the jth column of B.

The product of adjacency matrices can be interpreted
combinatorially.
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Adjacency matrix

Theorem

Let A be the adjacency matrix of the graph G, with nodes v1, . . . , vn.

Then Ak(i , j) is the number of paths of length k from vi to vj in G,
for k ∈ N.

Example

A =


0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
0 0 1 0 1
0 0 1 1 0

 A2 =


2 1 1 1 1
1 2 1 1 1
1 1 4 1 1
1 1 1 2 1
1 1 1 1 2

 A3 =


2 3 5 2 2
3 2 5 2 2
5 5 4 5 5
2 2 5 2 3
2 2 5 3 2



The entry A3(2, 3) = 5 tells us that there are five paths of length 3
from node 2 to node 3.
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Adjacency matrix

Theorem

Let A be the adjacency matrix of the graph G, with nodes v1, . . . , vn.

Then Ak(i , j) is the number of paths of length k from vi to vj in G,
for k ∈ N.

Proof.

By induction:

Base case n = 0: A0 is the identity matrix A0 = In, with

In(i , j) =

{
1 if i = j
0 otherwise.

The only paths of length 0 in G go from a node vi to itself, so the
number of such paths is In(i , j).
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Adjacency matrix

Proof (Continued).

Induction step: Assume Am(i , j) is the number of paths of length m
from vi to vj in G .

A path of length m + 1 in G from vi to vj is a path of length m from
vi to some node v`, together with an edge from v` to vj .

So the number of such paths is

∑
`∈{1,...n}
{v`,vj}∈E

Am(i , `) =
∑

`∈{1,...n}
A(`,j)=1

Am(i , `) =
n∑

`=1

Am(i , `)A(`, j) = Am+1(i , j).

By the induction principle, Ak(i , j) is the number of paths of length
k from vi to vj in G , for all k ∈ N.
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Powers of adjacency matrix

SageMath demo https://sagecell.sagemath.org/?q=kntrgg

Note (connection to stochastics).
Very similar matrix powers appear with the transition matrices of Markov chains.

Course: MS-C2111 Stochastic processes.

A system has n states, and at each time it is in exactly one state.

n × n transition matrix, whose element Aij indicates the probability of moving from state i
to state j .

Here the matrix elements are probabilities, not zeros and ones.

Same idea: Am tells what happens when we perform m consecutive transitions.
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Planar graphs

A graph is planar if it can be drawn on plane, without any edges crossing.

e.g. K4, Cn, Sn are planar

e.g. K5 is not planar

Many practical applications, but here we consider a less practical one:
Map coloring.

A planar map of countries can be transformed into a planar graph.
(Why? BLACKBOARD)
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Coloring planar graphs

Question: How many colors are enough to color any planar map of
countries?
It is easy to see that three are not enough (there can be four countries all
neighboring each other.)

Six is enough — relatively simple proof exists.

Heawood (1890): Five is enough. A proof of a couple of pages.

Appel & Haken (1976): Four is enough. Computer-assisted proof by
cases (1 834 cases!).
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Six-color theorem — Ingredients

To prove that any planar graph can be six-colored, these are the
ingredients:

Handshaking lemma: 2|E | =
∑

v d(v), true for any graph

Euler characteristic: |V | − |E |+ |F | = 2 in any planar graph
(F are the “faces”, the areas surrounded by edges)

Every planar graph contains a vertex with degree ≤ 5
(From combining the previous two claims)

Induction on number of vertices

We may (time permitting) do some of these on the blackboard.
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Part 4: Number theory

4.1 Divisibility
4.2 Diophantine equations
4.3 Modular arithmetic
4.4 Computing exponents modulo n
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Number theory

Number theory means the theory of integers.

Restricting to integers makes some things easier (or more concrete), but
some others harder (or at least different).

Compare solving 3x + 5y = 1 for x , y in reals vs. in integers!

Nowadays number theory has lots of applications in computing
(algorithmics, coding theory, cryptography).
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Some early views of number theory . . .

Pythagoras of Samos (c. 570–495 BC):
Everything is made of “numbers” (integers), e.g. their ratios
→ Modern view: Kind of, but you need more than just ratios

Carl Gauss (1777–1855):
Mathematics is the queen of sciences, and number theory is the
queen of mathematics

Leopold Kronecker (1823–1891):
God made the integers, all else is the work of man
→ Modern view: Also integers can be constructed from more elementary things

G.H. Hardy (1877–1947):
Number theory is an honest branch of math because it has no
applications (e.g. to war).
→ Soon proved wrong

Caveat: These are paraphrases, not exact quotes from these people
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Divisibility

A number n ∈ Z is divisible by m ∈ Z if there exists k ∈ Z such that

mk = n.

Then we also say that m divides n, or in formulas m | n.
Or, m is a divisor of n, or n is a multiple of m
Negation (“not divisible”) written m - n.

Example

2 | 4.

6 | 12

6 - 9

0 - n when n 6= 0.

1 | n when n ∈ Z.

n | 0 when n ∈ Z.

n - 1 when n 6= ±1.
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Practical factoring

How do we find whether m | n? Typically we perform the division (long
division on paper, or calculator) and check if the result is an integer.

For some divisors we have handy rules (when the numbers are presented
in the usual ten-based positional notation).

An integer is divisible by . . .

2, iff its last digit is likewise (i.e. is 0, 2, 4, 6, 8)

5, iff its last digit is likewise (i.e. is 0 or 5)

10, iff its last digit is likewise (i.e. is 0)

3, iff its sum of digits is likewise divisible by 3

9, iff its sum of digits is likewise divisible by 9

Iff is math slang for “if and only if”

Why do these work? All easily proven via congruences (next lecture)
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Primes and factorization

An integer p ≥ 2 is prime if its only positive divisors are 1 and p.

Examples: 2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

(Fun fact: There are infinitely many primes.)

Contrariwise — if a number n is not prime, it can be factored as m = ab
where 1 < a ≤ b < n.

How to find such factorization? Naive method (good for small numbers):

Try dividing by all primes 2 ≤ p ≤
√
n.

Why is
√
n enough, to find a factor if there is any? See Ex. 6a6j.
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Prime factorization

If n = ab and a or b is not prime, we can continue factoring them.
Finally we get a prime factorization

n = p1p2 · · · pk

where some primes may appear multiple times, or

n = pr1
1 p

r2
2 · · · p

rk
k

if we collect multiple occurrences of each prime into a power.

Useful facts:

Every integer n ≥ 2 has a prime factorization (possibly just one
factor, if n itself is prime)

It is unique (up to order)
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Divisibility

If m | n1 and m | n2, then m | (a1n1 + a2n2) for all integers a1, a2.

(Cf. exercise 6A6)

Example

Since 3 | 9 and 3 | 15, it follows that 3 | 4 · 15− 2 · 9 = 42.
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Divisibility

So the set of common divisors of n1 and n2 is the same as the set of
common divisors of n2 and n1 − an2.

In particular, the greatest common divisor satisfies

gcd(n1, n2) = gcd(n1 − an2, n2) for all a.

Example

gcd(162, 114) = gcd(48, 114) = gcd(48, 18)

= gcd(12, 18) = gcd(12, 6)

= gcd(6, 6) = 6.

This illustrates the Euclidean algorithm for computing the greatest
common divisor of two numbers.
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Euclidean division

Theorem (Euclidean division)

Let a, b ∈ Z, with b > 0.

Then there exist unique numbers q, r ∈ Z with 0 ≤ r < b and

a = qb + r .

q is the quotient of a when divided by b. (In programming
languages often called integer division)

r is the modulus or remainder of a, when divided by b. Written

a mod b

(In programming languages often as % operator)

So a
b = q + r

b .
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Euclidean division

Example

When dividing a = 19 by b = 7, the quotient is q = 2 and the
remainder is r = 5.

When dividing a = −19 by b = 7, the quotient is q = −3 and the
remainder is r = 2.

The proof of Euclidean division is simple but tedious.

Idea: r is the smallest non-negative number in S{a− kb : k ∈ Z}.
Show that this r is the only element in S with 0 ≤ r < b.
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Euclidean algorithm

Let r = a− qb be the remainder of a modulo b.

Then gcd(a, b) = gcd(r , b) = gcd(b, r).

gcd(b, 0) = b for all integers b 6= 0.

This gives an algorithm for computing the greatest common divisor

gcd(a, b)

of two numbers a ≥ b in O(log a) steps.
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Euclidean algorithm

Example

To compute gcd(162, 114):

162 = 1 · 114 + 48

114 = 2 · 48 + 18

48 = 2 · 18 + 12

18 = 1 · 12 + 6

12 = 2 · 6 + 0

The greatest common divisor is the last non-zero remainder:

gcd(162, 114) = 6.
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Extended Euclidean algorithm

In each iteration of the Euclidean algorithm, the remainder is written
as an integer combination of previous remianders:

Example

48 = 162− 1 · 114

18 = 114− 2 · 48

12 = 48− 2 · 18

6 = 18− 1 · 12

This can be used to write the final remainder gcd(a, b) as an integer
combination xa + yb, where x , y ∈ Z.
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Extended Euclidean algorithm

Example

48 = 162− 1 · 114

18 = 114− 2 · 48

12 = 48− 2 · 18

6 = 18− 1 · 12

We use this to write 6 = gcd(114, 162) as an integer combination

114x + 162y , where x , y ∈ Z.

6 = 18− 12
= 18− (48− 2 · 18) = 3 · 18− 48
= 3(114− 2 · 48)− 48 = 3 · 114− 7 · 48
= 3 · 114− 7(162− 114) = 10 · 114− 7 · 162.
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Linear Diophantine equations in two variables

An equation where the variables are integer valued is called a
Diophantine equation.

The extended Euclidean algorithm gives a solution (xB , yB) to the
Diophantine equation

gcd(a, b) = ax + by .

The integers (xB , yB) are the Bézout coefficients of a and b.
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Linear Diophantine equations in two variables

gcd(a, b) = axB + byB .

If gcd(a, b) | c , then the pair

(x0, y0) =
c

gcd(a, b)
(xB , yB)

is an integer solution to the equation c = ax + by .
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Linear Diophantine equations in two variables

If gcd(a, b) 6| c , can there still be integer solutions to the equation

c = ax + by?

No! Because gcd(a, b) | ax + by for all integers x , y .
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Linear Diophantine equations in two variables

Theorem

The Diophantine equation

c = ax + by

has integer solutions if and only if gcd(a, b) | c.

If gcd(a, b) | c, then one particular solution (x0, y0) is given by
Euclid’s extended algorithm.

Let a′ = a
gcd(a,b) and b′ = b

gcd(a,b) .

Then all integer solutions to the equation are

(x0 + nb′, y0 − na′) , n ∈ Z.

To prove this, we first must address the issue of unique factorization.
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Dividing a product

Lemma

if gcd(a, b) = 1 and a | bc, then a | c.

If gcd(a, b) = 1, then 1 = xa + yb holds for some x , y ∈ Z, so

c = xca + ybc.

Since a divides
xca + ybc

, it also divides c .
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Unique factorization

So if p is a prime (only divisible by 1 and itself) such that p | bc,
then either p | b or p | c .

It follows that every number can be written as a product of primes
in a unique way.

210 = 7 · 30 = 10 · 21 = 6 · 35 = · · · = 2 · 3 · 5 · 7

can not be written as a product of primes in any other way.
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Unique factorization

We want to divide a large number N into prime factors

First, we find a prime p that divides N.

Then we factorize the smaller number N/p.

Example

10452 = 2 · 5226

= 22 · 2613

= 22 · 3 · 871

= 22 · 3 · 13 · 67.

We see that 67 is a prime, because it is not divisible by any prime
≤
√

67 < 9.
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Linear Diophantine equations in two variables

We are now ready to prove the following theorem.

Theorem

The Diophantine equation

c = ax + by

has integer solutions if and only if gcd(a, b) | c.

If gcd(a, b) | c, then one particular solution (x0, y0) is given by
Euclid’s extended algorithm.

Let a′ = a
gcd(a,b) and b′ = b

gcd(a,b) .

Then all integer solutions to the equation are

(x0 + nb′, y0 − na′) , n ∈ Z.

RF, JK MS-A0402 298 / 338



Sets and formal logic
Combinatorics
Graph theory

Number theory

Divisibility
Diophantine equations
Modular arithmetic
Computing exponents modulo n

Linear Diophantine equations in two variables

Proof.

a′ =
a

gcd(a, b)
and b′ =

b

gcd(a, b)
.

a(x0 + nb′) + b(y0 − na′) = ax0 + by0 + (nab′ − nba′)

= c + 0,

so (x0 + nb′, y0 − na′) is a solution.
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Linear Diophantine equations in two variables

Proof (Continued).

If (x , y) is an arbitrary solution, then

a(x − x0) + b(y − y0) = c − c = 0.

gcd(a′, b) = gcd(a, b′) = 1, so

a′ | y − y0 and b′ | x − x0.

So x = x0 + mb′ ja y = y0 − na′ holds for some n,m ∈ Z.

ax0 + by0 = c = ax + by =⇒ m = n.
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Linear Diophantine equations in two variables

Example

Solve the Diophantine equation

514x + 387y = 2.

First find gcd(514, 387) by the Euclidean algorithm:

514 = 387 + 127

387 = 3 · 127 + 6

127 = 21 · 6 + 1

6 = 6 · 1 + 0.

This shows gcd(514, 387) = 1 | 2, so the equation has solutions.
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Linear Diophantine equations in two variables

Example (Continued)

514 = 387 + 127

387 = 3 · 127 + 6

127 = 21 · 6 + 1

6 = 6 · 1 + 0.

Now solve
514x + 387y = gcd(514, 387) = 1

by the extended Euclidean algorithm:

1 = 127− 21 · 6
= 127− 21 · (387− 3 · 127) = 64 · 127− 21 · 387
= 64 · (514− 387)− 21 · 387 = 64 · 514− 85 · 387.

RF, JK MS-A0402 302 / 338



Sets and formal logic
Combinatorics
Graph theory

Number theory

Divisibility
Diophantine equations
Modular arithmetic
Computing exponents modulo n

Linear Diophantine equations in two variables

Example (Continued)

1 = 64 · 514− 85 · 387.

So
2 = 2(64 · 514− 85 · 387) = 128 · 514− 170 · 387.

Answer: The Diophantine equation

514x + 387y = 2

has infinitely many solutions,

(x , y) = (128,−170) + n(387,−514).
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Linear Diophantine equations in two variables

Example

Solve the Diophantine equation

112x + 49y = 2.

First find gcd(112, 49) by the Euclidean algorithm:

112 = 2 · 49 + 14

49 = 3 · 14 + 7

14 = 2 · 7 + 0.

This shows gcd(112, 49) = 7 - 2, so the equation has no integer
solutions.
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Congruency

Definition

Let n be a positive integer.

If n | (a− b), then we say a ≡ b (mod n).

In words: a and b are congruent modulo n.

Congruence modulo n is an equialence relation on Z.

Reflexive: ∀a ∈ Z : n | 0 = a− a.
Symmetric: ∀a, b ∈ Z : If n | a− b then n | −(a− b) = b − a.
Transitive:

∀a, b, c ∈ Z : If n | a−b and n | b−c, then n | (a−b)+(b−c) = a−c.
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Congruency and remainders

Fact: a ≡ b (mod n) if and only if a and b have the same remainder
when divided by n, i.e.

(a mod n) = (b mod n).

Example

4 ≡ 16 (mod 12); The clock hands are in the same position at 4:00
and 16:00.

7654 ≡ 1854 ≡ 54 (mod 100): Same last 2 digits

67 ≡ 99 ≡ 1 (mod 2): Odd numbers (remainder 1)

29 ≡ 19 ≡ 9 ≡ −1 ≡ −11 (mod 10), all have remainder 9
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Congruence class

Definition

The congruence class of a ∈ Z modulo n is

[a]n = {b ∈ Z : a ≡ b (mod n)} ⊆ Z.

Example

[4]10 = {. . . ,−16,−6, 4, 14, 24, . . . }
[4]12 = {. . . ,−20,−8, 4, 16, 28, . . . }
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Representatives

All elements of a congruence class are representatives of that class.

Each congruence class has precisely one representative in
{0, 1, . . . , n − 1}. We can call it the canonical representative.

Note: [n]n = [0]n, and [−1]n = [n − 1]n.

Example

[27]11 is a congruence class all right, but its canonical representation is
[5]11. Note that 27 mod 11 = 5.

Definition

The set of all congruence classes modulo n ∈ Z is denoted Zn (or
Z/nZ).

Zn = {[0]n, [1]n, · · · , [n − 1]n}.
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Addition and multiplication of congruence classes

For n ∈ N \ {0} and a, b ∈ Z, define:

[a]n + [b]n = [a + b]n

[a]n[b]n = [ab]n

Note: If a = pn + r , b = qn + s, then

[a + b]n = [(p + q)n + r + s]n = [r + s]n

[ab]n = [pnqn + pns + qnr + rs]n = [rs]n,

so the sum and product really only depend on the congruence
classes of a and b modulo n (these operations are well-defined)

Example: [4]3 + [5]3 = [9]3 = [3]3 = [1]3 + [2]3.
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Addition and multiplication of congruence classes

Example

We get addition and multiplication tables as follows in

Z3 = {[0]3, [1]3, [2]3} :

We left out the n subscript from all congruence classes, with the understanding that it is known

from the context.
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Addition and multiplication of congruence classes

Theorem

The following laws hold for a, b, c ∈ Zn:

a + b = b + a and ab = ba (commutativity)

a + (b + c) = (a + b) + c and a(bc) = (ab)c (associativity)

a + [0] = a and a · [1] = a (neutral elements)

For each a there exists −a s.t. a + (−a) = [0]. (additive inverse)

a(b + c) = ab + ac (distributivity)

Note: a, b, [0], [1] are congruence classes; not integers.

These are the axioms of a commutative ring with a unit.

In some sources, this is called a commutative ring, or even just a
ring.

The set Zn is called the ring of integers modulo n.
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Differences between Z and Zn

The table did not talk about multiplicative inverses.

b is a multiplicative inverse of a if ab = ba = 1. In this case we
say that a is invertible

In Z, only ±1 have multiplicative inverses.

In Zn, other elements can have inverses too. Perhaps some elements
have, and other do not!

Example: [2]5 · [3]5 = [1]5, so [2]5 and [3]5 are inverses in Z5.
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Examples: Zn multiplication tables, n prime

×3 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

×7 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Observations (other than the zero row):

Every row contains a 1, so every element has an inverse

Every row contains only one 1

Every row contains 0, . . . , n − 1 permuted
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Example: Zn multiplication table, n composite

×6 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Observations:

Some rows contain a 1, e.g. [5] · [5] = [1]. Element [5] is invertible

Some rows don’t contain 1, but contain some zeros: [3] · [4] = [0]

[3] and [4] are divisors of zero, and not invertible
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Differences between Z and Zn

A commutative ring with a unit, where all non-zero elements have
an inverse, is called a field.

Example: R and Q are fields.

Theorem

Let p be a prime.

Then Zp is a field.

Proof.

Let 0 < a < p, so [a]p 6= [0]p. Then gcd(p, a) = 1.

By Bezout’s identity, xp + ya = 1 has an integer solution.

Then ya ≡ 1 (mod p), so [y ]p is an inverse of [a]p.
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Differences between Z and Zn

In Zn it is not true that ab = ac ⇒ b = c .

In fact, this is true if and only if a is invertible.

[x ] is invertible in Zn if and only if gcd(x , n) = 1.

Example

In Z6, [2] · [4] = [2] · [1], but [4] 6= [1].
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Congruence equations

When does b ≡ ax (mod n) have a solution?

If gcd(a, n) 6= 1, then we must have gcd(a, n) | b.

In such case, divide the equation by gcd(a, n).

Theorem

Assume gcd(a, n) = 1.

Then ax ≡ b (mod n) has a unique solution (modulo n).

Proof.

[a] has an inverse [a]−1 in Zn.

[a][x ] = [b]⇒ [x ] = [a]−1[a][x ] = [a]−1[b].
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Congruence equations

Example

The invertible elements in Z10 are [1], [3], [7], [9].

Their inverses are

[1]−1 = [1], [3]−1 = [7], [7]−1 = [3], [9]−1 = [9]

respectively. Notice: [9] = −[1].
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Congruence equations

Example

The invertible elements in Z12 are [1], [5], [7], [11].

They are all their own inverses.

We can solve the congruence

7x ≡ 9 (mod 12)

by multiplying with the inverse of 7, modulo 12.

x ≡ 7 · 7x ≡ 7 · 9 ≡ 63 ≡ 3 (mod 12).
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Handy rule: Divisibility by three

In the positional notation, in base 10, the number “abcdef ” means

x = 105 · a + 104 · b + 103 · c + 102 · d + 10 · e + f .

Claim: x ≡ a + b + c + d + e + f (mod 3).

Proof: Because 10 ≡ 1 (mod 3), also 10k ≡ 1k ≡ 1. Thus

x ≡ 1 · a + 1 · b + 1 · c + 1 · d + 1 · e + 1 · f .

Corollary: 3 | x iff 3 divides the sum of digits in x

Example: 452123 ≡ 4 + 5 + 2 + 1 + 2 + 3 ≡ 17 ≡ 2 (mod 3).

Similar rule for divisibility by 9. But not other numbers, in base 10. Think why.
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Exponents modulo n

Example

What is the remainder of 313 when divided by 100?

Division algorithm: 313 = 100q + r , so [r ]100 = [313]100.

We save time by not computing 13 multiplications, but doing
repeated squaring in Z100:

[3]2 = [9]

[3]4 = [9]2 = [81]

[3]8 = [81]2 = [6561] = [61]

[3]13 = [3]8 · [3]4 · [3]1 = [61][81][3] = [14823] = [23].

So the remainder is 23.
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Exponents modulo n

If the exponent is very large, then even repeated squaring is
inconvenient.

Example

Can we compute [3]100
13 ?

Yes, because we are lucky! [3]3 = [27] = [1].

[3]100 = ([3]3)33 · [3] = [1]33 · [3] = [3]

So the remainder is 3.

It would help if we had a systematic way to find a number k such
that

ak ≡ 1 (mod n).

(if gcd(a, n) = 1).
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Fermat’s little theorem

Theorem

Let p be a prime and a 6≡ 0 (mod p). Then ap−1 ≡ 1 (mod p).

Proof.

Each [a][x ] = [b] has a unique solution if [b] 6= [0].

So
{[1], [2], . . . [p − 1]} = {[a][1], [a][2], . . . [a][p − 1]} .

Thus

[(p − 1)!] =

p−1∏
i=1

[i ] =

p−1∏
i=1

[a][i ] = [a]p−1[(p − 1)!].

But p 6| (p − 1)!, so (p − 1)! is invertible modulo p.

It follows that [1]p = [a]p−1
p .
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Fermat’s little theorem

Example

We check Fermat’s little theorem in Z7:

16 = 1

26 = (23)2 = 12 = 1

36 = (33)2 = (−1)2 = 1

46 = (−3)6 = 36 = 1

56 = (−2)6 = 26 = 1

66 = (−1)6 = 16 = 1
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Euler’s theorem

How do we compute powers modulo a non-prime n?

The proof of Fermat’s little theorem suggests a generalization.

Definition

Let n ∈ N.

The Euler function ϕ(n) is the number of elements

0 ≤ i < n such that gcd(n, i) = 1.

Note: ϕ(n) = n − 1 if and only if n is prime.

Equivalently, ϕ(n) is the number of invertible elements in Zn.
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Euler’s theorem

Theorem

Let n ∈ N, and gcd(a, n) = 1.

Then aϕ(n) ≡ 1 (mod n).

The proof closely follows that of Fermat’s little theorem.

It follows that, if b = qϕ(n) + r , then ab ≡ ar (mod n).
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Euler’s ϕ function

If n = pk is a power of a prime, then

ϕ(n) =| {0 ≤ i < n : gcd(n, i) = 1}|
= pk − {pj : 0 ≤ j < pk−1}|
= (p − 1)pk−1.

If gcd(a, b) = 1, then ϕ(ab) = ϕ(a)ϕ(b). (Proof omitted.)

Thus,

ϕ(pk1
1 · · · p

kr
r ) = (p1 − 1) · · · (pr − r) · pk1−1

1 · · · pkr−1
r

If we can factorize n, then we can also compute powers modulo n
more efficiently than before.

RF, JK MS-A0402 327 / 338



Sets and formal logic
Combinatorics
Graph theory

Number theory

Divisibility
Diophantine equations
Modular arithmetic
Computing exponents modulo n

Euler’s ϕ function

Example

How many integers in [0, 10200] are relatively prime to 10200?

First factorize

10200 = 2 · 5100 = 22 · 2550 = 23 · 1275
= 23 · 3 · 425 = 23 · 3 · 5 · 85 = 23 · 3 · 52 · 17.

Thus we get

ϕ(10200) = (2− 1)22 · (3− 1) · (5− 1)5 · (17− 1)

= 22+1+2+4 · 5
= 512 · 5 = 2560.
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Euler’s ϕ function

Example (Continued)

ϕ(10200) = 2560.

By Euler’s theorem,

a2560 ≡ 1 (mod 10200)

for all a with gcd(10200, a) = 1.

If m ≡ 1 (mod ϕ(n)) and gcd(a, n) = 1, then am ≡ a (mod n).
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RSA cryptography

In 1978, Ron Rivest, Adi Shamir and Leonard Adleman
demonstrated the RSA cryptography scheme.

It allows anybody with a public key to send messages to Alice.

Alice has a private key, with which she can read the secret message.

RSA cryptograpy is considered secure in practice.

Breaking the crypto (i.e. reading the message without the private
key) is equally difficult as computing ϕ(n) for a large number n.

RF, JK MS-A0402 330 / 338



Sets and formal logic
Combinatorics
Graph theory

Number theory

Divisibility
Diophantine equations
Modular arithmetic
Computing exponents modulo n

RSA cryptography

Anybody with a public key (k , n), can transmit a message s ∈ Zn to
Alice, by sending the message sk ∈ Zn. This is easy to compute.

Alice can compute
s = sk` = (sk)`,

if k` ≡ 1 (mod ϕ(n)).

` is the inverse of k modulo ϕ(n), and Alice knows ϕ(n).

Breaking the crypto (i.e. reading the message without the private
key) is equally difficult as computing ϕ(n) for a large number n.
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RSA cryptography

Breaking the RSA crypto is equally difficult as computing ϕ(n) for a
large number n.

This is equivalent to prime factorizing n

No efficient algorithm is known for this on a classical computer.

Sage demo: https://sagecell.sagemath.org/?q=iyqbfg

Peter Shor showed in 1993, that primes can in principle be efficiently
factorized on a quantum computer.

If quantum computers actually start working on a big scale, RSA will
be outdated.

To date, Shor’s algorithm has managed to factorize 21 = 7× 3.
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RSA cryptography

Alice generates two large primes p and q secretly.

She computes n = pq (public knowledge) and ϕ(n) = (p− 1)(q− 1).

Alice chooses a number k (public) with gcd(k , ϕ(n)) = 1, and in
secret computes its inverse d in Zϕ(n).

Public key: (k , n).

Alice trusts that the number d remains secret.

Computing d from the public key would require first computing
ϕ(n), i.e. factorizing the large number n.
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RSA cryptography

Mathematical essence: (sk)d = skd = s rϕ(n)+1 = s.

This is a consequence of Euler’s theorem.

Computational essence 1: It is easy to compute sk from s.

Computational essence 2: It is easy to compute s = (sk)d from sk if
you know d .

Computational essence 3: It is difficult to compute s from sk if you
do not know d .
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RSA cryptography

A user Bob who wants to send a message to Alice, first writes that
message using the “alphabet” [0], [1], [2], . . . , [n − 1].

In our example, Bob uses the translation A = 1,B = 2,C = 3, . . . .

If n is really large, he can translate more efficiently by encoding more
than one letter per symbol, like AA = 1,AB = 2, . . . .
To avoid “frequency attacks”, Bob might encode common strings
into a single symbol.

Encoding: If Bob wants to communicate the symbol s ∈ Zn to Alice,
he instead sends the symbol sk ∈ Zn.
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RSA cryptography

Encoding: If Bob wants to communicate the symbol s ∈ Zn to Alice,
he instead sends the symbol sk ∈ Zn.

Decoding: If Alice receives the symbol t ∈ Zn, she knows that the
sent symbol was

td = (sk)d = skd = s rϕ(n)+1 = s.

Cracking the crypto: If we can factorize n, then we can compute
ϕ(n), and then compute d from k by solving the diophantine
equation

1 = kd + ϕ(n)y .
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Spying example

.

Public key: (5, 2021).

(We pretend that it were difficult to factor 2021 = 43 · 47).

Secret message: "The cats’ names are

1698 1500 1954 1450 1104 1671 0757 0001 1954 0440

and

0432 1104 1450 1681 0249 0440."
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