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Abstract—This paper provides analytical and graphical meth-
ods for the study, performance evaluation, and design of the
modern carrier-based pulsewidth modulators (PWM’s), which
are widely employed in PWM voltage-source inverter (VSI)
drives. Simple techniques for generating the modulation waves
of the high-performance PWM methods are described. The two
most important modulator characteristics—the current ripple
and the switching losses—are analytically modeled. The graph-
ical illustration of these often complex multivariable functions
accelerate the learning process and help one understand the mi-
croscopic (per-carrier cycle) and macroscopic (per fundamental
cycle) behavior of all the modern PWM methods. The analytical
formulas and graphics are valuable educational tools. They also
aid the design and implementation of the high-performance PWM
methods.

Index Terms—Analysis, graphics, harmonics, inverter, modu-
lation, PWM, switching losses, voltage linearity, VSI.

I. INTRODUCTION

VOLTAGE-SOURCE inverters (VSI’s) are utilized in ac
motor drive, utility interface, and uninterruptible power

supply (UPS) applications as a means for dcac electric en-
ergy conversion. Shown in Fig. 1, the classical VSI generates
a low-frequency output voltage with controllable magnitude
and frequency by programming high-frequency voltage pulses.
Of the various pulse-programming methods, the carrier-based
pulsewidth modulation (PWM) methods are the preferred
approach in most applications due to the low-harmonic dis-
tortion waveform characteristics with well-defined harmonic
spectrum, the fixed switching frequency, and implementation
simplicity.

Carrier-based PWM methods employ the “per-carrier cy-
cle volt-second balance” principle to program a desirable
inverter output-voltage waveform. Two main implementation
techniques exist: the triangle intersection technique and the
direct digital technique. In the triangle intersection technique,
for example, in the sinusoidal PWM (SPWM) method [1], as
shown in Fig. 2, the reference modulation wave is compared
with a triangular carrier wave and the intersections define the
switching instants. As illustrated in the space-vector diagram
in Fig. 3, the time length of the inverter states in the direct
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Fig. 1. Circuit diagram of a PWM-VSI drive connected to an R-L-E-type
load.

Fig. 2. Triangle intersection PWM phase “a” modulation and switching
signals.

digital technique are precalculated for each carrier cycle by
employing space-vector theory, and the voltage pulses are
directly programmed [2], [3]. With the volt-second balance
principle being quite simple, a variety of PWM methods have
appeared in the technical literature; each method results from
a unique placement of the voltage pulses in isolated neutral-
type loads.

In most three-phase ac motor drive and utility interface
applications, the neutral point is isolated and no neutral current
path exists. In such applications, in the triangle intersection
implementations any zero-sequence signal can be injected to
the reference modulation waves [4], [5]. The n-o potential in
Fig. 1, which will be symbolized with , can be freely varied.
This degree of freedom is illustrated with the generalized
signal diagram of Fig. 4. A properly selected zero-sequence
signal can extend the volt-second linearity range of SPWM.
Furthermore, it can improve the waveform quality and re-
duce the switching losses significantly. Recognizing these
properties, many researchers have been investigating the zero-
sequence signal dependency of the modulator performance,
and a large number of PWM methods with unique character-
istics have been reported [6]. Detailed research showed the
freedom in selecting the partitioning of the two zero states
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Fig. 3. The space-vector diagram illustrates the direct digital implemen-
tation principle. The upper switch states are shown in the bracket as
(Sa+; Sb+; Sc+) and “1” is “on” state while “0” corresponds to “off”
state.

Fig. 4. The generalized signal block diagram of the triangle intersection
technique-based PWM employing the zero-sequence injection principle.

“0” (000) and “7” (111) in the direct digital PWM technique
is equivalent to the freedom in selecting the zero-sequence
signal in the triangle intersection PWM technique [2], [7].

Although the PWM literature is rich and the technology is
mature, the educational material in this field is scarce. Among
the large amount of publications, several papers report and
utilize powerful performance analysis tools and discuss the
performance characteristics of various zero-sequence signal
injection carrier-based PWM methods [8]–[10]. However, the
information is often scattered and incomplete. Since the modu-
lator characteristics are often complex, multivariable functions
and the analytical formulas are nonintuitive, the PWM learning
process can be discouraging, and a methodical approach is
required. To understand the characteristics of various modu-
lators, both the per-carrier cycle and per fundamental cycle
behavior must be carefully studied. Therefore, establishing a
methodical approach and bringing analytical tools together
aids the PWM study. Furthermore, graphical methods that
illustrate the performance characteristics of a modulator and
compare it to other modulators would be valuable, and they
would accelerate the learning process. This paper brings the
analytical tools together and adds several important compo-
nents to the toolbox. In addition to simplifying and accelerating
the PWM learning process, the graphical illustrations and
analytical tools aid the design, performance evaluation, and
implementation of the modern PWM methods.

The paper first reviews the carrier-based PWM principle
and summarizes the triangle intersection and space-vector
approaches which lead to two different implementation tech-
niques. After a brief review of the modern PWM methods,
simple methods for generating the modulation waves of the
modern triangle intersection PWM methods are described. The
remainder of the paper is dedicated to the development of
simple analytical tools for performance analysis. Analytical
current harmonic and switching loss characteristics of various
modulators are derived, graphically illustrated, and compared
to distinguish the important differences. Voltage linearity is
also discussed.

Since the performance characteristics of a modulator are
primarily dependent on the voltage utilization level, i.e., mod-
ulation index, it is helpful to define a modulation index term
at this stage. For a given dc link voltage , the ratio of
the fundamental component magnitude of the line to neutral
inverter output voltage to the fundamental component
magnitude of the six-step mode voltage
is termed the modulation index [6]

(1)

II. REVIEW OF THE CARRIER-BASED PWM PRINCIPLE

Although it does not affect the inverter line to line voltage
per-carrier cycle average value, the zero-sequence signal of
a modulator significantly influences the switching frequency
characteristics. Therefore, the per-carrier cycle (microscopic)
characteristics of different modulators are important and must
be modeled for detailed analysis.

As shown in Fig. 5 in the triangle intersection method, the
modulation signals are compared with the triangular carrier
wave and the intersection points define the switching instants.
The duty cycle of each switch can be easily calculated in the
following:

for (2)

for (3)

With the modulation waveforms defined with the follow-
ing cosine functions, the time axis of the modulation
waves and complex plane reference voltage vector angle
coincide:

(4)

(5)

(6)

For the above-defined modulation functions and
, the inverter states of the triangle intersection PWM

methods are 7-2-1-0-0-1-2-7 as shown in Fig. 5. This sym-
metric switching sequence is superior to other sequences due
to the low-harmonic-distortion characteristic. Therefore, this
sequence is adopted in the direct digital methods also [2]. As
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Fig. 5. The per-carrier cycle view of switch logic signals, inverter states,
and VSI output voltages for0 � wet � (�=3) (R = 1):

will be later discussed in detail, either the two “7” states at
both ends or the “0” states in the middle are often omitted
to further reduce the switching frequency. The zero state to
be eliminated is the state which reduces the switching losses
more [7]. Notice that a zero-sequence signal simultaneously
shifts the three reference signals in the vertical direction and
while it changes the position of the output line-to-line voltage
pulses, i.e., the active inverter state time lengths, it does not
affect their width. The time length of the active and zero states
of the triangle intersection methods can be directly calculated
from the duty-cycle information, and Fig. 5 illustrates these
relations. However, in the direct digital technique, the inverter
state time lengths are directly calculated employing space-
vector theory, and zero-state partitioning (ZSP) is selected by
the programmer.

In the space-vector approach, employing the complex vari-
able transformation, the time domain modulation signals are
translated to the complex reference voltage vector which
rotates in the complex coordinates with the angular speed
in the following:

where (7)

The complex number volt-second balance equation in the
th sector of the hexagon in Fig. 3 determines the time

length of the two adjacent state active inverter statesand
and the total zero-state time

length in the following:

(8)

(9)

(10)

(11)

Defined by the following, ZSP of the two inverter zero states
and provides the degree of freedom in the direct digital

technique [7]:

(12)

(13)

In order to simplify the analytical investigations, the inverter
state time lengths can be expressed in terms of per-carrier cycle
or per half-carrier cycle duty cycle in the following:

for (14)

With the degree of freedom in the triangle intersection PWM
being the signal, and in the direct digital technique the
partitioning, the modern PWM methods are discussed next.

III. M ODERN PWM METHODS AND THE MAGNITUDE RULES

Although theoretically an infinite number of zero-sequence
signals, and, therefore, modulation methods could be devel-
oped, the performance and simplicity constraints of practical
PWM-VSI drives reduce the possibility to a small number.
Over the last three decades of PWM technology evolution,
about ten high-performance carrier-based PWM methods were
developed, and of these only several have gained wide ac-
ceptance. Fig. 6 illustrates the modulation and zero-sequence
signal waveforms of these modern triangle intersection PWM
methods. In the figure, unity triangular carrier wave gain is
assumed and the signals are normalized to Therefore,

saturation limits correspond to 1. In the figure,
only the phase “a” modulation wave is shown, and the mod-
ulation signals of phases “b” and “c” are identical waveforms
with 120 phase lag and lead with respect to phase “a.” The
references indicated in the figure correspond to the original
articles reporting these modulators.

The modulators illustrated in Fig. 6 can be separated into
two groups. In the continuous PWM (CPWM) methods, the
modulation waves are always within the triangle peak bound-
aries and within every carrier cycle triangle and modulation
waves intersect, and, therefore, on and off switchings occur.
In the discontinuous PWM (DPWM) methods, the modulation
wave of a phase has at least one segment which is clamped to
the positive or negative dc rail for at most a total of 120,
therefore, within such intervals the corresponding inverter
leg discontinues modulation. Since no modulation implies no
switching losses, the switching loss characteristics of CPWM
and DPWM methods are different. Detailed studies indicated
the waveform quality and linearity characteristics are also
significantly different. Therefore, this classification aids in
distinguishing the differences.

Of the four modern CPWM methods shown in Fig. 6,
the SPWM method is the simplest modulator with limited
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Fig. 6. Modulation waveforms of the modern PWM methods(Mi = 0:7):

voltage linearity range and poor waveform quality in the high-
modulation range. The triangle intersection implementation of
the space-vector PWM (SVPWM) method and the two third
harmonic injection PWM (THIPWM) methods are the other
three CPWM methods which were reported in the literature.
These modulators are discussed in the following.

A. THIPWM

Due to the simplicity of algebraically defining their zero-
sequence signals, these modulators have been frequently dis-
cussed in the literature. With defined as in (4), the zero-
sequence signal of THIPWM1/6 is
[5], and for THIPWM1/4, [11] is
selected. Both methods suffer from implementation complexity
because generating the signal is difficult both with
hardware and software. Trigonometric identities can be utilized
to compute from the signal, however, in an
on-line implementation the computational intensity (several
multiplications are required) results in loss of significance
by several bits, and poor resolution is obtained in signal
processors with limited word length. In an off-line imple-
mentation, the functions can be precalculated and stored in
the memory for on-line access. Although the THIPWM1/4
has theoretically minimum harmonic distortion, it is only
slightly better than SVPWM and has narrower voltage linearity
range [6], [12], [13]. With their performance being inferior to
SVPWM and implementation complexity significantly higher,
both THIPWM methods have academic and historical value,
but little practical importance. Also note when higher order
triplen harmonics are added to the THIPWM1/6 signal [such

as ], the zero-sequence signal approaches
a triangle and the resulting modulation signal approaches
SVPWM.

B. SVPWM

The zero-sequence signal of SVPWM is generated by em-
ploying the minimum magnitude test which compares the
magnitudes of the three reference signals and selects the signal
with minimum magnitude [14]. Scaling this signal by 0.5, the
zero-sequence signal of SVPWM is found. Assume

, then The analog implementation of
SVPWM which employs a diode rectifier circuit to collect the
minimum magnitude signal from the three reference signals
is possibly the earliest zero-sequence signal injection PWM
method reported [4]. About a decade later, this modulator
reappeared in the literature with direct digital implementation
[2]. Since the direct digital implementation utilized the space-
vector theory, the method was named SVPWM. In addition
to its implementation simplicity, the SVPWM method has
superior performance characteristics and is possibly the most
popular method. However, its high-modulation range perfor-
mance is inferior to DPWM methods, which also employ
similar magnitude rules to generate their modulation waves.
In the following, the modern DPWM methods and their
magnitude rules are summarized.

C. DPWM3

The reference signal with the intermediate magnitude de-
fines the zero-sequence signal. Assume ,
then This method has low-
harmonic distortion characteristics [12].

D. DPWMMAX

The reference signal with the maximum value defines the
zero sequence. Assume , then
yields and phase “c” is unmodulated [15].

E. DPWMMIN

The reference signal with the minimum value defines the
zero sequence. Notice the DPWMMAX and DPWMMIN
methods have nonuniform thermal stress on the switching
devices and in DPWMMAX the upper devices have higher
conduction losses than the lower, while in DPWMMIN the
opposite is true.

F. GDPWM

DPWM0 [9], [16], DPWM1 [17], [18], and DPWM2 [7], [9]
are three special cases of a generalized DPWM (GDPWM)
method [19], therefore, a general study of the GDPWM
method is sufficient. Fig. 7 illustrates the zero-sequence signal
generation method of GDPWM. To aid the description of
GDPWM, it is useful to define the modulator phase angle

increasing from the intersection point of the two reference
modulation waves at as shown in Fig. 7. From

to , the zero-sequence signal is the shaded signal
which is equal to the difference between the saturation line
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Fig. 7. Generating the GDPWM zero-sequence signal with the variable.

and the reference modulation signal which passes the
maximum magnitude test. In the maximum magnitude test, all
three reference modulation signals and are phase
shifted by , and of the three new signals
and the one with the maximum magnitude determines
the zero-sequence signal. Assume , then

Adding this zero-sequence
signal to the three original modulation waves and

the GDPWM waves and are generated.
For DPWM0, DPWM1, and
DPWM2 correspond to only three operating points on the full

range of the modulator Due to their
superior performance characteristics, these three operating
points of GDPWM have found a wide range of applications.

All the magnitude tests require a small number of com-
putations and therefore can be easily implemented with a
microcontroller or DSP. Due to the simplicity of the algorithm,
it is easy to program two or more methods and on-line select
a modulator in each operating region in order to obtain the
highest performance [19]. Analog or digital hardware imple-
mentations of the above modulators can be easily developed
by following the magnitude test computational procedures.
With the exception of THIPWM and SPWM methods, all
the above discussed triangle intersection PWM methods can
be easily implemented in the direct digital method. Mapping
the zero-state partitioning of the time domain modulation
waves of Fig. 6 onto the vector space domain, the direct
digital implementation equivalents can be easily obtained.
Fig. 8 illustrates this equivalency and the ZSP of each method.
A clear illustration of this equivalency is an important step
toward simplifying the learning process.

Due to its simplicity, the magnitude test is a very effec-
tive tool for simulation, analysis, and graphic illustration of
different modulation methods. For example, the simulation or
DSP implementation of the SVPWM method with a direct
digital technique is involved: the sector to which the voltage
vector belongs has to be identified first, then the time length
of each active vector must be calculated, and finally gate
pulses must be generated in a correct sequence. Although it
is possible to reduce the direct digital PWM algorithms, the
effort does not yield as simple and intuitive a solution as the
magnitude test [20]. Therefore, employing the magnitude test,

Fig. 8. Zero-state partitioning of the modern PWM methods. DPWMMIN,
DPWMMAX, and SVPWM have space-invariant partitioning.

the triangle intersection PWM method is superior to the direct
digital method from a simulation as well as implementation
perspective. With the modulation signals generated by the
magnitude test, the performance analysis follows.

IV. WAVEFORM QUALITY

The linear modulation range output voltage of a carrier-
based PWM-VSI drive contains harmonics at the carrier fre-
quency, at its integer multiples, and at the side bands of all
these frequencies which will all be termed as “the switching
frequency harmonics.” With sufficiently high-carrier frequency

to fundamental frequency ratios , the low-
frequency reference volt seconds are programmed accurately
and the subcarrier frequency harmonic content is negligible
[8]. Since modern power electronics switching devices such
as insulated gate bipolar transistors (IGBT’s) and MOSFET’s
typically meet this requirement, the voltage and current wave-
form quality of the PWM-VSI drives is determined by the
switching frequency harmonics. Since they determine the
switching frequency copper losses and the torque ripple of
a motor load and the line current total harmonic distortion
(THD) of a line-connected VSI, the switching frequency
harmonic characteristics of a PWM-VSI drive are important
in determining the performance. While the copper losses are
measured over a fundamental cycle and therefore require a per
fundamental cycle (macroscopic) rms ripple current value cal-
culation, the peak and local stresses are properly investigated
on a per-carrier cycle (microscopic) base. Therefore, first a
microscopic and then a macroscopic investigation is required.

Perhaps, the most intuitive and straightforward approach for
analytical investigation of the switching frequency harmonic
characteristics of a PWM-VSI is the vector space approach
[21], [22]. As illustrated in the vector diagram of Fig. 9, within
each carrier cycle the harmonic voltage vectors and

are space and modulation index dependent. Along with the
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Fig. 9. Harmonic flux trajectories in the first segment of the hexagon.

harmonic voltage vectors, the duty cycle of the active inverter
states and partitioning of the two zero states determine the
harmonic current trajectories. Instead of the harmonic current
trajectories, the conceptual harmonic flux (time integral of the
harmonic voltage vector) trajectories can be investigated
and with the assumption the load switching frequency model
is an inductance [this is true in most applications due to

], the harmonic current and harmonic flux tra-
jectories are only different in scale The harmonic
flux in the th carrier cycle is calculated in the following:

(15)

In the above formula, is the inverter output-voltage
vector of the th state, and within the carrier cycle it changes
according to the selected switching sequence (7-2-1-0-0-1-2-7
for ). Note the harmonic flux calculation requires no
load information and completely characterizes the switching
frequency behavior of a modulator. Since for high values
the term can be assumed constant within a carrier cycle
and the terms are constant complex numbers, the above
integral can be closed-form calculated and the flux trajectories
are linear over each state. Assuming its value at the beginning
of the carrier cycle is zero, the harmonic flux vector crosses
the origin at the center and at the end of the carrier cycle
again. Therefore, (15) always assumes zero initial value. Since
in the triangular intersection and direct digital PWM methods
only symmetric switching sequences are generated, the integral
need only be calculated in the first half of the carrier cycle, and
the second half of the trajectory is exact symmetrical to the
first. As illustrated in Fig. 9 for the first segment of the inverter
hexagon, the harmonic flux trajectories form two triangles
which may slide along the reference vector line in opposite
directions with respect to the origin. It is apparent from the
diagram ZSP determines the slip and affects the harmonic
characteristics. Therefore, the harmonic flux trajectories of
each PWM method are unique.

Calculating the harmonic flux vector for a half carrier cycle
for the first region of the vector space for an arbitrary set
of and ZSP and normalizing to for further
simplification, the following normalized analytical harmonic
flux formula yields:

(16)

(17)

(18)

In the second half of the carrier cycle, the harmonic flux
can be calculated from the symmetry condition

However, in this half the inverter state duty cycles
must be evaluated in the reverse sequence to the first half of the
carrier cycle. The above equation can be easily programmed
for any PWM method, and the space and modulation index
dependency of the harmonic flux/current can be graphically
illustrated. Since the inverter hexagon has sixfold symmetry,
only the first segment need be investigated. The duty cycle of
the active states and in this segment are calculated from
(9), (10), and (14). In the direct digital method, the zero states
are directly defined, while in the triangle intersection method
the modulation waves are utilized to calculate the phase duty
cycles from (2). For example, for , Fig. 5 suggests

and
Fig. 10 illustrates the normalized harmonic flux trajectories

which are calculated from (18) for various modulators and
operating conditions. To allow better visualization and clearer
harmonic flux trajectory comparison, only the trajectories in
the first half of a carrier cycle are illustrated in the figure
and the second half is always the exact symmetric of the
first. Fig. 10(a) illustrates the space dependency of the SPWM
method harmonic flux. As the figure indicates, the “0” and “7”
state duty cycles are not always equally split and the varying
triangle shapes indicate the space dependency of the harmonic
flux is strong. Fig. 10(b) compares SVPWM and THIPWM1/4
for two different angular positions. At , the triangles
are identical, however, at the triangles have slipped.
While SVPWM splits the zero states equally, the THIPWM1/4
method does slide the triangle in the direction such that the
center of gravity becomes closer to the origin. Since the
distance to the origin is equal to the magnitude of the harmonic
flux, the trajectories which are closer to the origin result
in smaller harmonic flux and the per-carrier cycle rms flux
value decreases [10]. Fig. 10(c) and (d) compares SVPWM
and DPWM1 and illustrates that the DPWM method always
skips one of the two zero states. Therefore, the DPWM1 flux
triangle is quite distant from the origin. However, increasing
the carrier frequency shrinks the triangle size and brings the
weight center of the triangle closer to the origin and reduces
the harmonic flux. When comparing the CPWM and DPWM
modulator performances, to account for the reduction in the
number of per fundamental cycle switchings of the DPWM
methods, a carrier frequency coefficient is introduced in
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(a) (b)

(c) (d)

Fig. 10. The switching frequency harmonic flux trajectories of various PWM methods. (a) SPWM, (b) SVPWM and THIPWM1/4 compared forwet = 15�

andwet = 30� values, (c) SVPWM and DPWM1 compared(kf = 1), and (d) SVPWM and DPWM1 forkf = 2

3
:

the following:

(19)

Employing (18), the per-carrier cycle rms value of the
harmonic flux can be closed-form calculated. Since
the first and the second halves of the trajectory have the
same rms value due to symmetry, calculating only the first
is sufficient. Involved calculations yield the following and
duty-cycle-dependent formula:

(20)

(21)

(22)

(23)

Employing the above formula, the and dependency
of of various PWM methods can be easily computed
and graphically illustrated. Figs. 11 and 12 compare the rms
harmonic flux characteristics of the modern methods for two
modulation index values for . The figures indicate
the CPWM methods have lower harmonic distortion than the
DPWM methods, and the difference is more pronounced at

low The THIPWM1/4 method, which is the minimum
harmonic distortion method—the optimality condition can be
verified by searching the minimum of (20) with respect to
[12]—has only slightly less distortion than SVPWM and only
near the 15 and 45 range. Since the DPWM methods have a
discrete ZSP (zero or one) and within certain segments ZSP of
various DPWM methods is the same (see Fig. 8). Therefore,
calculating the rms harmonic flux of DPWM methods is a
relatively simple task and for A and for
C are the only two functions required to determine the rms
flux curves of all DPWM methods. The overall comparison
indicates SVPWM provides superior performance in the low-
modulation range, however, as increases, the performance
of DPWM methods significantly improves and becomes com-
parable to SVPWM.

As Figs. 11 and 12 clearly illustrate the strong space de-
pendency of the per-carrier cycle rms harmonic distortion
characteristics of all the modern PWM methods, it becomes
apparent that performance can be gained by modulating the
carrier frequency. If the carrier frequency is methodically
increased at the high-rms harmonic flux intervals and re-
duced at the low-harmonic rms flux intervals, then the overall
harmonic distortion characteristics can be reduced [23]. Pro-
vided the inverter average switching frequency is maintained
constant, the switching loss characteristics are not affected
by the frequency modulation and performance gain without
efficiency reduction becomes possible. Since the per-carrier
cycle rms harmonic flux characteristics are strongly influenced
by the modulator zero-sequence signals and they repeat at
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Fig. 11. The space dependency of the per-carrier cycle normalized rms
harmonic flux of the modern PWM methods forMi = 0:4 andkf = 1.

Fig. 12. The space dependency of the per-carrier cycle normalized rms
harmonic flux of the modern PWM methods forMi = 0:78 andkf = 1.

the same frequency, the zero-sequence signals can aid in
establishing simple frequency modulation signals and simple
implementations result [13]. Since the frequency modulation
techniques are most beneficial to modulators with strongly
space-dependent rms harmonic flux characteristics, CPWM
methods are more suitable candidates than DPWM methods
for this approach. In addition to reducing the rms harmonic dis-
tortion and the peak ripple current, the frequency modulation
techniques also flatten the inverter output-voltage/current har-
monic spectrum. Therefore, they are suitable for high-power-
quality applications that require a flat harmonic spectrum with
no dominant harmonic content.

Since it determines the waveform quality and harmonic
losses, the per fundamental cycle rms value of the
harmonic flux is the most important performance character-
istic of a modulator. Since the characteristics of the
modern PWM methods have sixfold space symmetry, the per
fundamental cycle (per 60in space) rms harmonic flux value
can be calculated in the following:

(24)

For each modulator, the above integral yields a polynomial
function of with unique coefficients, and it can be written
in the following -dependent harmonic distortion function
(HDF) formula:

HDF

(25)

Calculating and of each modulator involves sig-
nificant algebraic manipulations. The resulting HDF functions
of the discussed modulators are summarized in the following:

HDF

(26)

HDF

(27)

HDF

(28)

HDF

(29)

As was shown in Figs. 11 and 12, the harmonic flux of DPWM
methods consists of a combination of the A, B, C, and D
segments. A and B yield equivalent distortion and so do C and
D. Therefore, calculating the HDF of A-B (HDF ) and C-
D HDF ) is sufficient in determining the performance of
all the DPWM methods discussed. The results are as follows:

HDF

(30)

HDF

(31)

For the same carrier frequency, the DPWM methods have
fewer switchings per fundamental cycle than the CPWM
methods, therefore, to illustrate the carrier frequency effect,

is included in the HDF formulas of the DPWM methods

HDF HDF (32)

HDF HDF (33)

HDF HDF HDF

(34)
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Fig. 13. HDF= f(Mi) curves in the linear modulation range under constant
inverter average switching frequency condition.

HDF HDF HDF

HDF (35)

The relation between HDF and the per phase harmonic
current rms value for a load with a transient inductance

, which can be utilized in calculating the harmonic copper
losses, is as follows:

HDF for (36)

Fig. 13 shows the HDF curves of all the discussed PWM
methods. In the very low-modulation index range, all CPWM
methods have practically equal HDF which is superior to
all DPWM methods. As the modulation index increases, the
SPWM performance rapidly degrades while the remaining
CPWM methods maintain low HDF over a wide modulation
range. The figure indicates the THIPWM1/4 performance is
only slightly better than SVPWM, and the difference is less
noticeable than the local differences shown in Figs. 10 and
12. In the high-modulation range, the DPWM methods are
superior to SVPWM (Fig. 13) and the intersection point of the
DPWM method of choice and SVPWM defines the optimal
transition point. Although in the high-modulation range the
DPWM3 method has less HDF than the other DPWM methods,
the improvement is marginal and the modulator selection
criteria can be based on the switching loss characteristics and
voltage linearity characteristics which are stronger functions
of the DPWM methods. The HDF of GDPWM method is
dependent and varies between curves 5 and 6 of Fig. 13. Its
HDF can be approximated with the average value of (32) and
(34)

HDF HDF HDF

(37)

Since the HDF of each PWM method is unique, the switch-
ing frequency harmonic spectrum of each method is also
unique. Since the DPWM methods have two fewer switch-
ings per-carrier cycle than CPWM methods, the side-band

Fig. 14. Normalized inverter input harmonic current rms value characteris-
ticsKIin = f(Mi) of PWM-VSI for cos' as parameter.

harmonics of the DPWM methods are wider and larger in
magnitude. Calculating the individual harmonics and the peak
ripple current is involved and will be omitted herein. Having
illustrated the superior high-modulation range waveform qual-
ity characteristics of the DPWM methods over SVPWM, in the
next section the switching losses of DPWM methods will be
characterized to aid an intelligent modulator choice. Following
a brief section on the inverter input current harmonics, the
switching losses of the DPWM methods will be analytically
modeled and their performance evaluated.

V. INVERTER INPUT CURRENT HARMONICS

The dc link input current of a PWM inverter consists
of the dc average value which corresponds to the average
power transfer to the load and switching frequency component

which is due to PWM switching. Since during the zero
states the dc link is decoupled from the ac load, the rms
value of the ripple current , which is required in dc
link capacitor design and loss calculations, is independent
of the zero-sequence signal and therefore of the modulator
type. Since the duty cycles of the inverter active states are
independent of the carrier frequency, is also indepen-
dent of the carrier frequency. Similar to the inverter output
current harmonic rms current calculation, can also be
easily calculated by establishing a per-carrier cycle rms value
formula and evaluating it over an inverter segment [21]. The
calculation yields the following load power factor
and load current fundamental component rms value
dependent dc link current ripple factor formula:

(38)

Fig. 14 illustrates the and dependency of the
factor. The maximum ripple occurs at and

at (a reasonable design point for
capacitor sizing), and the ripple is independent of at
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Fig. 15. The inverter per phase model and per-carrier cycle switching loss
diagram under linear commutation.

VI. SWITCHING LOSSES

The switching losses of a PWM-VSI drive are load-current
dependent and increase with the current magnitude (approx-
imately linearly). With CPWM methods, all the three-phase
currents are commutated within each carrier cycle of a full
fundamental cycle. Therefore, for all CPWM methods, the
switching losses are the same and independent of the load
current phase angle. With DPWM methods, however, the
switching losses are significantly influenced by the modulation
method and load power factor angle. Because DPWM methods
cease to switch each switch for a total of 120per funda-
mental cycle and the location of the unmodulated segments
with respect to the modulation wave fundamental component
phase is modulator-type dependent. Therefore, the load power
factor and the modulation method together determine the time
interval that the load current is not commutated. Since the
switching losses are strongly dependent on and increase with
the magnitude of the commutating phase current, selecting
a DPWM method with reduced switching losses can signifi-
cantly contribute to the performance of the drive. Therefore, it
is necessary to characterize and compare the switching losses
of DPWM methods.

Assuming the inverter switching devices have linear current
turn-on and turn-off characteristics with respect to time and
accounting only for the fundamental component of the load
current, the switching losses of a PWM-VSI drive can be
analytically modeled [9]. Shown in Fig. 15, the single-phase
inverter model and the switching voltage/current diagram aid
calculating the switching losses. Deriving the local (per-carrier
cycle) switching loss formula and calculating its average value
over the fundamental cycle, the per fundamental cycle inverter
per device switching loss can be calculated as follows:

(39)

In the above formula, and variables represent the
turn-on and turn-off times of the switching devices and is
the switching current function. The switching current function

equals zero in the intervals where modulation ceases and
the absolute value of the corresponding phase current value
elsewhere. As a result, the phase current power factor angle

enters the formula as the integral boundary term and
dependent switching loss formula yields. Normalizing
to , the switching loss value under CPWM condition (which

Fig. 16. The average switching losses of GDPWM,Pswave = f( ; '):

is independent), the switching loss function (SLF) of a
modulator can be found

(40)

SLF (41)

In (40), the variable represents the load current funda-
mental component maximum value. By the definition of (41),
the SLF of CPWM methods is unity. The SLF of the DPWM
methods can be easily calculated from the current switching
function. Fig. 16 shows the and dependent switching loss
function waveforms of GDPWM. Applying the procedure to
GDPWM yields the following SLF [13]:

SLF

(42)

The SLF function of the DPWM0, DPWM1, and DPWM2
can be easily evaluated from (42) by substituting

and The SLF of the remaining DPWM
methods are as follows:

SLF (43)

SLF SLF (44)
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Fig. 17. SLF= f(') characteristics of the popular DPWM methods under
fixed carrier frequency constraint(SLFCPWM = 1):

SLF (45)

Although the absolute switching loss values obtained from
(39) may have limited accuracy due to unmodeled switching
device characteristics, the relative switching losses which are
represented with the SLF function are always predicted with
higher accuracy. Since the SLF derivation assumes the same
device characteristics both in and , the error direction
is the same in both terms and therefore the relative error
is reduced. The SLF functions are powerful analytical tools
for evaluating and comparing the switching losses of various
DPWM methods.

Fig. 17 shows the SLF characteristics of the modern DPWM
methods along with the minimum SLF solution the GDPWM
method yields. The optimal solution of GDPWM is obtained
by selecting for
[19]. Outside this range, the modulator phase angle must be
held at the boundary value of for positive
(DPWM2) and at the value of for negative (DPWM0)
so that the GDPWM voltage linearity is retained. Note that
outside the range DPWM3 yields
minimum switching losses. As Fig. 17 indicates, the switching
losses of DPWM methods strongly depend onand can be
reduced to 50% of the CPWM methods. Therefore, the SLF
characteristics are as important as the HDF characteristics in
determining the performance of a modulator.

VII. OVERMODULATION AND VOLTAGE GAIN

In the triangle intersection PWM technique, when the mod-
ulation wave magnitude becomes larger than the triangular

Fig. 18. Vector space illustration of the PWM inverter voltage linearity
limits.

carrier wave peak value , the inverter ceases to match
the reference per-carrier cycle volt seconds and a nonlinear ref-
erence output-voltage relation results within certain intervals.
SPWM’s linear modulation range ends at ,
i.e., a modulation index of
Injecting a zero-sequence signal to the SPWM signal can
flatten and contain the modulation wave within such
that the linearity range is extended to at most

which is the theoretical inverter linearity
limit [4], [5], [13]. With the exception of THIPWM1/4 which
loses linearity at ,
all the discussed zero-sequence injection PWM methods are
linear until

In the direct digital technique, when the reference voltage
vector falls outside the modulator linearity region, (11) yields

, indicating the reference volt seconds cannot be
matched by the inverter, and a volt-second error is inevitable.
Shown in Fig. 18, the complex plane linearity boundaries of
the modern modulators correspond to hexagons. The outer
hexagon is the inverter theoretical linearity limit and with the
exception of SPWM, THIPWM1/4, and THIPWM1/6, all the
discussed PWM methods (direct digital or triangle intersection
based) are linear inside the hexagon. The SPWM linearity
limit is shown in the same diagram with the internal hexagon.
The per fundamental component linearity boundaries of these
modulators are illustrated with circles which touch the inner
boundaries of the hexagons. Fig. 19 illustrates the per-carrier
cycle voltage limits of all the modern PWM methods in detail.
The THIPWM1/6 method has elliptic boundaries, while the
THIPWM1/4 linearity boundaries resemble the shape of a star
with 12 edges [13].

The region starting from the end of the linear modu-
lation region of a modulator until the six-step operating
point is called the overmodulation region. All
the PWM-VSI drives experience performance degradation in
the overmodulation region and operating in this region is
often problematic [13], [24]–[27]. The output-voltage wave-
form quality degrades (subcarrier frequency harmonics are
generated), and the voltage becomes increasingly smaller
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Fig. 19. Vector space illustration of the modulator per-carrier cycle voltage
linearity limits. All voltage vectors are normalized toVdc=2:

than the reference. However, the overmodulation issues of
the closed-loop (current-controlled) PWM-VSI drives with
high-dynamic performance requirements and the open-loop

drives are significantly different [13], [26].
In high-dynamic performance applications, the per-carrier

cycle volt-second errors should be minimized to manipulate
a dynamic condition as fast as possible [25]. Therefore, the
reference output-voltage vector relations influence the dynamic
overmodulation performance of a drive. Reference [25] studies
the direct digital PWM issues while [28] analytically models
the triangle intersection PWM modulator dynamic overmodu-
lation characteristics in detail.

In open-loop drives, the dynamic performance requirements
are not stringent, however, high per fundamental cycle (steady
state) performance must be obtained. Correct per fundamental
cycle volt seconds and low-harmonic distortion is desirable.
However, due to saturation, the output-voltage fundamental
component is smaller than the reference, and as the modulation
index increases, the voltage gain rapidly decreases and the
subcarrier frequency harmonic content rapidly increases. Both
the per fundamental component voltage gain and the subcarrier
frequency harmonic characteristics of each modulator are
unique. Both characteristics of the triangle intersection [13],
[26], [27] and direct digital PWM [24] implementations have
been recently investigated in detail and will not be pursued
in this paper.

The dynamic and steady-state overmodulation analytical
tools established in the suggested literature are complementary
parts of the PWM toolbox developed in this paper and could
aid the PWM education as well as the practical design and
performance evaluation.

VIII. C ONCLUSIONS

Simple and powerful analytical and graphical carrier-based
PWM tools have been developed. These tools were utilized
to illustrate and compare the performance characteristics of

various PWM methods. The switching loss and waveform
quality comparisons indicate SVPWM at low modulation and
DPWM methods at the high-modulation range have superior
performance. The tools and graphics aid the modulator selec-
tion and PWM inverter design process. The magnitude test is
an elegant method for generating the modulation waveforms
fast and accurately by digital hardware/software or analog
hardware. The analytical methods are also helpful in gener-
ating graphics of the microscopic current ripple characteristics
and illustrating the performance characteristics and the differ-
ence between various modulators. Therefore, they aid visual
learning. As a result, the paper helps the PWM learning and
design experience become simple and intuitive.
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