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"We define (perceptual) quality as the outcome of 
an individual’s comparison and judgment process.

It includes perception, reflection about the
perception, and the description of the outcome".

Le Callet et al. (2012)
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Sound quality depends on several attributes

Descriptive sensory analysis
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Rating overall sound quality is hard and unstable
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Comparing sounds within a single attribute is 
relatively easy and repeatable

Zacharov et al. (2012)
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Spatial audio recording, processing and 
reproduction is prone to introduce artifacts
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Spatial perception is often distorted
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Timbral differences are specially problematic when
we have a reference, e.g. augmented reality

Direction dependent colouration

Lladó et al. (2022)
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Listening experiments are the best option to 
achieve objective results

Zacharov et al. (2012)
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Listening experiments are not always feasible

Majdak et al. (2022)
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The Auditory Modelling Toolbox
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The Auditory Modelling Toolbox



Assessment of spatial 
attributes
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The position of a sound source in the left-right
dimension generates interaural differences

A
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A

B

ITD: Interaural time difference
ILD: Interaural level difference

The position of a sound source in the left-right
dimension generates interaural differences
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Interaural time differences are dominant at lower
frequencies (< ~ 1.5 kHz)

JND*: ~ 10 μs
ITD for lateral sources: ~ 600 - 700 μs

* JND: Just noticeable difference
Smith et al. (2014)
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Interaural time differences are dominant at lower
frequencies (< ~ 1.5 kHz)

JND*: ~ 10 μs
ITD for lateral sources: ~ 600 - 700 μs

Interaural phase difference (IPD)

500 Hz

1000 Hz

2000 Hz

600 μs

* JND: Just noticeable difference
Smith et al. (2014)
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The importance of interaural level differences
grows with frequency

They are dominant above ~ 1.5 kHz
JND: ~ 0.5 - 1 dB

Hartman (2021)



These interaural cues are not enough to resolve
the location in the three-dimensional space

From Communication Acoustics (V. Pulkki):

“At least in principle, ITD and ILD do not 
change when changing the position of a 
sound source on a cone of confusion.”

26Pulkki & Karjalainen (2015)
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Moving a up-down or front-back on the cone of 
confusion modifies the spectrum of the sound
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Moving a up-down or front-back on the cone of 
confusion modifies the spectrum of the sound
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The frequency location of main peaks and notches seems crucial
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The spatial fidelity can be measured using a more
hollistic approach

10 (very good) 0 (very bad)

Rate the spatial fidelity of this samples
compared to the reference

(reference)

Majdak et al. (2020)
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Localisation(-like) tasks are useful to measure
artifacts in spatial reproduction
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Localisation(-like) tasks are useful to measure
artifacts in spatial reproduction

Front/back discrimination
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The classic localisation test

The pointing method may
change significantly the

results
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The classic localisation test

The pointing method may
change significantly the

results
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Auditory models of human localisation estimate
experimental data collected in localisation tests

DIETZ2011 - Sound lateral direction

Binaural input signal

Dietz et al. (2011)
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Auditory models of human localisation estimate
experimental data collected in localisation tests

DIETZ2011 - Sound lateral direction

Binaural input signal

Lookup table / function

estimated angle

Dietz et al. (2011)
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Auditory models of human localisation estimate
experimental data in localisation tests

DIETZ2011 - Sound lateral direction

One speaker

Dietz et al. (2011)
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Auditory models of human localisation estimate
experimental data in localisation tests

DIETZ2011 - Sound lateral direction

One speaker Five speakers

Dietz et al. (2011)
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Models of sagittal plane localisation is often used
both in research and in industry

BAUMGARTNER2014 - Localisation in sagittal planes

Baumgartner et al. (2014)
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Models of sagittal plane localisation is often used
both in research and in industry

BAUMGARTNER2014 - Localisation in sagittal planes
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Models of sagittal plane localisation are used
both in research and in industry

BAUMGARTNER2014 - Localisation in sagittal planes

Baumgartner et al. (2014)
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They help us estimate the availability of monaural
spectral cues

BAUMGARTNER2014 - Localisation in sagittal planes
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Models of spherical localisation combine the
results of the two dimensions

BARUMERLI2023 - Bayesian spherical sound localization model

Prior beliefs

Barumerli et al. (2023)
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Example of model-based analysis of a dataset for 
non-individual HRTF selection

BARUMERLI2023 - Bayesian spherical sound localization model

Daugintis et al. (2023)
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Artifacts in sound spatial fidelity are less
important when the listener can move
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Head motion helps resolving the 
source location in the cone of 
confusion, particularly important 
for front-back discrimination

The frequency location of main peaks and notches seems crucial

McLachlan et al. (2021)
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New models that account for head motion
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New models that account for head motion
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The spaciousness and how to assess it
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The spaciousness and how to assess it

Apparent source width (ASW) and Envelopment
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The spaciousness and how to assess it

Which of these samples have more
[Apparent source width (ASW) / Envelopment]?

A B

+

Lokki et al. (2023)
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Colouration assessment
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Colouration as differences in timbre compared to 
a reference signal

Listening condition
Lladó et al. (2022)
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Colouration can be assessed using several
methods

Transparent Very colouredWhich of these signals is different?

A B

+

C
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Colouration can be derived from basic concepts
related to loudness and auditory filters

Pulkki & Karjalainen (2015)
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The specific loudness is connected to the
perceived colouration

Pulkki et al. (1999)
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Model of colouration

MCKENZIE2022 - Binaural perceptual similarity

McKenzie et al. (2023)
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Model of colouration

Predicted binaural colouration (PBC)

MCKENZIE2022 - Binaural perceptual similarity

McKenzie et al. (2023)



Assessing the overall quality
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Overall binaural quality as a combination of 
binaural and monaural attributes

CoherencePower

Eurich et al. (2023)



Summary

67



68

Listening experiments are the best option to 
assess sound quality
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We can estimate experimental data obtained from
listening experiments using auditory models
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Once these models have been validated, we can
rely on them
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