AAT Seminar Perceptual quality evaluation of spatial sound

Pedro Lladó pedro.llado@aalto.fi 4.3.2024

Aalto-yliopisto Aalto-universitetet Aalto University

"We define (perceptual) *quality as the outcome of an individual's comparison and judgment process.*

It includes perception, reflection about the perception, and the description of the outcome".

"We define (perceptual) *quality as the outcome of an individual's comparison and judgment process.*

It includes perception, reflection about the perception, and the description of the outcome".

"We define (perceptual) *quality as the outcome of an individual's comparison and judgment process.*

It includes perception, reflection about the perception, and the description of the outcome".

Sound quality depends on several attributes

Report ITU-R BS.2399-0 (03/2017) Methods for selecting and describing attributes and terms, in the preparation of subjective tests

Descriptive sensory analysis

Rating overall sound quality is hard and unstable

Rating overall sound quality is hard and unstable

Comparing sounds within a single attribute is relatively easy and repeatable

Spatial depth

Spatial depth:

The depth of the sound image (i.e. in the direction away from the listener). Not to be confused with distance.

Spatial audio recording, processing and reproduction is prone to introduce artifacts

Spatial perception is often distorted

Timbral differences are specially problematic when we have a reference, e.g. augmented reality

Direction dependent colouration

Listening experiments are the best option to achieve <u>objective</u> results

Listening experiments are not always feasible

Listening experiments are not always feasible

Listening experiments are not always feasible

Categories		EXP_BAUMGARTNER2014 - Results from Baumgartner et al. (2014)				
Main	>					
Core functions	>	Usage:				
Models	>	<pre>data = exp_baumgartner2014(flag)</pre>				
Model stages	>					
Demos	>	Description:				
Experiments	>	exp_baumgartner2014(flag) reproduces figures of the study from Baumgartner et al. (2014).				
Common functions	>	The following flags can be specified				
Plot	>	'fig2' Reproduce Fig.2: Binaural weighting function best fitting results from Morimoto (2001) labeled as [1] and				
Signals	>	Macpherson and Sabin (2007) labeled as [2] in a least squared error sense.				
Data	>	when listening to median-plane targets in the baseline condition. Actual response angles are shown as open				
Auxdata	>	circles. Probabilistic response predictions are encoded by brightness according to the color bar to the right. Actual (A:) and predicted (P:) quadrant error rates (QE) and local polar RMS errors (PE) are listed above each panel.				
Cache	>	'fig4' Reproduce Fig.4: Model parametrization. Partial and joint prediction residues as functions of the degree of selectivity and the motoric response scatter. Residuum functions are normalized to the minimum residuum obtained for the optimal parameter value.				

Categories		EXP_B	AUMGARTNE	R2014	- Results from Baumgartner et al. (2014)			
Main	>							
Core functions	>	Usage:						
Models	>	data =	ata =		BAUMGARTNER2014 - Localization in saggital planes (robust,			
Model stages	>		Main	>	linear periphery)			
Demos	>	Descrip	Core functions	>				
Experiments	>	exp_baur	Models	>	Usage:			
Common function	s >	The followi	Model stages					
Plot	>	'fig2'	Nodel stages	~	<pre>[p,rang] = baumgartner2014(target,template) [n rang targ] = baumgartner2014(target target target)</pre>			
Signals	>	Ifial	Demos	>	[p,rang,tang] = baumgartner2014(target,template) [p rang tang] = baumgartner2014(target template, vargrain)			
Data	>	1 Igo	Experiments	>	<pre>[err,pred] = baumgartner2014(target,template,errorflag)</pre>			
Auxdata	>		Common functions	>				
Cache	>	'fig4'	Plot	>	Input parameters:			
			Signals	>	target binaural impulse response(s) referring to the directional transfer function(s) (DETs) of the target sound(s). Option 1			
			Data	>	given in SOFA format -> sagittal plane DTFs will be extracted internally. Option 2: binaural impulse responses of			
		Auxo	Auxdata	>	all available listener-specific DTFs of the sagittal plane formatted according to the following matrix dimensions:			
			Cacho		<i>template</i> binaural impulse responses of all available listener-specific DTFs of the sagittal plane referring to the perceived			
			Gache	~	lateral angle of the target sound. Options 1 & 2 equivalent to <i>target</i> .			
See also baumgartner2014_p mv2ppp			See also		Output parameters:			
			baumgartner2014_ mv2ppp	þ	p predicted probability mass vectors for response angles with respect to target positions 1st dim: response angle 2nd dim: target angle			
			baumgartner2014_	vir	rang polar response angles (after regularization of angular sampling)			
			tualexp		tang polar target angles (usefull if sagittal-plane HRTFs are extracted directly from SOFA object)			
Aalto-	yliopis	to			err predicted localization error (acc. to performance measure defined in errorflag			
Aalto-	univers	sitetet			pred structure with fields p, rang, tang			

Aalto-yliopisto

Aalto-universitetet Aalto University

Peripheral models	Binaural processing	Monaural speech perception	
Gammatone filterbank	Binaural processing	Intelligibility in noise	
Linear filtering for monaural masking (basic)	Binaural masking level difference	Intelligibility in noise	
Linear filtering for monaural masking (improved)	Binaural masking level difference (dynamic sources)	Intelligibility with harmonic-cancellation	
Invertible Gammatone filterbank	Binaural activity (based on cross-correlation)	Short-time objective intelligibility	
Dual-resonance nonlinear filterbank (DRNL)	Binaural signal detection	Binaural speech perception	
Fast acting compression (CARFAC) model	Binaural detection model based on interaural coherence	Blind equalization-cancellation model	
Cochlear transmission-line model (basic)	ITDs of hearing-aid users	Binaural intelligibility in stationary noise (from BRIRs)	
Cochlear transmission-line model (improved)	Binaural activity map	Binaural intelligibility in stationary noise	
Cochlear transmission-line model (improved, incl. brainstem)		Binaural intelligibility of a reverberated speech target	
	Temporal-modulation sensitivity	Binaural intelligibility in non-stationary noise considering audibility	
Auditory-nerve spike generation	Brainstem processing (CN and IC)		
Auditory-nerve filterbank (basic)	Auditory brainstern responses	Binaurai intelligibility in non-stationary noise (NH listeners only)	
Auditony-nerve filterbank (improved)		Perceptual similarity	
	Modulation filterbank (based on EPSM)	Monaural perceptual similarity	
Auditory nerve filterbank (improved, ready for brainstem)	Modulation filterbank (based on nonlinear processing)	Binaural perceptual similarity	
Compression in the simultaneous masker phase effect	Modulation filterbank (based on DRNL)	Binaural perceptual similarity	

Modulation (leaky-integrator model)

Non-linear adapation network

18

Loudness models Sagittal-plane localization (robust) Stationary sounds Sagittal-plane localization (nonlinear, for hearing impairements) Time-varying sounds Sound externalization (ILD based) Binaural hearing impaired Sound externalization (multi-cue) Binaural loudness Sound externalization (reverberant spaces) Spatial models Sound lateral direction Distance perception Lateralization, supervised training Bayesian spherical sound localization (basic) Lateralization in cochlear-implant listeners Bayesian spherical sound localization (multi-feature) Contextual lateralization based on interaural level differences Bayesian sound localization (dynamic, ITD-based) Median-plane localization Lateralization in sound reproduction systems Vertical-plane localization (simple) Directional time-of-arrival (on-axis only) Sagittal-plane localization (simple)

Directional time-of-arrival in HRTFs (off-axis, robust)

Aalto-yliopisto Aalto-universitetet Aalto University

Assessment of spatial attributes

The position of a sound source in the left-right dimension generates interaural differences

Α

Α

The position of a sound source in the left-right dimension generates interaural differences

Aalto University

ITD: Interaural time difference ILD: Interaural level difference

ILD

Interaural time differences are dominant at lower frequencies (< ~ 1.5 kHz)

JND*: ~ 10 μ s ITD for lateral sources: ~ 600 - 700 μ s

Interaural time differences are dominant at lower frequencies (< ~ 1.5 kHz)

JND*: ~ 10 μs ITD for lateral sources: ~ 600 - 700 μs

* JND: Just noticeable difference

Aalto-yliopisto Aalto-universitetet

Aalto Universitv

24

The importance of interaural level differences grows with frequency

They are dominant above ~ 1.5 kHz JND: ~ 0.5 - 1 dB

These interaural cues are not enough to resolve the location in the three-dimensional space

From Communication Acoustics (V. Pulkki):

"At least in principle, ITD and ILD do not change when changing the position of a sound source on a cone of confusion."

These interaural cues are not enough to resolve the location in the three-dimensional space cone of confusion

up

down Pulkki & Karjalainen (2015) 27

From Communication Acoustics (V. Pulkki):

"At least in principle, ITD and ILD do not change when changing the position of a sound source on a cone of confusion."

Interaural axis

Moving a up-down or front-back on the cone of confusion modifies the spectrum of the sound

Moving a up-down or front-back on the cone of confusion modifies the spectrum of the sound

The frequency location of main peaks and notches seems crucial

The spatial fidelity can be measured using a more hollistic approach

Rate the spatial fidelity of this samples compared to the reference

10 (very good)

Localisation(-like) tasks are useful to measure artifacts in spatial reproduction

ø

Þ

V

R

A

-S

Ø

5

Localisation(-like) tasks are useful to measure artifacts in spatial reproduction

ø

Þ

V

Ę

A

-E

Ø

5

Localisation(-like) tasks are useful to measure artifacts in spatial reproduction

Front/back discrimination

The classic localisation test

The classic localisation test

change significantly the results

Auditory models of human localisation estimate experimental data collected in localisation tests

DIETZ2011 - Sound lateral direction

Binaural input signal

Dietz et al. (2011) 36
Auditory models of human localisation estimate experimental data collected in localisation tests

DIETZ2011 - Sound lateral direction

Aalto-yliopisto Aalto-universitetet Aalto Universitv

Binaural input signal

Auditory models of human localisation estimate experimental data collected in localisation tests

DIETZ2011 - Sound lateral direction

Aalto-yliopisto Aalto-universitetet Aalto Universitv

Binaural input signal

Auditory models of human localisation estimate experimental data in localisation tests

DIETZ2011 - Sound lateral direction

Auditory models of human localisation estimate experimental data in localisation tests

DIETZ2011 - Sound lateral direction

Models of sagittal plane localisation is often used both in research and in industry

Models of sagittal plane localisation is often used both in research and in industry

Models of sagittal plane localisation is often used both in research and in industry

Models of sagittal plane localisation are used both in research and in industry

They help us estimate the availability of monaural spectral cues

Models of spherical localisation combine the results of the two dimensions

BARUMERLI2023 - Bayesian spherical sound localization model

Front

Back

Aalto-yliopisto Aalto-universitetet Aalto Universitv

Example of model-based analysis of a dataset for non-individual HRTF selection

BARUMERLI2023 - Bayesian spherical sound localization model

Aalto-yliopisto Aalto-universitetet Aalto University

47

Artifacts in sound spatial fidelity are less important when the listener can move

The frequency location of main peaks and notches seems crucial

Apparent source width (ASW) and Envelopment

Which of these samples have more [Apparent source width (ASW) / Envelopment]? A B B

X

Aalto-yliopisto Aalto-universitetet Aalto University

Colouration assessment

Colouration as differences in timbre compared to a reference signal

Colouration can be assessed using several methods

Which of these signals is different?

Colouration can be derived from basic concepts related to loudness and auditory filters

Colouration can be derived from basic concepts related to loudness and auditory filters

Aalto-yliopisto Aalto-universitetet Aalto University

The specific loudness is connected to the perceived colouration

Model of colouration

Model of colouration

Assessing the overall quality

Overall binaural quality as a combination of binaural and monaural attributes

Listening experiments are the best option to assess sound quality

We can estimate experimental data obtained from listening experiments using auditory models

Once these models have been validated, we can rely on them

pedro.llado@aalto.fi

References

[1] Le Callet, Patrick, Sebastian Möller, and Andrew Perkis. "Qualinet white paper on definitions of quality of experience." *European network on quality of experience in multimedia systems and services (COST Action IC 1003)* 3.2012 (2012).

[2] Zacharov, N. (Ed.). (2018). Sensory evaluation of sound. CRC Press

[3] Llado, P., McKenzie, T., Meyer-Kahlen, N., & Schlecht, S. J. (2022). Predicting perceptual transparency of head-worn devices. Journal of the Audio Engineering Society, 70(7/8), 585-600.

[4] Majdak, P., Hollomey, C., & Baumgartner, R. (2022). AMT 1. x: A toolbox for reproducible research in auditory modeling. Acta Acustica, 6, 19.

[5] Smith, R. C., & Price, S. R. (2014). Modelling of human low frequency sound localization acuity demonstrates dominance of spatial variation of interaural time difference and suggests uniform just-noticeable differences in interaural time difference. PloS one, 9(2), e89033.
[6] Hartmann, W. M. (2021). Localization and lateralization of sound. Binaural Hearing: With 93 Illustrations, 9-45.

[7] Pulkki, V., & Karjalainen, M. (2015). Communication acoustics: an introduction to speech, audio and psychoacoustics. John Wiley & Sons.

[8] Majdak, P., Baumgartner, R., & Jenny, C. (2020). Formation of three-dimensional auditory space. The technology of binaural understanding, 115-149.

[9] Dietz, M., Ewert, S. D., & Hohmann, V. (2011). Auditory model based direction estimation of concurrent speakers from binaural signals. Speech Communication, 53(5), 592-605.

[10] Baumgartner, R., Majdak, P., & Laback, B. (2014). Modeling sound-source localization in sagittal planes for human listeners. The Journal of the Acoustical Society of America, 136(2), 791-802.

[11] Barumerli, R., Majdak, P., Geronazzo, M., Meijer, D., Avanzini, F., & Baumgartner, R. (2023). A Bayesian model for human directional localization of broadband static sound sources. Acta Acustica, 7, 12.

[12] Daugintis, R., Barumerli, R., Picinali, L., & Geronazzo, M. (2023, June). Classifying Non-Individual Head-Related Transfer Functions with A Computational Auditory Model: Calibration And Metrics. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-5). IEEE.

[13] McLachlan, G., Majdak, P., Reijniers, J., & Peremans, H. (2021). Towards modelling active sound localisation based on Bayesian inference in a static environment. Acta Acustica, 5, 45.

[14] Lokki, T., & Lladó, P. (2023, September). Perception of musical dynamics: orchestra spectra combined with auditory modeling. In International Conference on Auditorium Acoustics. Institute of Acoustics.

References

[15] Pulkki, V., Karjalainen, M., & Huopaniemi, J. (1999). Analyzing virtual sound source attributes using a binaural auditory model. Journal of the Audio Engineering Society, 47(4), 203-217.

[16] McKenzie, T., Armstrong, C., Ward, L., Murphy, D. T., & Kearney, G. (2022). Predicting the colouration between binaural signals. Applied Sciences, 12(5), 2441.

[17] B. Eurich, T. Biberger, S.D. Ewert, M. Dietz (2023). Towards a Computationally Efficient Model for Combined Assessment of Monaural and Binaural Audio Quality. Forum Acusticum (Torino, Italy)

