
Part V.

User Interfaces

457

Antti Oulasvirta
Kasper Hornbæk, Per Ola Kristensson, and Antti Oulasvirta. Upcoming 2024. Introduction to Human-computer Interaction. Oxford University Press.

23. Introduction to User Interfaces

Interactive systems in computer science and engineering are normally considered technical
objects. In contrast, the part of an interactive system that ’faces’ the user is called a user
interface. A user interface is the only part of a system that is used by real people doing real
tasks in real settings. Therefore, what makes an interface good is ultimately determined
by humans. Research on user interfaces is therefore, by necessity, a cross-disciplinary effort
with contributions from computer science, electrical engineering, design, and psychology.

Innovations and insights into user interfaces take many forms. Engelbart [222] suggested
that interactive systems and the user interfaces to them are really about augmenting the
human intellect. That is, user interfaces should make people smarter. At a different level,
Shneiderman [745] identified direct manipulation—the idea that you can directly operate
on objects in user interfaces—as the success behind graphical user interfaces. As a final
example, Weiser [860] suggested that the role of user interfaces is to disappear. A good
user interface is one that no longer imposes itself on the user’s attention.

The integrative theme in user interface design is that a user interface should match the
needs and capabilities of its users. That is, on the one hand, they should be designed to
respect the general understanding of humans as computer users, as laid out in Part II.
From this understanding follows a set of objectives that are always relevant to consider
in the design and evaluation of user interfaces. On the other hand, every user interface
is unique when it comes to specific users and their contexts. Knowledge about users
and their contexts usually comes from empirical research (see Part III). However, user
interfaces can also be understood more abstractly through theories and models, which are
discussed in Part IV. User interfaces enables interaction. That way, a good user interface
draws on input from these three sources.

In the rest of this chapter, we first define user interfaces and give some examples of user
interface types. Each of them is discussed in depth in subsequent chapters. At the core of
all work on user interfaces is a thorough understanding of what an interface is, what the
key design choices are, their associated trade-offs, and how to approach open decisions
systematically. The last sections of this chapter discuss these choices and trade-offs.

23.1. Definition and Elements

A user interface can be broken down into four constitutive elements, according to the
DIRA model [67].

Devices To be effective, an interactive system must allow the user to provide information
and control it effectively, efficiently and safely. Input devices allow the user to
provide input to the system in a variety of ways. Examples of input devices include

458

23. Introduction to User Interfaces

mice, keyboards, touchscreens, microphones, and eye trackers. In addition to the
user providing information to the system, the system needs to provide information
to the user. Output devices, or often just ’displays’, allow the system to provide
information and feedback to the user. Laptop displays, audio, rumble, and force-
feedback are examples of output devices.

Interaction techniques Input devices provide input from the user, but do not necessarily
interpret these inputs in a manner that helps operate an interactive system. Inter-
action techniques translate input from input devices and possibly context sensors
into solutions to basic interactive operations, such as moving, selecting, pointing, or
navigating. The gain function, which maps mouse movement to cursor movement,
is an example of an interaction technique (see Chapter 26).

Representations Representations determine how data, events, objects, and actions appear
to the user. Representations may be text, sounds, taste, or any other form of data
in an interactive system that is shown to users through a display. The design of
visual icons (e.g., the thrash can) is an example of representations.

Assemblies describes the broader set of principles that organize representations. The
assemblies define how the representations are organized and put together in the UI
both spatially and temporally. For instance, in a web browser, pages are linked in
particular ways, pages update their representations in particular ways, and layout
information in particular ways. Those ways are the essence of assemblies.

Together, these elements form a user interface. Note that this definition does not
mention processing. The internal mechanisms of how the system processes information
about the user are not part of the definition. Instead, the user interface is the part of
the technical system that is perceivable and actionable from a user’s perspective. The
user interface and its broader technical operating context are jointly called an interactive
system.

In this part, devices are discussed in the chapters on input devices (Chapter 24) and
displays (Chapter 25). Chapter 26 discusses interaction techniques and Chapter 27
discusses some central issues in representation. The question of organization for individual
interface types is discussed in the chapters that cover such types; next, we discuss the
main types of user interface.

23.2. Interaction Styles

User interfaces can take many styles and forms, depending on the tasks they need to
support users with. To understand the fundamental ideas in user interfaces, it is useful
to be aware of a concept known as interaction style in HCI. An interaction style is a
particular genre of interaction that specifies how users interact with computer systems.
An interaction style is a combination of particular instances of the four elements of user
interfaces that recur in the literature or in practice. Each has particular characteristics,
advantages, and disadvantages. Next, we briefly discuss five styles of interaction. Note

459

23. Introduction to User Interfaces

Figure 23.1.: An example of command entry at a command prompt in a terminal window.
The command ls -l lists all files and directories in the current directory.

that an interactive system user interface may mix several of these interaction styles. The
combination of the interaction styles of menus and forms is common on the World Wide
Web.

23.2.1. Command-line interfaces

In a command-line interface, the user enters commands and waits for the interactive
system to respond. Classically, this happens in a terminal that offers nothing but a
textual prompt for the user. The response from the system is also typically just text with
which the user cannot interact directly, except for issuing another command.

The best example of command-line interfaces came from the first user interfaces to
computers, where commands are typed into a terminal (Figure 23.1). Nowadays, many
development environments include an integrated command prompt, as do graphical user
interfaces (as in the terminal in MacOS and Command window in Windows).

Command-line user interfaces are now typically provided to support expert users with
tasks that are impossible, difficult, or inefficient to carry out in a point-and-click interface.
This is powered by their ability to abstract over objects (for instance, using a wildcard
operator) and be customizable by options and multiple parameters. The drawback is that
the user needs to recall commands. Also, command-line user interfaces can have syntactic
errors (e.g., misspellings) and do not prevent meaningless operations (e.g., printing a
folder).

460

23. Introduction to User Interfaces

Figure 23.2.: An example of form in a GUI.

23.2.2. Forms

The use of forms is considered another style of interaction. A form provides support for
data entry and first arrived in text terminal systems. They consist of one or more widgets
that the user can input through (for instance, text boxes or checkboxes). Figure 23.2
shows an example of a form. Many of the conventions of the forms are still in place today,
such as the use of the Tab key to move between different forms.

FOrms are useful for supporting data entry, as they provide a highly structured and
easy-to-understand interface to collect the required information from users. They help
understand what to input and in what order. However, forms are highly limited to data
entry tasks, and even then, their efficacy and utility for such tasks depend on the ability
to efficiently encode all data entry concerns into a form that is easy to understand and
process.

23.2.3. Menus

Another central interaction style is menu interaction. A menu presents a user with a set
of options of which one can be selected; the selection may trigger a command or may
open another part of the menu. Similarly to forms, menus can be the only interaction
style in a UI, or be part of other interaction styles. A traditional GUI provides linear
drop-down menus that let a user explore a menu hierarchy (see Figure 23.3). Menus do

461

23. Introduction to User Interfaces

Figure 23.3.: An example of linear pull-down menus in a presentation software GUI.

not necessarily have a pull-down style. For example, another possible design is to reveal
all menu items directly.

Menus have several advantages. First, they support exploration. Unfamiliar users
searching for a particular command can explore the menu structure to find it. Second,
the menus can help both novice, intermediate, and experienced users. Novice users
can spend time exploring the menu structure and gain familiarity with the availability
of commands. Third, pull-down menus allow more commands to be made available
compared to showing all commands to the user on the screen. Since top-level menus can
be decomposed into both menu items and submenus, pull-down menus also scale and allow
natural groupings of commands. A major disadvantage is that the scalability of menus is
limited in practice. Even though menu hierarchies can in theory be massive, in practice
they become cumbersome to navigate and difficult to explore. Another disadvantage is
that frequently used commands may be easier to access for novice and intermediate users
if they are present in a toolbar instead of forcing users to navigate or explore menus.

23.2.4. Graphical User Interfaces

Graphical user interfaces (GUIs) allow users to interact directly with objects in the
user interface. This ability is known as direct manipulation. An example of such direct
manipulation is when the user deletes a file by moving the mouse cursor over the file,
selecting it, and subsequently dragging it to an icon representing a bin. The graphical
user interface has been the dominant interface paradigm since the Xerox Star in 1981 (see
Figure 1.1). A central idea associated with GUIs is direct manipulation, as discussed at
the beginning of this chapter.

The benefits of GUIs are that they support novices in seeing the available objects and
actions, and that direct manipulation makes it possible to explore the user interfaces
because the user can undo operations. The drawbacks are that it is not always effective

462

23. Introduction to User Interfaces

to present objects and actions visually and that the ceiling of performance may be lower
than, for instance, for command-line interfaces. We discuss these benefits and drawbacks
in more detail in a chapter devoted to GUIs (Chapter 28).

23.2.5. Reality-based interaction

Reality-based interaction is an umbrella term that covers the styles of interaction that have
been developed since the GUI [374]. Such interfaces attempt to draw on our experience
with the real world to develop new forms of user interfaces. This style covers a broad
range of diverse interfaces.

To preview the advantages and disadvantages of reality-based interaction, let us consider
some examples. In mobile user interfaces, the user is not restricted to use the interactive
system while stationary, typically at their desk in an office. Calculator watches and
personal digital assistants (PDAs) are early examples of devices that allowed users to
interact with computer systems off the desktop. Recent examples include touchscreen
mobile phones, tablets, smartwatches, and fitness bands. Mobile user interfaces have their
set of challenges, most notably the small form factor.

Another example is mixed reality (XR) and augmented reality (AR), which allow users
to interact with virtual objects registered in the physical world surrounding the user. An
example of an augmented reality interface is a user moving their phone around and the
display revealing virtual objects that appear located in the 3D background of the actual
physical room. Another example is a user wearing an optical see-through head-mounted
display that allows the system to display virtual objects that appear located in the
physical surroundings of the user’s physical location. As the user moves their head around
the scene, any virtual objects will appear as they are seamlessly part of the physical
location.

More information is given in Chapter 29, including other styles of reality-based interac-
tion.

23.3. Design Objectives

HCI researchers and practitioners often focus on the design objectives of user interfaces.
What are the things that are important in designing such interfaces? If we understand
those objectives, we can consider them in thinking about user interfaces, in designing
them, and in evaluating them. In general, they come from three sources.

• Understanding of people. User interfaces must fit the people who use them, includ-
ing how they perceive, how their memory works, how they learn, and how they
collaborate. These have been described in Part II. For instance, the manual control
of a user interface needs to be learned and remembered. Thus, learnability of an
interface is important.

• Our theories of interaction. User interfaces enable interaction with interactive
systems. Thus, the views presented in part on Interaction (Part IV) give ideas

463

23. Introduction to User Interfaces

for what to aim for in a user interface. For instance, the chapter on information
and control (Chapter 17) discusses input rates; maximizing these is a key design
objective for user interfaces.

• Attributes and structural qualities of the user interface. These objectives are close
to the structure of the user interface and the way widgets are designed. For instance,
consistency is an often pursued design objective for user interfaces. The idea of this
objective is that consistent user interfaces are typically easier for people to operate
(but not always, as we shall discuss).

Note that a discussion of design objectives for user interfaces brackets some issues around
utility (see Chapter 19) and the fit of an information system to practice (Chapter 22).
This is because these issues are not primarily related to the user interface as such, but
rather to its fit to people, activities, and context (for a refresh, see Section III). With
that in mind, we next discuss some objectives that recur in discussions of user interfaces.
Throughout this part, we discuss other such criteria.

23.3.1. Supporting Novice, Intermediate, and Expert Performance

A central objective of a user interface is to allow users to learn how to use it, become
proficient, and use it to enable to achieve their goals. However, there are many aspects
of learning and proficiency in a user interface. Figure 23.4 shows an overview of these
aspects. First, a central concern is that user interfaces are easy to learn. It needs to be
easy to walk up to a system and figure out how to operate it.

Second, another central concern is that users can become proficient with the user
interface. This means that they should be able to seamlessly transition from novices,
to intermediate users and experts. This requires the user interface to support users in
gradually improving their performance to ultimately reach high levels of performance.

Third, some user interfaces may focus on the ability to achieve optimal performance.
This may require extensive training and practice over time. For example, studies of
computer gamers show that StarCraft 2 experts use two commands per second [899]
and experts in Tetris can manage four pieces per second [see 471, for an introduction to
expertise in Tetris].

The focus on initial performance, extended learnability, and ultimate performance raises
several objectives for user interfaces. These objectives have been articulated as criteria
for evaluating interfaces [865], principles for designing user interfaces [576], models for
transitioning from novice to expert in user-interface performance [157], and surveys of
how learnability is conceptualized and measured [292]. Next, we go through the interface
features and strategies identified in those papers; general insights about learning are
covered in Chapter 5.

Initial Performance To support initial performance, it has been suggested that user
interfaces should support exploratory learning [680, 865]. In exploratory learning, users
investigate the system on their own initiative, testing features and strategies to solve real

464

23. Introduction to User Interfaces

Figure 23.4.: A simple model of performance; on the Y-axis three phases of learning [157,
p.12].

tasks or to learn about the system. User interfaces may support exploratory learning in
many ways.

One strategy is to allow for the reversal of actions (for example, by making undo
functionality available). This encourages exploration by allowing users to have an easy
method to reverse any unintended changes in the state of the system.

Another strategy is to make actions and the status of the system visible, as discussed
earlier in the principle of visibility. This allows users to recognize possible actions instead
of having to recall command names or particular gestures. Making relevant aspects of the
status of the system visible serves to reassure users that they are on the right path.

A third strategy to support the initial performance is to simplify the interface as users
begin to learn it and only gradually add new layers of functionality and complexity. The
idea of training wheels for bicycles is a everyday example of this; Paper Example 23.3.1
shows an example of this idea applied in HCI.

465

23. Introduction to User Interfaces

Paper Example 23.3.1 : Attaching training wheels to a graphical user
interface

The idea of gradually adding new functionally as users become more proficient was
introduced to the HCI literature as training wheels [132]. This concept identifies
typical errors that novices make with an interface. It then prevents these errors by
blocking certain states of the user interface or disallowing certain complex commands.
In an experiment with a word processor, the concept of a training wheel resulted
in faster and better learning of the interface. The key issue with simplifying user
interfaces is when and how to transition to more complex interfaces. An approach to
doing so is to dynamically reveal the features of the interface.

The idea here is to show the features when the user may need them, and to hide
them otherwise. One commonly implemented tactic is to use context-dependent
toolbar panels that dynamically change to reflect the relevant commands for the
user’s current selection. For example, in a word processor, a context-dependent
toolbar may show commands relevant for editing a table when the user has selected
a table and commands for editing a figure when the user has selected a figure.

In an experiment with a word processor, the concept of training wheels resulted in
faster and better learning of the interface.

Extended Learnabilty For extended learnability, other objectives are needed. The goal
here is to help users get closer to performing near their ceiling performance with the user
interface. Interface features that are known to support this include the following:

1. Shortcuts, also known as hot keys, which provide the user with an alternative
method for accessing commands using a keyboard combination, such as Ctrl+C,
instead of traversing a menu structure.

2. Support for habit formation and automaticity. Raskin [669] has argued that modeless
interfaces are helpful in supporting the formation of habits. In a modeless interface,
all operations are available all the time; in a mode, some part of the user interface
works differently (e.g., the caps key).

3. Battling satisficing: ways of rehearsing and integrating extended learnability in
software. For instance, the user interface ExposeHK [499] helped its users discover
and rehearse keyboard shortcuts.

Paper Example 23.3.2 shows another example of improving the performance ceiling.

466

23. Introduction to User Interfaces

Paper Example 23.3.2 : Improving Extended Learnability with Com-
mandMaps

User interface design often needs to consider how much information to show; Scarr et al.
[716] coupled this discussion to improving intermediate learnability in a surprising
way.

In a typical hierarchical structure, one needs to click icons to open a small menu
with further options. In contrast, the experimental interface CommandMaps relies on
the user’s spatial memory to flatten a hierarchical structure (essentially a menu UI)
to improve the ceiling of performance for experts. As shown below , CommandMaps
simply immediately expands the hierarchy of icons. This uses a lot of space on the
display but ensures that each icon appears in the same location. This means that
extended learnability may be enhanced because experts can perform much faster,
while novices can still use the interface. Scarr et al. [716] used an empirical study to
show that this was indeed the case.

Ultimate performance: Some user interfaces may focus on the ability to achieve optimal
or peak performance in the long term. What is the fastest way to input text into a
computer that is possible to design? This is a difficult goal to reason about, but theoretical
limits to performance derived from models of performance are once a source of input. We
can use such limits to remove barriers to optimal performance.

Another way to reason about ultimate performance is to draw on models from the
chapter on information and control (Chapter 17). Such models can help to reason about
the maximal throughput of an input device, for instance. Finally, some people have taken
inspiration from science fiction to imagine what superpowers its users would want and then
reason about how to realize them in user interfaces [874]. For instance, we could imagine
user interfaces that improve our ability to attend to information in the environment, such
as being able to see things that other people miss (like Sherlock Holmes) or cannot detect
at all (like Spiderman).

467

23. Introduction to User Interfaces

23.3.2. Usability and Accessibility

According to the chapter on tool use, a user interface is ultimately a means to an end:
Users interact with user interfaces to achieve goals that are external to the interface itself
(see Chapter 19). Therefore, user interfaces should support help users achieve their goals
and, conversely, avoid preventing progress toward those goals. In particular, the concepts
of usability and accessibility may work directly as design objectives for user interfaces.
Recall that usability concerns whether users can achieve their goals effectively, efficiently,
and with satisfaction. Accessibility refers to a goal of having equivalent levels of usability
between user groups. The reader may consult Chapter 19 to see details of these goals.

But how can we turn these views of interaction into more concrete objectives for
thinking about user interfaces? One attempt to do so is to articulate guidelines or criteria
that good interfaces should adhere to. We will discuss such guidelines in detail in the
part on evaluation (Part VIII, but such guidelines may also be used to think about user
interfaces in a more general way. In heuristic evaluation [574], a method to be discussed in
Chapter 41, we might see the following heuristics for how to ensure that an user interface
is usable.

• Help users recognize, diagnose, and recover from errors. Provide error messages that
are understandable by users and offer a clear solution path to rectify the problem.

• Error prevention. The user interface should be designed to prevent errors, for
example, by displaying a warning and requiring user confirmation before a non-
reversible action is triggered, such as deleting a file.

To make user interfaces efficient, we may consider the following. Note that we use the
term operation here to mean accomplishing things like selecting, navigating, entering
text, and so on. This is different from tasks in the sense of what the user might want to
achieve with a system in a matter of hours or days. But for operations, users generally
expect to achieve their goals as quickly and accurately as possible.

• Flexibility and efficiency of use. Since users inevitably vary in their proficiency
of a user interface, it is often effective to provide interface features that tailor to
different users. A simple example is providing keyboard shortcuts for menu items
and toolbar buttons that allow an expert user immediate access to these functions,
while a novice user can still use direct manipulation to easily locate them (albeit at
a slower pace). Another strategy is to allow users to customize the user interface or
have the user interface adapt to the user.

In short, we have some ideas of what a usable interface normally looks like (as expressed
in the guidelines above), and we may use those ideas in the design and evaluation of user
interfaces.

23.3.3. Structure and attributes of the user interface

User interfaces are typically evaluated at a ’lower level’ than full interactive systems.
Thus, their design objectives can be much more closely related to the four elements of user

468

23. Introduction to User Interfaces

interfaces than the goals discussed above. The following list is incomplete but represents
the main design objectives of user interfaces.

Explorability

means that a user interface supports exploratory learning of the functionality offered
[680, 865]. In exploratory learning, users investigate the system on their own initiative,
testing features and strategies to solve real tasks or to learn about the system. User
interfaces may support exploratory learning in many ways. One is allowing reversal
of actions (e.g., through undo). Another strategy to support initial performance is to
simplify the interface as users begin to learn it, and only gradually add new layers of
functionality and complexity.

Discoverability

is about the effort it takes to find the possible actions in a user interface; it is closely
related to the previous point. Norman [580] considered it the question of “Is it possible to
even figure out what actions are possible and where and how to perform them?”.

One strategy is to actions visible. This allows users to recognize possible actions rather
than having to recall command names or particular gestures. In heuristic evaluation, the
idea is to support discoverability through through the visibility of system status. The
current state of the system should be visible to the user. A simple example is a progress
bar that indicates the progress of a long-term operation (such as downloading a large file).

Consistency

means that the representations (see above) and ways of interacting are similar across the
user interface or with other (reference) interfaces. If the print command is represented
with an icon showing a particular printer in one part of the interface, the same icon
should be used in the other. Similarly, for interaction techniques. If one has to right-click
an object to invoke a particular command, one should use the same right-click for other
commands. Consistency might be followed across user interfaces (the so-called external
consistency). The rationale is that external consistency helps users transfer skills from
other interfaces.

There are several techniques to ensure consistency. Adhering to style guides—such
as Apple’s Human Interface Guidelines—ensures consistency across applications on a
platform. Tools have also been developed that can help check the consistency of the
bottom placement and labels [495]. However, note that the notion of consistency is
not clear-cut. For instance, Grudin [294] provided several examples of interface-design
decisions where consistency was not attractive.

23.3.4. Tradeoffs among objectives

When discussing the design objectives for user interfaces, it should be realized that these
objectives sometimes trade off. This introduces a central challenge of user interfaces:

469

23. Introduction to User Interfaces

you cannot have your cake and it. Consistency is a classic example. As mentioned
above, consistency is essentially about ensuring familiarity. However, it compromises
novelty, another design objective. Some trade-offs central to the user interface are listed
in Table 23.1.

Most choices in user interface design involve trade-offs. Consider a simple binary
decision, for example, whether to include a captcha on a login page. Captchas uses a
simple question to confirm that the user is a human and not a bot. Including a captcha
may decrease the probability of system faults due to attacks by bots. On the other hand,
it lowers user performance: it simply takes longer to do the login. Not including a captcha,
by contrast, makes logging in faster. This is what users would prefer. On the other hand,
system faults, which can be catastrophic, may increase. Thus, the decision to include a
captcha requires resolving a usability–vulnerability trade-off.

HCI is not alone with tradeoffs. Tradeoffs are inherent to all multi-objective problems
in design and engineering (see Section ??). Pareto frontier is a technical concept that
generalizes the concept of tradeoffs. It is used to describe the set of ’equally optimal’
designs. Pareto optimal designs are optimal designs that strike different compromises
among the objectives. How are such tradeoffs solved in practice? Practical settings
may include consultation of design guidelines (Section 2), analytical methods (Section
??), or theories on interaction (Part IV). They may also be resolved through empirical
evaluations.

23.4. Design Space Analysis

User interfaces are complex. A successful user interface is a combination of input
and output devices that are assembled by well-designed interaction techniques and
representations that are appropriate for the tasks users are expected to carry out. A
decision about a user interface should start by considering it in the context of the totality
of decisions. How do you grasp a user interface without getting lost in the details?

Design space analysis refers to a semi-formal representation of the constituents of user
interfaces [494]. Design space analysis is an essential thinking tool. It avoids getting lost
in detail by enumerating the key choices and comparing them, and can thereby help both
technical problem-solving and higher-level reflection.

Table 23.2 gives an overview of three such techniques. They differ in their focus and
unit of analysis. Morphological analysis is best suited for understanding a user interface as
a transducer: something that transforms a user’s actions into changes in the computer’s
state. It offers an abstraction of the user interface that is not tied to the particular
technology on which the interface is implemented. Joint system analysis, which also
comes from engineering, adds humans to the picture. The properties of user interfaces
are described as parameters, some of which are controllable by the designer (color of a
button), but some of which are not (e.g. user experience). The benefit of this approach
is that it can help to see the connection between technical considerations and end-user
related objectives. Finally, QOC (Questions, Options, and Criteria) is an analysis method
that aims not only to enumerate, but also to help decisions. In addition to asking to

470

23. Introduction to User Interfaces

Trade-off Explanation Example

Speed vs. accuracy Improvements in task comple-
tion time compromise accuracy

When we make pointing de-
vices faster we often affect
their accuracy, and vice versa
(see Section 24).

Recognition vs. recall

Relying on recognition mem-
ory makes learning faster but
curbs maximum achievable
performance, while reliance on
recall slows down learning but
permits high performance over
time

User interfaces such as com-
mand language interfaces ver-
sus graphical user interfaces.

Familiarity vs. novelty

Following conventions and
standards improves learnabil-
ity but compromises felt nov-
elty

Novel services often want to
stand out by UI design, but
users often want familiarity.

Expert vs. novice use

Trying to cater for expert users
may make the UI hard to use
for novices and thereby detract
from user adoption

Professional photo-editing soft-
ware that offers thousands of
areas of functionality may be
very hard to use for novices.

Mismatch between those who
do the work and those who
reap the benefit

User interfaces may shovel low-
level tasks like information fill-
ing to one user group while an-
other benefits from this

User interfaces for corporate in-
formation systems may be use-
ful for management but not for
end-users.

Table 23.1.: Central trade-offs in user interface design.

471

23. Introduction to User Interfaces

enumerate key decisions, it enumerates possible alternatives (options) and criteria (what
is desirable).

Design spaces may be put to many uses. Haeuslschmid et al. [302] developed a design
space for interactive windshield displays in vehicles by drawing together and analyzing
existing literature. Markussen et al. [504] were interested in developing a selection-based
text entry methods to be used in midair. They established a design space for such
methods, by enumerating the central design questions, the possible user interface options,
and the criteria to choose among them.

Method Focus Unit of analysis
Morphological analy-
sis

Technology Technical variables that constitute
an interface

Joint system analysis Joint system that in-
cludes the human

Parameters that describe the prop-
erties of the joint human–computer
interface

Questions, Options,
and Criteria (QOC)

Design decisions and
their rationale

Questions in design that are mapped
to options and objectives (criteria)
for passing

Table 23.2.: Three forms of design space analysis that can be used to understand user
interfaces.

23.4.1. Morphological Analysis

Morphological analysis refers to the idea of representing user interfaces as points in a
parametrically described design space. The roots of this idea can be traced to Herbert
Simon and Francis Zwicky. Zwicky, who worked at the Jet Propulsion Lab (JPL) on
rocket engineering, proposed attacking very complex engineering problems by what he
dubbed morphological analysis, which entails a breakdown of decisions to form a discrete
solution space. Simon proposed that many complex-looking problem-solving tasks, such
as in chess, are essentially search problems in a tree. At any given moment, you have
possible actions. Depending on what you choose, another state opens with another set of
actions. Following this line of thinking, user interface design is simply a set (Zwicky) or
sequence (Simon) of decisions.

Card et al. [130] introduced these ideas to HCI. For example, an input device is a
transducer that associates sensed properties of the physical world with parameters of an
application. Formally, then, its morphological design space is a tuple:

< M, In, S,R,Out,W >

where

• M is a manipulation operator (physical action by the user that produces inputs)

472

23. Introduction to User Interfaces

• In is the input domain (range of possible values produced by the input manipulation
operator)

• S is the current state of the device

• R is a resolution function that maps from the input domain set to the output
domain set

• Out is the output domain set

• W is a general-purpose set of device properties that describe additional aspects of
how a device works.

Most components and widgets of the user interface can be analyzed in this way. For
example, consider a binary toggle that is operated by touching the finger within its
bounding box, a touchscreen display. Currently, it is set to the leftmost position and is
off. If we consider this through a morphological analysis, we get the following.

• M is a x and y coordinates of a touchpoint registered within the bounding box of
the toggle

• In is a binary event: a touch occurred (x and y coordinates are ignored)

• S is 0 (off)

• Out is 0 (on) or 200 (off); if ’on’, the toggle indicator turns green; if ’off’, it turns
gray

This view is expanded in Section ?? where we discuss optimization as an approach to
user interface engineering.

23.4.2. Joint System Analysis

A user interface can also be thought of as a joint system that links users with computing
technology. A menu interface consists of not only the decisions that tell which menu
command goes where, but also the key capabilities the user uses to operate the menu,
such as perception, cognition, motor control, and so on. From this perspective, the design
of a user interface can be thought of as an analysis of controllable and uncontrollable
parameters that affect joint outcomes.

A controllable parameter is a design parameter that the designer can directly influence,
such as the colors, size, animation, and behavior involved in the design of a push button.
Such parameters can therefore also be tuned by the designer or optimized for some criteria
of interest, such as minimizing task completion times or minimizing errors.

Critical distance is the maximum change in the value of a controllable parameter that
causes an undesirable drop in some design objective. For example, consider a fully packed
graphical layout that uses all the display space. In this case, adding just one more pane
to the layout might devastate the readability of the rest of the layout. In this case, the
critical distance of that parameter was 1.

473

23. Introduction to User Interfaces

In contrast, an uncontrollable parameter is a parameter that the designer cannot
directly influence, but that is nevertheless relevant to users achieving their goals in a user
interface. An example of an uncontrollable parameter is the system delay in a web browser
attempting to load information from a server (which will delay the rendering of the page).
Other examples of uncontrollable parameters include the accuracy of an auto-complete
algorithm, and the ability of an individual user to recall a command. Critical parameter
is a subtype of uncontrollable parameters. A critical parameter is an uncontrollable
parameter that is considered critical to the success of a system [571]. For example, page
loading time can be considered critical for some web applications. Sensitivity analysis is
used to understand how robust the user interface is in the presence of perturbation to
these design parameters.

Collectively, all controllable and uncontrollable parameters relevant for a particular user
interface span a multidimensional design space. An individual user that interacts with a
specific user interface design forms an operating point in such a design space. The ideal
operating point is the one where all design parameters align to provide the optimal user
interface for the user given some criteria for what such an optimal user interface would
provide to the user. However, it is nearly always infeasible to set the operating point at
an optimal value. First, it is not viable for designers to be aware of all relevant design
parameters. Second, many parameters are uncontrollable and therefore cannot be directly
governed by the designer. Third, parameters are often conflicting for certain criteria. For
example, enlarging the size of a button may make it easier for the user to click it at the
expense of the button consuming more screen real-estate. This suggests that there are
trade-offs in any user interface design, and an informed user interface design process has
considered these trade-offs before choosing a final operating point.

This latter point motivates this part of the book. There are essentially two ways that
an operating point can be set. First, it can be set explicitly by the designer. This means
that the designer is aware of most relevant controllable and uncontrollable parameters of
the design and trade-offs are therefore carefully considered in the design process. Second,
the operating point can be set implicitly by the design itself. This happens when the
designer is unaware of critical controllable and uncontrollable parameters of the user
interface. This may still result in an acceptable user interface but it introduces a higher
risk that the user interface may not perform as well as initially hoped and, in some cases,
can lead to dangerous user interfaces that can result in financial losses, injuries, or even
death. In reality, no designer can be aware of all parameters of a user interface design. It
is therefore not only unrealistic to expect optimal user interface designs—it is unrealistic
to even expect fully informed user interface designs.

A central role of this part in the book is to examine the various components of a user
interface and discuss controllable and uncontrollable components that may affect users’
ability to carry out their goals effectively, efficiently, and safely. By doing so, it is possible
to develop an awareness of controllable parameters that can be set, optimized, or tuned,
and uncontrollable parameters that are not directly governable but nevertheless may
affect how users can interact with the user interface. Only after achieving this awareness
is it possible to make informed choices about inherent trade-offs and ultimately be able to
design a user interface that strikes an excellent balance in determining various parameters

474

23. Introduction to User Interfaces

Parameter Type Explanation
Manufacturing Cost Controllable
Sensing technology Controllable
Layout Controllable
Nominal key size Controllable

Typing Speed Uncontrollable
Typing Style Uncontrollable

Table 23.3.: Examples of high-level design parameters for a physical keyboard.

governing its ability to support users’ goals as effectively, efficiently, and safely as possible.
Table 23.3 lists examples of such high-level design parameters for a physical keyboard.

23.4.3. QoC: Questions, Options, Criteria

Questions, Options, and Criteria, or QoC for short, extends design space analysis to cover
reasons for design choices [494].

It is based on the concept of design rationale, a documented justification for the choice
of design. An example: ”Auditory feedback is provided for the completion of the task,
because it is more likely noticed when driving and visual attention must be allocated to
road.” The idea is that an artifact is defined not only by its technical nature, but by the
decisions that allow one to understand how it could have otherwise been.

Questions structure the space of alternatives, Options are possible alternative answers
to Questions, and Criteria are used to evaluate and choose between options. For example,
consider the scrollbar shown in ?? 1. It has several features:

1. The scrollbar is normally invisible and appears only when a scrolling action is taken.

2. The scrollbar is narrow.

3. The scrollbar indicates the position of the view in the window.

4. The scrollbar indicates the relative size of the view in the window.

Each of these could have been formulated as a question. For example: 1. How to display?
Permanent or appearing. If appearing, how should it appear? When the cursor is moved
or when a scrolling action is taken. 2. How wide? Narrow or wide. If wide, should it be
of fixed width or relative to the size of the viewport as a proportion of page length? and so
on.

But how can one decide which option is the best? According to QoR, the options
should be compared with the criteria, which should also be documented. For example,

1. Screen should be compact
1Based on original example of a scrollbar given by [494]

475

23. Introduction to User Interfaces

2. Scrollbar should be easy to find

3. Scrollbar should be easy to drag

4. Scrollbar should tell intuitively how much there is to scroll still.

The options should then be assessed against all relevant criteria. How do you do that?
Evaluations can be based on experimental studies (Section 43) or analytical methods
(Section ??). Lacking such measures, they can also be based on previous experience,
known good design examples, or reasoning. The study by Markussen et al. [504], for
example, first argued about the design space of mid-air text entry and then empirically
evaluated some candidate user interfaces that seemed promising, given the QOC analysis.

Summary

• User interfaces are what the user comes into contact with when using an interactive
system.

• User interfaces comprise input devices, displays, interaction techniques, representa-
tions, and assemblies (also known as DIRA).

• There are five main styles of interaction: Command line, form, menu, and reality-
based user interfaces.

• The design of user interfaces faces a tradeoff between different, conflicting criteria.

476

24. Input Devices

This chapter reviews input devices, the elements of user interfaces that sense users and use
that information to operate computers. More precisely, an input device is a combination
of hardware and software that senses users’ movements, activities, and internal states to
turn them into information in the interactive system. This information can be used to
trigger a command or input a value, allowing users to interact.

The success of an input device relies on choosing the computation that should be carried
out—the goal of the input device, and then ensuring that an appropriate representation
of input is arrived at that can be sensed by the system. For example, a mouse is an input
device that allows users to transmit their intentions about moving a mouse cursor on the
screen. A mouse consists of a hardware device that allows the user to move it around on
a desk and have its movements reflected in mouse cursor movements on the screen. A
software driver ensures that the computer understands how to interpret the input signals
that are transmitted from the hardware to the operating system.

Some input devices are familiar to us from everyday interaction, but others are ex-
perimental. ?? shows a longer example of the latter; consider these shorter examples,
too.

• When you press a button on a keyboard, someone has designed the physical feel
of the button. Oulasvirta et al. [612] studied different relations between the force
users apply to a button and the displacement of the button, and showed that such
relations greatly affect performance in something as simple as pressing a button.

• In Skinput, Harrison et al. [309] used an array of vibration sensors placed on the
user’s arm. These sensors allowed the sensing of contact on the skin, effectively
allowing people to use their forearm as a touchpad.

• Microsoft Kinect was released in 2010 and used depth cameras to detect users’ poses
and gestures. By sensing poses and gestures, this input device allowed for a new
class of games and interactions without controllers.

An example (Imaginary phone) is shown in the side box.
Recall from the introduction to this part that an input device differs from an interaction

technique. Input devices sense users’ movements and states; interaction techniques help
users accomplish fundamental operations in the user interface using input devices and
displays. Interaction techniques are discussed in Chapter 26.

Next, we discuss what exactly it means to sense something with an input device.
Then we discuss input devices that pose few challenges to correct inference of the users’
intentions, such as keyboards or pointing devices (e.g., a mouse). Thereafter, we discuss a

477

24. Input Devices

class of input devices where it is much more difficult to figure out what the user is trying
to input.

Paper Example 24.0.1 : Input in midair: The case of the imaginary phone

?? Most input devices we use rely on a surface on which something is moved. This is
the case for the touchpad and the mouse. An active research area in HCI is input
devices beyond rigid surfaces. Researchers have explored letting go of the requirement
for an input surface, in so-called midair interfaces. The Imaginary Phone is a case
in point. This research is based on the observation that our memory for the icon
position on our phones works remarkably well (see Chapter 5). For instance, you can
probably point to the message application on your phone even if all the icons looked
the same. Gustafson et al. [300] departed from this observation to remove the need
for phone’s display.

In Imaginary Phone, the user’s hands are tracked with a wearable camera so that
input can be given by moving a finger and touching skin. No display is necessary
after the basic layout is memorized. For example, an alarm can be set by drawing a
gesture from a center toward the desired hour, as shown in the figure.

24.1. Principles of Sensing

Every input device relies on some type of sensing. A sensor is a device that transforms
physical energy into an electric signal. Input sensing means something more than ’just’
sensors, however. It refers to the whole sensing pipeline, including both software and
hardware, that allows the computation of a command based on sensor data. An input
device implements some sensing principle via hardware (e.g., sensor, microcontroller) and

478

24. Input Devices

software (e.g., filtering, gesture recognition).
Input sensing has become a major topic of research in HCI. Thanks to improvements

in micromachinery and microcontrollers, we can presently augment almost any physical
object with sensing capabilities. For example, capacitive sensing techniques exist to
enable the augmenting of plants, doorknobs, and even water with touch sensing (Paper
Example 24.3.1 will give an example later in the chapter of augmenting plants with touch).

Yet, engineering a situationally appropriate input device is challenging. There is no
universally best sensing approach. Consider an in-flight entertainment system, a crane
operator’s cockpit, and a GPS tracking device for boats. The movement capabilities
and the user’s goals, the constraints and capabilities of the system, and goals, as well
as environmental factors, are vastly different. Users are good at noticing poor response
characteristics, such as lag or inaccuracy. Careful engineering is needed to permit high user
performance while being robust to environmental factors and cost-efficient. Consequently,
symptomatic for this area is the long timeframes needed for R&D. For instance, the
principles of computer vision-based hand tracking were investigated actively in the 1990s,
but commercially successful solutions are coming out only now in VR systems.

Developing a good input device requires skills in software engineering, machine learning,
systems engineering, and electrical engineering. In the following, we go through the steps
of the input sensing pipeline.

24.1.1. Transducing

All sensing used in HCI transforms one type of physical energy into an electric signal.
Traditional pointing devices sense motion, position, or force. An isometric joystick senses
force. More generally, sensing principles used in HCI include mechanical (position, motion,
rotation), electrical (capacitance, contact), sonic (ultrasonic, microphone, sonar), optical
(proximity, light, image), radiation (radar, heat, temperature), magnetic (hall effect), and
gravitational (e.g., LIGO). Also, chemical sensing methods are available, for example via
moisture or via implanted sensors.

Analog sensors output an analog electrical signal, typically between 0 and 5 V. This
is converted by an Analog-to-Digital converter (ADC), which determines the resolution
of the output (e.g., 10 bits). While this interface is simple, it is prone to external noise.
Digital sensors are more robust to noise. They output a digital signal: zeros and ones.
To use this signal, a digital protocol is needed (e.g., UART, I2C, SPI).

For most physical events that we care about, there are several sensing principles. For
example, touch can be sensed using a number of sensing principles, including capacitive,
resistive, acoustic, infrared, vision, liquid crystals, planar scatter, and electromagnetic
resonance. The popular capacitive touchscreens are based on measurement of capacitance
or the measurement of energy stored in an electric field between two conductive objectives.
A capacitor consists of dielectric material between two parallel metal plates, which
responds to the changing distance of another dielectric object, the finger. The location
can be sensed with many electrode pairs, the response characteristics of which are known.
This sensing principle, unlike resistive sensing, its predecessor, allows multitouch sensing,
but does not support pen input.

479

24. Input Devices

24.1.2. Sensing hardware

Each sensing principle must be implemented in a device, consisting of at least the sensor,
a microcontroller, and a rig that keeps them together. These must be decided to strike
a desired trade-off among objectives, for example, accuracy, battery life, latency, and
robustness. In the case of capacitive sensing, one needs to decide the selection and
configuration of electrodes to achieve the necessary accuracy and robustness to finger
moisture and different pressing angles. The touch controller, a microcontroller-based chip,
must be designed to translate the measurements to a computer-readable form.

24.1.3. Transfer functions

A sensor is a transfer function. A transfer function maps a change in input energy to a
change in electric signal (output energy). We can learn a lot about a sensor by studying
the properties of its transfer function.

The analysis of an input device starts by plotting the input energy against the output
energy.

output = f(input) (24.1)

For example, a regular push-button is based on a key switch that sends a break signal
when the switch closes the circuit. From a transfer function point-of-view it transfers the
contact force into the displacement of the key cap, the movement of which is resisted for
example by a rubber dome. The key switch then transduces displacement into a step
function, a simple on/off signal. We here introduce first basic terminology to analyze
transfer function.

The transfer function offers a wealth of concepts to understand an input sensor. The
sensitivity of a sensor refers to mapping of the change in the intensity of the input
stimulation to the change in the output signal. A sensor has low sensitivity when a high
range of input energy is mapped to only a few levels of output energy.

A sensor is said to be linear when this relationship is linear. Linearity error is the
deviation of the output signal from a linear trendline y = a + bx, where a and b are
empirically established. Some sensors have non-linear transfer functions. The relationship
between input and output energy is nontrivial. Psychophysics methods can be used to
find a suitable transfer function (see Chapter 3).

A related concept is resolution. Resolution means how many levels of output are
expressed for different levels of input. This can be measured as entropy: H = n log2 S,
where n is the number of levels of input and S is the size of the set of symbols in output.
A low-resolution sensor loses information in the input signal. A high-resolution sensor is
informally said to be expressive.

The operating range of a sensor refers to the minimum and maximum sensed amount
of intensity. When input energy surpasses this threshold, the sensor is saturated. Under-
saturated input energy is below the registration threshold of the sensor. Over-saturated
input energy may destroy the sensor.

Bias level is a systematic source of error in transfer, and noise unsystematic (quasi-
random) error. The difference is important to understand, because they are dealt with in

480

24. Input Devices

Figure 24.1.: Input horror gallery: Plotting the transfer function of an input sensor can
expose a number of problems that hamper user performance. From left to
right, top to bottom: Inability to distinguish among levels of control; Too
narrow range; Inability to produce varied outputs; Noise. Images courtesy
of Sunjun Kim

different ways. For example, computer vision-based sensing typically has high levels of
noise, whereas mechanical sensing principles may have systematic bias.

24.1.4. Filtering

In filtering, the output signal of a sensor is suppressed in some way to get rid of noise or
some other unwanted feature. Unwanted features in input sensing include noise (random
variations in measured signal due to measurement noise), dropout (loss of measurement
samples), drift (accumulating inaccuracy over time), and glitches (random spikes or other
artifacts).

A key concept to understand how well filtering works is the signal to noise ratio (SNR).

481

24. Input Devices

Figure 24.2.: Measurements of a button press in midair using a computer vision-based
tracker shows significant noise which can be mitigated by techniques like
filtering [613].

Intuitively, this is the proportion of noise in the power of a signal:

SNR =
Psignal
Pnoise

(24.2)

The signal-to-noise ratio is often expressed in decibels: SNRdB = 10 log10 SNR. The SNR
sets a limit on how much information can be ’saved’ from the signal using filtering.

Frequency-based filters are the simplest filters. They suppress the signal based on
frequency range. They can be used when noise occurs on a known range of signal
frequency. Low pass filters pass only low-frequency signals, and high pass correspondingly
the high-frequency signals. Band pass merges the two and passes only a specific frequency
range.

Moving average offers another simple filtering approach. Assuming that noise has a
mean of zero, a moving average filter can estimate the true value simply by averaging
over a few previous measurement samples:

X̄ =
tX

i=t�n

Xi (24.3)

where X̄ is the filtered value, Xi is value at i, t is current time, and n is window size.
The drawback is that if the sampling frequency of the sensor is low, its response may feel
’laggy’.

Single exponential is a smoothing technique also known as first-order smoothing.

X̄i = ↵Xi + (1 � ↵)X̄i�1 (24.4)

482

24. Input Devices

where ↵ is a smoothing factor 0 < ↵ < 1. The idea of the approach is to control the
contribution of older sensor readings. When the smoothing factor ↵ increase, the filtered
value follows closer to the latest sensor values. When it decreases, there is more lag but
less jitter. In the double exponential technique, smoothing is performed twice to handle
quadratic trends in the signal.

Speed-dependent filtering dynamically changes ↵ based on an estimation of noise and
velocity of movement. This is particularly relevant for continuous sensing, for example, a
position sensor like a mouse.

Paper Example 24.1.1 : The 1e filter

A key issue in input is dealing with noisy signals. The noise might cause an input
value, such as the X-Y position from a touchpad, to fail to reflect the position of the
user’s finger. Alternatively, it may jitter, so that X-Y pairs that follow each other
jump unpredictably.

While we may deal with such noise, we want to do so in a way that does not
decrease the responsiveness of the device. Casiez et al. [139] found an elegant solution
to this problem by what the called the 1e filter.

The idea of the 1efilter is that the alpha gets smaller with faster cursor speed:

↵ =
1

1 + ⌧

Te

(24.5)

where ⌧ = 1/2⇡fc and fc = fcmin + �|X̄i|. The filtered value becomes

X̄i =
⇣
Xi +

⌧

Te

X̄i�1

⌘
↵ (24.6)

The intuition of these equations is that cursor responsiveness remains high when
the cursor is moved quickly, while accuracy remains high when the mouse is moved
slowly.

24.1.5. Engineering challenges in sensing

Based on the above considerations, three recurring issues in engineering sensing may be
summarized. The first concerns what can be sensed. The sensing modality of input refers
to the particular input stream considered, such as speech, hand movement, pen movement,
handwriting, gaze, etc. Input streams can also be multimodal which means multiple input
streams are combined for the purpose of sensing user input. A useful input device must
be robust to different interaction contexts and resilient to noise. Therefore, its sensing
validity needs to be sufficiently high for it to be useful in practice where users will need
to interact with the input device in a variety of setting under a variety of circumstances.
The notion of sensing interaction potential captures the notation of expressiveness of the
input device, the types of interactions an input device enables, and at what fidelity.

The second concerns resolution. The temporal resolution of an input device is its

483

24. Input Devices

discrete resolution of the measurement of time. For example, a high temporal resolution
of a mouse means that many samples of mouse movements are captured by the input
device at a fixed unit of time. The spatial resolution of an input device is its discrete
resolution of measurement in the spatial domain. For example, a hand-tracking input
device may be able to track a user’s hand with a resolution of 5 mm.

The third is accuracy. Accuracy reflects the ability of an input device to correctly
sense the user’s input. For example, a capacitive touchscreen will only be able to sense
the location of the user’s fingertip within some margin of error. Accuracy is modeled
differently depending on the specific input device. For example, an input device can be
thought of as a binary classifier only detecting Input or No Input, such as an eyebrow
switch, is typically analyzed in terms of classifications that are either true positives or
true negatives. Based on this it is possible to calculate accuracy but since accuracy is a
composite measure it does not reveal as much useful information about the input device
design.

In addition, as many input devices are realized in hardware, designing input devices
frequently involves many considerations similar to other physical products, such as market
demand, cost, development risk, certification, life cycle analysis, etc. However, while these
considerations are certainly important for designing, manufacturing, distributing, and
supporting input devices, they are not concerns central to HCI and will not be discussed
here. Instead, there is a set of design factors that must be considered when creating a
new input device in either software, hardware, or a combination thereof.

24.2. Keypads and Keyboards

Keypads and keyboards allow a user to input information, such as letters, symbols,
numbers, and commands into a computer. There are many ways to design them, and
their construction typically depends on their use case. As an example, an inexpensive
method is to use a flat-panel membrane design.

Keypads

A keypad is a set of buttons typically arranged in a matrix layout. While the layout
may vary, a common layout is the alphanumeric telephone keypad layout specified by the
ISO/IEC 9995-8:1994 standard.

Keypads are common in household appliances, such as microwave ovens and calculators,
dialpad phones, automated teller machines (ATMs) and machines in healthcare and
manufacturing. They are appropriate for a large number of numeric entry and limited
amount of alphanumeric entry.

Keypads gathered considerable attention during the early stage of mobile phone de-
velopment, as the majority of mobile phones until the capacitive touchscreen era relied
on used a design in which a physical ISO/IEC 9995-8:1994 keypad was coupled to a dot
matrix display.

484

24. Input Devices

Keyboards

Similar to a keypad, a computer keyboard is a device that enables a user to input
alphanumeric information into a computer system, such as text, numbers, and commands.
Unlike a keypad, a keyboard typically contains all letter keys A–Z in the alphabet and in
addition support a wide range of ancillary characters and functions. Most keyboards use
a particular key arrangement known as the QWERTY layout (named after the first six
letter keys at the top-right corner of the keyboard).

24.3. Pointing Devices

Keyboards allow users to enter text. Pointing devices allow users to select locations on a
display for a variety of purposes, such as selecting or manipulating an object, or providing
a drawing. Fundamentally, pointing devices can be subdivided into two classes: directly
controlled devices and indirectly controlled devices.

A directly controlled pointing device is interacted with by pointing directly at the
display. This allows the user to specify the precise location of the pointing in absolute
coordinates. For example, using a directly controlled pointing device, the user can point
at the top left corner of the display directly, which may in pixel space be, say, at location
(1, 1): the first leftmost pixel of the first top row of the display. This is an example of an
absolute coordinate.

An indirectly controlled pointing device allows the user to specify a location on the
display by manipulating the pointing device. In response, a cursor on the display moves
as a function of the manipulation of the pointing device. For example, a user may use a
mouse to control a cursor on a display. By moving the mouse, the cursor on the display
changes its location. This is an example of relative movement. Control is indirect, as the
user cannot directly select a desired location on a display by pointing at such a location.
Instead, the user indirectly moves a cursor on a display by manipulating a pointing device.
Relative movement can be modulated using a construct known as the control/display
ratio, which is elaborated in the chapter on interaction techniques (Chapter 26).

24.3.1. Direct Control

Direct control pointing devices allow the user to select an absolute coordinate on a display.

Light Pen

One of the first direct control devices is the light pen. A light pen is a light-sensitive rod
which the user holds in their dominant hand (see Figure 24.3). Light pens were designed
to be used together with cathode-ray tube (CRT) displays (see Chapter 25). As explained
in detail in the chapter on displays (??), a CRT generates a pixel image using a raster
scan row by row, column by column. This means that the light-sensitive component of
the light pen can be used in combination with the timing information of the raster scan
to detect the location of the tip of the light pen.

485

24. Input Devices

Figure 24.3.: A user interacting with an early hypertext system using a light pen. Image
by Greg Lloyd under Creative Commons license.

As shown in Figure 24.3 a light pen allows the user to directly select a specific location
on a display in absolute coordinates. In the figure, the light pen is used to select links in
an early hypertext system.

Resistive Touchscreen

Another method to allow direct control is the use of a resistive touchscreen. Figure 24.4. At
a high level, a resistive touchscreen is usually designed with two flexible sheets separated
by an insulator, such as an air gap. When two sheets are pressed together using, for
example, a tip of a pen or a finger, the two sheets make contact. By ensuring the sheets
have horizontal and vertical traces it is possible to determine the touch location.

Resistive screens were popular in early mobile device design, such as personal digital
assistants (PDAs), Tablet PCs, and early touchscreen mobile phones. Just as light
pens they provide users with the ability to precisely select a location on a display by
directly selecting the location of interest on the display. However, unlike light pens,
resistive screens can be easily manufactured in small sizes suitable for portable electronics.
Resistive screens are also inexpensive to manufacture and can be used with any implement
that is capable of pressing the two sheets together, such as a glove, which typically cannot
be readily sensed by a capacitive touchscreen. A pen-operated resistive touchscreen may
also provide a higher sensing resolution.

486

24. Input Devices

Figure 24.4.: A Tablet PC with a touch display and a personal digital assistant (PDA)
with a resistive screen.

487

24. Input Devices

Capacitive Touchscreen

The capacitive touchscreen is ubiquitous on mobile devices. While capacity touchscreen
technology has been available for many years, capacitive touchscreens were popularized
by the introduction of the Apple iPhone in 2007.

Capacitive touchscreens can be implemented in several ways. What they have in
common is that they rely on capacitive coupling between an implement, typically the
user’s fingertip, and the display to sense the absolute position the user touches on the
display.

Advances in capacitive touschreens have enables users to easily select precise locations
on a touchscreen by lightly touching them with their fingertip. In addition, capacitive
touchscreens allow multi-touch interaction, which enables a range of interaction techniques,
such as pinching for zooming.

The typical tradeoff between a resistive and a capacitive touchscreen is that the response
time is faster on a capacity touchscreen, but the precision is lower. In addition, a resistive
touchscreen may not be as clear due to the dual membrane design.

488

24. Input Devices

Paper Example 24.3.1 : Botanicus Interactus

Interaction does not need to be limited to technological objects such as comput-
ers. Present-day sensing technology creates opportunities to augment everyday
environments with capabilities for input and output. An example is Botanicus
Interactus [656], which allows interaction with living and artificial plants.

It works by exciting the plant with an electrical signal at multiple frequencies that
span a range of 0.1 to 3 MHz. Regular capacitive sensing works by exciting a surface
with a single frequency. Botanicus Interactus uses multiple frequencies to account
for the more complex structure of a plant. Since the electrical signal path inside
the plant varies by frequency, it is possible to infer touch locations by analyzing the
frequencies which have affected the signal using machine learning methods.

489

24. Input Devices

Paper Example 24.3.2 : Frustrated total internal reflection

In the early 2000s, it was expensive and difficult to design reliable large multi-touch
surfaces. However, Han [305] demonstrated how it is possible to use a mechanism
known as frustrated total internal reflection (FTIR) to create a low-cost, reliable
multi-touch device.

Refraction is a term for the phenomenon in which light changes direction, or bends,
when it passes from one medium to another. Total internal reflection happens when
light passes through a medium with a lower index of refraction and the angle of
incident of this refraction is greater than a critical angle. With the right choice of
material, this interface at the medium can be designed to frustrate this total internal
reflection, resulting in light escaping through this material instead.

A multi-touch FTIR surface exploits this operational principle. A typical design
uses an acrylic pane which is edge-lit by infrared light-emitting diodes. Due to the
total internal reflection, the infrared light is trapped within the sheet. A video camera
is mounted behind the sheet, capturing the resulting image (?? left). When an object,
such a user’s finger, makes optical contact with the sheet the light is frustrated,
causing it to scatter through the pane towards the camera. This results in bright
dots in the image which can then be processed using relatively simpler computer
vision methods to determine the multi-touch locations right).

24.3.2. Indirect Control

Indirect control pointing devices enable the user to control a cursor on a display in response
to manipulation of the pointing device. Thus, movement of the cursor on the display is
relative to the manipulation of the pointing device.

Mouse

A mouse (??) allows a user to move a cursor by moving the mouse on a table. The
physical movement of a mouse is translated into cursor movement. Several mechanisms
are possible to enable a mouse. The first mice used two separate wheels below the mouse,
which rolled when the mouse was moved on the table. A later design used a rolling ball

490

24. Input Devices

Figure 24.5.: An example of a computer mouse; image from https://commons.wikimedia.

org/wiki/File:3-Tasten-Maus_Microsoft.jpg

design. Today, mice use optical sensors to determine relative movement without having
to rely on moving parts in the electromechanical design.

A mouse typically also provides a set of mouse buttons that can be used to provide
further information to the user. Another possible addition is the inclusion of a scroll
wheel, which is typically used to allow the user to scroll the display up or down.

In addition to moving a cursor, a mouse can be used to perform gestures. For example,
a common gesture is to drag and drop an object. Such and other mouse gestures are
discussed in the chapter on interaction techniques (Chapter 26).

Touchpad

A touchpad is an indirect pointing device that allows a user to control a cursor on a display
by moving a fingertip on a surface. The surface can be either resistive or capacitive.
Touchpads can be augmented with additional features, such as tactile sensation feedback
and button pressing mechanisms. In addition to controlling a cursor and similar to a
mouse, a touchpad can also be used for additional purposes, such as for articulating 2D
gestures.

Touchpads are common on laptops as a replacement for a mouse. However, unlike a
mouse, a touchpad can be used in both relative and absolute coordinates. In other words,
it is possible to map the input dimensions of a touchpad so that they are proportional to
the display dimensions. This allows a user to, for example, select the topleft corner of the
display by touching the topleft corner of the touchpad.

491

https://commons.wikimedia.org/wiki/File:3-Tasten-Maus_Microsoft.jpg
https://commons.wikimedia.org/wiki/File:3-Tasten-Maus_Microsoft.jpg

24. Input Devices

Paper Example 24.3.3 : Touch for several people at the same time?

As touch input devices become available, researchers began to wonder how to support
touch for several people at the same time. That would require several touchpoints
to be detected at the same time. It would also require that each touchpoint to be
attributed to the correct person. Perhaps people would put objects on the surface
(e.g., a pen, a pad) which should not be detected as a touch. How to do that?

Dietz and Leigh [191] developed the DiamondTouch table. As can be seen below
(left), the table uses a projector that places an image on a table between the users.
The table has been prepared with a number of antennas below an insulating layer
(middle). The antennas works as switches so that it may be detected when a user
touches within the area of the antenna (but not where). In the prototype of the
DiamondTouch, there were four antennas per square centimeter. The identification of
users were accomplished through instrumenting users’ chairs (right). When the user
touches the table, a circuit is completed from the transmitter, through the antenna
on the table, though the user and the chair, and back to the transmitter. Because
this circuit is unique to a user, the touchpoint allows the identification of the user.

DiamondTouch was later turned into a commercial product and was an early vision
among many subsequent tabletop interfaces.

24.4. Uncertain Control

The previously discussed direct and indirect control input devices can deduce users’
intention with a high degree of certainty. When any input is subject to noise, we use the
term uncertain control to refer to a class of input devices that must be designed to be
robust in the presence of uncertainty concerning the user’s intention.

24.4.1. Switches

As a simple introductory example of uncertain control, we will consider a switch. An
example of such a switch is a mechanical push-button, perhaps the most ubiquitous input

492

24. Input Devices

device that allows binary control (on/off).
Push-buttons are electromechanical devices. When the user pushes the switch the

user is forcing two electrical contacts together. The result is a low impedance (electrical
resistance) path for current to flow. This sudden flow of current is used by the device
to detect that the push-button has been depressed by the user. When the user let the
push-button go the contacts are separated and current can no longer flow.

This operation is subject to noise due to a phenomenon known as switch bouncing,
which means there is uncertainty around whether trailing mechanical motion has resulted
in the switch to falsely trigger a second or third time upon activation. This is because the
electrical contacts are subject to mechanical motion and will touch several times before
assuming a rest position in which the contact is stable. The solution is to implement switch
debouncing which eliminates this noise. Hardware buttons have such swich debouncing
implemented in either hardware or software.

Another example of noise in switches is switch noise due to false activations and
false detections. Some nonspeaking users with motor disabilities rely on a switch to
communicate. One example is an eyebrow switch which activates when the user actuates
their eyebrow. Such switches are prone to false activations due to noise, and hence require
signal processing to reach acceptable levels of performance. In practice, such switches are
still error prone and user interfaces reliant on such switches, such as specialized scanning
keyboards for users with motor disabilities, have to be designed with such deficiencies in
mind.

24.4.2. Accelerometers and Gyroscopes

An accelerometer is a device that measures the rate of change in velocity, that is, the
acceleration of the device. It can be used for direct control or indirectly to sense what
the user is doing. At rest, the measured acceleration will carry an offset corresponding
to Earth’s gravity. Accelerometers are commonly integrated into mobile phones and
input devices because they allow for estimation of the orientation of the device. This
information is frequently used to change the screen orientation between portrait and
landscape mode, depending on how the user is holding the display. It also allows input.
For example, gamers can control a character by tilting a mobile device. Another use of
accelorometers is to use machine learning methods to infer user activity, such as the steps
the user is walking over a period of time.

A gyroscope is a device that measures orientation and angular velocity. Input devices
that use the functions provided by a gyroscope are typically implemented as micro-electro-
mechanical systems. Since these devices measure device orientation and rotation they
are frequently used to estimate device movement in 3D space and thus enable gesture
control. It is also possible to combine data from accelerometers and gyroscopes to provide
more robust gesture recognition and inference of user motion. Another potential example
use of accelerometer and gyroscopic data is as a method for estimating the position of a
Virtual Reality (VR) headset.

493

24. Input Devices

24.4.3. Brain-Computer Interface

It is also possible to allow the user to communicate with a computer without actuating
any muscles. This is achievable using a brain-computer interface (BCI). A brain-computer
interface translates the electrical activity in the user’s brain into signals that a computer
system can understand. Among its wider uses is as a prosthetic to control a robotic limb.

Brain-computer interfaces can be realized using a number of methods. A common non-
invasive method is to electroencephalography (EEG) which uses electrodoes positioned
on the user’s scalp. The advantage of EEG and other non-invasive methods is their
practicality as the demands on the user are lessened significantly although there is still a
considerable set-up cost. The disadvantage is that the electrodes are positioned relatively
far away from the brain and thus the signal-to-noise ratio is low. As a consequence,
significant effort is required to ensure robust and accurate operation using such an input
device to control a user interface. In practice, non-invasive BCI is severely limited in its
use as an input device in HCI.

An alternative that achieves a much higher signal-to-noise ratio is brain implants.
However, these techniques have serious implications for the user and have been used
extensively to partially restore vision and movement in patients with disabilities.

24.4.4. Electromyography

An input device that is more reliable than BCI is electromyography (EMG), which senses
the electrical activity in a user’s muscles and translates this activity into signals that a
computer system can act on. EMG devices vary in their construction, but their use in
HCI is based on surface EMG which does not require the use of needles in the user.

Surface EMG input devices produce signals that can be analyzed using signal processing
and machine learning algorithms to infer user’s activity. After processing, such information
can be used to perform gesture recognition and, to some extent, be used to estimate
fatigue.

24.4.5. Eye Tracking

An input device based on eye tracking estimates the user’s gaze on a display. It does that
by tracking the user’s rotation of the eye and mapping that to cursor control. Several
methods are available, and they all require calibration.

One method is to project infrared light towards the user’s eye. The anatomical parts of
the eye that reflect the light efficiently generate so-called Purkinje images. These images
can then be used to infer the user’s gaze. High-accuracy commercial eye-tracking systems
typically implement some variant of this or a related scheme.

Another method is to optically detect users’ gaze via a regular camera. The gaze
position is inferred using computer vision methods. These methods are very sensitive
to users’ head movements and as a consequence are not very practical. While all eye
tracking methods require calibration, optical methods may require recalibration whenever
the user is significantly moving their head.

494

24. Input Devices

Figure 24.6.: An example of measured saccades and fixations for a reading task. Im-
age source: https://upload.wikimedia.org/wikipedia/commons/e/ef/

Reading_Fixations_Saccades.jpg

Electrooculography (EOG) can also be used. Electrodes are placed above or below or
to the left or to the right of the eye. The electrodes measure the resting potential of the
retina. If the eye is moved away from the centre position towards an electrode, then the
electrode will sense this change. This information can then be used to infer relative eye
position changes. A problem with EOG is drift. Another downside is the required set-up
before use.

Finally, it is possible to carry out eye tracking by fitting the user with contact lenses
coupled with some form of sensor, such as a magnetic field sensor. As the eye rotates,
the contact lens rotates with it. This method enables highly accurate eye movement
measurements. However, this technique is also invasive and requires set-up.

Eye tracking data is processed by considering saccades and fixations (see Chapter 3). A
saccade is a ballistic jump performed by the eye. These are preplanned and take 150-250
ms to plan and execute. A saccade is followed by a fixation. A fixation is the period of
time after a saccade when the eye is relatively stationary. They typically last between 200
and 300 ms. An example of a series of saccades and fixations are shown in Figure 24.6 for
a typical reading task.

A sequence of saccade-fixations forms a scanpath. Scanpaths can be recorded using eye
trackers capable of estimating the user’s gaze locations at a certain, typically 30–60 Hz.
Once sensed, such scanpaths can be aggregated according to location and time thresholds
into areas that attract user fixation. The assumption is that if a user has fixated on
a particular area it will influence the user’s further actions or the details that the user
is registering in memory. This follows from the eye-mind hypothesis: what people are
looking at is what they are thinking about [900]. In other words, visual attention can act
as a proxy for mental attention. However, for this to be likely to be true the user needs

495

https://upload.wikimedia.org/wikipedia/commons/e/ef/Reading_Fixations_Saccades.jpg
https://upload.wikimedia.org/wikipedia/commons/e/ef/Reading_Fixations_Saccades.jpg

24. Input Devices

Figure 24.7.: An example of using optical markers to measure users’ hand movements in
typing tasks in mid-air [212].

to be given a suitable task.
Eye tracking is used in several applications. It can be used to carry out market research

and usability testing where information on what the user is looking at is valuable for
analysis. Eye tracking can also be used as part of an interaction technique, for example,
to enable typing using so-called eye-typing methods, which are discussed in the chapter
on interaction techniques (Chapter 26).

24.4.6. Hand- and finger-tracking

Hand- and finger-tracking is used to estimate the location of the user’s hands and fingers
in 3D space. Several technologies are available for hand- and finger-tracking.

Accurate hand- and finger-tracking can be based on optical markers. Such markers
are fitted to the hands and fingers, or other body parts that need to be tracked. These
markers are then tracked by high-resolution cameras. Software is then able to estimate
the 3D locations of the markers in space. Optical marker-based systems are common in
HCI research when there is a need to acquire a relatively high accuracy and low latency
view of users’ movement. For example, a study of ten-finger touch typing in mid-air may
use an optical marker system to ensure the system captures as many nuances of typing
behavior as possible (see ??).

An alternative way of performing hand- and finger-tracking is to use a depth camera
mounted on a headset, and then use computer vision methods to infer a hand skeleton.
This approach is common in state-of-the-art virtual and augmented reality headsets.
The skeleton serves as a low-dimensional representation of the user’s finger, and hand
movement can then be used more easily to, for example, design a gesture control system.

496

24. Input Devices

24.4.7. Microphone Input and Speech Recognition

Another input modality is the sound generated by users or their surroundings. One
obvious example is voice commands, which allow a user to speak instructions directly to a
computer. Sound is sensed using a transducer that converts vibrations of acoustic waves,
sounds, into electrical signals. This transducer is called a microphone. Microphones can
be connected into an array, called a microphone array, to allow sound to be more easily
localized. Localization of sounds open up interaction possibilities, such as directing user
feedback to a particular location.

Thus microphone input does not necessarily have to involve the user’s voice. An early
commercial example of another use is the Japanese version of the adventure game The
Legend of Zelda in 1986 for the Japanese Nintendo Entertainment System (called Famicom).
The Famicom arrived with an integrated controller that apart from a directional pad
and a few buttons also had a built-in microphone. The Famicom was too underpowered
to perform speech recognition but it could use this microphone in other ways. In The
Legend of Zelda it was used to allow the player to defeat a particular enemy that was
depicted with particularly large ears. By making a loud noise in the microphone these
enemies would disappear. This is an early demonstration of the possible creative ways to
utilize a microphone to provide new ways of input.

Microphones can be used to perform speech recognition. Speech recognition works by
decoding observations of user’s utterances into hypotheses of what users are intending
to speak. Speech recognition can be provided by isolated words or it can be continuous,
allowing users to speak isolated words, phrases or sentences. Speech recognition is
commonly used for voice control but can also be used as an alternative text entry method
by allowing users to perform dictation.

24.5. Expanding the Limits of Sensing

In the early history of computing, input devices mostly buttons and applied switch-based
sensing. A mechanical switch affords high certainty in input; only rarely would a user
accidentally activate a switch. Later, input devices began to be used to sense movement
beyond an on/off event; the mouse and the joystick are prime examples. Although their
input-sensing pipelines are more complex than that of a switch, because they need to
deal with issues like noise and uncertainty, they fundamentally are about the sensing of
movement.

How far can we push this paradigm? Many HCI researchers study alternative methods
for sensing movement. For instance, an important research direction has been to manu-
facture input device that can be worn on human body. iSkin [859] is a skin-compatible
tattoo (see Figure 24.8). It is a thin overlay that is transparent, flexible, and made of
biocompatible materials. The authors propose methods for producing iSkins in variable
sizes and shapes so that they can be worn on different locations of the body such as
the finger, forearm, or ear. The sensor combines capacitive and resistive touch sensing.
This makes it possible to sense touch even when the overlay is stretched or bent on skin.
Furthermore, multiple touch areas can be supported, as well as more complex widgets,

497

24. Input Devices

Figure 24.8.: A skin-compliant form of an input device [859].

such as sliders.
What if one wants to go beyond sensing movement? One strand of research on input

devices aims to expand what we can sense. For example, there has been work on sensing
temperature [664], mental workload [366], boredom [639], and much more.

Why would we want to sense such information? One reason is adaptation, the ability
to change the user interface based on sensed information about the current state of the
users, for instance, their workload. If the workload is high, we could simplify the user
interface. Another reason is to create so-called non-command interfaces [573]. The idea
of such interfaces is to infer the user’s intentions through precise sensing, and thereby
dispense with the need for a user explicitly issues a command. If you recall Norman’s
seven-stage model presented in Chapter 18, you will realize that this would dispense with
the specifying and execution of actions in the user interface.

The fundamental problem in all these cases is whether the inferences to sensed phe-
nomena or to intended commands are accurate. While this has sometimes been the case
in controlled settings, making sensing robust in an uncontrolled setting remains hard.

Summary

• Input devices allow users to provide information into a computer system. At a high
level, they involve three levels: computation, representation, and implementation.

• Design factors for input devices include their temporal and spatial resolutions,
accuracy, sensing modality, sensing interaction potential, sensing validity, integrality

498

24. Input Devices

and separability, and accessibility. The choice of appropriate input devices will
typically require a design decision involving these factors.

• Input devices span a wide range but can be roughly divided into key-based devices,
direct and indirect pointing devices and uncertain control devices. These input
devices provide different opportunities and challenges for design, and thus some are
more suitable for particular interaction context than others.

Exercises

1. Pointing devices. Remote pointing may be necessary when users are interacting
with a large display. What types of input devices would be suitable? Consider their
pros and cons.

2. Accurate input. Consider an input device for a medical device that must ensure
users are making very accurate input. Input needs range from providing numbers
and text to controlling a cursor on a screen. Which input devices would be suitable
for which types of input? Is the choice of input device sufficient to ensure high
reliability? If not, what other elements of the user interface would need to be
considered?

3. Comparing input devices. Make a table with the following design factors provided
in the introduction in this chapter as the columns: temporal resolution, spatial
resolution, accuracy, sensing modality, sensing interaction potential, sensing validity,
integrality and separability, and accessibility. Now create rows where each row
represents an input device and score it between 0–10 on how well it meets the
appropriate criteria defined by the design factors. How would the following input
device compare: light pen, capacitative touchscreen, mouse, and touchpad? Are
there any tradeoffs? Are the design factors sufficient to decide?

499

25. Displays

A critical component of user interfaces is the output devices or displays that allow the
interactive system to transfer information to the user. We use the term display to cover
visual displays (e.g., a computer screen), haptic devices (i.e., displays that you can feel),
as well as other devices that can render information in a modality that humans can
perceive. It is important to choose and design the display to match the capabilities of the
user and the requirements of the task.

Displays can take many forms; consider these three examples.

1. Squeezeback [650] uses pneumatically driven compression around the arm to send
notifications to people. This display can indicate different qualitative sensations
that users can reliably distinguish.

2. Andrews et al. [24] explored how large displays could help intelligence analysts think
about information (see Figure 25.1). They showed that the larger real-screen estate
positively influence how analysts thought about and made sense of data.

3. SensaBubble [732] can shoot scented bubbles of particular sizes at the user. In-
formation may be projected onto the bubbles until they burst. This allows for
multi-modal information display in a playful form.

4. In 1969, Bach-y Rita et al. [33] published a paper on the tongue-display unit (see
Figure 25.1. Because the tongue is packed with receptors, it is possible to represent
visual information on it by using an array of 12 times 12 electrodes placed on the
tongue.

In sum, displays are not limited to common displays that use LEDs (light-emitting diodes).
The defining objective of a display is to transform digital information into analog

information so that people can accurately perceive it in one or more sensory modalities.
To understand displays, we need to consider again the human perceptual system (see
Chapter 3). A display needs to communicate digital information that matches what
humans can perceive: There is little point in generating sound that we cannot hear or
visuals with a resolution so high that our visual system cannot perceive it. Recall that
our perceptual system has a range of limits. A well-functioning display ensures that the
intended information becomes available to the user, rather than a biased or incomplete
version thereof.

Let us give an initial example of the complexity of displays by considering color on
visual displays such as a computer monitor. Let us assume that the job is to show how
full the battery is. How would you choose the colors to show the battery level? The
answer is surprisingly complex. Using a rainbow color scale is a poor choice. There is no

500

25. Displays

Figure 25.1.: Displays are not limited to the familiar touchscreen. HCI studies different
arrangements and technologies for presenting information to users. Top: a
large display used for sensemaking of work and data [24]. Bottom left: a
multimodal display [732]. Bottom right: an electrotactile display to be used
on the tongue [33, 34].

natural ordering of colors from red to violet that people easily recognize. Furthermore,
picking different hues (such as red, yellow, blue) does not work well because they do not
indicate quantity (that is, it is not perceptually obvious if orange would be a 30% full
battery and red 60%). The color value is a better choice (i.e., the intensity of the color).
But then it turns out that you cannot just halve the value of color encoding (say, its
red-green-blue value) because humans would not perceive that value as half of the original
value (it is not perceptually linear). Luckily, there are tools to help with this (such as
ColorBrewer). The lesson is that designing displays is complex.

This chapter reviews common displays. We first discuss the central issues in encoding
and rendering information: These are essential processes in turning digital information
into something people can perceive. Then we discuss different devices working across
different modalities, explaining their working principles and uses in HCI, and have to
make informed design decisions when considering a set of output devices for a particular

501

https://colorbrewer2.org/

25. Displays

HCI design problem.

25.1. Encoding and Rendering

Encoding concerns the basic operation of turning digital information, be it a name or a
value, into something that a display may show. Many decisions in encoding are trivial:
showing the digital content "v" on a screen is straightforward. But many decisions are not,
in particular, when we go between modalities or when we encode something into a form
that it does not naturally map to. For example, the auditory representation of a visual
symbol, such as an icon, is not obvious. Brewster and Brown [95] created tactons, haptic
versions of messages typically shown as dialog boxes or icons. This included carefully
calibrating the frequency, amplitude, and duration used to encode the icon.

Rendering is the operation of transforming the encoded information into something
that can be perceived by people. The issue here is that the rendering by display hardware
may influence what people perceive. Early displays for virtual reality, for instance, had
sufficiently low refresh rate that some users got motion such from the lag between their
head movement and the visual scene. The rendering part of displaying information can
therefore influence the experiences that users have.

Next, let us look more closely at encoding and rendering. We start by considering what
information can be rendered.

25.1.1. Types of Value

A frequent point of departure for encoding is to separate different types of value. The
types of values to be displayed determine the appropriate encoding. Three types of
variables can be distinguished.

• Nominal variables (sometimes called categorical variables). Such variables do not
have an inherent ordering or mapping to numerical values. They include the names
of people, zip codes, and eye color.

• Ordered variables. Such variables may be ordered. They include the level of
education and the satisfaction rating of user interfaces.

• Quantitative. Such variables are numeric and may be subject to arithmetic. They
include, for instance, temperature, pulse, and level of rainfall.

These are not the only types of variables that we might want to output, but the three
alone cover numerous cases.

We spend time considering what kind of value we want to display because it matters.
As hinted at the beginning of the chapter, quantitative information should not be shown
using changes in hue (e.g., 1, 2, 3). However, it is perfectly fine to display nominal values
this way (e.g., Amsterdam, Brussels, Copenhagen)). In the first case, the colors should
not be used on a map because it does not communicate the ordering and quantitative
difference between the numbers. In the second case, color coding could be used, assuming
that the mapping is known or available to the person viewing the display.

502

25. Displays

Points

Lines

Areas

Visual marks Visual channels

Position (x, y, x&y)

Color (hue)

Shape

Size

Orientation

Color (value)

Texture

Motion

Color (saturation)

Figure 25.2.: This figure shows some ways of encoding data visually, based on Munzner
[552]. Left is shown some examples of visual marks; right is shown some
examples of visual channels.

25.1.2. Visual Encoding

Once it is known which values to show, the appropriate way to display these values can
be chosen. Let us start by considering this for the visual modality, the most researched
area of displays.

Visual encodings are typically separated into visual marks and visual channels [e.g.,
552]. Visual marks are geometric primitives such as points, areas, and lines. Visual
channels include the position of a mark, its color, and its texture. Figure 25.2 shows
examples of marks and channels.

Before we discuss marks and channels in more depth, let us be more precise about color.
The everyday language we use about color can be confusing. In technical terms, a color is
considered to have three dimensions (see Figure 25.2 for examples).

Hue is how we usually speak about color. We refer to hue when we say "yellow" or
"green". The RGB system for specifying colors relies on the hues red, green, and
blue.

Value concerns the lightness or darkness of a color. It is sometimes called the luminance
or brightness of the color. Value is thus the intensity of the color going from an
absence of light (dark) to the full brightness of a color.

503

25. Displays

Saturation concerns the depth or intensity of the color. If we in a color picker sets one of
the values of R, G, or B to full and the rest to none, we will have a fully saturated
color. As we go towards a more even mix of R, G, and B values, the color becomes
less saturated and will—when the R, G, and B values are the same—be white. Some
books refer to this as intensity or chroma.

These dimensions of color work differently for encoding data, as we shall see next.

Effective Channels and Marks for Certain Variables

The area of information visualization has been concerned with how to show marks and
which channels to use. It has established which types of marks and channels may be used
for which variables and, crucially, which visual variables that do not work for certain
variables. For example, the position channel is very well suited to show quantitative data.
This is why scatter plots are suitable for quantitative data because they encode data as
position on the axis. In contrast, the shape channel works poorly for encoding ordering
because it has no natural ordering. Without other information, it is hard to decide if
a circle is larger or smaller than a square. However, shape may be used effectively to
encode nominal variables because our visual system effortlessly tells them apart.

How do we know that? Recall from the chapter on perception (Chapter 3) that
psychophysics helps to study the perception of certain physical changes. Moreover, other
types of experiments (Chapter 43) has also helped empirically characterize which shapes
and marks work best. An early study is shown in the paper box below. Numerous
subsequent studies—psychophysical and experimental—have taught us more about which
encodings are appropriate [552, 322]. In particular, the following results are important:

• For nominal variables, hue is effective, as are shape and motion. Other channels,
such as size or saturation, can communicate a difference in quantity that might be
inappropriate. Thus, we could use hue to show different cities.

• For ordered variables, we can use value and saturation, as well as channels such
as area and volume. In particular, the latter two are not effective for quantitative
information, as it is hard to judge the exact difference in area (and hence the
quantity). However, it is easy to see an order.

• For quantitative variables, we know that position, length, and orientation are highly
effective. This is why scatter plots are easy to accurately read information from, and
why comparing the magnitude of a variable in a bar plot is easy. Other variables,
such as curvature, volume, saturation, and value may work too, but not as well as,
for instance, position.

504

25. Displays

Paper Example 25.1.1 : Which visual channels works the best?

Although the use of graphs and other visual displays to convey information is many
centuries old, the work by Cleveland and McGill [154] is considered seminal in
understanding when we accurately extract information.

Their main innovation was to approach the
use of graphs as a problem about how accurately
people read information from the graphs (rather
than, for instance, their aesthetic merits or their
use in exploratory analysis of data). Cleveland
and McGill [154] set out to understand which
elementary tasks people perform when extracting
information from graphs. These tasks are similar
to what have been called channels. The figure to the right shows two graphs that
rely on angle (or possibly area) and position along the y-axis to encode values.

The other part of the work of Cleveland and McGill [154] consisted of several
studies that compare how accurately people perform these different elementary
tasks. For instance, for the two tasks above, the data from an experiment with 54
participrequireiring them to state the percentage of a value relative to another, both
represented in a particular way (i.e., as angle or as position). Across participants, the
error rates can be plotted (y-axis below) relative to the actual difference (x-axis). The
errors for the angle representation are shown to the left, whereas the representation
for the position is to the right.

The conclusion here is that angle encoding results in more errors. In fact, only for
very small or very large differences are the error rates for the encodings similar. Such
data are the reason we know how to encode visual information so that people can
read it accurately; they are also the reason that pie charts are considered problematic
by many.

25.1.3. Encoding in Other Modalities

Above we have discussed in particular encoding for visual displays. The considerations
for encoding in other modalities are similar. First, the encoding needs to match human

505

25. Displays

perception so that the intended values are communicated and nothing else. Second, the
encoding should be feasible with the display so that the intended values can be rendered.

As an example, consider encoding data using vibro-tactile actuators [825]. Vibro-
tactile rendering can only be perceived by humans if the vibrations are between 20 and
500 Hz. However, people cannot separate more than nine frequency levels (and the
recommendation is that the difference between levels be at least 20%. Some devices, like
pneumatic-based actuators, can typically only render lover frequencies. This limits which
type of haptic stimuli that can be rendered.

25.1.4. Rendering

In some cases, however, what we want to display already exists in an appropriate modality
and there is no need to change it. For instance, we might have a 3D model that we wish
to display in VR or a recording of a haptic experience to be replayed. In these cases, there
is little concern about encoding, but only about how accurately a display can reproduce
the model to a human perceiver.

As mentioned at the beginning of the chapter, both encoding and rendering are about
matching the human perception. The spatial resolution of displays is often a factor that
influence human perception. In visual displays, this is about the pixels per inch or similar
measures; for haptic displays, it may be the number of actuators per inch (e.g., the
number of pins in a pin-array display). The temporal resolution of displays are about their
refresh rates, often measured in hertz. Finally, we may also consider particular features of
the human perceptual system. In foveated rendering, for instance, higher resolution is
offered at the spot where the user is looking because the periphery of the human eye sees
less accurately than at the center.

25.2. Simple Displays

A light-emitting diode (LED) is a semiconductor that emits light when an electric current
flows through it by releasing energy as photons. The amount of energy released determines
the color of the light. LEDs are often used as indicators. For instance, in consumer
electronics, a single LED is commonly used to signal that a device is turned off but
connected to an electrical source, for example, the red light typically found somewhere
on a television set. Computers and mobile phones with built-in cameras often include a
LED as part of the camera circuitry that turns on when the camera is active, informing
the user at all times whether the camera is active.

LEDs can also be arranged into LED displays where each LED represents a single
picture element (pixel). Originally, such LED displays were limited in terms of color, as
originally only red LEDs were widely available. Later developments resulted in green and
blue LEDs. If a red, green, and blue LED are arranged in a triad, it allows a user to
perceive it as a picture element (pixel). A LED display is a matrix of such red, green,
and blue diode triads.

506

25. Displays

25.2.1. n-segment Display

An n-segment display uses segments that can be turned on and off to display information,
typically numbers or letters. The number of segments can vary. One design is the co-called
seven-segment display (see Figure 25.3), which uses seven segments to convey characters,
typically numbers. A seven-segment display uses seven segments that can be lit up or not.
This binary segment behavior results in 72 = 128 possible states, although many of these
states do not correspond to useful character representations. In general, an n-segment
display can display n2 possible states. Increasing the number of segments increases the
number of potential states that can be expressed, and therefore increases the character
set. In addition, an increase in the number of states tends to improve the ability to
more accurately represent numbers, letters and other characters. In practice, n-segment
displays tend to be designed with a slight shear to improve readability. In addition, the
base segments indicated in Figure 25.3) are often complemented with additional segments
representing the period and the comma at the bottom right.
n-segment displays are very common in consumer devices and appliances, such as

microwave ovens, pocket calculators, alarm clocks and car stereos. The advantage
of n-segment displays is low-cost of manufacture as the number of required electrical
components is small. It is also easy to create an n-segment display as standardized decoder
circuits for common segment display configurations, such as seven-segment and 14-segment
displays, can be inexpensively procured and fitted into a device design. Well-designed
n-segment displays may also represent letters, numbers, and other characters more clearly
than a low-resolution dot matrix display.

The principle of having variable segments light up to indicate information has been
known since the advent of electrical light. A segment display can be realized using any
choice of switchable electric light, segment arrangement, and logic mechanism. A modern
segment display is typically lit using light-emitting diodes (LEDs). The logic mechanism
translates a predefined code for an individual character into the corresponding segments
that should be lit to visualize the character. A seven-segment display with an additional
segment for the period can represent all possible 28 = 256 states in a byte (eight bits). A
decoder circuit for a seven-segment display can then be implemented by providing eight
input lines, one line for each bit, and eight output lines connected to the eight individual
segments (ignoring any required electrical connections to provide power to the LEDs). In
practice, four bits represent 24 = 16 states, which is sufficient to represent numbers 0–9
in a typical decoder circuit, such as the Texas Instrument CD4511B decoder circuit.

25.2.2. Dot Matrix Display

An alternative approach to an n-segment display that provides higher resolution is a dot
matrix display. An example of a rudimentary type of dot matrix display is a flip-disc
display. Such a display consists of a large number of discs with a light color on the front
and a dark color on the back. A flip-disc display then flips the discs to produce a dot
pattern, such as a text message. They are commonly used in public spaces, such as large
outdoor signs and publication transportation.

507

25. Displays

Figure 25.3.: Two examples of n-segment displays. The two displays to the left illustrate
seven-segment displays with either all segments unlit (left) or visualizing
the number ‘7’ (right). Since each segment is lit or unlit, there is a total
number of 27 = 128 possible segment combinations that will be shown on
the seven-segment display, although some of these segment combinations
may not correspond to useful representations of characters. The two displays
to the right illustrate 14-segment displays, with either all segments unlit
(left) or visualizing the letter ‘K’ (right). A 14-segment display has a total
number of 214 = 16384 possible states. If the segments are placed wisely,
this allows better representation of letters and the ability to visualize many
more characters.

25.3. Visual Displays

A visual display, such as a computer screen, allows a computer system to present infor-
mation to the user. Visual displays have undergone tremendous development in the last
decade.

25.3.1. Display Technology

Central to a display is the mechanism used to reveal information on a screen. The
traditional approach, common until the beginning of the 2000s, is known as color CRTs
(cathode ray tubes). It relies on three electron guns (one for each red, green, and blue
color) that repeatedly scan a glass tube consisting of phosphorus dots in red, green, and
blue. Each pixel position consists of three phosphor color dots, each emitting either red,
green, or blue light when excited. When the phosphor dots are struck with the beam,
they emit light. The electron guns scan the phosphor-coated screen in a raster pattern,
drawing each line in the image from left-to-right and each line from top-to-bottom. The
frequency of these screen updates is known as the refresh rate. A higher refresh rate tends
to reduce perceived screen flickering.

In a CRT television set, the refresh rate is determined by the color encoding system

508

25. Displays

chosen in the region. For example, PAL (phase alternating line) color encoding, common
in Europe, South America, and parts of Asia, uses a 50-Hz-refresh rate and 576 visible
lines. NTSC (national television system committee) color encoding, common in North
America and Japan, uses a 60 Hz refresh rate and 480 visible lines. The difference in
refresh rate is historical: when color encodings were introduced, there was a desire to
align the refresh rate on CRTs with the AC (alternating current) power line frequency
(which is either 50 or 60 Hz, depending on the region).

When the electron guns reach the end of a line, they are turned off and repositioned at
the start of the next line. The delay involved in this operation is known as the horizontal
blanking interval (often referred to as ‘hblank’). Similarly, when the electron guns reach
the bottom of the screen, they are turned off and repositioned at the beginning of the first
line at the top of the screen. This delay is called the vertical blanking interval (‘vblank’).
These intervals became very important in early video game production, where typically
the programmer could only update video memory during the vblank period due to cost
limitations of chip sets at the time. Today, a technique known as ‘double buffering’ is
used to avoid screen tearing. The central idea is that the system uses two buffers. The
first buffer is used to directly perform graphical updates. When all graphics updates
are complete, the first buffered is copied to the second buffer, which is displayed on the
screen. This prevents the user from perceiving graphical artifacts, such as screen tearing
and partial graphical updates.

Since the early 2000s, improvements in flat-panel displays have phased out the use
of CRTs. Common flat-panel technologies include LCD (liquid crystal display), LCDs
backlit with light-emitting diodes (commonly referred to as LEDs), plasma panels, organic
light-emitting diode (OLED), and quantum dot light-emitting diode (QLED) displays.

25.3.2. Head-Mounted Displays

A head-mounted display (HMD) is a wearable display that can allows the user to be
exposed to various degrees of virtual information. The reality-virtuality continuum [530]
defines a spectrum of immersion for head-up displays (see Chapter 29). At one extreme
end, the user is exposed to the real environment and there is no exposure to virtual
information. At the other extreme end, the user is fully immersed in a virtual environment.
This immersion can be achieved by wearing a virtual reality headset. It is also possible to
augment the real environment with virtual information, for example, by allowing the user
to wear an optical see-through heads-up display which can reveal virtual information that
is mixed with the user’s view of the real world. Depending on the level of immersion, the
operating moves to the left and to the right in the reality-virtuality continuum.

Virtual Reality

For VR to be fully immersive, VR headsets (see Figure 25.4) must produce a very large
virtual world that fully occupies the user’s field-of-view. In addition, for information, in
particular text, to be legible, the resolution needs to be high. The net effect is that the
number of pixels that need to compute their pixel values is very high. This results in a

509

25. Displays

Figure 25.4.: A user wearing a VR headset. Photo by Nan Palmero, reused by Creative
Commons License.

high technical demand on the ability of the VR system to render this 3D virtual world at
a high resolution at a high refresh rate. In addition, when the user moves their head, the
user expects to see a new part of the virtual world. Thus, the VR system must track the
user’s head movement and respond to this movement with low latency.

Since a virtual world is fully immersive but a VR system is unable to fully reproduce
users’ equivalent experience when looking around and interacting in the real environment,
there is mismatch. This mismatch, exacerbated by the fatigue in wearing a headset over
a longer period of time, results in simulator sickness. This effect is so prevalent that
most empirical VR research with users routinely tests for simulator sickness. In addition
to tracking the user’s head movement, VR headset can allow users to walk around in a
virtual world. This requires positional tracking of the VR headset both in terms of its
Euclidean coordinate in the real environment and the direction of the headset—which
way the user is looking. Several techniques have been developed to enable VR positional
tracking including active markers (e.g., Valve’s Lighthouse system).

Since VR enables users to fully immerse themselves in a virtual world, VR is eminently
suitable for interactive simulations. Typical simulation domains where VR usage is
widespread include training activities in medicine, such as virtual surgeries, defense, and
manufacturing. In addition, VR can be used in the visualization of abstract information.
Since VR is fully immersive, it allows complex visualizations to occupy a very vast virtual
space. This may be beneficial in, for example, computational design, where users may
want to be able to analyze complex information, such as the blade geometry of an airplane

510

25. Displays

Figure 25.5.: A user inspecting the implications of a change in the blade geometry for an
airplane engine in VR [794].

engine, and at the same time be able to see the consequences of parameter modifications
(Figure 25.5).

Another example where VR may be useful is as a fully portable virtual office [293]. VR
allows a user to wear a headset and consistently reconstruct an elaborate high-resolution
real-world multi-display environment. In addition, since VR is in 3D the additional
operational space allows common productivity applications, such as spreadsheets [271] and
presentation software [73], to be augmented with additional visualization and interaction
features.

Augmented Reality

Augmented reality can be provided through a headset which allows users to view the real
world by merely looking around and moving their head and at the same time perceive
virtual objects that appear to be located in the real world, a process known as registration.

AR headsets are commonly of two designs. The first is video passthrough, which means
a camera is mounted at the front of the headset. The user views a video stream from this
camera using displays mounted very close to the user’s eyes. Virtual objects are rendered

511

25. Displays

Figure 25.6.: An example of an optical see-through head-mounted display, the Microsoft
HoloLens.

on top of this video stream. This solution is less expensive and technically difficult to
realize, but results in considerably lower fidelity in the user’s view of the real environment.
Furthermore, it is challenging to correctly register virtual objects in the video stream.

An optical see-through head-mounted display (OST HMD) allows users to perceive
virtual digital content seamlessly blended in the physical environment. The user perceives
the real world through a glass pane, and virtual objects are registered to appear in the
real world of the user using holographic technology. An example of such a headset is
the Microsoft HoloLens (Figure 25.6). OST HMDs are advantageous in that the user
perceives the real world through essentially a glass pane. Hence, little to no fidelity is
lost. However, such displays have difficulties in generating accurate colors. For example,
it is common to perceive rainbow bands on white panels. In addition, it is difficult to
generate a wide field-of-view.

25.4. Audio

Humans perceive sound as vibration in air. These vibrations are called acoustic waves.
An acoustic wave is received by the human auditory system and perceived as sound in the
brain. A human can typically perceive sound in a frequency band between approximately
16 Hz and 16 kHz [548], although the specific range will vary between individuals and
factors, such as age, can affect the perceived range.

There is a rich design space for auditory displays. In an analog electrical circuit,
sound is represented as an electrical signal, a variation in voltage. The mathematical
representation is a continuous time-varying signal; a simple example would be a sinusoidal
signal. In a digital circuit, sound is represented as a series of binary switching states.
The mathematical representation is a series of binary digits. An analog-to-digital (ADC)

512

25. Displays

converter is a circuit that converts an analog signal into a digital representation. A
digital-to-analog converter (DAC) is a circuit that converts a digital representation into
an analog signal. Several electrical circuit architectures have been proposed in academia
and industry to efficiently realize this functions. A speaker is a transducer that converts
an electrical acoustic signal into sound pressure so that it can be perceived by humans.

Spatial sound

Humans can infer the direction and distance of an origin of a sound with some precision.
Since humans typically have two ears, sound will arrive at the individual ears with some
time difference. This is known as the interaural time difference, and the human auditory
system is capable of exploiting this to enable sound localization. A monaural (mono)
sound system either emits the sound signal to a single speaker or emits the same sound
signal to speakers. This prevents any notion of sound localization. A stereophonic (stereo)
sound system reproduces sound localization to various extent by emitting different sound
signals to different speakers. A common example is a pair of headphones.

Spatial sound refers to the creation of spatial experience in listening to computer-
generated sound. Consider for example playing a 3D video game, the sounds of which
can be heard from the direction and distance they would occur in the virtual reality.
Sonification uses spatial sound and other cues to cast visual or other information into
sound. One could, for example, listen to an sonification of atmospheric impurities or
display continuous variables in a dataset using sound.

Auditory icons and earcons

Auditory icons map an event to a sound-producing event on a computer. For example, the
sound of a bell ringing may be a reminder of a calendar event. Earcons are auditory icons
that do not resemble the event that originated the sound. They relax the requirement
of mimicking the sound-originating event. This means that their meaning is learned by
associative learning and takes time. Research has looked into the design of earcons by
combining them and forming hierarchies of them by using shared cues like rhythm or
pitch. Earcons are commonly used to represent temporal events, such as a notification for
an incoming message or an error. Brewster et al. [96] suggested the following guidelines
for designing earcons:

• ”Use musical instrument timbres, simple tones such as sinewaves or square waves
are not effective. Where possible use timbres with multiple harmonics as this helps
perception and can avoid masking”

• ”If listeners are to make absolute judgements of earcons then pitch/register should
not be used. A combination of register and another parameter would give better
rates of recall”

• ”Complex intra-earcon pitch structures are effective in differentiating earcons if used
along with rhythm or another parameter”

513

25. Displays

• ”Make rhythms as different as possible. Putting different numbers of notes in each
rhythm is very effective”

• ”Great care must be taken over the use of intensity because it is the main cause of
annoyance due to sound”

• ”This may be stereo position or full three-dimensions if extra spatialisation hard-
ware is available. This is very useful for differentiating parallel earcons playing
simultaneously”

• ”When playing serial earcons one after another use a 0.1 second gap between them
so that users can tell where one finishes and the other starts”

Recognizability poses limitations to earcons’ wider use.

Speech

Speech can be synthesized by computers, which has opened the door for conversational
user interfaces. Speech can be used in many contexts, including digital assistants,
announcement systems, and screen readers. However, until recently, limited accuracy
of voice recognition has posed a problem. Of what use is a speech interface that one
cannot talk back to? Especially punctuations (”Stop it!”) and proper names would cause
recognition issues. A word that is recognized erroneously requires some other modality
for fixing, for example, a touchscreen. Recently, advances in text-to-speech technology
and language models are making it possible to use speech to command a digital agent.

25.5. Haptics

Haptic technologies enable users to perceive touch or, in general, forces on their body. A
traditional application of haptics is telerobotics, where the user directly controls a remote
robot. Haptics are then used to improve users’ ability to perceive reactions of the robot
in response to control commands.

25.5.1. Vibration

A common approach to activate a sense of touch is the use of vibration. Vibration
can be generated straight-forwardly using a vibrator. An electric motor transfers torque
(rotational force) using a drive shaft. If an unbalanced mass is connected to the drive shaft,
the system will produce vibrations. Such a system can, for example, be used to generate
the rumble sensation commonly found in video game controllers and the vibration signal
of mobile phones.

25.5.2. Force Feedback

A force feedback device is a system that generates a perceived force by actuation. An
alternative term is force-reflecting interface [509]. One example of force feedback is a

514

25. Displays

mechanical exoskeleton glove. When the user wears the glove the system tracks the user’s
fingers. If the fingers are supposed to interact with a virtual object then the system
uses force feedback to simulate the forces the user would have experienced had the user
touched a physical object. Mechanical exoskeleton gloves have applications in telerobotics,
teleoperation and virtual reality.

Mechanical exoskeleton gloves can be grounded. Grounding means that the system
is connected to a grounding point, such as a desk or a floor. This allows the system to
simulate the sensation of weight, for example, a user lifting a heavy virtual bag in virtual
reality. Another extension is to augment the gloves with additional feedback, such as
vibration feedback or thermal feedback to simulate tactile sensation or touching cold or
hot surfaces.

Massie et al. [509] set out three criteria for effective force feedback:

Free space must feel free The device should minimize encumberment of the user and
minimize external forces when the user is moving in free space. This means the
device should have low inertia and no unbalanced weight.

Solid virtual objects must feel stiff The maximum stiffness that a virtual surface can
represent determines how solid an object will be perceived by a user. In reality,
there is a limit to the stiffness a system is required to simulate in order for users to
perceive a virtual surface as solid. For example, Massie et al. [509] states they have
found users to perceive a stiffness of 20 N/cm as representing a solid immovable
surface.

Virtual constraints must not be easily saturated Virtual walls and other solid immov-
able surfaces should be perceived as solid and immovable. The system should
support the maximum exertion force of the finger suitable for the application, which
can range from a force of 10 N for precise manipulation [509] to 40 N for the
maximum exertion force of a human finger [791].

The braking mechanism in a force feedback glove can be constructed using a variety of
techniques. One way is to use a pulley system where each finger is connected to a cable. A
motor pulls the cable to simulate force feedback [509, 176]. The advantage of this design is
its relatively simplistic actuation principle. A disadvantage is its complicated mechanical
design, which makes a device expensive to build and maintain. Another disadvantage is
the possible risk of the pulley system accidentally overextending a finger, causing injury.

Another example of a mechanism is to use a ratchet wheel construction, which allows
the mechanical exoskeleton to freely follow finger movement. When force feedback is
activated, a driving mechanism inserts a linear slider into the ratchet wheel and prevents
the mechanical exoskeleton joint from moving (Figure 25.7). The result is a sensation of
force feedback as the user’s finger movement is stopped by the braking mechanism [299].

515

25. Displays

Figure 25.7.: An example of a realization of a mechanical exoskeleton for force feedback
in VR and AR applications [299]. The overall mechanical exoskeleton design
is shown to the left and the force feedback unit is shown to the right.

516

25. Displays

Paper Example 25.5.1 : Haptic Guidance for Users Suffering From Vision
Impairments

Computer displays do not need to represent digital objects, they could also represent
objects in our surroundings. Augmentation of sensory capabilities is valuable for
people with sensory impairments, who can be assisted in navigating environments and
interacting with objects. Sonification encodes geographical or other information to
sound, which can be used to assist navigation or situational awareness of blind users.
Vibrotactile displays have been developed that vibrate according to interesting objects
or events in the environment. Such displays can be placed in multiple ways on a
human body; solutions have been presented for the waist, the shoe, the wrist etcetera.
Each location, though, triggers different challenges for electrical engineering. Each
location is also different in terms of people’s ability to discriminate haptic stimulation.
The underlying reason is that mechanoreceptors are more densely located on certain
parts of the body. In this respect, placing such displays on fingers seems appealing.

FingerSight is a haptic guidance system that helps people with vision impairments
to locate and reach to objects in peripersonal space [711]. Peripersonal space refers
to the physical space surrounding our bodies within which we can reach to and grasp
objects. While it may appear effortless to grasp an object for a person with no visual
impairment, it is effortful for blind people. For example, at the moment of writing
this text, the co-author (AO) had the following objects in his peripersonal space: a
mobile device, a coffee mug, a water cup, a key, a plate, a knife, a laptop, a chair, a
water jug, and a piece of paper.

FingerSight consists of a finger-worn ring that houses a camera and a haptic display
(??). The display has four evenly spaced tactors that can stimulate the index finger.
The camera tracks objects to track the distance to them. Distance is mapped to the
features of the haptic stimulation, with the purpose of indicating how far away an
object of interest is. As the user moves the hand in the air closer or further from an
object, the tactors modulate their actuation frequency accordingly. An experiment
showed that very little training was needed. Users could quickly learn to discriminate
haptic feedback in main directions. Such guidance can help users explore near-by
objects and guide the hand to an object of interest.

517

25. Displays

25.5.3. Haptic textures

Look at a physical surface close to it and touch it, for example, with a finger pad. Close
your eyes while doing the following: Then move the fingerpad on the surface slowly: Can
you sense the texture of the object? What if you increase the velocity?

Fingertips and other parts of the hand have high densities of mechanoreceptors. This
permits both spatial (where) and object (what) sensing. Research has found that much
information can be conveyed with temporal information alone [454]. This has opened
the door to convey information via haptic textures : sensations of texture generated when
moving a finger on a matrix of actuators.

A high quality tactile matrix can generate haptic gradients that can closely mimic the
sensation of brushing against an object. The force of each actuator is calibrated according
to the (real) surface normal it is supposed to mimic. This allows generating sensations
of slopes and bumps. Their response can further be changed according to the velocity
with which the finger is moved. With a high resolution haptic display, global and local
areas of the display can be used to convey information. For example, the whole display
could resemble a ’sandy’ texture, but locally there could be peaks and valleys signifying
information.

25.6. Emerging Forms of Displays

This section reviews some ways in which researchers have worked toward the ultimate
display, as envisioned by Sutherland [788] in 1965. Sutherland speculated on what the
best possible display would be. In the paper, he described the so-called Ultimate Display;
the final paragraphs read as follows.

The ultimate display would, of course, be a room within which the computer
can control the existence of matter. A chair displayed in such a room would be
good enough to sit in. Handcuffs displayed in such a room would be confining,
and a bullet displayed in such a room would be fatal. With appropriate
programming such a display could literally be the Wonderland into which
Alice walked.

Since then, HCI researchers have pursued different variants of this display. Next, we
present three of these variants.

The first departs from a simple, yet profound idea: What if pixels were not limited
to communication via emission of light? Most of this chapter has focused on visual
displays. In contrast, shape-changing displays use physical actuation to encode additional
information into pixels. Users can touch, push, and explore this information with their
hands.

A prominent example is inFORM, developed by Follmer et al. [246]. It was inspired by
the concept of affordance: the perception of action potentials in an object. The system,
shown in Figure 25.8 uses 30x30 motorized polystyrene pins arranged in a 381x381 mm
lattice. Pins are attached to push-pull rods that allow the extension of a pin 100 mm

518

25. Displays

Figure 25.8.: inFORM is a shape-changing display. It enables physical affordances via
physical actuation of pixels [246]. The technique allows haptic perception
of information encoded a pixel. A pixel can communicate via information
encoded in (1) color, (2) height, and (3) dynamic response to pressing (e.g.,
stiffness).

from the surface. Motorized slide potentiometers are used to control the rods, producing
a force up to 1.08 N. PID (proportional-integral-derivative) is used for real-time control
of haptic feedback upon pressing. In the prototype, a ceiling-mounted projector was used
to project color on pins.

The prototype allows for exciting new interaction techniques (see Chapter 26) that
are impossible with regular touch displays. Buttons can be formed by raising pins and
responding with a button-like stiffness to pressing. Touch tracks are lines or curves formed
by adjacent pins, which the user can touch at different locations or slide over. Handles
are pins that can be pinched and pulled up or down in own dimensions. Dynamic widgets
can be created that change as a response to a user’s press. For example, a triangular Play
button can change to a rectangular Stop button in a media player. Pins can also react to
hovering to create what the authors call dynamic affordances. With a ceiling-mounted
camera for hand tracking, pins can lift up those areas of a display that are interactive.
Because the pins have sensors, other objects also be placed on the display. For example,
a ball can be rolled on the display, the display reacting to it to create a path for it. An
object placed on the surface can be rotated to create a knob-like experience.

Most typical displays have been rigid, tablet-sized, or display-sized, and of particular
materials (e.g., glass, plastic). Much research on displays have attempted to move beyond
these sizes and materials.

Finally, digital fabrication concerns the computer-supported process of designing and
creating physical objects. It has revolutionized many areas of manufacture and has
also been influential in the field of HCI. One reason for this influence is that it allows
some parts of Sutherland’s vision to be fully realized: The creation, replication, and
manipulation of physical objects.

Zoran and Paradiso [911] presented early work on such digital fabrication. They aimed

519

25. Displays

Figure 25.9.: FreeD, an early tool for fabrication [911].

to create a device that bridged on the one hand digital models and traditional craft on
the other. This resulted in the tool shown in Figure 25.9. At the top (A) is shown a
handheld milling tool that allows the user to cut into different materials. The tool is also
motion tracked so that the location of its tip is known. This means that when the user
removes material from an object to be created (B), the tool can change spindle speed or
move the shaft to alert the user if they are violating the constraints of a pre-selected 3D
digital model. In that way (C), the user is supported in adhering, if they wish, to the
constraints of the model, while being allowed craftmanship and freedom of expression. In
this case, we consider digital fabrication a form of display or output.

Summary

• Displays turn digital information into physical phenomena that users should be able
to perceive accurately.

• A key consideration is their match to the human visual system. Any change in a
display, be it visual or otherwise, may not be perceived or perceived proportionally
by the user.

• Displays are not limited to visual presentation of information and they can be
implemented via different technical principles.

• Emerging displays combine displays and sensing.

520

25. Displays

Exercises

1. Dot matrix displays. What cannot you display with these?

2. Designing a visual display. Consider having to design a real-time updated scatterplot
display of a two-dimensional dataset for a VR environment. 1) Which visual channels
would you use? 2) How would you encode the variables visually? 3) What are the
pros and cons of a VR display over a regular desktop monitor?

3. Haptic interfaces. Following the concepts given in this chapter, propose how to
design a haptic notification (e.g., for an incoming message).

4. Sensory modalities. Compare the auditory and the tactile sense as modalities for
displaying geographic data.

5. Consider small point lights (e.g., LEDs), used in kitchen appliances, cameras,
watches, and many other interactive systems. They can vary in intensity over time.
What are the possible ways you could use them to encode information? What are
the likely perceptual limits for people trying to decode the information? When
done, have a look at Harrison et al. [310] to see some intriguing design possibilities.

521

26. Interaction Techniques

Although the term itself may not be familiar, we use interaction techniques all the time. If
you open an application menu on a computer, what you will see are hotkeys (or shortcuts)
associated with commands; In the ’Edit’ menu, you may, for example, see ’Ctrl-X’ for
cutting and ’Ctrl-V’ for copying. Alternatively, you can click on the command with the
mouse. When you hover over the item in the menu, it is highlighted by changing the
background color. Using hotkeys or the mouse to select a command differs in multiple
ways. Using hotkeys is fast, but requires learning. Selection with a pointer is slower
because it requires visual search and pointing.

All basic interactive tasks that we carry out with computers are facilitated by interaction
techniques such as pointing, scrolling, menu, entering text, and navigating. Some familiar
techniques that we discuss in this chapter include scrolling, word autocompletion, panning,
and zooming, and gain functions in pointing. At a more general level,

an interaction technique is a computation that couples input and output, to
support elementary interactive tasks.

Figure 26.1 shows some examples of interaction techniques; the side box below explains
the Bubble Cursor, an interaction technique that expands a cursor’s selection area to
always hit the nearest target.

What are the elementary tasks that users need to solve? In the bulk of this chapter,
we discuss the following. The literature contains many others (see for instance the work
of Foley et al. [245]), but these four are essential.

• Moving the active area or cursor in the user interface, often called pointing tech-
niques.

• Selecting or manipulating an object; this includes menu techniques

• Entering numbers and text, often called text entry techniques.

• Changing which part of an information space the user sees, often called camera
control or navigation techniques.

To help users solve these elementary tasks, interaction techniques couple input, from an
input device (see Chapter 24), to output, shown to the user on displays (see Chapter 25).
Occasionally, that coupling is simple: A hotkey couples key combinations where a modifier
key and a letter are pressed to executing a command, with some feedback to the user
that the command has been invoked. At other times, that coupling is simple. For
instance, most operating systems use some form of mouse acceleration, which may involve

522

26. Interaction Techniques

complicated mappings from movements of a mouse to the movement of the cursor pointer
[138].

Coupling distinguishes interaction techniques from other concepts discussed in this Part.
Input methods, for example, concern primarily input processing, and input devices the
underlying hardware and software system. User interfaces, on the other hand, are much
larger wholes. They may involve multiple interaction techniques and other interactive
features designed to support several user tasks. Except for simpler mobile games, one
interaction technique rarely suffices as a user interface to an application.

Next, let us look at what matters to interaction techniques.

Figure 26.1.: While we commonly use interaction techniques like scrolling, panning, and
zooming, HCI innovates and studies alternative designs and their pros and
cons. Two examples: Top: a way of shifting icons, red squares, so that
they are not obscured by a user’s finger [841]. The position of the squares
is shifted from so that the user can see them. Bottom: An interaction
technique where leaning forward zoom the content on a display [308].

523

26. Interaction Techniques

Paper Example 26.0.1 : The end of misclicks?

Bubble Cursor is an interaction technique to select targets with a pointing device
[289]. It facilitates the selection of targets when using an indirect pointing device,
such as a mouse. The intuition is easy to get: Imagine pointing toward a small target.
If the target has no neighboring targets, why not make its selection area much larger?
This would make it easier to select.

Its computations consist of three steps. First, the Bubble Cursor computes a
geometric shape called a Voronoi diagram for targets on the display. Given the
targets, a Voronoi diagram partitions the display so that every pixel on the display is
mapped to exactly one target. This defines selection regions for the cursor. Second,
when the cursor is moving, the Bubble Cursor actively changes the selection region;
in other words, to which target the cursor is mapped to at any given time. Third,
clicks are assigned to the target within the same Voronoi cell as the cursor. The
figure shows how moving the cursor would not normally select a target (a), but when
using the Bubble Cursor (b), it would be. The third pane shows the corresponding
Vornoi diagram.

The authors’ hypothesis was that the technique benefits the selection of smaller
targets because the empty space around them can be exploited. In particular, the
Bubble Cursor expands their effective selection area, possibly putting an end to
misclicks. This hypothesis was evaluated in an empirical study in which users were
asked to select targets as quickly as possible. They found that the benefit is large and
practically relevant: The average selection time was 1.25 s for the regular point cursor
and 0.9 s for the Bubble Cursor. The downside of the technique is that it changes
the familiar look and feel of pointing and may obstruct graphics or text underneath
the bubble. However, with an increasing density of distractors, this benefit vanishes.
This finding shows that empirical studies have a critical role in helping to identify
the operating range in which a technique is useful.

CHI 2005 ׀ PAPERS: Smart Interaction Techniques 1 April 2–7 ׀ Portland, Oregon, USA

BUBBLE CURSOR DESIGN AND IMPLEMENTATION
In designing the bubble cursor, we explicitly sought to
address two main shortcomings of area cursors.

First, area cursors in the literature are typically squares. As
shown in Figure 2a, situations can occur where a target that
is further away from the centre of the cursor is captured
preferentially over a closer target, due to the shape of the
square. This may make it potentially difficult for a user to
plan their movements when heading for a particular target.
We solve this problem by making the default shape of our
bubble cursor a circle, which ensures that the target closest
to the cursor centre is always captured first (Figure 2b)

Figure 2. Square vs. circle cursors. D1 < D2. (a) Square shape
captures target further away from the cursor centre. (b).

Circle shape ensures that the closest target is captured first.

Second, as discussed in the previous section, even with the
enhancement suggested by Worden et al. [15], area cursors
surpass point cursors only when a single target is inside its
hotspot. When the area cursor is too large (Figure 3a), the
likelihood of multiple targets being captured by the hotspot
increases, and consequently lowers the benefits of an area
cursor. In essence, the effective width of the targets regress
to their actual values since the area cursor simply behaves
as a point cursor in this situation [15]. Conversely, if the
size is too small, the full potential of the area cursor will not
be realized, as the area cursor may find itself in empty
spaces with no targets within its hotspot (Figure 3b). Thus,
the overall benefit of an area cursor when used in an
interface with multiple targets is highly dependent on its
size, and on the layout of the targets. The bubble cursor
addresses this problem by dynamically changing its size
based on the proximity of the surrounding targets.

Figure 3. Effect of size on performance of area cursors. (a) A
large area cursor tends to encompass multiple targets, thus

completely negating its benefits. (b) A small area cursor does
not always capture a target, thus reducing its benefits.

By default, the bubble cursor is rendered as a semi
transparent circular area cursor. A small crosshair is drawn
in the center of the bubble cursor indicating the current
location of the standard pointer. A simple algorithm is used
to continuously update the radius of the bubble cursor, such
that there is always exactly one target within its hotspot. To
describe the algorithm in an environment with targets T1,
T2, ..., Tn we use the following definitions:

Intersecting Distance i (IntDi): The length of the shortest
line connecting the center of the bubble cursor and any
point on the border of Ti.

Containment Distance i (ConDi): The length of the longest
line connecting the center of the bubble cursor and any
point on the border of Ti.

A simplified version of the algorithm is as follows:

Set i = index of closest target (Ti) by intersecting distance
Set j = index of second closest target (Tj) by intersecting
distance
Set radius of bubble cursor = min(ConDi, IntDj)

This algorithm ensures that the bubble cursor will at least
intersect the closest target, and possibly completely contain
it. Furthermore, it will not intersect the second closest
target, and therefore no other target. To prevent the bubble
cursor from always touching the second closest target, in
practice we slightly modify this algorithm to allow some
empty space between the edges of the bubble cursor and the
second closest target (Figure 4a). When the bubble only
intersects the closest target and does not completely contain
it, we morph the cursor by extending a second bubble
which quickly expands from the intersection points and
envelopes the target (Figure 4b). This acts as a reinforcing
visual cue to the user that the target is indeed captured by
the cursor.

Figure 4. Bubble cursor. (a) Cursor size is dynamically

adjusted such that only one target is captured at any time. (b)
Cursor is morphed to envelop the target when it is not

completely contained by the main bubble.

Effective Width
We now define how the bubble cursor changes the effective
width of a target – the size in motor space of a target’s
activation boundaries. Using the bubble cursor essentially
divides up the total space in which all targets reside into
regions, such that there is exactly one target inside each
region, and that target is the closest target to any point
within that region (Figure 5). In mathematical terms, this is
referred to as a Voronoi diagram [2]. The activation

283

CHI 2005 ׀ PAPERS: Smart Interaction Techniques 1 April 2–7 ׀ Portland, Oregon, USA

boundaries of each target are thus equivalent to its
corresponding region in this Voronoi diagram. This in
effect increases the target’s size in motor space to the
maximum possible extent. As can be seen from Figure 5, a
target’s region need not be rectangular. In this paper, we
restrict our experiments to targets with square activation
zones, and define the effective width as the square’s width.
To model selection times in the case where the region is not
square, more advanced techniques are required, which we
have developed and published elsewhere [7].

Figure 5. Voronoi diagram defining the regions surrounding

each target. The activation boundaries of each target, or
effective width, are defined by the corresponding region.

EXPERIMENT 1
Given that the bubble cursor enlarges the effective width of
every target in a deterministic manner, we should be able to
use Fitts’ law to model and predict the time it takes to
acquire targets using the bubble cursor. From previous
work on expanding targets [14, 17], we would expect that
Fitts’ law would hold in situations like this where the target
width dynamically changes during the acquisition process.
However, the bubble cursor has a few properties that make
it difficult to directly apply the results of the previous work
on expanding targets without additional experimental
verification. First, a bubble cursor that is constantly
changing size may be visually distracting to the user and
thus affect the performance in an irregular way that may
make it difficult to model with Fitts’ law. Second, users
may find it difficult to predict how far they need to move
the pointer before the bubble cursor captures the desired
target, thus affecting the planning and execution of the
required motor movements. Thus, it is important to
empirically determine if Fitts’ law holds for bubble cursors.
This is the first goal of Experiment 1.

Even if Fitts’ law is shown to model bubble cursor
performance accurately, it does not necessarily mean that
the bubble cursor provides a significant advantage over
point or regular area cursors. By definition, the bubble
cursor enlarges the effective width of every target to the
maximum possible extent. As such, in the best case
scenario, performance should be governed by the effective
width rather than the actual width of the target. In other
words, selecting a target with actual width W and effective
width EW with a bubble cursor should be equivalent to
selecting a target with actual width of EW with a regular

point cursor. In practice, however, this may not be the case
and performance may be somewhere between the limits
determined by W and EW. Thus, the second goal of
experiment 1 is to determine if performance is governed by
and makes maximal use of the effective width.

To answer these questions in a systematic manner, we begin
by studying bubble cursor performance in the simplest
possible pointing task: 1D target acquisition.

Apparatus
The experiment was conducted on a 3.2Ghz Pentium4 PC
running Windows XP with OpenGL for graphics, and a 20”
LCD display at 1600x1200 resolution. Mouse acceleration
was set to 0, with a control-display ratio of 1/2. All
dimensions are measured in units (1 unit = 0.2 cm).

Participants
Ten volunteers (4 female, 6 male) participated in the
experiment. Participants ranged in ages from 18 to 25, were
all right-handed, and controlled the input device and
consequently the cursor with their right hand.

Procedure
The task was a reciprocal 1D pointing task, which required
participants to select two fixed sized targets back and forth
in succession. The targets were rendered as solid circles,
equidistant from the centre of the display in opposite
directions along the horizontal axis. The target to be
selected was colored green, and the other grey. Movement
of the cursor was restricted along the horizontal axis. When
participants correctly selected a target, the targets would
swap colors, as an indication that the participant had to now
move to and select the other target. Participants had to
successfully select the green target before the colors would
swap, even if it required multiple clicks. This removes the
possibility that participants may try to “race through the
experiment by clicking anywhere”.

If we only had two targets in the scene, the effective width
of each target would be half the size of the display, making
selection trivial. To approximate a more realistic target
acquisition scenario, distracter targets of varied sizes were
pseudo-randomly placed in the scene, in a manner such that
the effective width of both goal targets was controlled.
Distracters were rendered as grey outlined circles. The
bubble cursor was rendered in semitransparent blue, and
any goal or distracter targets it covered also appeared blue.
In the baseline condition using a point cursor, goal and
distracter targets were highlighted blue when the point
cursor was over them.

Design
A repeated measures within-participant design was used.
The independent variables were cursor type CT (Point,
Bubble), amplitude A (192, 384, 768 units), width W (8, 16,
24 units), and effective width EW (32, 64, 96 units). A fully
crossed design resulted in 54 combinations of CT, A, W,
and EW.

284

26.1. Objectives for Interaction Techniques

Why do we need interaction techniques? The two main purposes of interaction techniques
are to improve and enable interactions. First, some interaction techniques improve user
performance in some conditions of interest. The goal is to find a technique that suits
the user group or the context. Gesturing – shapes and directed swipes drawn on a touch

524

26. Interaction Techniques

display – offers an alternative to tapping in text entry. Similarly to hotkeys, gestures
require some time to learn; however, they may speed up text editing. The stylus, a digital
pen available for some tablets and smartphones, is another example. However, it offers
superior tracking and drawing performance at the expense of mobility: Using a stylus
requires adequate posture and support. Some design objectives commonly considered in
the research of interaction techniques are given in Table 26.1.

Second, interaction techniques enable interaction in circumstances that would normally
be challenging or even impossible. Research on enabling techniques often attempts to
exploit alternative sensory modalities, such as gaze or haptics. In Augmentative and
Alternative Communication (AAC), interaction techniques are developed for people with
speech and language difficulties. Gaze-based interaction refers to a class of interaction
techniques developed primarily for users with severe motor disabilities, such as cerebral
palsy. An example is dwell-based selection: Here, a target can be selected by fixating on it
for a long enough time. A threshold is set for continuous fixation on a target, after which
it is triggered. The downside of this technique is the Midas effect : gazing at something
may inadvertently select it. Hence, setting the threshold incurs a trade-off between the
speed of selections on the one hand and false positives (Midas selections) on the other.

An interaction technique often exposes a novel trade-offs for an interactive task. In the
case of hotkeys, for example, the trade-off concerns performance and learnability. Hotkeys
enable an alternative modality to access commands. Instead of tapping–or point-and-click
if you are using a mouse–pressing a key combination launches the command. On the one
hand, hotkeys are quicker to access than accessing commands by pointing. If you know
the hotkeys of the commands that you use the most frequently, you can be significantly
faster than someone who does not. An expert user of professional photo editing software
has tens of hotkeys. On the other hand, learning key combinations takes considerable
time. Several hours of practice are needed to adopt only ten hotkeys. An example of
tradeffs in design is given in the side box.

Research on interaction techniques involves three main types of efforts: (1) innovation
of novel input–output couplings, (2) engineering work to enable, implement, and optimize
technical enablers of techniques, and (3) empirical research on how interaction techniques
work in practice. Advances in software and hardware have opened up many opportunities
for innovation. We have new methods for sensing human movement, from eye-tracking
to EEG. We have more responsive, higher resolution display technology for a variety
of circumstances from cars (HUDs) to virtual reality. We have new and more accurate
machine learning methods and compute resources, which allow us to infer, reason, and
plan in real time. The prevalence of possibilities has created a dilemma: Almost any
interaction technique could be created, but which ones should be created? Answering
this question requires commitment to user-centric design processes.

Consequently, research is a multidisciplinary effort drawing contributions from computer
science (e.g., machine learning techniques for inferring what users intend), electrical
engineering (e.g., sensing methods suitable for gaze-based control) and interaction design
(e.g., designing gestures for text entry on mobile devices). Design decisions can also be
informed by psychology, especially research on motor control and perception. The task
related to the interaction technique can be analyzed and the corresponding motor control

525

26. Interaction Techniques

Design objective Operationalization

Performance Speed and accuracy in representative tasks

Experience Self-reported experience of flow, mastery, control, or similar
quality

Learnability Rate of learning; Time it takes to achieve a desired level
of skill

Mobility Suitability for conditions in which users are walking, mul-
titasking, or otherwise encumbered

Ergonomics Physiological and experienced comfort in representative
tasks

Accessibility Suitability for users with different abilities

Table 26.1.: Common design objectives considered for interaction techniques

task, such as pointing or steering, can be identified. A corresponding theory or model is
used to engineer the technique or assess potential design solutions. Techniques can also
be empirically evaluated in an experimental setup where users need to perform that task.
Often, the performance achieved is compared to baseline design to assess it. Baselines are
often previously known state-of-the-art techniques or designs popular in everyday use.
Without a baseline, it may be difficult to demonstrate that a desirable trade-off has been
achieved.

In the rest of this chapter, we first review key areas of research, starting with pointing
techniques. Finally, we look at two important perspectives on interaction techniques:
control and learnability.

526

26. Interaction Techniques

Paper Example 26.1.1 : Tradeoffs in the design of interaction techniques

The design of interaction techniques involves multiple objectives. Hotkeys are a
point in case. Grossman et al. [290] compared several techniques for leaning hotkeys
(Figure 26.2):

1. Traditional: The hotkey is presented next to the command label as in desktop
applications.

2. Fading-out hotkey: The hotkey label stays visible for a short time after selection
and then fades out.

3. Hotkey menu replacement: The command label is replaced with the hotkey
label when the user hovers over it.

4. Audio feedback: The command label and the hotkey are both read aloud by
the system after selection.

5. System delay: the user is forced to look at the hotkey label of a clicked item
for a few seconds.

6. Disabled menu items: Command labels are grayed out, while shortcuts are
more clearly visible.

7. Blinking hotkey: When the menu closes, the hotkey stays visible and blinks for
a short duration

8. Following hotkey: when an item is clicked, the menu closes but the hotkey
stays visible and follows the mouse cursor for a while.

9. Visual feedback: combines blinking, following, and replacement techniques.

The set of techniques may look arbitrary at first, but they actually combine three
design principles: Cost, Feedback, and Memory. First, by manipulating the time
cost associated with hotkeys, one can incentivize users to consider them (cost-based
techniques); In Chapter 21 we discuss why changing costs and benefits can nudge
users to adopt different sensorimotor strategies. Second, hotkeys are often not noticed.
Making them more prominent may promote the recognition of them (feedback-based
techniques). In Chapter 3 we looked at visual attention and saliency. Third, using
different sensory modalities can help encode and recall hotkeys better (memory-based
techniques).

A controlled, isolated task was used to compare these techniques. In the task, a
command label is shown, and the user must select it from the menu as quickly as
possible. The results were surprising. Audio feedback and Disabled menu techniques
worked the best, both increasing the use of hotkeys by more than 100 % and reducing
task completion time, a staggering improvement! In the Traditional condition, only
30 % of the users used the hotkeys at all, and this doubled with these two best
techniques. Users also started to use hotkeys earlier in the experiment. However,
there are caveats. Audio feedback works by continuously reminding users about
hotkeys, perhaps to the point they give up and rather start using them than continue
listening to them. Disabled menu items, similarly, force users to pay attention to the
hotkeys. Visual feedback, to the surprise of the authors, did not help transitioning
to hotkeys, even if this was combining other techniques. Moreover, users did not
appreciate it. The authors speculated that this is because users must focus on a visual
main task and could not divide attention to the cues. Also the Delayed technique
was negatively perceived.

527

26. Interaction Techniques

26.2. Pointing techniques

A pointing facilitation technique maps changes registered in an input device to the
movement of a cursor or the presentation of potential targets on display. Two-dimensional
pointing is familiar to us from desktop interaction (WIMP paradigm, see Chapter 28). We
find one-dimensional pointing in scrolling. Here, the end-effector must be brought on top
of a region that corresponds to a page or location in the document. Three-dimensional
selection occurs in augmented and virtual reality applications.

Pointing facilitation techniques can be further distinguished into three classes:

1. Input transfer functions: Techniques that map changes in input signal to cursor
movement. Example: CD gain functions;

2. Display transfer functions: Techniques that change the presentation of potential
targets to facilitate their selection. BubbleCursor, discussed above, is an example
of a class of techniques that change the selection region of elements;

An understanding of pointing facilitation starts from an understanding pointing. As
we saw in Chapter 4, pointing is an aimed movement. An end-effector, such as a cursor,
is brought to refer to an object of interest. In the case of HCI, pointing often includes
clicking or some other way of selecting an area under the end-effector. The understanding
of this elementary interaction is based on Fitts’ law, given in Chapter 4.

What does this model tell us about pointing techniques? It says that both distance and
width have an effect on MT . Hence, if the interaction technique can change those, it can
decrease MT . For example, BubbleCursor makes W larger and D smaller. However, the
two empirical constants may hide some other effects. Some techniques adapt to the user,
while others change response dynamically depending for example on speed of motion or
what is on the display. a and b are not constants.

26.2.1. Control-to-display (gain) functions

As a case of pointing facilitation techniques, we consider the transfer functions that
map movement on a control surface to cursor motion. Control-to-display (CD) functions
are input transfer functions used in indirect input devices such as mice, joystick, and
trackpads. They interaction techniques used by almost every computer user. A CD

Figure 26.2.: [290] compared five techniques for promoting the use of hotkeys.

528

26. Interaction Techniques

function – also known as a gain function – maps changes in control space (e.g,. touchpad)
to changes in display space (e.g., visible cursor). Every indirect device uses some CD
function, although in some cases it is simply a linear coefficient.

Technically, a gain function computes a scalar factor (or “gain”) from the instantaneous
input speed (vin):

vout = fCD(vin) ⇥ vin. (26.1)

CD gain functions can be as simple as a fixed gain: A constant ratio mediates input
and output movement velocities. But how to pick a good constant? Imagine that you are
designing a new augmented reality technique for selecting distant targets. Local hand
movements (control space) are mapped to movement of warped hand movements shown in
distance. Casiez et al. [137] presented a principle to choose a range of gain values: First,
minimum gain CDmin must allow reaching the most distant targets without clutching
(lifting the mouse or finger from the surface), and the maximum gain CDmax must allow
accessing an individual pixel. Setting a single value is necessarily a compromise between
these extrema.

For this reason, most commercially used gain functions are speed-dependent : that is,
the gain changes as a function of velocity. It is agreed that speed-dependent functions are
better, because they can respond to both fast movements, reducing the need for clutching,
and to slow movements, needed for more accurate pointing. However, most functions are
proprietary – their shape is not disclosed to the public.

Casiez and Roussel [136] reverse-engineered gain functions in existing operating systems,
discovering that they share some features, namely (1) monotonic increase at the beginning
and (2) comparable maxima. They were distinguished by the minima, continuity, and
shape of the functions. The functions are shown in Figure 26.3. Speed-dependent gain
functions have been shown to be up to 24% faster than a constant CD gain in an empirical
evaluation. Such differences have practical significance, given the high frequency of
pointing in human–computer interaction.

Why do such differences emerge? There are four main causes. First, speed-dependent
gain functions can dampen excess speeds. Since high-velocity movements cannot be
controlled accurately (remember speed–accuracy trade-off in Chapter 4), they can be
made more predictable by sloping of the curve to a near-constant speed at that extrema.
Second, they can add more granularity to high-precision movements. Third, the different
velocity ranges are associated with different muscle groups. Consider very high-precision
motions with a mouse: you probably do those with wrist and finger motions. High-speed
motions, on the other hand, recruit muscles in the arm and shoulder. Fourth, they can
reduce unnecessary clutching.

26.3. Selection and manipulation techniques

Selection and manipulation techniques affect an object once it has been identified, for
example, by pointing. The simple case, selection, simply selects an object. This might
invoke a command coupled to the object or mark for the object as the argument for a
subsequent command. More complex selections, as in the case of menus, have allowed

529

26. Interaction Techniques

inventive selection techniques that help to effectively select among an array of options.
Finally, objects may be manipulated in other ways—resized, moved, or rotated. Many
interaction techniques have been developed for these cases. Let us look at these techniques
in turn.

26.3.1. Simple selection

Usually, selection in graphical user interfaces is simple. You click the mouse over an
object or tap it with your finger. However, sometimes this is difficult; recall the chapter
on motor control (see Chapter 4). The target might be small. Your finger may obscure
the target. You may be unable to look at the target. You may shake as you attempt to
perform the selection. Effective interaction techniques deal with these cases.

For instance, the Shift technique shown in Figure 26.1 offset targets so that the user
may see what is below their finger [841]. Another idea is to make that which is selected

Figure 26.3.: Casiez and Roussel [136] proposed a novel method to reverse engineer CD
functions and found large and surprising differences among modern operating
systems.

530

26. Interaction Techniques

sticky [895]. A sticky icon, for instance, reduces the cursor’s gain ration when the cursor
is over the icon. This makes it easier to stop over the icon and, therefore, it is easier to
select it. Worden et al. [895] showed that such icons make selections faster, in particular
for smaller icons, across both younger participants (mean age of 23) and older participants
(mean age of 70).

Another idea is to eliminate the need for clicking as we normally use it. In crossing,
the user crosses the object with the mouse or the finger, rather than clicking on it. In
dwell-time selection, the user hovers the object to be selected and after a certain time
over the object (the dwell), the object is selected.

In this section, it is assumed that the selection is binary—either you select an object,
or you do not select it. But that need not be the case. Ramos et al. [668] implemented
and evaluated pressure widgets, user interface elements that allow users to select with a
degree, indicated by their pressure.

These and many other works on simple selection techniques show that even for something
as simple as a button click, researchers in interaction techniques have been remarkably
inventive.

26.3.2. Menu selection

An interactive menu system organizes a collection of items on display so that the user can
explore the menu and select the desired items. Graphical menu systems present menu
items visually. Menu systems often use hierarchical organization, where items are placed
under submenus. Another defining feature is semantics: the options have labels that
have semantics – they mean something. Associations between options are exploited in
the organization of the menu. Items that belong together are often put into the same
unit, for example, a submenu. Design can exploit this in different ways. Menus are often
organized alphabetically, numerically, or group semantically.

Typical to larger menus is that they utilize transient visualizations. That is, the menu,
or a part of it, is temporarily displayed, and can be dismissed. For example, when you
click on the title of a menu on a workstation application, the submenu appears below.
But when you move the cursor away from the activation area, it disappears. Two menu
techniques – a morphing menu and a split menu – are shown in Figure 26.4.

Pie Menus

While hierarchical linear pull-down menus dominate in most modern graphical user
interfaces, they are not only means of representing a menu structure. A pie menu [121]
presents menu as a circle subdivided into circular sectors associated with commands or
further menu structures (Figure 26.5). The user typically triggers the pie menu using
a button press (such as pressing down the left mouse button). When the pie menu is
invoked, it appears in the center of the pie menu. The user can now perform a selection
by sliding the cursor towards a circular sector. Upon a selection, the circular sector is
highlighted to visualize its selected state. If the user lifts the trigger button (such as a left
mouse button) the command associated with the circular sector is issued by the system.

531

26. Interaction Techniques

Figure 3b). High frequency items ‘borrow’ motor-space
from infrequent items. Mouse-over enlargement is used to
aid visual identification of items that are displayed in the
minimum size. Importantly, this enlargement does not
move the text of the item under the cursor. This avoids
‘hunting’ effects caused by fisheye distortion [14].

To help users learn item locations, ‘morphing’ avoids
abrupt item enlargement. Initially all items are of equal
probability and size. After each selection, the probability
of each item is recalculated: ∀i, pi=ti /tt. A damping
function is used: tt=n×damping, where n is the number of
items and damping is a small integer value (higher values
cause slower adaptation). ti is initialised to damping, and
is incremented with each selection of item i.

To reiterate, high frequency probable items ‘borrow’
motor-space from improbable ones. The amount of menu
space available for reallocation is n times the difference
between the minimum and maximum menu heights (set to
10 and 22 pixels): sharedHeight=n×(normalHeight–
minHeight). The height of each menu item hi is then
calculated with hi=minHeight+(pi×sharedHeight).

Method
The experiment began with a Fitts’ Law calibration block
of tasks, identical to that at the start of the calibration
experiment – the menu was long enough to display 16
items, but only the target item was displayed; and the
participants made five selections of the 1st, 4th, 8th, 12th
and 16th menu item, with logs recording the time from the
cursor leaving the menu button to selecting the target.

The menu selection tasks followed, with each task
involving selecting an item from a 14 item menu. Each
target item was cued by showing the name of the item
alongside the menu button, but the target was not revealed
until the menu was posted. Logs recorded the time from
posting the menu to selecting the item; hence, task times
included the decision/search time.

The eighteen male and female participants (none of whom
participated in the earlier experiments) used all four menu
types. An incomplete Latin square controlled menu type
order. Each participant completed five blocks of tasks
with each menu type before proceeding to the next.

Each block of tasks consisted of 45 menu selections, with
a Zipfian distribution of selection frequency. The
selection counts for the items were 14, 8, 5, 4, 3, 2, 2, 1, 1,
1, 1, 1, 1, and 1 (Zipfian R2=0.99). The correspondence
between item location in the menu and item frequency
was determined by a one-off random process, and re-used
across all menu conditions. This was necessary to avoid a
menu-type bias due to differences in the location of the
frequently selected items: for example, if the most
frequent item was at the top of the menu in one condition,
it would create an artificially low Fitts’ pointing
requirement. Hence, all conditions in all blocks used the
following frequency distribution across the 14 menu
locations (from top to bottom): 2, 1, 14, 1, 4, 1, 5, 1, 1, 8,
2, 1, 3, 1. Participants received no instruction on the
frequency of menu item selections or on the location of
frequent items. They were simply informed that their
tasks involved selecting menu items as quickly and
accurately as possible.

The contents of the menu remained constant across the
blocks with each particular menu type, but changed across
menu types – the intention being to allow participants to
develop expertise with each menu type independently. All
menus contained three groups of related items split by a
thin line (see Figure 3): one group of four items (top),
then two groups of five items. For each participant with
each menu type, the menu contents were randomly
constructed by selecting one group of four items and two
groups of five items. No group of items was reused in any
other condition. Example groups include car
manufacturers (Toyota, Honda, Ford, Mazda, Subaru) and
furniture (Table, Chair, Desk, Lamp, Bed).

Design
We designed the study both to test the accuracy of our
prediction model, and to compare the performance of the
four different menu designs. For the accuracy analysis, we
report percentage differences and regression analyses
between predicted and actual values. For the comparison
part of the study, we analysed selection time data using a
4×5 RM-ANOVA for factors menu type (traditional,
morphing, recency-split, frequency-split) and block (1-5).

RESULTS
The theoretical predictions for traditional and morphing
menus were calculated exactly as described by the
equations above (spreadsheet at www.cosc.canterbury.ac.nz/
~andy/publs/chi07/). The split menu predictions required
additional parameterisation as follows. For frequency-
based splits, the value of Lsplit in blocks 1 and 2 were set

 (a) Morphing (b) Morphing (c) Split
Figure 3. Morphing and split menus. The target is
shown next to the menu button when posted.

CHI 2007 Proceedings • Empirical Models April 28-May 3, 2007 • San Jose, CA, USA

633

Figure 26.4.: Two morphing menus and a split menu.

Pie menus are not as popular as hierarchical linear pull-down menus. However, they have
been used in, for example, games and computer-aided design applications.

Pie menus can be hierarchical because a circular sector can be associated with either a
command or a menu structure. If the selected circular sector is associated with a menu
structure, then a selection will invoke a second pie menu revealing this menu structure. In
this way, pie menus allow the user to navigate a hierarchical menu structure in a similar
vein as a hierarchical linear pull-down menu.

An advantage of both hierarchical linear pull-down menus and hierarchical pie menus
is that they are easy for a novice user to use, as they allow the novice user to browse all
available commands in the application and select them. Assuming the menu hierarchy
is reasonably logical, such navigation, while sometimes time-consuming, should limit
frustration.

However, a disadvantage is the low performance ceiling. Since navigating pull-down
menus and pie menus requires visually-guided closed-loop motion, it is not possible
for users to reach a high performance even when they know precisely how to navigate
to a desired item. This is because visually-guided closed-loop motion imposes a low
performance ceiling, as discussed in Chapter 23. As an alternative, pull-down menus
often use keyboard shortcuts. However, such keyboard shortcuts force a conscious shift
from one mode of interaction (visually-guided menu navigation) to another (direct recall
by triggering a key combination).

532

26. Interaction Techniques

a)

File Edit

Insert Help

b)

File Edit

Insert Help

Undo Cut

Copy Paste

Figure 26.5.: a) An example of a first-level pie menu. b) An example of a second-level pie
menu.

Marking Menus

A marking menu [437] is a refinement of a pie menu that supports a continuous transition
from novice to expert behavior. A marking menu is an interaction technique that couples
an incremental angular 2D single-stroke gesture recognizer with a pie menu (Figure 26.6).

The user triggers the marking menu similarly to a pie menu. However, unlike a pie
menu, the marking menu does not reveal a pie menu immediately. Instead, there is a
brief timeout period before the pie menu appears. After the timeout, the marking menu
behaves like a pie menu. However, if the user performs a 2D gesture rapidly before the
timeout, the pie menu will not be shown.

The central idea in the marking menu is to ensure that the trajectory for invoking the
command, either navigating to the menu item or performing a 2D gesture, is identical. This
means that during use, the user learns the motor pattern of the command by consolidating
the motor memory. Importantly, this process is both continuous and unconscious. This
allows marking menus to provide users with a seamless novice to expert transition.

There are several details in the implementation of marking menus which may vary
depending on specific use-cases or designer insights. For instance, the timeout is a
controllable design parameter that can be set in various ways. If the timeout is long,
users are further “pushed” to invoke commands by 2D gestures. On the other hand, if the
timeout is low, users are encouraged to navigate to the pie menu. It is also possible to
eliminate the timeout by analyzing the user’s movement dynamics. If the user’s movement
dynamics suggests open-loop gesturing, then the system can automatically turn off the
pie menu and transition to 2D gesturing mode.

Some implementations of marking menus use a sophisticated 2D gesture recognizer
that allows the user to pause the gesture to trigger the pie menu (at its current selection
level) at any stage. Traditional marking menus implement this using a recognizer that
focuses on analyzing movement angles. Another design consideration is the number of
menu items in the pie menu. Typical choices range between 4-8 menu items. The more

533

26. Interaction Techniques

menu items that are supported within a single pie menu, the more accurate the user has
to be in selecting the menu item.

There are two fundamental limitations with marking menus. The first is the limited
number of menu items at any level of the menu. The second is the screen real-estate
required to support large continuous gestural motions to select menu items that are
deeply nested. One solution that has been explored is to operate the marking menu using
discrete single stroke straight line segments, simple marks, instead of a single continuous
selection across the menu hierarchy, compound marks. Simple marks have the advantage
that they use less screen real estate and may support increasing the number of menu
items within the marking menu [906].

534

26. Interaction Techniques

a)

File Edit

Insert Help

b)

File Edit

Insert Help
Image Text

Table Shape

c)

File Edit

Insert Help
Image Text

Table Shape
Oval Triangle

Rectangle Polygon

d)

File Edit

Insert Help
Image Text

Table Shape
Oval Triangle

Rectangle Polygon

e)

Figure 26.6.: An illustration of a marking menu selection. a) The marking menu is
triggered in a similar vein to a pie menu. The user drags the cursor towards
the insert menu. b) This action triggers a second-level marking menu. The
user drags the cursor towards the Shape menu. c) This triggers a third-level
marking menu. The user triggers the Triangle menu item. d) The entire
selection motion for the user triggering 1) the marking menu; 2) the second-
level Insert menu; 3) the third-level Shape menu; and 4) the selection of
the Triangle menu item is illustrated as a red trace. e) This trace forms a
2D gesture which can be directly articulated by the user without invoking
the marking menu. Critically, the selection motion for navigating to the
Insert Triangle command is identical to the selection motion for gesturing
the command Insert Triangle. By repeat selection of the same command,
the user gradually learns how to recall the command using a rapid gesture
rather than slow visually-guided menu navigation.

535

26. Interaction Techniques

Paper Example 26.3.1 : A model of user performance in menus

From a motor control perspective, menu selection is a compound task ; that is, it
consists of several subtasks. The Search-Decide-Point (SDP) is a mathematical model
that illustrates this well [156]. The model is a linear regression model similar to the
Keystroke Level Model (see ??). It predicts selection time in a menu as a sum of
time spent in three subtasks:

• Search, the time to localize an item, increases linearly with the number of items
in the menu;

• Decide is the time to decide from among items given the entropy determined
by the frequencies of previous selections and given by the Hick-Hyman law;

• Point : Pointing is based on Fitts’ law and predicts that items closer to the top
are faster to select.

Search and Decide subtasks are affected by the amount of experience that the
user has with the menu, in particular the number of repetitions of an item. With
practice, performance changes from being dominated by search (linear) to decision
(logarithmic). The expertise factor e controls this.

Considering a linear menu as the case (??), average selection time for a menu
with n items is the sum of selection times of each item i weighted by their selection
probability:

T =
nX

i=1

piTi (26.2)

Here, selection time Ti of item i is given by

Ti = Tdsi + Tpi (26.3)

Pointing time Tpi is governed by Fitts’ law, such that movement is assumed to start
from the top of the menu. Decision/Search time Tdsi is linear interpolation between
decision and visual search:

Tdsi = (1 � ei)Tvsi + eiThhi (26.4)

where ei[0..1] is the expertise factor ei = 1 � 1/t � i where ti is the number of
repetitions with i. As the user becomes more experienced with a menu, there is a
shift from serial visual search Tvsi to decision among competing elements Thhi.

Finally, visual search time Tvsi is assumed to be linear function of the number of n:

Tvsi = bvsn + avs (26.5)

Hick-Hyman decision time Thhi is dependent on the entropy of the item Hi =
log2(1/pi). Here, pi is the probability of the item in the history of selections,
pi = ti/tt where tt is the number of total selections in the menu. Now, Thhi is given
by:

Thhi = bhhHi + ahh (26.6)

where ahh and bhh are empirically determined constraints.
The model has been validated for a few different types of menus, including linear,

morphing, split, and rectangular menus. Figure 26.4 shows a morphing menu and
a split menu. In a morphing menu, more frequently used items are enlarged. In a
split menu, a special section of recently or frequently used items is created at the
top of the menu. Morphing menu is modeled by changing the width of a frequent
target. Split menu is modeled with two models, one for the split region, the other
for the standard region. Empirical study confirmed the prediction of the model that
frequency-based split menu is the fastest.

536

26. Interaction Techniques

26.3.3. Manipulation of Objects

In addition to selection, users may want to manipulate an object that has been pointed
to in numerous other ways. For instance, the use of an expansion or contraction of a
finger spread—a pinch gesture—is widely used in touch interfaces to manipulate objects,
for instance to scale them. While the pinch gesture have been known since at least the
early 1990s [51], its use for scaling and zooming is surprising complex. One needs to
consider the following questions: 1) How to detect pinching? Wilson [876] contributed an
algorithm that could detect pinch gestures from a camera feed robustly; 2) How to deal
with differences in hand sizes?; 3) Are people equally good at rotation at different angles?
Other manipulation techniques concerns rotation , moving objects, and deleting objects.

26.4. Text entry

Entering text and data is one of the most common tasks carried out with computers.
Communications and social media are predominantly text-based. Most information
systems and office applications rely on the entering of text and data.

Text entry techniques use computational methods to facilitate the task of entering text.
The goal is make text entry more efficient, less effortful, or enable it in circumstances it
would not normally be possible. The baseline for text entry is often physical keyboards
or numeric keys. Physical keyboards allow people to enter a character at a time and
typically have a large activation area. Still, they serve only as a baseline because much
research has focused on improving text entry.

Most of the research on this topic has focused on virtual keyboards. Virtual keyboards,
especially on mobile devices, are small and therefore more susceptible to the inherent
inaccuracy and noise in human motor control. A number of reliable findings on smartphone
typing have been established that motivate the need for research on intelligent support
for text entry [620]:

• Young adults type at around 36 wpm (words per minute) and have an average
of 2.3 % uncorrected errors. This level is far off what is achievable with physical
keyboards, which is around 52 wpm in a comparable sample [188].

• Typing with one finger is slower than using two fingers. On average, two-thumb
typing is superior to other methods of using fingers.

• Errors are costly to correct in comparison to physical keyboards. Users differ in
how typo-averse they are. Some users slow down to avoid having to correct errors.

• Typing is not just about motor control, users need to control how they deploy visual
attention between the text display (what is typed) and the virtual keyboard.

• Typing while walking or doing other activities slows down typing performance and
causes errors.

• Many aging users and users with cognitive, motor, or vision deficiencies have serious
difficulties typing with standard keyboards.

537

26. Interaction Techniques

Consequently, research on text entry techniques has focused on four main themes:

1. Correcting and completing phrases: Given the observed touch points and characters
typed so far, the goal is to correct mistakes or complete the phrase.

2. Offering an alternative unit of entry: From character-to-syllable-, word-, and phrase-
level entry.

3. Multimodal and cross-modal entry: Using voice, eye movements, etc. to enter text.

4. Editing text: Facilitating corrections and modifications of text.

26.4.1. Correcting and completing phrases

First, correcting and completing phrases is an active topic of inquiry. Without an
intelligent text entry method, when you touch a virtual button on the keyboard of your
smartphone, the character that corresponds exactly to the touchpoint on the display
is entered. However, because of the small size of the keys, the occlusion problem, and
environment-caused noise, touchpoint distributions are very varied. Users often cannot
reliably touch a target that is smaller than 10 millimeters. Unless the user slows down,
many errors will occur.

Decoding-based text entry techniques use machine learning to try to infer the intended
message in the presence of noise in the touchpoints. Popular applications include auto-
correction and word completion. In autocorrection, a machine learning -based decoder
tries to infer the message the user may have intended to send, given a list of observed
touchpoint coordinates. In word completion, a predictive algorithm tries to predict the
next characters, given the ones typed so far.

26.4.2. Going beyond entering characters

Second, we can relax the unit of entry. Instead of looking at previous characters, we can
exploit information in the context of words and sentences. For example, in gestural input,
the finger does not need to be lifted to individually tap the buttons. Instead, you can
keep the finger on the display and sweep a shape that passes through the characters that
form the word. The sidebox presents the idea.

Research has recently also looked at sentence-level entry, which allows for better
exploiting information about preceding words. The two downsides of this approach are,
first, the slower computation times and, second, the higher costs of correcting possible
errors. The user may need to re-read the whole phrase. If there is an error, it must be
detected and corrected by the user.

538

26. Interaction Techniques

Paper Example 26.4.1 : Gesture typing with SHARK

Zhai and Kristensson [903] introduced gesture typing, a text entry technique that
allows drawing shapes on a touchscreen keyboard. SHARK stands for Shorthand
Aided Rapid Keyboarding. The method drew inspiration from handwriting, which
however is relatively slow at about 15 words per minute (WPM). In SHARK, instead
of entering a word by tapping one letter at a time, a user can draw a shape that goes
through the letters that form the word. The technique is argued to support motor
learning: after learning a shorthand shape (e.g., ”the”), the user does not have to
visually guide the movement of the finger.

26.4.3. Other modalities for text entry

The third research area concerns alternative modalities. Alternative modalities, like
speech, can support text entry in circumstances or for people where it could be hard to
enter type via touch. However, speech recognition methods are error-prone; moreover,
recognition errors cascade. That is, an error in an earlier part of a phrase may deteriorate
the inference of a word in a latter part. The consequent HCI challenge is to offer efficient
ways to edit and correct inferred phrases. For example, Parakeet is a demonstrator of
continuous speech recognition supported by touch interaction [831]. The user can utter a
phrase, which is then displayed on the touch display separated into words. This takes
advantage of the speech recognition hypothesis space: there is not just one, but several
possibilities to infer a word, and making this visible to the user can be beneficial in
correcting errors. Parakeet also offers touch interactions that complete speech input.
Underneath each word, there are alternative words, which can be tapped to replace an
incorrect one in the phrase. Moreover, the user can delete sets of words by drawing
through them.

539

26. Interaction Techniques

Figure 26.7.: Type, then Correct presents three correction techniques: (a) Drag-n-drop
allows dragging the last word that is typed to replace an erroneous word in
the middle of a phrase or to place it in-between (omission error); (b) Drag-n-
Throw allows ’flicking’ a word from a word suggestion list toward the rough
area of a word that needs to be replaced; (c) Magic Key highlights possible
error words after a correction that is typed; the user can drag the magic key
toward the erroneous word to correct it [905]. These techniques were shown
to facilitate error correction over the regular cursor and backspace-based
method.

26.4.4. Text editing

The fourth area of research is related to text editing. A modern virtual keyboard must
support ways to find, replace, copy, and paste text. Changes should be undoable. However,
regular text-editing methods are laborious. For example, to edit a character inside a
word, a user may need to carefully place the cursor using an offset cursor, because the
finger may occlude a part of the word. This is known as the finger occlusion problem, also
known as the ”the fat finger problem”. To copy a piece of text, two corners of a widget
may need to be carefully dragged to their place. Type, then Correct (Figure 26.7) is an
example of three editing techniques that exploit machine learning methods: Drag-n-drop,
Drag-n-throw, and Magic Key.

To sum up, an outstanding issue with intelligent text entry is the facilitation–correction
cost tradeoff. The more it tries to facilitate, the higher the speed but also the higher the
cost of correcting a possible error. This issue surfaces in particular when phrases contain
rare words, like proper nouns, or when an expression combines different languages. On
the other hand, if the method offers no facilitation at all, users rely on their own cognitive
mechanisms to spot errors, and they are relatively good at that (thus, low correction cost).
Emerging large-scale studies suggest that users who use autocorrection are faster than
users who do not use it, while users who use word prediction are slower but have fewer
errors [620]. In the particular study, perhaps due to the trade-off, users using gestural
entry were slower than users not using ITE (intelligent text entry).

540

26. Interaction Techniques

26.5. Camera control

In user interfaces, there is often more to see than can fit on the display. For instance, a
map be so large that all its details cannot fit on a screen or an immersive 3D world may
require the user to move their point-of-view to a different part of the scene. Techniques
for camera control helps to change what is shown on the display. The phrase come from
computer graphics, where the scene (or content) is often separated from the point of view
from which the user sees the scene.

Before looking at some examples, it is worth noting that camera control is similar to
pointing tasks (recall Chapter 4). When navigating an information space, positioning the
camera at the right place is about pointing to that space. Thus, the familiar terms of
throughput may be used for camera control tasks.

26.5.1. Panning and Zooming

A simple example of camera control is panning and zooming. Panning moves the point-of-
view across the space. In the 1D case, panning may involve moving a scroll bar to show a
certain part of the document; in the 2D case, it may be moving the mouse to the edge of
the screen to automatically pan a map.

Zooming changes the magnification of the information shown in the point of view.
Zooming is sometimes possible with scrollbars; this changes the size of the knob (the part
of the scrollbar that can be grabbed). In the 2D case, zooming is the familiar change of
magnification. In semantic zooming, this change affect different parts of the information
space in different ways. For instance, on a map at low magnification, cities might be
represented with generic circles; at high magnification this might change to a detailed
outline of the city contour.

User interfaces often offer both panning and zooming. When they can be done at
the same time, we say that they are integral. On a map, we might be able to zoom by
holding a mouse button and move the mouse as we do so. Obviously, integral interaction
techniques are more effective when the operation to be done requires simultaneous panning
and zooming [373].

One elegant implementation of an integral scrollbar for zooming and panning is called
OrtoZoom. One issue in most implementations of the scroll bar is that if the space to
scroll is large, the movement in the document coupled to the scroll bar will be coarse.
Appert and Fekete [28] developed OrtoZoom, an interaction technique that combines
scrolling a 1D data structure (e.g., a document) with a possibility to zoom by moving
the mouse in the dimension orthogonal to the scroll bar. Assume that the length of the
document is d pixels long and the scroll bar moves up and down. If the user moves the
mouse while it is on the scroll bar, each unit scrolled might be correspond to d/10 (so that
the whole scroll bar may be scrolled in 10 steps. However, if they first move the mouse to
the left, each unit scrolled becomes smaller (potentially down to 1). This make scrolling
more precise. A related idea is speed-dependent automatic zooming (SDAZ), studied by
Igarashi and Hinckley [364], where the viewport is zoomed in or out when scrolling. The
level of zoom depends on the information density of the document. The goal is to ensure

541

26. Interaction Techniques

Figure 26.8.: Scale-space diagrams showing some tradeoffs in zooming and panning inter-
faces; the diagrams were proposed by Furnas and Bederson [260]. To the
left is shown an information space with dimensions u and v (depth); the
objects in the space are shown as six vectors (q). At any time, there is a
viewing window into the information space, shown as a rectangle (a,b,c); at
the bottom of the figure is shown which objects that are visible at which
magnification. In the middle is shown pure panning (a), pure zooming (b),
and integral zooming and panning (c). To the right is shown how panning
can be cumbersome. Navigating from p to q can be done as pure panning
along the path d. It can also be done as zooming out (along a), panning (b),
and zooming in (c).

that the user’s visual attention is provided with sufficient time to visually inspect the
contents of a viewport.

Both OrtoZoom and SDAZ shows a classic trade-off in panning and zooming: if one
pans at the wrong level of magnification, one either risks overshooting the target (because
each pan step is large) or having to spend a lot of time panning. However, changing
magnification levels is tricky. Figure 26.8 shows the intuition using scale-space diagrams
[260]. Much work on zooming and panning seeks to remedy these problems.

A final issue in panning and zooming is to ensure that people can see points of interest
and where to go. This, again, is related to magnification level. If you are zoomed in too
much, you may see the relevant details but not all the information; if you are zoomed out,
you may obtain an overview of the space but not see the details. Jul and Furnas [391]
memorably talked about desert fog, the situation where you need to reach a target but
has no navigational cues where it is. If you zoom in too much, this may be the situation.
Paper Example 26.5.1 shows one interaction technique that helps remedy this situation.

542

26. Interaction Techniques

Figure 26.9.: Challenges in 3D navigation encompasses (a) high-degree of freedom in
movement and (b) challenges in understanding the landmarks and building
up a spatial understanding of space.

Paper Example 26.5.1 : Visualizing off-screen targets

One problem with a small viewport is that it may not be possible to display all
relevant information. For example, the figure below to the left shows five target
locations on a map. When the user zooms, shown in the figure below to the right,
the target locations are no longer visible as the viewport is too small to show them.

One solution to this is a halo visualization [52]. The idea is to center each target
location within a circle and let the circumference of the circle indicate distance.
In addition, arcs belonging to target locations further away are shown to be more
translucent, providing a secondary channel of information about the distance of an
off-screen target. The halo visualization concept is illustrated in the figure below to
the right.

Unlike, for example, using arrows to indicate off-screen targets, the halo visualiza-
tion does not require additional annotations to indicate the distance to off-screen
targets.

26.5.2. Navigating 3D

A particular challenge for camera control concerns navigation of 3D. There are two reasons
behind this challenge (see Figure 26.9). The first is that 3D navigation has three degrees
of freedom, sometimes referred to as pitch, yaw, and roll. This is complicated to control
for users. The second is that as users navigate in 3D, they build up an understanding of
the objects in the space. The way particular interaction techniques help do that differs.

The many degrees of freedom for 3D navigation is particularly challenges if the input
device that controls the navigation is not 3D, but for instance a mouse. The many
degrees of freedom for 3D navigation is A challenge in 3D navigation is that it may be
quite cumbersome when large distances are to be covered. This is similar to the case for

543

26. Interaction Techniques

panning. The second challenge mentioned above concerned how interaction techniques
affect how users build up an understanding of a spatial environment.

26.6. Two perspectives: Control and Learnability

Surprisingly, advanced interaction techniques are not common in everyday use of computers.
We mainly use them in a handful of tasks: when scrolling, selecting targets, or entering
text. It has turned out to be challenging to create new interaction techniques that users
would adopt. To conclude the chapter, we discuss two key challenges in their design:
control and learnability.

26.6.1. Control

Control theory (see Chapter 17) can illuminate the dynamic relationships that input
actions and events on display have, and what the consequent challenges are to the user.
A minimal analysis starts with the following elements:

• Goal: The user has a goal in mind, a state that the computer should be driven to,
such as selecting a particular target on display;

• Feedforward: The user sends a control signal via the input sensor to change the
state;

• Transfer function: A program that maps changes in the feedforward signal to
changes on the display;

• Feedback: The state-change is now visible on display;

• Comparator: The feedback is compared against the goal state in order to determine
the new feedforward signal.

In the control model shown in Figure 26.10a, the user chooses a feedforward signal
as a linear function of how far the end-effector is from the target. In other words, the
user tries to close the gap directly between where the cursor is and where it should be.
Assuming that the system is noisy, this will have to be done a few times to hit the target
region.

However, this view is overly simplistic. A user deciding what to do next simply by
minimizing distance between perceived and desired states would fail. This policy does
not account for the non-linearities and dynamics that are inherent in motor control
with an interactive system. Consider pointing with a mouse: the muscle control signal
(feedforward) that you pick is not linearly determined by the distance that the cursor
has to the target (feedback). When you move your hand, the involved biomechanical
events are non-linear. Eyes guide the hand, and several muscle groups are activated in a
coordinated way.

To understand interaction techniques better, we need to understand them from the
human motor control perspective. The problem it needs to solve is this: an interaction

544

26. Interaction Techniques

technique is a computer program that can do anything to the input signal. For the motor
system, it is an opaque box. How can the motor system know which action to take?
The theory of internal models in motor control can explain this [399]. Controlling an
interaction technique requires prediction. That is, to pick a feedforward signal, the brain
needs to predict what might happen. Its learning can be thought as a form of function
learning.

By interacting with the technique, the motor control system learns – implicitly and
without us being consciously aware of it – a function that maps feedforward signals and
the perceived state of the controlled system. The learned model allows predicting the
consequences of actions. Alas, the predictions are never perfect. While prediction error
tends to decrease with practice, it is never zero. But at some point a sufficient level has
been reached. The more accurate the prediction is, the more effective its feedforward,
and the fewer iterations are needed to get to the goal. This model explains that we need
lots of repetition to take control of a new interaction technique.

(a) Control without an internal model would lead to non-human-like, jerky control.

(b) Control with an internal model

Figure 26.10.: The top pane shows a simple (but wrong!) control model for interaction tech-
niques that shows the basic components involved from a control-theoretical
perspective. Bottom: To control an interaction technique, users must be
able to predict the perceived consequences of actions.

545

26. Interaction Techniques

26.6.2. Learning

A second hurdle concerning interaction techniques concerns human learning. In a nutshell,
users are already familiar with some technique and must now invest time to learn another
one. Figure 26.11 illustrates this. It shows two learning curves: initial and after change.
In both, performance develops according to the power law of learning.

When a new technique is introduced, an immediate cost ensues. This is called ’per-
formance dip’. The concept is important: Changing from one technique to use another
one introduces a learning cost, which users may be unwilling to endure despite long-term
benefits. From a user point-of-view, this is rational: longer-term benefits occur only much
later and are uncertain. Few users can estimate what the future gains are, but everybody
can experience the performance dip. ’Starting from scratch’ will hamper performance
right now but there is no guarantees that there will be any longer term benefit.

The performance dip has a non-obvious implication to design. It implies that users’
initial perceptions of their own performance with an interaction technique tend to be
negative. Hence, one should focus not only on ultimate performance, but on incentivizing
users to start and persist learning the technique. This could be achieved, for example, by
communicating clearly what is achievable, setting performance goals, and providing them
feedback about their progress. The other concern in design is to minimize the immediate
costs of the dip. By doing that, the longer-term benefits of the technique also become
more pronounced.

Figure 26.11.: Performance dip: Shifting to an alternative interaction causes an initial
dip in performance [715].

546

26. Interaction Techniques

Summary

• An interaction technique is a computer program that couples input and output
processing, with the purpose of improving or enabling elementary interactive tasks.

• Many interaction techniques are about striking a desirable tradeoff between learn-
ability and performance. Consider hotkeys versus menus, for example.

• Changing from one technique to use another one introduces a learning cost, which
users may be unwilling to endure despite long-term benefits.

• Users do not need to learn how the algorithm of the interaction technique works.
Instead, they learn through experience to predict the consequences of their actions
(internal models theory). This takes time. However, by an appropriate feedback
design, the learning process can be facilitated.

• Design should focus not only on ultimate performance but on incentivizing users to
start and persist learning the technique

• Oft-researched interaction techniques include the pie menu, the marking menu,
speed-dependent semantic zomoing, the CD gain function, and hypertext.

• Interaction techniques must be evaluated with realistic tasks and by relevant user
groups to estimate their achievable performance.

Exercises

1. Understanding an interaction technique. The scrollbar is apparently easy to use
but technically a complicated user interface element. Try to identify five different
types of scrollbars. Discuss them as interaction techniques: 1) How do they couple
input and output? 2) What are their relative tradeoffs in usability, discoverability,
and other aspects of their value to users?

2. Trade-offs. Take two interaction techniques designed for the same purpose. Compare
their relative pros and cons in terms of the design objectives given in Table 26.1.

3. 2D vs. 3D interaction. Which ideas that you know from 2D interaction could be
used for 3D interaction?

4. Control order. Control order refers to the translation of input motion into camera or
cursor motion: zeroth order control refers to position control, first order to velocity
control, second order to velocity control, and third order to acceleration control.
Your task is to implement and compare these for a panner. Which one is the best?
How do you set hte parameters of each control order? Code for the panner is given
on the textbook’s homepage.

547

26. Interaction Techniques

5. Crossing. Why is crossing-based selection beneficial? Discuss from the motor control
point-of-view.

6. Buttons. Clicking may be implemented in different ways. How is it done on the
device you use. How may it be useful or less useful for particular users?

7. Marking menus vs. pie menus. (This assignment requires familiarity with motor
control concepts (Chapter 4).) A drawing application runs on a tablet operated with
a pen. The design team wants to implement a graphical menu structure that allows
users access to all commands in the software. (a) Explain the difference between
closed-loop and open-loop control, including the advantages and disadvantages for
each form of interaction. (b) Describe the difference between a pie menu and a
marking menu. (c) Explain when interaction with a marking menu is closed-loop
and open-loop. (d) The design team is considering a choice between a hierarchical
linear pull-down menu and a marking menu. Describe the primary advantages and
disadvantages in using either approach. (e) There are two ways to implement the
hierarchical linear pull-down menu. In the first implementation, as soon as the pen
tip leaves a submenu, the submenu disappears. In the other implementation the
submenu only disappears if the pen tip enters the previous menu. Explain whether
these implementations rely on crossing or steering actions.

548

27. Commands and Navigation

The crafting of text requires the writer to find the appropriate words and bring them
into an organization that conveys the intended story. Sometimes writers further make
efforts to organize their text in a way that readers may find their way around the text,
for instance, to get an answer to a specific question or develop an overview of the text.
User interfaces have related concerns. We need to name objects and actions in the user
interface: A wrong word can cause a user to pick a wrong option, a poor organization of
information can lead users to navigate to the wrong place. More than 50 years ago, the
pioneering researcher in human factors Chapanis [144] made this connection.

The aim of this paper is to call to attention a very large and important area
of human factors engineering that is almost entirely neglected. This area
consists of the language and the words that are attached to the tools, machines,
systems, and operations with which human factors engineers are concerned.

Thus, the words we use in menus, virtual reality, and smartphones matter. How we
structure those words into commands and into information structures that users engage
with also continues to matter. What might this look like? First, numerous papers have
shown the advantage of broad rather than deep web page hierarchies. Jacko and Salvendy
[372], for instance, showed that a deep menu structure (that is, a menu with few items at
each level but with many levels) increased, and users found the menu more complex to
navigate. Second, it has been shown that providing a preview of text on a webpage—often
called a snippet—improves web search. Teevan et al. [797] further showed that making
visual snippets worked better, in particular for tasks where images were a prominent
carrier of meaning. Third, Payne and Green [628] showed that consistency in the structure
of command-language arguments helps users learn.

More generally, this chapter introduces two styles of user interface. Both depart from
the observation that when a user tries to find information in a user interface, they typical
have an intended action or object in mind. In Norman’s seven-stage model, this is called
their goal (see Section 18); in work on information search it is called an information need,
that is, an unexpressed but real need for information that will help solve some problem
[796]. A user may want to locate the option to bold a word or find out how to make
pasta. In such cases, the user has something in mind which may only partially match
what is seen in an information system.

In some user interfaces, users issue commands to the computer system. There are many
ways to issue such commands, such as using a command-line interface or navigating to
a desired command using a menu structure. Search, such as on the World Wide Web,
may also be understood as a form of command-driven user interface. To help deal with
command-based systems, this chapter introduces the cognitive dimensions of notation

549

27. Commands and Navigation

framework as a design vocabulary that provides terminology that allows designers to
reason about the notation of interactive systems, including, but not limited to, user
interfaces that employ commands. The central concern about commands is appropriate
naming of actions and objects.

The second style of user interface is navigation. In it, users explore the user interfaces
to discover commands and information. As such, navigation support is often critical to a
well-functioning user interface system. This chapter will discuss common navigational
techniques to help users discover and issue commands and navigate hypertext. The
central concern for navigation is appropriate organization of information. Appropriate
here means that it is recognizable to people and efficient to explore.

27.1. Naming Objects and Actions

Why is naming things in user interfaces challenging? The paper box explains the
vocabulary problem, one difficulty in naming objects and actions in user interfaces,
together with the issues of polysemy (the same word means different things), the role
of context in interpreting words, and many other issues. Therefore, it is difficult to find
clear and precise descriptors for user interfaces.

Paper Example 27.1.1 : The variability in naming objects and actions as
a central user interface challenge

Imagine that you were to name a program or application that would tell you about
interesting things to do. What would you choose if you could only use 10 characters
or less? If you were to pick alternative words for "love" or "motorcycle", what would
they be? Try to write down your answers before continuing.

Furnas et al. [261] considered these questions important to HCI. They argued that
the way we name the objects and actions that we are interested in engaging with
in user interfaces is important to many user interfaces. But when they investigated
how people named objects and actions (as you just did in the exercises above),
they discovered something surprising. If you ask two people to spontaneously name
commands, as you just did, they will agree with less than .2 probability. Thus, only
every fifth command may overlap with that of another person. They called this "the
vocabulary problem". The issue is that finding a command that will work well for
many users is very difficult.

Furnas et al. [261] went on to consider a solution that allowed users to create
unlimited aliases for particular commands. In many ways, that is similar to the way
search works on many current devices. However, the general insight is that picking
the appropriate command names is extremely difficult.

Some general ideas for thinking about naming objects and actions may be given. First,
we may think about naming in terms of information scent (see ??). Recall that information
scent concerns how well a word or phrase creates associations (i.e., a scent) of what they
subsume (e.g., what command they execute or what menu items they may be expanded

550

27. Commands and Navigation

into).
Another general principle to think about for naming is articulatory distance. This

concept quantifies the distance between the physical form of the name or command and
the command that the user wants to express. Thus, we want the intended command to
be as similar as possible to the user’s intention.

Another insight into names is that specific names are preferable over more general
names. Black and Moran [74] showed that command names that are infrequent and
discriminative are more likely to be recalled than more frequent words. Thus, we should
use "insert" rather than "add" as a command for placing text into a document. Recall,
of course, is crucial for users who use an interface intermittently.

Furthermore, it is better if names for objects or actions are meaningful rather than
purely designating a command by convention or through some symbol. Black and Moran
[74] showed that non-words worked relatively well when only a few commands needed
to be learned, but that it had high error rates. Also, comparisons of the performance of
keywords (e.g., "CHANGE ’KO’ TO ’OK’ ") to symbols (e.g., "RS: |KO|, |OK|") usually
favor the keyword [455].

27.1.1. Techniques for Finding Names

Given all this complexity, how do we find appropriate names for labels in a user interface,
for commands to a spoken-language system, or the right names for a menu item?

The first approach is to pick the names that users employ in real life for objects
and actions. Such names may be found during user research (see Part 3). This is a
straightforward idea, captured in heuristics such as “speak the users’ language” [576].

Another approach that is often used in HCI is elicitation study [886]; it is also useful
to figure out the command names. The basic idea in elication studies is to elict from
users how they will execute a particular command and study the agreement across users
on those commands to decide on a distinct set of commands that users will produce
spontaneously with the highest likelihood. For instance, we may show users a command we
would like them to execute (e.g., "make a copy of this file") and ask how they would name
that action (e.g., "duplication"). We then use the majority of names for the command.
Elicitation studies do not address the vocabulary problem; rather, they try to find a
solution.

551

27. Commands and Navigation

Paper Example 27.1.2 : Programming as a naming problem

As we shall see, the concerns of naming commands have rather direct implications
for interfaces that are driven by commands. However, similar concerns apply to
many other areas, including programming languages. Myers and Stylos [557] looked
specifically at application programming interfaces (APIs) and considered them a
form of user interface.

The key idea is that APIs serve as an intermediary between the user (in this case,
the programmer) and an interactive system (in this case, whatever the API provides
access to). The design of the API, therefore, can be considered from the viewpoint

As one example, the naming of programming constructs should make it easy to
relate them to the programmer’s world. Myers and Stylos [557] gave an interesting
example of this.

For example, the most generic and well-known name should be used for
the class programmers are supposed to actually use, but this is violated
by Java in many places. There is a class in Java called File, but it fis
a high-level abstract class to represent file system paths, and API users
must use a completely different class (such as FileOutputStream) for
reading and writing.

As another example, Myers and Stylos [557] discusses consistency for the following
two methods; it is not relevant if you know the particular programming language.

void writeStartElement(String namespaceURI, String localName)
void writeStartElement(String prefix, String localName, String namespaceURI)

These two methods use a different ordering of elements, violating the principle of
consistency and making the transfer of learning from one method to the other difficult.
In short, it violates what we know about learning and about consistency in user
interfaces. Moreover, in this specific case, it was even hard to recognize that an error
was made because both arguments are of the type cmttString.

27.2. Command-Line Interfaces

A command-line interface (CLI) is a text-based user interface that enables the user to
interact with the computer system by typing commands. The history of the command
line interface begins with the invention of the telegraph. Telegraph operators were tasked
with transcribing Morse code into text.

A command-line interface can be decomposed into a prompt, a command, and n
parameters:

prompt command parameter
1
parameter

2 . . . parametern

Prompt The prompt is a system-generated indication that the system is awaiting a
command from the user. Prompts can be minimal, providing only some indication

552

27. Commands and Navigation

(such as a beep) that the system is awaiting a response, or they can be elaborate
and provide additional information to the user, such as the some aspect of system
states.

Command The command is the instruction provided by the user to the system.

Parameter list The parameter list (sometimes called an argument list) is a set of command-
specific additional instructions provided by the user, which will affect the execution
of the command.

A simple example of a command line is the interpreter in early adventure games, such
as the early graphical adventure game King’s Quest 1, designed in 1984 by Roberta
Williams. In this game, the player controls a character representing a prince that can walk
around in a graphical scene. The player can interact with the environment, objects in
the environment, and non-playable characters in the environment using a command-line
interface. For example, if the player has moved the prince to the vicinity of a graphical
depiction of a candle, the player can pick it up using the following command:

>take candle

Here > is the prompt, take is the command, and candle is the parameter. If the candle
cannot be picked up, the system responds with a message. If the prince was not close to
a candle or for some reason would be unable to pick it up the system would respond with
an alternative message.

This user interface is an example of a basic command-line interface. The prompt is
merely a minimal indication that the user is expected to type commands, and it does
not change depending on context, nor does it ever indicate any system state. The list
of commands, vocabulary, is limited a small fixed set of commands, such as take, look
and talk. These commands may be executed without a parameter. For example, the
user may type look, which without any parameter provides an overall description of the
graphical scene depicted on the screen. Alternatively, the user may provide an argument,
such as an object, for example, look candle, which provides a description of a candle,
assuming such an object is present in the graphical scene.

Command-line interfaces processes commands using an interpreter, a software compo-
nent that receives text input from the user and outputs the command and the parameters
the user typed. This interpretation is frequently referred to as parsing and, therefore, the
interpreter is sometimes also referred to as a parser. If the interpreter cannot make sense
of the user’s input the system outputs an error message. Historically, these error messages
were often obtuse, such as the ubiquitous “syntax error” message, which merely indicates
to the user that the system failed to parse the response text. However, error messages can
be more detailed and helpful, such as “Command ’save’ expects a filename” (if the
user forgot to indicate a filename) or There is no command ’sve’ (if the user misspelled
the command).

In the case of King’s Quest 1, the interpreter knows a specific set of commands (which
are all verbs) and in addition knows which commands accept which arguments and when.

553

27. Commands and Navigation

If the user type a command that is not present in the interpreter’s command list, a
generic response such as “I do not understand that” or “I cannot do that” can be
easily generated by the system. In this case, such exploration and experimentation with
commands and their parameters is part of the game design.

However, even such a simple interpreter has a set of design issues that need to be
resolved, such as:

Availability How does the user know which commands are available?

Naming How does the user know the names of the commands the system understands?
For example, the interpreter may understand take but not pick up.

Learning How does the user learn the availability of the commands and their parameters?

Recall How does the system support the user in recalling commands and their parameters?

Syntax How does a user know which commands expect parameters and the form of these
parameters?

Transparency How does the system convey to the user the way in which it interprets
commands, making it possible for the user to both understand what is achievable
within the command-line interface and be able to diagnose why a particular command
input does not result in an intended response.

As the command-line interface becomes more complex, these design issues become
more important. For example, a common example of a command-line interface is a
command-line shell : a software that allows users to interact with the operating system
and applications by typing commands. Such shells have not only many commands but
also elaborate syntax, which may be difficult for users to comprehend and even more
difficult to understand when the shell fails to interpret the user’s commands.

Further, such shells may have several categories of commands, such as:

Built-in shell-commands A shell typically provides a set of commands that are integral
to the shell itself. An example of such a command (in the shell Bash for Linux) is
echo, which outputs a provided parameter to the shell. For example, “echo hello”
results in the shell outputting “hello”.

Operating system provided tools In addition to built-in shell commands, most operat-
ing system provides a range of services for connecting and disconnecting devices,
managing the file system and other services, and typically an operating system
provides command-line applications that allow a user to interact with such services.
These operating system-specific tools are always present in a working installation.
An example of such an application in Linux is cp that allows the user to copy a file.
For example, “cp file1 file2” creates a copy of file1 with the name file2.

554

27. Commands and Navigation

External applications In addition to built-in commands and operating system provided
tools, users may also have the ability to access additional functionality by interacting
with external applications using the command-line. An example in Linux would
be cpp, which is a compiler that can be instructed to compile code by providing it
with command-line parameters.

When a command-line interface increases in complexity the design issues—availability,
naming, learning, recall, syntax—in turn increase in significance. For example, built-in
commands should use a systematic naming scheme and syntax though this is by no means
guaranteed. This challenge of ensuring consistency and standardization across commands
becomes more difficult when a range of additional operating system provided tools are
provided, some of which may be legacy tools with previously established conventions or
third-party provided tools. External applications exacerbate the situation further since
the naming conventions and syntax of external applications cannot be directly controlled
by the command-line interface and is therefore likely to vary despite any availability of
indirect control, such as user interface design guidelines.

27.3. Organizing Information

How to organize information has been a topic for more than 100 years, starting with
considerations on how to structure increasing amounts of information in books and other
publications. With the invention of the internet, those considerations have spread to the
digital world, too. They are often called information design or information architecture
[691]. We will just call this concern organizing information and offer a high-level view of
some considerations and tools.

In general, the challenge of organizing information assumes that we have items of
information (e.g., commands, menu items) that we want to organize in some way (e.g., in
a list, in a hierarchy).

27.3.1. Ordering Information

The simple case is where we have a set of items that we need to order. If you look at the
items in the first menu you can find on your computer, they will have an order. How do
we decide that order so that it make the user interface the best possible?

The most general guideline is to group items that belong together. Such a grouping may
be functionally related items (e.g., "copy", "cut, "paste"). In most empirical comparisons
of ordering, grouping is the most effective ordering principle.

Another approach is to use importance of the items. One might infer importance from
the frequency with which users select options. However tempting it seems to change the
order of items, for instance based on selection frequency, Somberg [763] described an early
study that showed this strategy performed poorly. The study compared finding item in
one of four menu orderings: alphabetic, frequency of selection, random, and positionally
constant. Surprisingly, positionally constant placement worked the best, in particular as
users practiced more finding the item.

555

27. Commands and Navigation

While alphabetical ordering is easy, it is suitable only for a few tasks. For most other
tasks, there is either some way of ordering items that better match users’ typical tasks or
the information can be placed into hierarchies—if you have tried searching for a country
in an alphabetical list of countries, you know that hierarchies can be useful.

27.3.2. Placing information in hierarchies

Oftentimes, we have so many items to organize that placing them into a hierarchy is
unavoidable. As for organization within a list, items that are semantically or functionally
associated should be placed in the same panel or submenu. Place the most informative
items of a group to the top of a panel. Apply this principle to every level of a hierarchy.

Another important idea is that hierarchies should give labels or hints that allow users
to quickly and without error decide whether the target they are looking for belongs to
the tab or not. In foraging terms, design the ‘information scent’ of the entry points of a
panel. For example, when looking for ‘Save’, if the menu label says ‘Window’, scent is
low and the user can quickly dismiss the whole panel. If it instead says ’General’, scent is
higher and a user might occasionally look into the panel, in vain.

One important decision in placing information into hierarchies, be it a menu or a
web-site structure, is whether the hierarchy is broad or deep. As suggested by the
paper example below, and many other studies, broad menus appear to be preferable for
most situations. Why is that so? A broad menu structure makes it easier to compare
alternatives visually, rather than to go down a path in the hierarchy only to discover that
an alternative would be better. A broad menu also offers fewer choice points for the user.
Finally, the labels for the parts of the hierarchy are perhaps easier to make high-scent
because they are fewer and therefore somewhat broader.

556

27. Commands and Navigation

Paper Example 27.3.1 : Breadth/depth tradeoffs in menus

Miller [532] presented one of the first studies of the tradeoffs between organizing
hierarchies to be deep (few choices per level) or to be broad (many choices per level).
Miller had 24 participants try one of four menus, each containing 64 items. The
menu hierarchies varied between two choices at six levels, four choices at three levels,
eight choices at two levels, and 64 choices at one level (see below). The menu items
were common English words

26 43 64182

Draw these hierarchies

Miller [532] had 24 participants use one of the four menu organizations, where they
had to select the 64 goals one at a time for a total of four times (so-called blocks).
The purpose of these blocks were to see if participants improved their ability to find
items quickly and without errors as they gained experience with the hierarchy.

The results of the study indicated an U-shaped relation between increasing depth
of the organization and both task completion times and errors. The hierarchies with
four or eight choices were thus optimal, leading to the conclusion that a tradeoff
between choices and organization exists. In particular, seeing only leaves of the
hierarchy (64 choices) is ineffective, as is a series of many choices.

27.3.3. Hypertext

Text which allow the user to retrieve further information when interacted with is known
as hypertext [569]. Hypertexts are connected using hyperlinks (often simply called “links”),
which are particular elements that trigger further retrieval. Hyperlinks consisting of text
are usually denoted in some unique way to provide sufficient perceived affordance so that
the user can realize a hyperlink is present.

Hypertext is ubiquitous on the world wide web (WWW) but not limited to such use.
The traditional hyperlink on the WWW is blue and underlined to indicate its unique
function in comparison to regular text, which may be selected or even edited, but will
not trigger retrieval of further information if interacted with. Hyperlinks may consist of

557

27. Commands and Navigation

text, images, and videos. The broader term hypermedia is sometimes used to denote more
general usage.

Since hypertext documents can link to other hypertext document, and such hypertext
documents, can in turn link back to the original source hypertext documents, the navi-
gational structure of hypertext document collections can be complex. Mathematically,
hypertext document collections form directed graphs. While a simple hypertext document
collection may have a relatively straightforward tree structure, in practice, hypertext
documents quickly form complicated directed graphs that may be difficult for users to
navigate without aid.

While originally a highly active area of research, today hyperlink document navigation
has been largely standardized using a set of well-known navigational structures, such as
the use of a navigation bar with forward and backward buttons and an address bar. A
similar structure is also used in many file browsers.

[66] provides an overview of common navigation techniques for hypertext. The first
technique is the use of presentation, layout, and links to convey information, orientation
cues and choices. The second technique is the use of maps and indexes to provide
an overview of the hypertext document collection. The third technique is the use of
bookmarks to allow the user to quickly retrieve a particular hypertext document. This
technique allows the user to mark the parts of the hypertext document collection that
are of particular interest to the user. The fourth technique is the use of thumb tabs,
which allow the content creator to mark the parts of the hypertext document collection
that may be of interest to users in general. This can be achieved by, for example,
including hyperlinks at the side, top or bottom of the hypertext document that links to
key information. The fifth technique is the use of margin notes that allow the user to
annotate hypertext documents. The sixth technique is use of breadcrumbs, a navigational
aid that reminds the user of previous locations the user has visited in the hypertext
document collection. An initial “crumb” will often indicate an overall summary page or
entry page while subsequent crumbs reflect the user’s navigation deeper into the structure,
for example “Animals”, “Mammals” and ‘Cats‘.

27.3.4. Techniques for organizing information

One of the main techniques for discovering organizations of information that match users’
organization is called card sorting. The basic idea in card sorting is to provide users with
descriptions of the information to be organized, each piece of information represented
separately (e.g., on a card). Users are then asked to sort those into groups of similar
items, possibly naming each group. Across users, these grouping can give a sense of how
consistently users see similarities of pieces of information and what groups of information
should be called. If users are consistent, the groups may be used to organize information
in a user interface.

Typically, the card sort process goes as follows [894, 616].

1. Put pieces of information on cards; the cards may be digital or physical.

2. Find users that can help group the cards; any number will do, although 20 to 30

558

27. Commands and Navigation

persons are often recommended [812]. It is important that the users understand the
cards.

3. Ask users to group the cards. They may be asked to "“Please group these items as
you would expect to find them on our corporate intranet" or "group things together
that seem to be similar in some way".

4. Ask users to name groups; those names may be used in the user interface and may
be helpful to understand why cards are grouped together.

After this, various statistical methods are available for calculating which groupings that
seems best. If we have x cards with information pieces and have asked y users to group
them, we obtain a matrix of x ⇥ x where each entry is the number of times (between 0
and y) two items were grouped. This matrix can be used for cluster analysis, for instance
to derive a hierarchy of pieces of information or to find a set of k groups through k-means
clustering. For more information, see for instance Paea et al. [616].

It is also possible to validate the card sorting results by having users place pieces of
information into existing categories (so-called closed card sort). This may be considered
a check of the reliability of the grouping (see Chapter 10).

27.4. Menu User Interfaces

Command-line interfaces (CLIs) can be efficient, assuming that the user can take the
time to learn them. As a result, they are useful specifically in professional applications
where skill development or training can be expected, such as system administration [48].
However, for many other cases, learnability can pose a barrier. It is time-consuming to
learn command names and effortful to recall them. The principle of direct manipulation
(Chapter 28) would be both learnable and less effortful. However, it does not offer as much
room for improving performance. As a middle ground, interactive menu systems have
evolved as a mainstream technique for command invocation in graphical user interfaces.

We are all familiar with menus. In general, a menu is a set of selectable options, like a
menu of desserts in a restaurant. An interactive menu displays its options on a computer
display for selection with a pointing device [36]. Interactive menus first appeared in 1968
in AMBIT/G, a visual programming language, but they were popularized much later by
the Xerox Star in 1981 and later the Macintosh computer in 1984 [36].

As a common type, Figure 27.1 shows an example of a hierarchical linear pulldown
menu. It shows several menu commands organized into menu panels. Within each panel,
there are groups of commands indicated by (horizontal) separator lines. The menu is linear
because commands in a panel are organized vertically. The menu is hierarchical because
there are multiple panels. Some panels o open submenus. The menu is a pull-down menu
because it opens in place by expanding from top to bottom.

This real-world example illustrates well the main benefit of interactive menus: they
allow novice users to familiarize with options simply by opening menu panels and reading
the items. Items are made available via recognition not recall, which is effortful (see

559

27. Commands and Navigation

Figure 27.1.: An example of hierarchical linear pull-down menus in Pages, a word pro-
cessing application.

Chapter X). There is no need to memorize command names. However, recall can be used
to further boost performance. Keyboard shortcuts (e.g., CTRL-C for copying and CTRL-V
for pasting) allow users to drastically improve performance for oft-used commands. This
mode, although it requires some effort to learn, is optional.

Common characteristics of interactive menus are:

A finite set of options Typically between a handful and a few hundred, but can go up
to a few thousands in professional software;

Visual and textual presentation Options are presented visually on display using text,
icons, and interactive feedbacks (e.g., hoverover cues);

Interactive exposition of options Menu options can be shown fully or exposed interac-
tively as a response to the user’s input;

Transience Menus are often expanded in place and dismissed after use, saving screen
estate;

560

27. Commands and Navigation

Figure 27.2.: In menu interaction, user traverses via options using a pointer.

Multimodality Alternative ways to access the menu can be offered, such as via voice
commands or keyboard shortcuts.

27.4.1. Menu techniques

In the menu design shown in Figure 27.1, submenus are opened by hovering over the
parent option. This is an instance of a menu technique, an interaction technique for
menu navigation and selection. It illustrates two principles of menu systems: interactive
exposition and transience. Submenus are exposed and dismissed by bringing the cursor
on top of a parent menu.

To issue a command, the user has to perform a series of actions: 1) trigger the menu;
2) identify the menu item with the desired command; 3) navigate to the menu item with
the desired command; and 4) select the menu item. While an expert user would know
where a desired menu item is located, the user would still need to navigate to this item.
This is inefficient compared to a direct invocation method, such as a keyboard shortcut.

Menu techniques can be divided into two main classes, depending on which aspect of
the series they support. Techniques for navigation help the user explore the menu panels.
For example, keyboard navigation can be offered, or hover-over -based exposition like
the one above. Techniques for selection help the user select an item. In a basic form of
interactive selection, shown in Figure 27.2, the item that is currently being pointed at is
highlighted (activated), helping the user to keep track of the current selection. When the
cursor is brought over an item, it can be interacted with.

The design of a menu techniques can help find a suitable tradeoff between performance
and learnability. While in theory pull-down menus can cascade indefinitely, in practice
pull-down menus are limited in the number of commands that can be made available to
the user. Careful steering of a control cursor is required in order to navigate a hierarchical
menu structure [7]. This limits performance.

27.4.2. Keyboard Shortcuts

A keyboard shortcut is a keyboard combination, such as Ctrl+C, that allows a user to
directly invoke a command. The advantage with a keyboard short-cut is that they allow

561

27. Commands and Navigation

users to immediately invoke a command without having to navigate a structure. This
provides efficiency to expert users.

The primary disadvantage of keyboard shortcuts is that the user has to consciously
learn the keyboard shortcut. To aid this, keyboard shortcuts are often, but not always,
shown next to a command as part of a menu item. This allows the user to learn about
the keyboard shortcut at the time when they are interested in the command. On the
other hand, at that point it is easier for user to simply select the menu item, which means
learning the command only happens due to continuous user effort.

Another disadvantage with keyboard shortcuts is that users may forget them and unless
they are used frequently.

27.5. Notational Systems

A notational system is a system with graphical elements composed according to rules,
sometimes referred to as a visual grammar [76]. We introduce such systems here because
both commands and navigation structures may be understood and analyzed as notational
systems.

An example of a notational system is a domestic heating controller. A typical heating
controller consists of a set of buttons for controlling hot water and radiator heat using
either direct controls or by programming. The controller provides buttons allowing the
user to turn on either the hot water, radiator, or both systems, for one hour. To program
the controller to turn heating or or off at particular times during a day, the user has to
move a panel, revealing a set of buttons to program the controller.

Such a heating controller can be analyzed in terms of its notation: how it allows the
user to operate it by, for example, modifying the times hot water is heated or the radiators
are turned on and off. The cognitive dimensions of notation framework [76] provides a
design vocabulary for reasoning about such notational systems.

An example of how this framework can be used is posed by the following quote ([76]:
“Back in the 80’s one of us (TG) was shown a system that he was sure wouldn’t work.

Yet the received wisdom of 80’s HCI seemed to have no explanation of the problems he
foresaw. It was a speech-to-text dictation system for use with the Pascal programming
language. The speech-recognition technology appeared to be entirely adequate for this
restricted language. What problem could there be?”

27.5.1. Types of Notation Use Activities

Incrementation Adding cards to a cardfile, formulas to a spreadsheet or statements to a
program

Transcription Copying book details to an index card; converting a formula into spread-
sheet or code terms

Modification Changing the index terms in a library catalogue; changing layout of a
spreadsheet; modifying spreadsheet or program for a different problem

562

27. Commands and Navigation

Exploratory design Sketching; design of typography, software, etc; other cases where the
final product cannot be envisaged and has to be ‘discovered’

Searching Hunting for a known target, such as where a function is called

Exploratory understanding Discovering structure or algorithm, or discovering the basis
of classification

27.5.2. Cognitive Dimensions of Notation

A lack of terminology may make it difficult to reason precisely about a notational system’s
positive and negative qualities. Cognitive dimensions of notation form a design vocabulary
that help designers and researchers to discuss, assess and critique notational systems.
The cognitive dimensions are the following:

Viscosity Resistance to change. Viscosity captures the extent of actions the user is
required to carry out to achieve their goals in a system. Repetition viscosity means
that a change requires many actions of the same type, such as for example, selecting
each cell in a spreadsheet individually and assigning them a color attribute. Knock-
on viscosity means that further distinct actions are required to restore consistency
following a change. The more involved and complex it is for a user to make changes
in a system, the higher the viscosity.

Visibility Ability to view components easily. The overall visibility provided by the system
is determined by the saliency of visual elements in the interface and the ability to
reveal visual elements easily. A system that makes it difficult to view elements of
the system has low visibility.

Premature commitment Constraints on the order of doing things. The degree of flexible
a user has in carrying out operations in any preferred order. A system demanding
many operations to be carried out in a very specific order exhibits a high degree of
premature commitment.

Hidden dependencies Important links between entities are not visible. If certain elements
in the system rely on other elements, such dependencies should ideally be evident
to the user. A system that has many hidden dependencies is not making it clear to
the user that many elements in the system are reliant on other elements or factors
present in the system.

Role-expressiveness The purpose of an entity is readily inferred. Role-expressiveness
describes the ability of a user to inspect an element in the interface and understand
its purpose with little or no guidance. Role-expressiveness is closely related to, but
not identical to, perceived affordance. While perceived affordance relates to the
immediate uses of a visual element, role-expressiveness may be provided by the
system by other elements means than the element itself, for example, by providing
a description in the vicinity of an element. The easier it is for a user to understand
the purpose of the elements in the system the higher the role-expressiveness.

563

27. Commands and Navigation

Error-proneness The notation invites mistakes and the system gives little protection. The
error-proness of the system can manifest itself in four different ways. First, the
system can be fragile and easily reach an erroneous state. Second, the system can
make it easy for a user to commit an error. Third, it may be difficult for the user
to realize there is an error. Fourth, there may be either no provision for rectifying
an error or only a cumbersome error correction facility. These four error-proneness
categories can interact. For example, a system may make it easy for a user to
commit an error and make it difficult for a user to realize that an error has occurred.
The higher the extent these four categories are present in a system the higher the
error-proneness.

Abstraction Types and availability of abstraction mechanisms. Abstractions are defini-
tions of underlying notations. For example, a style sheet in word processing allows
a user to create a new style, such as a “body text” style that encapsulates text
attributes: a specific font, font size and font style for the running text in a document.
Instead of the user formatting the text by manually assigning these individual text
attributes, the user can assign the text a style. As this example shows, abstraction
may necessitate additional user interface components, in this case a style sheet
manager that allows the user define and redefine styles. The more intricate the
types of abstraction are in the system and the more abstraction mechanisms that
are made available to the user, the higher the abstraction provided by the system.

Secondary notation Extra information in means other than formal syntax. A system can
provide mechanisms for users to record additional information that is unanticipated
by the notation designer. For example, program code allows the insertion of
comments that are uninterpreted by the system. Such comments can then be used
to record a variety of information, such as an explanation of the purpose of a
variable or function. The more advanced mechanisms in place for the user to record
additional information, the higher the secondary notation support provided by the
system.

Closeness of mapping Closeness of representation to domain. The closeness of mapping
describes how well the notation maps to the phenomena that the system is attempting
to capture. The better the match between the notation and these phenomena, the
higher the closeness of mapping.

Consistency Similar semantics are expressed in similar syntactic forms. It is easier for
the user to infer the correct application of a notation for a task if the notation of a
similar task is of a similar form. For example, if similar commands are named and
presented in a similar manner it is easier for the user to find them. The higher the
consistency of a system the more the system tends to express similar notation in
similar manner.

Diffuseness Verbosity of language. Notations can be overly redundant, resulting in overly
long expressions in a text-based notation or disproportionate use of screen real
estate. The more redundant the notation, the higher the diffuseness.

564

27. Commands and Navigation

Hard mental operations High demand on cognitive resources. The more difficult it is
for the user to conceptualize and understand tasks or components in the system,
or the system as a whole, the higher the demand on the user’s cognitive resources.
For example, deeply nested structures, complex interrelationships between elements
and obfuscated presentation all contribute to higher working memory demand. The
more such demands are made by the system the more the system provides hard
mental operations.

Provisionality Degree of commitment to actions or marks. The ability of the system to
allow the user to temporarily explore different solutions or designs is measured by
its provitionality. The higher the provisionality, the more the system supports the
user providing noncommittal input for the purpose of exploration or sketching.

Progressive evaluation Work-to-date can be checked at any time. In a non-trivial system
it is beneficial for the user to receive incremental feedback on progress. For example,
when writing program code in an integrated development environment, an online
syntax checker can provide early feedback to the user if the code expressions have
syntax errors. The more a system supports providing such incremental progress
feedback, the higher its progressive evaluation support.

The easiest method to understand how cognitive dimensions of notations can be applied
in practice, is to use them to analyze and contrast how two different notational systems
support the user in achieving a set of tasks.

27.6. Recognition versus Recall

One of the big tradeoffs that has run through this chapter is that between recognition
and recall. When users recognize, they identify an item of relevance based on some cue
for what they want to do among a set of items. This is what we all do when we use
menus. When users recall, they come up spontaneously with names for commands or
descriptions of objects. This is what we all do when we search the World Wide Web. But
from an HCI perspective, the difference between recognition and recall in user interfaces
represents a fundamental tradeoff.

The benefit of recognition follows from what we understand about human cognition
(see Chapter 5). For most people, recognizing “Ljubljana” as the capital of Slovenia is
easier than recalling the word and its spelling. Sometimes, recognition is referred to as
knowledge-in-the-world; rather than relying on memory, we rely on representations of
knowledge in our external environment.

The benefit of recall is that it scales well. Independently of the number of items, recall
works. The items to be recalled does not take up space on a display. Recall typically
requires practice: We learn capitals only by hearing them repeated. Recall is sometimes
also called knowledge-in-the-head; we rely on memory rather than external environment.

The dynamics of recall and recognition is surprisingly complex. We all know situations
where we rely on knowledge in the world rather than knowledge in the head; looking

565

27. Commands and Navigation

up facts on your phone rather than thinking about them is one example. A study by
Sparrow et al. [766] explored this effect. Participants were asked to learn trivia and
type them into a computer. Half were told that the computer would remember what
they typed, the other half that what they typed would be erased. The participants who
believed that the information had been saved performed worse on a task to recall the
trivia. Thus, representing information externally affects how well we remember it. Gray
and Fu [282] showed a fascinating effect that appears opposite. People were willing to
rely on imperfect memory in interacting with a video recording machine when the cost
of accessing knowledge in the world increased. Thus, we may prefer to recall, even if
recalling information leads to poorer performance.

Because of these differences in display space requirements, practice, and rational
tradeoffs in what we remember, the suitability of recall versus recognition as a strategy
for a particular user interface is impossible to answer in the general. Therefore, we cannot,
in general, say that user interfaces that rely on commands (like command-line interfaces)
or on navigation (like menu interfaces) are better or worse. It depends on the users, their
activities, and the context in which they act.

Summary

• In user interfaces, naming the objects and actions is an important activity, in
particular because users are likely to call objects and actions different things, the
so-called vocabulary problem.

• Recall of command names is facilitated by naming commands using familiar termi-
nology and placing them in well-thought hierarchies.

Exercises

1. Recall vs. recognition. Come up with three cases where recall is needed in HCI.
Then think how, by user interface design, you could transform this to recognition.

2. Command names. Consider the following actions and imagine that they would be
triggered by a single command action:

a) Copying a photo from a mobile phone into a laptop computer.
b) Sorting all files in a directory in reverse alphabetical order.
c) Selecting all files in a directory that are image files.

Find one other person and work independently to propose a single command name
for each action. Compare your proposed command names. How many command
names are the same? Do you agree among yourselves that all proposed command
names are reasonable?

566

27. Commands and Navigation

3. Cognitive demands of notation systems. Choose six of the cognitive dimensions of
notations and articulate some of the user interaction issues that contrast command-
line interfaces and a graphical user interface.

4. Notational system design. Consider the following two notational systems:
a) A user writing program code in an Integrated Development Environment (IDE).
b) A user working with formulas in a spreadsheet.

The task is to implement mathematical expressions where the arguments may be
scalar or vectors and the functions used are a subset of commonly used mathematical
operators: addition, subtraction, multiplication and division, exponential, square
root, absolute value, and standard deviation. Use all the cognitive dimensions of
notation to analyze how these two different programming environments can support
the programmer in carrying out this task.

5. Cognitive dimensions. At the end of the section on notational systems there is a
quote from Blackwell and Green [76]. The authors recall an anecdote about a system
using speech-to-text to support programming in the programming language Pascal
(the precise programming language is unimportant). Even though the speech-to-text
functionality itself “seemed adequate” the authors appear certain the particular
system would have HCI problems. Use cognitive dimensions to articulate some of
the problems you could foresee with such a system.

6. Menu systems. Articulate the positive and negative qualities of hierarchical linear
pull-down menus compared to the design of a marking menu. Are there particular
use contexts where one design would preferable instead of the other one? What
would those use contexts be and what factors in those use contexts would result in
one interaction technique being preferable in favor of the other?

7. Command discovery. A major problem with command-lines is supporting users in
discovering which commands are available and their functions. Can you think of
design solutions that could mitigate this problem? Can you articulate why your
design solutions would improve user experience using, for example, the cognitive
dimensions of notation as a design vocabulary?

567

28. Graphical User Interfaces

We are all familiar with graphical user interfaces (GUIs). GUIs are the type of user
interface that dominates workstations, laptops, and touchscreen devices, including mobile
phones and tablets. GUIs allow users to efficiently carry out many everyday computing
tasks with ease, such as copying and pasting information, starting applications by selecting
them, working in multiple windows at the same time, and using word processing and
spreadsheets with easy access to hundreds of functions.

In addition to being a part of our daily lives, graphical user interfaces have been the
subject of much research from the 1980s and until now. Highlights of this research include
the following.

• GUIs pioneered the idea that we can refer to objects by their location, rather than
by their name. In some circumstances, this is a powerful way to learn and use user
interfaces.

• The benefits of metaphors in graphical user interfaces have been much researched;
examples of such metaphors are the desktop (for organizing files) and the thrash
can (for deleting files).

• Some studies have shown that GUIs are more useful than command-line interfaces.
Rauterberg [674] compared a GUI with an interface using menus and function keys;
participants used between 18% and 88% less time to complete tasks with the GUI.

GUIs evolved from command-line interfaces (covered in Chapter 27). Although
command-line interfaces (CLIs) are efficient for experts, they have several limitations.
Users have to learn the command set, or part of it, including their arguments, and
their syntax, in order to instruct the computer system. They are impractical for many
object-manipulation techniques, such as selecting a region of an image, selecting text in a
document, or cells in a spreadsheet. They make it hard to work on multiple tasks simul-
taneously, since there is no easy way of switching between tasks. Moreover, commands
tend to be difficult to remember and are error prone.

Computing devices started as relatively simple calculation devices, and their input and
output systems were transplanted from teleprinter devices used to relay text messages.
However, as processing power and memory capacity increased, it became possible for
computers to perform more sophisticated tasks. In parallel, new display technology and
video processing enabled graphical display, while new input technology, such as lightpens
and computer mice, provided users with a way to make precise selections on graphical
displays. However, to allow users to achieve their goals effectively, efficiently, and safely, it
was recognized that there was a need to reimagine the way users interact with computer

568

28. Graphical User Interfaces

Figure 28.1.: Interacting with Sketchpad [789].

systems. As a result, several prototype systems gradually led to the refinement that is
today recognized as the GUI. These technological developments converging with new HCI
to form the direct manipulation paradigm that we discuss in this chapter.

28.1. A Brief History of the GUI

Limitations in command-line interfaces have long been recognized. The first prototype that
resembles our modern GUI is Sketchpad [789]. Figure 28.1 shows Sketchpad. Sketchpad
demonstrated a series of features associated with a modern GUI, such as the use of a
pointing device (lightpen) for drawing geometric shapes, and the ability to create and
manipulate graphical objects presented on display. In software code, it used concepts like
’objects’ and ’occurrences’, which precedes object-oriented programming.

Around the same time, novel systems such as PLATO (Programmed Logic for Automatic
Teaching Operations) and HES (Hypertext Editing System) did not provide a GUI but
explored elements central to later developments. PLATO allowed graphics to be shown
along with text on a raster display to provide an interactive learning environment and

569

28. Graphical User Interfaces

HES allowed a user to use a lightpen to navigate hypertext (see Chapter 24).
In 1972 Alan Kay set out his vision and requirements for what he dubbed Dynabook—a

personal computer for children of all ages [400]. Essentially, it predicted a modern laptop
or tablet along with a modern GUI, although the target audience for this device would
be children.

In 1973, the Xerox Alto became the first computer specifically designed to support
a GUI. The users could interact with a keyboard and mouse, and the GUI was shown
on a black & white CRT raster display. It provided a WYSIWYG (What You See Is
What You Get) word processor capable of mixing several font families and font sizes, a
graphics editor that allowed the user to change tools by selecting their corresponding
items on a toolbar, an interactive SmallTalk environment, and a pinball game, among
other applications.

This initial workstation design and its GUI concept were gradually refined (see Fig-
ure 28.2) and led to the development of personal computers—computer systems that are
feasible for individual use rather than relying on a mainframe. This led to the Apple Lisa,
the IBM PC, UNIX terminals, and the Windows operating system for IBM PC-compatible
computers, which all provided a GUI for users to interact with. Since such computer
systems were prohibitively expensive at the time, several personal computers targeted
toward consumers, such as the Commodore C64, Amiga 500, Atari ST, and many others,
were developed and commercialized in the early to mid-1980s. By the mid-1980s, the
GUI was established as the de facto standard user interface, typically complemented by a
command-line terminal interface for tasks that could not easily be carried out using the
GUI.

28.2. Design Objectives

GUIs exhibit great flexibility in how they can be designed. However, this expressivity is
also a challenge. Unlike, for example, a form, a GUI can have many more possible design
variants. To aid GUI designers, GUI software libraries’ providers make guidelines available,
such as Apple’s Human Interface Guidelines. These and other vendor-provided guidelines
are specific to particular products and brands. However, there is general agreement on a
core set of objectives that GUIs should strive to meet.

28.2.1. Visibility

GUIs should strive to have high visibility. This means that to support users in achieving
their goals, these goals and the necessary steps to achieve the goals, should be visible to
users.

What You See Is What You Get One example of this principle is WYSIWYG—What
You See Is What You Get—word processors, which show the effects of choices of font
families, sizes, and styles directly in the document. Headings, body text, hyperlinks, and
other formatting elements of the text are shown directly to the user, and the user can

570

28. Graphical User Interfaces

Figure 28.2.: Xerox Star’s WIMP interface: Windows, Icons, Menus, and Pointing devices.

interact with these elements directly. For example, if the user selects text and changes
the formatting then this change will be immediately visible in the current view of the
document. Further, the Font dropdown list shows the font as it will appear on the
document after selection.

Visibility of Commands Another example of this principle is to ensure that commands
are visible. For example, ?? shows a word processing application that supports the
visibility of commands by revealing many relevant text formatting options and tools in
the toolbar to the right of the text document. For example, the choice of font, style, size,
and color can be set directly. Common text features, such as the choice of having the
text aligned to the left, right, center or having it justified, are also immediately visible.
If the user does not know what an option means, the user can hover the mouse cursor
above an element in the toolbar to trigger a tooltip description.

Visibility can be supported by allowing users to browse commands using linear pull-
down menus or by exploring a series of toolbars. However, visibility is about more than
just making commands and other interaction possibilities obvious to the user. Visibility
means designing a GUI that invites users to take action and allows users to easily interpret
what the actions are and their consequences. At the same time, both screen real-estate
and users’ visual attention are limited resources. Therefore, there is a need to strike a
balance between how much information that can be conveyed in the user interface without
overloading the user.

571

28. Graphical User Interfaces

Visibility of Status Visibility of status means ensuring that the GUI shows the status
of entities relevant to the user’s goals. An example of visibility of status is an indicator of
whether a remote user is available or busy in a communication program. Another subtle
visibility of status example is the padlock icon on the web address input field, which
indicates that the currently visited website uses a verified certificate.

Visibility of Dependencies An example of a well-established graphical user interface
paradigm that attempts to strike this balance is the spreadsheet. Spreadsheets allow
users to link cells together by formulas which refer to the values in other cells. Such
dependencies can be difficult for the user to understand. As a result, a spreadsheet GUI
provides a mechanism for visualizing such dependencies. When the user clicks a cell with
a formula that refers to other cells, the dependent cells are color coded to match the color
coding of their role in the original formula.

Paper Example 28.2.1 : A graphical user interface with physics

A graphical user interface does not have to look and feel like a traditional desktop
GUI. For example, a GUI can be driven by lightweight physics and relax some of the
rather rigid organizational principles in traditional. Agarawala and Balakrishnan [12]
do this by allowing users to organize files as piles of documents that can be quickly
moved by dragging and flicking them with a pen. The resulting BumpTop prototype
enables windows, photos, and files to be organized informally in piles.

BumpTop supports a range of interaction techniques to select and browse objects.
The movement of objects is physics-based and employs rigid body dynamics, friction,
and collision detection which means when objects collide they experience semi-realistic
displacement effects.

28.2.2. Consistency

To support users in learning a user interface, consistency is an important design objective.
Consistency means that representations are similar across the user interface. If the print
command is represented with a icon showing a particular printer in one part of the interface,
the same icon should be used in another. Similarly for interaction techniques. If one has to
right-click an object to invoke a particular command, one should use the same right-click
for other commands. Consistency might be followed across user interfaces (so-called
external consistency). The rationale is that external consistency help users transfer skills
from other interfaces. There are several techniques for ensuring consistency. Adhering to
style guides—such as Apple’s Human Interface Guidelines—ensures consistency across
applications on a platform. There has also been developed tools that can help check the
consistency of bottom placement and labels [495].

Is striving for consistency always a good thing? There is no clearcut answer. Grudin [294]
provides several examples of interface-design decisions where consistency is not attractive.
Grudin points out that there are several considerations before employing consistency as a
design guideline: 1) consistency must be defined; 2) there is a need to identify good—as

572

28. Graphical User Interfaces

opposed to poor—consistency, which means there must be a method of identifying the
most suitable consistency among several competing consistencies; and 3) there must be a
method of identifying when other principles are more important than consistency. Grudin
argues that striving for consistency is often not a useful principle. Instead, interface
objects are better placed according to the need of the user’s tasks. This changes the focus
from properties of the user interface to task analysis and an understanding of the work
context.

28.2.3. Minimizing Errors

Errors are outcomes in a graphical user interface that are inaccurate or incorrect. It is
important to realize that errors to some extent are unavoidable and even intrinsic in
human-computer interaction. For example, noise in human neuromuscular system will
make it exceedingly difficult for a user to move a mouse cursor to precise pixel location
on a high-resolution display. In practice, users are also bound to make mistakes due to
lack of attention, training, or a misunderstanding of the user interface. Further, GUIs
can induce errors by relying a confusing design. It is therefore natural to introduce the
objective minimizing errors. A GUI should be designed to anticipate and tolerate user
errors and minimize erronous outcomes. Given the importance in eliminating as many
errors as possible, user interface designers commonly use several well-established tactics.

Preempting Errors GUIs should adhere to sound GUI design principles, such as those
mentioned in this section. In particular, a clear, simple structure and a user interface that
presents graphical elements in a consistent manner can help preempt errors to begin with.

Reversing Outcomes GUIs allow users to reverse the results if their actions are later
found to be undesirable. This realization has led to the widespread implementation of
undo and redo, which allow users to reverse their actions (undo) or repeat them (redo).

A simple linear undo/redo facility can be achieved by using a stack data structure:
Every last executed command is put on the stack. When the user undos, the last command
on the stack is retrieved, and its consequence is eliminated. For example, if the user
underlined some text, then the last executed command would be to underline some specific
text in the document. Once the command has been executed, the command is added to
the undo stack. If the user now wishes to undo this action, this last executed command
is retrieved and the consequence reversed (such as removing the underlining from the
specific text in the document). This type of undo action can be repeated by the user or
reversed if the user wishes to redo the action. The size of the data structure is known as
the undo history. An application using a linear stack-based undo model can only reverse
command execution up to its undo history. More sophisticated undo mechanisms may be
required for more complex applications.

Explaining Outcomes and Confirming Actions An established GUI practice is to
seek confirmation when the user desires to issue commands that are irreversible or may
have unforeseen consequences. Such confirmation can, for example, be implemented by

573

28. Graphical User Interfaces

triggering a Dialog Box that explains the consequences of the action and provides the
user with options, such as proceed, abort, or retrieve information about the consequences
of the action. A common example of this type of dialog box confirmation is when a user
wants to overwrite an existing file.

28.2.4. Accessibility

Finally, GUIs should be accessible to all users. What this means and how this may be
addressed is discussed in the chapter on tool use (Chapter 19).

574

28. Graphical User Interfaces

Paper Example 28.2.2 : Common GUI guidelines

Task support : GUIs should prioritize support for tasks that are frequent, important,
or risky. Moreover, their design should offer a structure that is compatible with the
task flows that users find natural. In Chapter 15 we discussed task analysis.

Simplicity : ‘’Keep it simple, stupid” (KISS). Offer only those features that are
needed – and nothing else. Adding functionality, graphics, descriptions, widgets,
options, and colors can only increase users’ workload. Increased workload, in turn,
increases stress and decreases performance and satisfaction. Examine the elements of
the UI and ask which ones are really needed.

Responsiveness : GUIs should be responsive. Simple interactions like manipulations
of widgets should have responses within a few tens of milliseconds. Full views should
not take more than a second to load up. Most web pages take 3-4 seconds, however.

Consistency : Users are not tabula rasa. They approach your design with priors. In
other words, based prior exposure to related UIs, they have formed expectations about
your design’s structure and behavior. Consistency refers to perceptual similarity
between a target UI and prior UIs a user has used. Consistency also pertains to
interactions: Actions that have the same consequences should be presented similarly.
Consistency makes it easier for users to find elements in an interface and control
them. It lowers the need for learning.

Recoverability : Users make errors. Because there is a non-zero probability of
an error happening, it is important that the interface minimizes their negative
consequences on the user. Does your interface allow users to undo, veto, or recall
their actions?

Assistance : Do not ask users to do things that can be done automatically for them.
Assist them whereever possible. Information that a user has given earlier should be
offered as default options, unless there is a reason that this may not be the likely
option. Asisstance increases efficiency.

Scaffolding : Offer support for developing skills. Starting with a new UI is often
cognitively taxing and stressful. Over time, users pick up skills for performing the
minimum tasks. The UI should assist novices to figure out the interface, for example
via tips. But it should not stop there. intermediate-level should be helped to figure
out how to increase performance (e.g., by power user features like shortcuts).

Ability-based design : GUI design should support users with different motor,
perceptual, and cognitive abilities.

575

28. Graphical User Interfaces

28.3. The Principle of Direct Manipulation

A central principle for graphical user interfaces is the principle of direct manipulation.
The original definition of direct manipulation was provided by Shneiderman [745] and
states that a direct manipulation interface has the following three properties:

• Visibility of the objects and actions of interest

• Rapid, reversible, incremental actions

• Replacement of typed commands by a pointing action on the object of interest

These properties were later refined into the following three principles [752]:

1. Continuous representations of the objects and actions of interest with meaningful
visual metaphors

2. Physical actions or presses of labeled buttons, instead of complex syntax

3. Rapid, reversible, incremental actions whose effects are on the objects of interest
are visible immediately.

An example of direct manipulation is the removal of a file (Figure 28.3). To delete a
file from a desktop GUI, such as Mac OS X, the user opens a file management application
window. This window will list all files in the current directory as graphical representations,
such as icons coupled with filenames. The user can now move the mouse pointer over a
graphical representation of a file and select it by pressing a mouse button. The graphical
representation of the file changes in response to this action to provide feedback to the
user that this file has now been selected. If the user keeps the mouse button pressed the
user can now drag the graphical representation of the file to a graphical representation of
a delete action—the bin icon in the lower-left corner in Figure 28.3. When the graphical
representation of the file is on top of the bin icon, the representation of the bin changes
to provide feedback that the graphical representation of the file is interacting with the
bin icon. If the user lifts up the mouse button now, then the file is moved to the bin,
which means it is considered deleted but can still be recovered if the user changes their
mind. If the user continues to press the mouse button, the system will open a new file
management application window.

28.3.1. Benefits and limits of direct manipulation

What makes interaction ’direct’? Hutchins et al. [358] explain directness under two
dimensions:

Directness = Distance + Engagement

Distance refers to mental effort required to translate goals into actions and then evaluate
their effects. Norman [582] has named these as the gulfs of execution and evaluation
(see Chapter 18). Engagement refers to the locus of control within the system. Users

576

28. Graphical User Interfaces

a)

b)

c)

Figure 28.3.: An example of direct manipulation. a) Files are visualized as icons coupled
with filenames in a file management application window. b) The user selects
a file by moving the mouse pointer over the file and pushing down a mouse
button. The visual depiction of the file changes in response to this action. c)
While holding the mouse button down the user has dragged the file to the
bin—an icon that is always shown on the desktop toolbar at the bottom of
the screen. If the user lifts up the mouse button at this moment in time the
file has been moved to the bin and is considered deleted (but recoverable)
by the system. 577

28. Graphical User Interfaces

should feel like being the agents within the system. By contrast, in command language
interfaces, the user interact with a hidden intermediary that relays the commands to a
third party for execution. This interaction is like shouting a command to someone in
another room and waiting for the person to respond. Direct manipulation interfaces offer
a model world. Think about the desktop metaphor, for example. It models the desktop,
even some reduced form of physics. Model-world interfaces allow users themselves to act
in the world – in first preson – and not via an intermediary.

Lower distance carries several cognitive benefits over command language interfaces
[405]. Using direct manipulation interfaces usually involve recognition rather than recall.
Visual recognition is less effortful than memorization of commands. Instead of recalling
command names, objects can be searched for visually. Direct manipulation UIs also allow
concrete metaphors (e.g., desktop metaphor) as opposed to abstract concepts. Instead of
keyboard commands, a pointing device can be used.

However, whether these benefits realize depends on a number of factors. Direct
manipulation is not a panacea, but requires a well-crafted GUI design. If the metaphors
or icons are poorly designed, or poorly organized, visual search will become a bottleneck.
Pointing can also be slower than typing when the GUI is disorganized. Frohlich [256]
reviewed empirical evaluations of direct manipulation interfaces, concluding that the
evidence is mixed. Some studies show benefits, some not. It is the interface design and
the user’s task together that determine whether the benefits of Distance can be realized.

Kieras et al. [405] compared keypad and touchscreen as an interface in a tactical
aircraft game. Users were required to identify and act on aircraft appearing on display.
They conclude that response selection separates direct manipulation and keypad-based
interaction. When using a keypad, users must recall which key commands to use in
which situation. Direct manipulation lowers this requirement. The authors note that the
touchscreen interface would have been even better if less hand movement was involved.
However, even small changes to the task or the user interface could have changed this
result.

Certain tasks are more difficult for direct manipulation interfaces [255]. It is harder to
refer to previous actions, something that can be alleviated with undo/redo and interaction
histories. It is also difficult to perform repetitive actions, which in command language
interfaces can be done with scripting. Concurrent actions are also difficult because there
is a single pointer only.

578

28. Graphical User Interfaces

Paper Example 28.3.1 : Video browsing by direct manipulation

Direct manipulation is a powerful principle for graphical user interfaces. At first
sight, however, it may seem limited to the manipulation of icons. However, this is an
underestimation of the power of direct manipulation. Let us consider, for instance,
whether the browsing of a video could be done using direct manipulation. Would
that be possible?

Typically, video browsing is done with a slider that can be dragged across the
length of the duration of a video (see the figure below, at the buttom). Dragicevic
et al. [209], however, thought that we often have an object of interest in the video,
such as a car moving or a ball jumping or our favorite actor doing a particular
move. Rather than scrubbing a timeline, could we just grab and move the objects of
interest? As shown in the figure below, Dragicevic et al. [209] found a way to make
this possible so that video can be navigated as a direct manipulation.

28.4. Anatomy of a Graphical User Interface

28.4.1. Graphical User Interface Elements

Windows A window is a central component of a GUI. A window is a (typically) rectangu-
lar panel that encapsulates an application or a task. The application windows encapsulate
the primary application window. A window manager provided by the operating system
is responsible for handling fundamental actions for windows, such as 1) instructing the
window to redraw its contents; 2) sending keyboard and mouse events to the window
when it is in focus; 3) providing user functions for minimizing, maximimizing, and closing
windows; and 4) allowing the user to drag and resize windows. ?? shows an example of
an application window.

579

28. Graphical User Interfaces

Paper Example 28.4.1 : Folding windows

Windows allows one to expand document and applications into a controllable space
on a display. However, as an interactive widget, present-day windows are rectangles
that can be moved, resized, and closed. What if the desktop metaphor was extended
to windows? Dragicevic [208] presented an interaction technique for windows that
allows them to fold like pieces of paper. When multiple windows are on top of each
other, the user can quickly fold their corners to see what is underneath them.

Panels A panel, sometimes referred to as a component or container, is a rectangular area
that can contain its own background (often simply a solid color) and a set of elements of
the user interface. An arrangement of panels is used to create an application GUI. For
example, ?? shows a word-processing application window which internally consists of
three panels: (1) static toolbar panel at the top providing access to several commands; (2)
a context-sensitive toolbar panel to the right which changes depending on what type of
content the user has selected (text, tables, etc.); and (3) the main word processor panel.

Menus Menus are widely used in GUIs. In desktop GUIs, linear pull-down menus allow
the user to traverse a menu hierarchy to explore and select commands. On a mobile
touch-enabled device, this menu exploration style is impractical and therefore menus are
usually shown as a series of horizontal buttons that the user can navigate. Menus are
discussed in more detail in the chapter on interaction techniques (Chapter 26).

Icons An icon is a graphical depiction that represents some capability of the GUI, such
as the ability to launch an application or trigger a command. Icons can be generated by
bitmaps or vector graphics. Depending on context, icons can serve a number of purposes.
First, an icon can be selectable by the user. For example, a group of icons representing
an application or file can typically be selected by either selecting them in sequence. This
is typically done by holding down a specific keyboard key while using the mouse to click
on each icon). Alternatively, it is sometimes also possible to use a mouse and perform
a rectangular selection. This allows a user to perform an action on multiple targets
simultaneously. Second, icons can be clicked. Such an action typically triggers an action,
such as the launch of an application or a specific command. For example, clicking on an

580

28. Graphical User Interfaces

icon representing a pair of scissors usually triggers the command Cut. Third, icons can
serve as targets for actions. For example, it is often possible to delete a file or application
by dragging its icon to the bin icon. Fourth, icons can reveal information. For example,
the bin icon may be represented as an empty bin when there are no recoverable files
available and as a bin with contents when there are recoverable files. To access the
recoverable files, the user can click the bin icon, which opens a file explorer window
showing the special system directory that contains deleted but still recoverable files on
the system. Another example is app icons on a smartphone, which may show a number
next to them to indicate the number of unseen notifications they can reveal to the user if
the user triggers the app icon by touching it.

28.5. Designing a Graphical User Interface

GUI design is a so-called Easy/Hard activity. It appears easy. Anybody with moderate
computer skills can just ‘wing it’: download an interactive SDK (software development
kit) and start drawing a GUI. There are plenty of examples online to learn from. However,
designing an actually usable GUI is hard. You are almost certainly going to fail your
users unless you follow a systematic design process or happen to be a design veteran.

The user-centered design of a GUI is not different from other areas of design, yet some
unique characteristics exist. First, GUI designs are based on user research. Key decisions
in GUI design - like those concerning functionality, UI style, visual design approach
- require empirical understanding of the users’ practices, needs, capabilities, contexts,
terminals, existing designs, and so on. Designers increasingly rely on logs from existing
applications as a source of data. Second, design is iterative. Hundreds or thousands
of alternatives are sketched, eventually converging towards hi-fi prototypes worthy of
evaluation. Digital sketching and wireframing tools are often used to boost productivity. A
UI kit is a template of components that can be used in design tools like Sketch and Figma.
Several iterative cycles or sprints are carried out that often involve some research, design,
and evaluation. Third, GUI designs are evaluated with dedicated methods. Analytical
evaluation methods (e.g., GUI design guidelines) are used early on in the project and
empirical methods like usability testing, AB testing, and field studies later on. Elsewhere
in this book, we have discussed heuristic evaluation guidelines for GUI design (see ??).
GUI designs need to be reviewed against company-specific guidelines and design systems.
For example, at the time of writing, Microsoft offered Fluent Design System and Google
Material Design. In a review or audit session, a design team reviews all low- and high-level
details of the candidate design. Changes to the UI after this point will be very expensive.

Development of GUI software is still a significant cost. Although there are powerful
SDKs, and even sketch-to-code solutions, developing a full-functional GUI that fulfills the
specifications is time-consuming. The software controlling the GUI must be interfaced
with application features, business processes (e.g., payment), databases, and hardware.
Software engineers must validate the software before launch. However, GUI design does
not end at the release of a product, but metrics and processes must be put in place to
maintain and update it.

581

28. Graphical User Interfaces

In the following, we provide a primer for five elementary GUI design considerations:
visual layouts, text and labels, icons, widgets, and metaphors. We review approaches
based on empirical research. GUI design, however, is first and foremost a practice. The
best way to learn GUI design is to try it out. For more detailed treatments of the topic,
we refer the reader to dedicated practical books [752, 875].

28.5.1. Visual Organization

Visual Hierarchy : Elements on a graphical layout should be organized logically. But
what does that mean? Visual hierarchies use visual cues to define which elements belong
together and in which order they should be looked at (see ??. Hierarchies become
necessary when the number of element grows. Instead of N separate elements, aim toward
a hierarchy. Use regular visual cues (e.g., rectangular boxes, colors) to indicate groups.
Gestalt laws are useful for visual grouping. Contours, regions, colors, paddings, and
margins are strong cues of what elements belong together.

Visual hierarchy ranks graphical elements and places them to larger groups: elements
higher in the ranking contain elements on lower levels. A well-designed hierarchy helps
the user understand the order in which a task can be completed (task flow). Visual cues
like proximity, common region, contiguity, and regularity in colors and style are used to
communicate the hierarchy.

Grid line is the most important organizing principle of layouts. Grid lines are horizontal
or vertical lines that intersect a UI canvas. They define how the edges of UI elements can
be placed. Grid layouts are UI layouts defined with grid lines. A grid layout is a spatial
structure that places elements in a non-overlapping way on a (typically) rectangular area.
A layout can be described efficiently with grid lines. One can easily define repetitive
structures like column grids and card grids, but also more complex structures. They are
used across various stages of GUI design, from sketching and wireframing to prototyping
and deployment

Grid alignment is a measure of GUI complexity (see [?]). It describes the minimum
number of grid lines that can be used to define a layout such that all edges of elements
fall on a grid line. Empirical work on grid alignment has found it to be correlated with
perceived complexity of a GUI: The smaller this number, the less complex it is perceived
[533]. In a controlled study measuring search time and preference, Parush et al. [624]
showed the importance of grid alignment and balance: ”The combination of poor alignment
and poor local density had the strongest adverse effect on search time. Alignment and
grouping were found to have more influence on subjective preference” [p.343]. However,
search times shortened considerably with experience, even for the worst designs.

Visual Guidance : GUI design should have a visual flow that matches the user’s task
flow (see Chapter 15 for task analysis). Visual flow refers to the order in which users
are likely to scan the regions of a UI. By contrast, perceptual clutter is a state where
everything is competing for the user’s attention, and it is not clear where to start a task.
Flow is affected by the use of colors, sizes, shapes, and orientations. Negative space - that
is, the use of white space - can be used to guide attention, too. We learned in Chapter 3

582

28. Graphical User Interfaces

about visual saliency and clutter, which provide a systematic concept for understanding
what grabs a user’s attention.

28.5.2. Icons

Icon design needs to take into account a number of factors. First, an icon may serve to
represent many purposes at once as an icon can be a representation of a digital object,
an underlying action, a receivable action, or all. An example of such an overloaded icon
is the bin icon. One representation is status: an empty bin communicates to the user
that there are no recoverable files available, while a bin with contents signals that there
are recoverable files. Another—related—representation is the fact that if the user clicks
the bin icon, then the system will open a file explorer window showing any available
recoverable files. Further, set of files and applications can be deleted by first selecting
them and then dragging their icons to the bin. When this happens the representation of
the bin icon changes, for example, by a subtle change in shading, to indicate that the bin
icon has been selected. Finally, when files are deleted by dragging them to the bin the
system plays a sound representing someone crumbling a piece of paper as an indication
to the user that the action was carried out.

Second, the design of an icon must be understandable by the user. This may involve
choosing a metaphor the user is likely to understand, such as the bin icon design. As
another example, a notepad app icon may literally depict a notepad. Application icon
design often foregoes the idea of using metaphors and instead opts for ensuring the icon
represents the brand of the application in question. For example, application icons, for
Microsoft Word, Skype, etc. all relect their respective brands.

28.5.3. Metaphors

To guide interface design it may be possible to leverage metaphors. The idea behind the
use of metaphors is to design concepts, processes and actions in a graphical user interface
around the user’s prior knowledge, such as designing digital office tasks, for example
file management, note taking, word processing and so on around a desktop metaphor.
Figure 28.4 shows an example of an aspect of this desktop metaphor in the form of
a bin serving as a representation for for discarding unwanted files and applications by
throwing them in the bin and, conversely, recovering such discarded files and applications
by picking them up from the bin before they have been thrown out with the trash (deleted
permanently).

Carroll et al. [134] lists several such interface metaphors. Word and text processing uses
the metaphor of the typewriter and exploits prior knowledge around using typewriters,
typing paper and keyboards. Desktop publishing and document structures (such as
headings and subheadings) uses the metaphor of a physical document and exploits prior
knowledge around typesetting, inserting physical figures and the logical structure of
a document. Single-user or collaborative electronic workspaces use the metaphor of a
chalkboard or whiteboard and exploit prior knowledge around group interaction around a
chalkboard or whiteboard and the free-form organization of text and graphics. Desktop

583

28. Graphical User Interfaces

Figure 28.4.: An example a commonplace metaphor in GUI desktops: the bin as a
representation of deleting files.This is the Mac OS X bin. Users can delete
files by dragging them to the bin (or issuing a delete command directly). By
clicking the bin the file management application shows the user previously
deleted files, which can then be recovered if the user so chooses.

accessories use metaphors of desktop tools and exploit prior knowledge around the use of
a calculator, notepad and personal organizers. Further examples, include spreadsheets
exploiting prior knowledge of ledger sheets for understanding matrix-structured data
organization and forms-based applications exploiting prior knowledge of business forms
and the codification of existing business processes into forms, organization of information,
and report generation.

The central idea behind interface metaphors is to support learning by analogy by
exploiting users’ prior knowledge in the design of a graphical user interface to able to
transplant existing concepts, actions and processes the user is already familiar with to
improve users’ learning and understanding of graphical user interfaces. However, it is
critical to realize that metaphors are far from perfect mappings to user interfaces. In
fact, as noted by Carroll et al. [134], if metaphors provided a complete mapping then, for
example, a word processor would actually fully appear and behave as an actual typewriter.

As a result, the mapping between the source of the metaphor and the target (the user
interface) is never one-to-one and this results in metaphor mismatches. For example, a
forms-based user interface may present an electronic form similar to an existing physical
business form. However, an electronic form can, and probably will, support input
validation and can thus provide feedback to the user on invalid input, suggest probably
inputs, and also prevent the user from assigning the next part of the form until the first
part of the form has been fully validated.

Further, interface metaphors are often used in combination which leads to composite
metaphors [134]. For example, a desktop user interface uses a desktop metaphor while
desktop accessories use their own metaphors, such as notepads, calculators, clocks and
personal organizers.

28.6. Why do we still have GUIs?

As explained at the beginning of this chapter, research on GUIs begun in the 1960 and the
first commercially successful GUIs date to the 1980s. As pointed out by Beaudouin-Lafon
[56], this is curious because all other aspects of computers have improved dramatically.

584

28. Graphical User Interfaces

Figure 28.5.: An example of a GUI making extensive use of metaphors: the Microsoft
Bob product for Windows 3.1. Bob was a proposed graphical shell for
inexperienced computer users. The user can start applications by clicking
on their representations in the GUI. For example, the side table to the
left of the armchair shows an address binder to the left and a mail tray to
the right. Clicking the address binder will start the address book applica-
tion and clicking the mail tray with start the email client. Figure source:
http://toastytech.com/guis/bob.html.

585

28. Graphical User Interfaces

The Intel 8088 from 1979 ran at 5MHz, while current CPUs run at 5GHz with multiple
cores and are capable of about 400,000 as many instructions per second. So how come
that the user interface, the GUI, has remained the same?

One answer is that the GUI is a fundamentally outstanding idea. Using space to
structure information helps see what one can do and aids memory. Direct manipulation
has made trial and error available to most users in a way where they can back up. Visual
representations remain compelling for many users.

Another reason is that, in reality, GUIs are being combined with all kind of other UIs.
Thus, what seems to be a dominant interface style is increasingly a mix of graphical
elements, search interfaces, keyboard commands, and other interface styles. Consider
for instance the use of speech when using mobile devices: Many users make calls or
start applications in this way, rather than using the GUI. Another example is the use of
commands in a desktop operating system: Here, many users switch to a command-like
interface for search, for handling files, or for shortcuts to applications. Thus, the GUI is
increasingly combined with other forms of interface.

A third reason is that the alternatives to GUIs are wanting. Interfaces that are based
on naming or searching for commands are sometimes hard or impossible to use for some
tasks. Interfaces that automatically infer what we want, rather than take commands like
the GUI, have been a vision for decades [573]. Intelligent agents and brain-computer
interfaces are two examples. The former, however, has been described as having "a really
bad personal assistant" [483] and the latter is currently only feasible for rather simple
tasks (movement, simple choices). In Chapter 29 we discuss some other alternatives to
GUIs that show promise.

Summary

• Graphical user interfaces were invented more than 40 years ago but is still the main
interaction style in many computer systems.

• Direct manipulation is a key principle of graphical user interfaces.

• Graphical user interfaces exploit a number of visual design principles, including
visual hierarchy, grid lines, and undo.

Exercises

1. Visual design principles. Analyze the visual design principles followed in the design
of a GUI you are familiar with. Take a screenshot of screen you use commonly and
annotate it with principles we listed in this chapter.

2. Direct manipulation. Consider a word processor you are familiar with. Explain how
it uses direct manipulation in common tasks. Now consider how you would redesign
the word processor to not follow the principle of direct manipulation.

586

28. Graphical User Interfaces

3. GUI design. Following the design principles outlined in this section, design a simple
GUI for a note-taking app for two devices: a laptop computer and a mobile phone.
Note down design challenges that differentiate the two terminals.

4. Icon design. Some icons are based on legacy technology that are not familiar to
younger generations, such as the save icon (floppy disk), phone call (phone handle),
folder (file cabinet), address book (rolodex). Following guidance given in this
chapter, design new icons (maximum size 300 x 300 pixels) for these.

5. Widget design. Consider the first instance of a physical table and write down the
attributes of this table that first come to mind.

a) Now ask a friend to do the same. How many attributes are similar?
b) Now consider a typical table widget in a GUI (see e.g., spreadsheet applications).

How many attributes does the table widget in the GUI share with the attributes
you previously arrived at?

6. Cognition and GUIs. Consider the three principles of direct manipulation. Which
insights on understanding people from Part II justify those principles? For each of
the principles, come up with three insights.

587

29. Reality-Based Interaction

The user interfaces for computer systems have remained remarkably consistent since the
emergence of the graphical user interface in the 1980s. Processing speed has increased
dramatically, storage is abundant, and network speeds are orders of magnitude higher
today. Therefore, it is astonishing that we still rely on the same input methods, notably
keyboards and mice, and the same user interface paradigm, including windows, icons,
menus, and pointers [55].

The interaction paradigm that originates with the desktop has several limitations. First,
the user is assumed to be stationary and the physical surroundings are not changing
Second, there is the assumption that only one user interacts with the interactive system
at a time. Third, input, at least with desktop and laptop computers, is indirect, using
devices such as mice and physical full-size keyboards. Finally, the user’s surroundings
have no special status in interaction. As a consequence, users do not have a natural way
to interact with objects and people close to them.

To address these limitations, researchers have worked on several ways to characterize
new opportunities for user interfaces. They have attempted to articulate in a principled
way why and how user interfaces should be developed beyond the desktop computer
model and its focus on windows, icons, menus, and pointers. These attempts have mostly
been negatively worded, such as “post-WIMP” or “beyond the desktop” or “non-command
user interfaces”.

One vision stands out because it articulates the positive aims and characteristics of this
type of user interface, rather than simply stating that we need to go beyond GUIs. This
framework is reality-based interaction, developed by Jacob et al. [374] (see Figure 29.1).
It includes four goals to build interactive technology that better exploits and supports
our capabilities.

• Naive physics: ”people have common sense knowledge about the physical world”
[p.222]. What has been called tangible user interfaces move the control of computers
and the display of information into the physical world (see section 29.3).

• Body-awareness and skills: ”people have an awareness of their own physical bodies
and possess skills for controlling and coordinating their bodies” [p.222]. Interaction
in mixed reality is widely based on this idea that you move your limbs as you would
do outside mixed reality (see section 29.4).

• Environment awareness and skills: ”people have a sense of their surroundings and
possess skills for negotiating, manipulating, and navigating within their environment”
[p.222]. Interactive systems may use the user’s position to display particular
information.

588

29. Reality-Based Interaction

Figure 29.1.: An overview of the four areas in reality-based computing Jacob et al. [374].

• Social awareness and skills: ”people are generally aware of others in their environment
and have skills to interact with them” [p.222]. An example of attention to such
awareness and skills is the interest in video communication systems to get the gaze
direction of a remote person to appear correct.

In practice, this vision boils down to research on interfaces that in various ways break
key assumptions about desktop-based computing. In this chapter, we will articulate four
such types of interface that each break a particular key assumption.

• Mobile interaction that breaks the assumption that interaction means that a user is
primarily stationary.

• Multimodal interaction that breaks the assumption that interaction with computer
systems primarily involves input using one modality and output using another, such
as a visual display.

• Ubiquitous computing that breaks the assumption that users must command com-
puters to get things done. Ubiquitous computing exploits context sensing to enhance
and automate interactions for the user.

• Mixed reality and tangible interaction that break the assumption that virtual reality
and physical reality are separate.

589

29. Reality-Based Interaction

Paper Example 29.0.1 : An early vision of ubiquitous computing

Weiser presented a prominent vision of going beyond desktop computing in a paper
in Scientific American [860]. Weiser outlined three types of ubicomp system that
had been developed by him and his colleagues at Xerox Parc. They envisioned that
computing should come in different sizes, each suitable for a particular task. Weiser
noted that in any given room, there are hundreds of differently sized writing and
display surfaces. He focused on three scales, tabs, pads, and boards and stated:

Look around you: at the inch scale include wall notes, titles on book
spines, labels on controls, thermostats and clocks, as well as small pieces
of paper. Depending upon the room you may see more than a hundred
tabs, ten or twenty pads, and one or two boards.

An example of a tab-sized system is ParcTab [853] (below, left). The ParcTab had
a 6cm by 4cm monochrome display that could be used with a pen and a dedicated
input alphabet. The ParcTab could also be used in just one hand, controlled by three
buttons on the side. It was made possible by innovations in low power consumption
and networking protocols. The ParcTab was used, for instance, as remote pointers
in meetings, for impromptu voting, or for paging people in a manner depending on
their context.

The ParcPad is shown below, right (photo used with permission from PARC, part
of SRI International). This device was connected to other devices via a radio network
and had a stylus with multiple buttons. In contrast to tablets known today, the
vision of the Pad was to be a scrap computer that could be picked up and used when
needed. Just as few people carry loose, partially used pieces of paper, the ParcTabs
were intended to lie around and be grabbed when needed.

An example of the vision of the board was LiveBoard [221]. LiveBoard supported
wireless pen input and a back-projected screen about 120 cm times 80 cm. The Tivoli
application [630] shown below supported informal meetings around the LiveBoard
(photo from [534]). Tivoli supported issuing commands with gestures and allowed
multi users to interaction at once. In addition, Tivoli allowed the simultaneous
sharing of content with other Tivoli applications at other places.

Those three systems were influential not only in HCI research but in computer
science in general, because they were backed by a vision, technically advanced for
their time, and extensively used by the researchers themselves.

590

29. Reality-Based Interaction

29.1. Mobile User Interfaces

Smartphones, interactive mobile computers, made their explosive entry into the consumer
market almost two decades ago. What few know, however, is that HCI research on the
topic was ahead of this development by two decades. The topic was brought to the
attention of the research community in a way that was way ahead of the curve at the
beginning of the 1980s. In 1983, when the PC (personal computer) was making its way to
the consumer market, Norman anticipated the development of computers to a smaller form
factor. He extrapolated a trajectory of improvements in computing power and discussed
the implications to trade-offs in interaction that designers must face. His keynote at CHI
in 1983 [580] [p.9] ended with an insightful speculation about its consequences:

New developments in technology are moving computer systems in several
conflicting directions simultaneously. Workstations are getting more powerful,
with large memories, large, high resolution screens, and with very high com-
munication bandwidths. These developments move us toward the ability to
present as much information as is needed by the user with little penalty in
time, workspace, or even memory space. At the same time, some machines
are getting smaller, providing us with briefcase sized and handheld computers.
These machines have great virtue because of their portability, but severe
limitations in communications speed, memory capacity, and amount of display
screen or workspace.

Norman outlined challenges to user interfaces due to the radically different form factor
and computational capabilities of the mobile computer:

Just as workstations are starting to move toward displays capable of 1000 line
resolution, showing several entire pages of text, handheld computers move us
back toward only a few short lines – perhaps 8 lines of 40 characters each –
and communication rates of 30 eps (300 baud). The major differences between
workstations and handheld computers relevant to the tradeoffs discussion are
in the amount of memory, processor speed and power, communication abilities,
availability of extra peripherals, and screen size: in all cases, the handheld
machine has sacrificed power for portability. Because the same people may
wish to use both handheld machines and workstations (one while at home
or travelling, the other at work), the person may wish the same programs to
operate on the two machines. However, the interface design must be different,
as the tradeoff analyses of this paper show.

Norman made an important observation about the changing form factor. Small size
accentuates a trade-off he saw in desktop computing: that between workspace and menu
size. Consider a social media application that you use, for example: how much of the
screen estate is dedicated to general menu options (e.g., ’Camera’, ’Post’) versus the space
dedicated to reading and editing posts? If you were to add one general menu option, where
would you add it? The larger the menu that one needs to navigate an application, the less
workspace there would be left for the actual application. Any designer who designs for

591

29. Reality-Based Interaction

mobile use would have to solve how to share display space between dynamically changing
and static elements.

However, the first technical innovations in this space occurred even earlier than that. E.A.
Johnson introduced the capacitive screen in 1969. The patent precedes the touchscreen we
use on smartphones today. In 1972, Kay released a concept design of a mobile computer
called the Dynabook (see Figure 1.5) [46]. One can appreciate how Dynabook was at that
time by considering how computers were used then: via textual terminals that accessed a
mainframe computers. Dynabook demonstrated a media-rich networked computer that
one could carry. It had a graphical user interface and multimedia capabilities. Although
the concept inspired laptop computers, the first working prototype of Dynabook – as it
was envisioned – was presented almost 20 years later, largely because the concept was so
much ahead of the technology of its time. GRiD Compass was one of the first portable
computers, it was a laptop computer presented by Moggridge.

29.1.1. Characteristics of the Mobile User Interface

Compared to the desktop computer, the most radical feature of the mobile computer
is its size. Although anyone can see this difference, however, its effect on interaction is
subtler and far from trivial. Size affects almost all elements of interaction from the way
we select objects to the contexts of use, with significant implications to design.

Size affects the types of input and output that is offered. Commercially available
smartphones utilize touchscreens, speech, and physical buttons for input. However, the
market has seen a very rich palette of alternatives, many of which have been investigated in
HCI research, including radar-based sensing (e.g., Google Soli), computer vision (e.g., eye
tracking based on front-facing camera), and the stylus. Output devices are not limited to
touchscreens. Mobile computers can use mobile projectors and they can connect to head-
mounted displays and glasses, on-body haptic actuators, and even link to other near-by
pervasive displays. The modern smartphone also features a wide variety of sensors. These
allow inferences to be made about the user’s context and to take information into account
in interaction. Commonly used sensing include location sensing (e.g., GPS, wireless
radio-based methods), gesture and motion sensing (e.g., accelerometer and gyroscope),
audio and speech sensing (microphone), and light sensing (e.g., for detecting if the phone
is held against the ear). Also more exotic sensors are available, some devices even offer
thermal imaging.

The mobile computer takes advantage of the familiar graphical user interface we find
on desktop computers. By comparison, design for mobiles generally strives toward having
fewer items. Design for mobile interfaces emphasizes visual hierarchy : using saliency and
containment to communicate the most important areas, a concept which is elaborated in
the chapter on graphical user interfaces (Chapter 28).

Because the viewport is smaller, it requires interaction techniques (see Chapter 26) to
support elementary interactions, such as translation (scrolling) or paginated (changing
page). While collapsible menus (e.g, hamburger menus, which open up side menus when
the user clicks on designated icons) and widgets are common, dropdown menus are rare.
To save screen estate for the workspace, text entry is not always available, but only in

592

29. Reality-Based Interaction

a specific mode. Certain interactions, like hover-overs, are not available. Spreadsheets,
which require both workspace and data entry, are avoided on mobiles.

The most distinct characteristic of the mobile device, however, is its portability. Mobile
interaction often takes place while users are in transition: walking, commuting, or just
multitasking. This poses large and nontrivial challenges to both design and empirical
research. The challenge for design is to make interactions usable across the various
situations the user may enter. Simply, the more situations a design can support, the more
mobile it is. ’Mobile first’ refers to the design idea that a user interface that works well
in mobile contexts will work well also in desktop settings, and design should therefore
start from the mobile device.

29.1.2. Small-screen interaction

The small size of the computer poses non-trivial challenges in interaction. The first is the
limited viewport size of the display. Consider navigating a map, for example: the map is
larger than what the display can present at any given time (viewport). It needs a offer a
way to translate the viewport. Zooming in/out helps the user orient to the map and plan
routes.

The other challenge is that fingers occlude the display. If you press a touchscreen with
your fingertip, no matter how gently you try to do that, the area that contacts the surface
is much larger than a single pixel. So, which pixel did you intend to select? An innovative
study by Holz and Baudisch asked participants to press a crosshair presented to them
[344]. What they did was to look at which mental representation of the fingertip best
predicts the recorded touchpoint. They found that the perceived features of the finger –
especially its outline and the nail – predict where users intend to touch. Users do not
perceive those features from their own viewpoint, but from a hypothesized top-down
perspective, like looking down from a 90 degree angle. This is shown in Figure 29.2. This
leads to systematic biases in where the finger is pressing. However, because the bias is
partially systematic, it can be captured in a model, which can be used to improve the
precision of touchscreen sensing in software-side.

The problem of occlusion (by fingers) has been a continuous topic of research in the
area of interaction techniques. Many techniques studied in HCI literature are in use in
commercial products. Touch offset warps the selection point from the inferred touch
point to make it easier to select a small target. In text entry, caret marks the location to
which characters will be inserted. Caret offset refers to the offset to the touch location in
pixels. Magnifying glass is a mode in which the region of the display under the finger is
zoomed in in a warped area of the display.

While the mobile interface may appear easy to use to many readers of this book,
it is imperative to remember that its small physical size can pose serious accessibility
issues. Interacting with small screens is often challenging for aging users and users with
impairments. Aging is associated with impairments, such as those related to motor
control, strength, and visual acuity. Arthritis and other physiological impairments may
cause physical pain in fingers and wrists, making it difficult to operate a mobile device.
Loss of visual acuity makes small text illegible. What may appear a completely clear

593

29. Reality-Based Interaction

Figure 29.2.: Interactive objects presented on mobile displays are small, how do users
select them? A study found that users use the perceived features of the
finger – especially its outline and the nail – to touch a target, here marked
with crosshair. Users align perceived features in a hypothesized top-down
perspective. This leads to systematic biases that can be corrected in software-
side with a proper model [344].

button for you can be illegible for others. Given the growing digitalization of services, the
ability to operate small screens may accentuate differences between those who can versus
cannot participate in the society. Interaction techniques that ameliorate these differences
is an open topic in HCI research.

29.1.3. Mobility

Having a computer in your pocket enables new uses for computing that are not constrained
physically as desktop interaction is. Mobility presents a fundamental new phenomenon
as well as opportunities for novel interactions. Mobile interaction means support for
interaction that takes place while in physical transition between places.

The effect of mobility has been a topic of HCI research for two decades. Mobile context
refers to factors that are relevant in a situation that may affect interaction with the
computer. A defining aspect of mobility is locomotion. Locomotion refers to walking
or movement by other means. Walking requires visual attention which now needs to be
shared between the mobile device and the environment. Navigation refers to finding one’s
way in an environment. This requires not only the ability to localize oneself but also the
ability to choose where to go next.

While moving in an environment, users’ capability for interaction is degraded. Envi-
ronmental noise refers to physical perturbations – like tremble in a metro – as well as
visual noise (e.g., blinking lights) and auditory noise. Such factors can degrade a user’s
sensori-motor performance. Users also need to move. Multitasking is a prevalent charac-
teristic of mobile interaction. Users are always always doing something simultaneously.
As we learned in Chapter 5, multitasking requires users to strategically allocate limited
cognitive resources among tasks. Multitasking while mobile can be perfectly understood

594

29. Reality-Based Interaction

from the same perspective. We share visual attention to events in our environments while
using mobiles. We plan and reason about routes when walking, which may distract with
planning the mobile device requires. Mobile contexts are also social. When mobile, we are
constantly positioning ourselves physically and socially among other people. Consider the
way we queue, take lanes, or sit: there is an invisible ’order’ that we observe, which also
affects the way we use our devices. All of these factors make mobile interaction resource
poor : when designing an interface, we cannot expect visual attention and other resources
to be fully deployed to the interface.

Just how ’resource poor’ is mobile interaction, what does this mean in practice? In
a study called ’Interaction in 4-second bursts’ [609], Oulasvirta and colleagues asked
smartphone users to do information retrieval tasks while going through a route in Helsinki.
The participants were asked do regular tasks like ordering some coffee, taking subway,
and walking through busy streets. The authors set up a wearable minicamera system and
recorded how their eyes moved using several cameraviews: one attached to their device,
one to their chest, and a third one carried by the experimenter who shadowed them. Their
striking finding was that users focus on mobile devices for short bursts of a few seconds
at a time. Average glance durations among the contexts were large, from about 4 seconds
when walking on a busy street to over 10 seconds when seated. Locomotion and social,
dynamic environments were concluded to compete for the user’s visual attention.

29.1.4. Habit-formation and addiction

Are mobile computers addictive? Consider having two options right now: the one offers
almost instant stimulation and requires almost no effort, and the other requires effort and
has its gratifications delayed. Which option would you pick? This thought experiment
demonstrates why mobile devices have the potential to form habits. Mobile devices offer
us instant gratification with very low cost. Right here right now, it is rational to pick up
the device and use it. However, the more you use the device, the less likely there is to be
anything new in the news and social media feeds. In other words, mobile device use often
has diminishing returns: the more you use, the less you obtain. It is the lure of immediate
reward that causes addiction. Problematic use of smartphones has steadily increased the
last years. Partially this is thanks to the increasing availability of stimulating contents
like games and social media.

However, the picture is more complicated. Statistical methods like structural equation
modelling have been used to shed light on factors affecting compulsive user. In a
questionnaire-based study of 325 individuals, Yu-Kang Lee et al. [459] found that
compulsive usage of smartphones is affected by psychological traits. Users who experience
high locus of control, anxiety for social interactions, materialism, and need for touch were
more prone to compulsive use. Self-reported gender affected these. Recent research has
looked into ’detoxication’ applications and theory-based intervention programs to help
users overcome problematic behaviors.

595

29. Reality-Based Interaction

29.1.5. Discussion

A significant change took place in HCI’s empirical methodology around 2000s when it
shifted focus to mobile interaction: a change from laboratory conditions and controlled
experiments to field studies [413]. Although obstacle courses and treadmills can be used
to simulate mobility in the lab, field studies are argued to offer a more generalizable view
to interaction, in particular by allowing everyday events to be included in observations.
Mobility itself, and the different contexts it entails, entail a plethora of events and
circumstances pratically impossible to stage in laboratory conditions.

Field studies of mobile use have exposed two major phenomena associated with mobile
devices. First, multitasking is a defining characteristic of mobile interaction. Users who
multitask while driving cause a risk to safety. Mobile devices are associated with 25 % of
collisions in the US [29]. Second, the constant availability of mobile devices also distracts
our regular patterns in life, and is associated with disturbances in sleeping habits and in
gaming addiction.

29.2. Ubiquitous Computing

The term ubiquitous computing, or ubicomp, was coined by Wieser [1991] to identify
the emergence of a new form of computing. The box above describes some of the early
systems developed by Weiser and his colleagues in more detail. Weiser defined ubicomp
as follows:

Ubiquitous computing names the third wave in computing, just now beginning.
First were mainframes, each shared by lots of people. Now we are in the
personal computing era, person and machine staring uneasily at each other
across the desktop. Next comes ubiquitous computing, or the age of calm
technology, when technology recedes into the background of our lives.

Two parts of this definition are important. The first part suggests that computing
needs to scale differently than mainframes and desktop computers. Rather than catering
to one device, ubicomp assumes and designs for many interconnected devices. Rather
than a system for one user, it assumes many users. Finally, rather than the desktop, it
spreads into larger environments (e.g., rooms, homes, cities).

The other key part of the definition of ubicomp proposes that technology needs to
recede into the background of our lives. Technology should be calm. Alternatively,
researchers have talked about technology that is unremarkable [804], invisible [584], or
disappearing [779]. The idea here is that computing becomes physically integrated with
our surroundings in addition to becoming cognitively less prominent. Information should
be delived in the right place and at the appropriate time.

Ubicomp has been enabled by advances in computing, particularly networking, minia-
turization, and energy-efficient sensors and processors. Fulfilling the vision of ubicomp
continues to raise challenges for research and development in computing. However, the
focal point of this section is how ubiquitous computing has affected those points of
computing that face users.

596

29. Reality-Based Interaction

Four principled differences to desktop computing stand out. First, input and output
become embedded in the environment. Second, context-awareness: sensor data may be
used for recognizing what users or doing or in which context interaction takes place.
Third, interaction become partially implicit, intending to draw on users’ natural ways of
engaging with each other and the world. In other words, users may not be needing to
give explicit commands to a computer but, thanks to context-awareness, it could trigger
actions on its own. Fourth, the substrates of the user interfaces change from the desktop
and its well-known organization to objects, homes, classrooms, and the world. In short,
computing becomes smart. The following subsections outline these different ways of
thinking about user interfaces and summarize their benefits and drawbacks.

29.2.1. Embedded Input and Output

Ubicomp extends the types of input that is used for its user interfaces significantly
over that used in desktop computers. As computing multiplies and is merged with the
environment, we get an increasingly varied and fine-grained set of input about users. This
input may come from sensors may be embedded in objects, from sensors distributed in
the environment, or information from the devices that users carry with them.

Consider the ActiveBadge system as an example, an early ubicomp system [852]. The
system was produced at a time where wireless networks did not exist when telephones
were rarely portable, and when a frequent way of contacting people was to use a pager, a
device which would simply make a sound and show a number, when somebody wanted to
chat with you. In contrast, ActiveBadges would transmit a brief, unique infrared signal
every 15 seconds. This could be picked up by a sensor-network and be used to locate an
individual wearing the badge to a particular room within a building.

Many other types of input has been proposed since the 1980s. Similarly to mobile
computing, this has concerned the location of devices or of the user. For instance, [505]
captured the proximity of users to devices. They showed how to capture and use a
person’s distance to a display for modifying the contents of the display. [163] sensed
electromagnetic noise using the human body as a receiving antenna to recognize gestures
of the body as input.

It is not only input that may be embedded in the environment; output devices may
also be embedded in the environment. The key idea here is to design hardware that
allow information to be displayed to the user in a calm manner. Such output has been
called ambient media [368] or peripheral displays [511]. Typically, there is no interaction
possible with such displays, they merely present information.

An early example of using embedding output in the world was Jeremijenko’s Dangling
String, described by [861]. This art piece is a 2.5m piece of plastic that hangs from an
electric motor mounted in a ceiling. The motor moves the plastic based on the amount of
data being transmitted over the network; ”A very busy network causes a madly whirling
string with a characteristic noise; a quiet network causes only a small twitch every few
seconds”.

Another example is the AmbientRoom [368]. AmbientRoom uses light, shadow, sound,
and airflow to present information in the perifery of users’ attention. For instance, one

597

29. Reality-Based Interaction

may be interested in a particular product that just have been launched on a website.
Each view of the product webpage may be presented as the sound of raindrops. One
might notice that this soundscape changes from dry to heavy rain and wish to investigate.

29.2.2. Context Awareness

One of the main innovation for HCI developed in ubicomp research is techniques for
context awareness. A computer system is context-aware ”if it uses context to provide
relevant information and/or services to the user, where relevancy depends on the user’s
task” [187, p. 5]. Desktop computers have little sense of context but with new sensors
and new modalities we can characterize users, their activities, and their tasks.

Sometimes context may be defined in a straightforward manner; the geographical
location of a user might be one example. That might make it clear, for instance, whether
a user is at home or at work. However, many other types of context are possible. [720]
separated two types of context. Human factors concerns (a) information about the user,
such as their emotional state or their habits; (b) the social environment of the user, such
as the collocation of other people; and (c) the user’s task. Information on the physical
environment includes (d) the aforementioned location; (e) infrastructure, such as nearby
resources for computation or communication; and (f) the physical conditions, such as noise
and light. Each of these may be sensed and used in context-aware applications. Human
factors are often hard to infer from sensor data, as they constitute latent (unobservable)
mental events. Hence, interactions should be designed in such a way that the system’s
actions can be configured and corrected by the user.

In other cases, we need to do sophisticated analysis of input to infer context. A large
portion of this work has been about activity recognition. Activity recognition concerns
inferring the activities of people based on input data. One example of this was done by
[243]. They wanted to recognize activities in the home without the cost of instrumenting
all rooms in a house. They deployed low-cost microphones on the cold and warm water
pipes and on the drains. From the microphones, the authors were to train classifiers that
could predict which appliances where used, which parts of bathrooms that were used,
and when there was something being done in the kitchen. Sometimes activity recognition
concerns mental phenomena like ’being busy’ or ’being stressed’. Other examples of
activity recognition includes being able to detect boredom of smartphone users [638] or
when smartphone users are lying [545].

Acting on context can be done in at least three ways [187, 720].

• Services may run automatically or proactively based on users’ context. For example,
lighting can be changed based on the user’s activity at home (e.g., working vs.
cooking).

• Depending on the context, different information or services may be offered to the
user. The ActiveBadge system mentioned earlier [852] used context to change when
and how calls were put through: "most people would prefer not to take unexpected
telephone calls when they have just been called into their boss’s office; others might
not want to receive calls if they are in the lunch room between 12 and 1pm".

598

29. Reality-Based Interaction

Question Challenge Possible problem

How do I address one or
more of many possible
devices?

How to disambiguate signal-to-noise?
How to disambiguate intended target
system? How to not address the
system

No response, unwanted
response

How do I know the
system is ready and
attending to my
actions?

How to embody appropriate feedback
so that the user can be aware of the
system’s attention; how to direct
feedback to the zone of user attention

Wasted effort,
unintended actions,
privacy and security
concerns

How do I know the
system is doing or has
done the right thing?

How to select objects? How to show
system state? How to bind actions to
objects?

Few operations possible,
failure to do actions,
unintended actions

How do I avoid mistakes How to control or cancel actions? How
to intervene when users make obvious
errors?

Unintended actions,
unintended results,
inability to recover state

Table 29.1.: Sample questions for interaction with ubicomp systems; adapted from Bellotti
et al. [60], p. 417.

• Context may be tagged so that it can be acted upon by the user. In the Classroom
2000 system, for example, university lectures were recorded alongside whiteboard
markings [5]. That integrated capture and tagging produce a rich set of notes from
the lecture. Later work has focused on so-called life logging, that is, integrated
capture and tagging of everything an individual experience. In the Forget-me-not
system, for instance, a users is shown for each day information on whom they met,
which documents they printed, and which calls they made.

29.2.3. Natural and Implicit Interaction

A main point of departure for many ubicomp systems is that interaction should be natural
in its context. Thus, much work on input using gestures, movement, and speech has been
done. A related characteristic of interaction styles in ubicmp is that it becomes implicit.
In graphical user interfaces, users give explicit commands. Much interaction in ubicomp
is command-free, using sensed input. The concerns around most interaction techniques
for ubicomp, then, revolve around whether users feel as the agents behind interactions
and whether it is clear to them that they are indeed interaction. For instance, many
people have struggled with automated lighting, waving their arms to make the light go
on and wondering why the light was switched off, even if they were still in a room. [60]
offered a set of questions about implicit interaction in ubicomp systems (see Table 29.1).

29.2.4. Is implicit interaction realistic?

Although ubicomp has been researched since the 1990s, it is still an active area of research.
The main benefit from HCI’s point of view is that computers can be used in everyday

599

29. Reality-Based Interaction

contexts as opposed to dedicated workspaces. While Weiser’s tabs, pads, and boards are
already a reality, realizing the stronger vision, the idea of implicit interaction, has been
difficult to realize. Recognizing from sensor data what a user does or what the user wants
has turned out to be very hard. Whenever prediction fails, the user must have a way to
correct the system or disable the system. Moreover, all sensing systems can also be used
for commercial and even adversarial purposes, like monitoring users. The user pays the
price for failure, be that in terms of effort of loss of privacy. If the average benefits do not
justify such costs, users may be reluctant to start using these systems. Concerns like these
has led to researchers to look at intellegibility and controllability and personalizability of
ubicomp systems. However, besides succesful case examples, no general solutions exist for
these challenges.

Paper Example 29.2.1 :

The challenge of sensing complex states.
One goal of ubicomp has been sensing, also the internal states of people. The

research area of affective computing has focused on sensing human affect and adapting
interactive systems based on the sensed information. If you recall the chapter on
emotion (see Chapter 7), you will remember that theories of human emotion are
complex. Moreover, getting the sensing of some aspect of emotion (like core affect)
right has required significant effort.

Picard et al. [637] explored how to decode physiological signals from a user into a
prediction of an affective state for that user. The authors were particularly interested
in exploring the robustness and variability in the sensing methods. To that end, they
collected about a month of data from a person who tried to experience particular
emotions. The person was asked to go through eight emotions in turn, including
anger, hate, grief, and joy.

While people tried to experience the emotions, four measures were collected. (1)
facial muscle activity, (2) blood pressure, (3) skin conductance, which is increased
by sweat on parts of the hands, and (4) respiration rate. Based on these measures,
the authors developed a variety of models for accurately predicting emotions, solving
variation among days of the features that indicated the relevant emotions. Although
affective computing is still difficult, but this study was an early demonstration that
some variation in measures can be dealt with.

Note also that Picard et al. [637] used a single participant only, making the point
that research in HCI need not have many participants. In this case, the strength of
the data is that is spans many weeks.

29.3. Tangible User Interfaces

Desktop user interfaces, in particular the GUI, use a generic input device (often a mouse),
have a single user controlling that mouse, and employ a digital representation of the
content that is interacted with. During the late 1980s and early 1990s, an increasing

600

29. Reality-Based Interaction

Figure 29.3.: A graspable user interface from [240]; later, the predominant way of talking
about such interfaces became tangible user interfaces. The left-hand part
of the figure shows how a virtual object (a window) can be selected and
subsequently moved using a physical handle (called a brick). The right-hand
part of the figure shows a drawing application, GraspDraw, with two active
bricks connected to a computer with cables. Those bricks can are used as
part of drawing, making the control of GraspDraw both more physical and
allowing for two-handed interaction. The interaction happens on an inclined
desk with rear-projection.

number of researchers found this form of user interface fundamentally limited. [863]
expressed the limitation as follows (p. 24):

We live in a complex world, filled with myriad objects, tools, toys, and people.
Our lives are spent in diverse interaction with this environment. Yet, for the
most part, our computing takes place sitting in front of, and staring at, a single
glowing screen attached to an array of buttons and a mouse. Our different
tasks are assigned to homogeneous overlapping windows. From the isolation
of our workstations we try to interact with our surrounding environment, but
the two worlds have little in common. How can we escape from the computer
screen and bring these two worlds together?

Tangible user interfaces developed as an answer to this question. The overall ambition is
to make interaction with computers more physical, both in input and in output. Figure 29.3
shows a classic drawing system that support input through physical manipulation and
output projected on a desk [240]. Compared to desktop computing, this system transforms
drawing to a physical and two-handed activity. It was one of a series of systems appearing
around the same time that showed that the vision outlined in the quote above was within
reach. Another well-known example was Durrell Bishop concept of a marble answering
machine. It represented voice messages to a phone as marbles, physically illustrating
the number of incoming messages and allowing the user to manipulate each message
physically.

601

29. Reality-Based Interaction

29.3.1. The Elements of Tangible User Interfaces

Compared to the GUI, tangible user interfaces change most components of user interfaces
(e.g., devices, interaction techniques, representations, and substrates). Input devices
are typically physical objects that are sensed to use their position and orientation as
input. This may happen using RFID tags that are embedded in the objects, with tracking
of recognizable visual markers (so-called fiducials, for instance tracked from beneath a
surface), or sensed from the inside of the object (for instance, as the proximity to other
objects). For instance, the reacTable allows physical objects that represents samples and
filters to be placed and tracked on a tabletop display using a marker under the object
[387]. Output devices have often been projectors, showing digital content amidst physical
objects, or horizontal displays, on which physical objects may be placed (as in reacTable).
Output may also be realized through actuation of real-world objects. [286] placed small
figurines atop a servo motor; the way the figurines were facing reflected the presence or
absence of remote coworkers. In Madgets, output from the computer may be given to
physical widgets that can be electromagnetically moved around on a tabletop [862]. In
these cases, the physical widgets enable the user to control the virtual content and the
virtual content may also control the positioning of the widgets. In that way, input and
output melt together.

A key goal of interaction techniques for tangible user interfaces is to mimic interactions
with physical objects. Fishkin referred to this as metaphor of action. For instance, rotating
a scan of the brain on a display may be accomplished by rotating a fist-sized model
of a head [336]. The IO brush allows users to pick up visuals from their surroundings
using a brush-like device with an embedded camera [701]. Users may then use those
visuals to draw. Interaction techniques may also use constraints imposed by the physical
world to steer interaction. In the marble answering machine, a small dent in the machine
indicates and constraints where marbles may be placed. In Pico, actuated objects could
be constrained in where they could move by the user’s hands and by physical props,
like elastic bands between objects or physical barriers [626]. Finally, some interaction
techniques have been modelled over combinations of physical objects. For instance, objects
may be placed on top of each other, next to each other, or assembled as an interaction.
Topobo allowed users to snap together physical objects to create new forms and record
movement of those forms for later playback [667]. Such constructive assembly is a widely
used interaction style in TUIs that support learning. Interaction style may couple input
and output more or less tightly, Fishkin called that the degree of embodiment. For
instance, the model of the head previously mentioned is coupled to output on a display
(distant embodiment) whereas IlluminatingClay uses clay both as input and output (full
embodiment), see [642]. In the latter case, interaction techniques ensure that physical
objects are simultenously acting as representations and as controls [817].

The representation of information in tangible user interfaces is shaped by it being bound
to physical spaces and objects. The physical objects themselves may be generic, say, the
marbles in the marble answering machine. In Fishkin’s terminology, this is a question
of the metaphor of the noun or the shape of the object; bricks use no metaphor and are
dependent on convention or learning. Generic objects allow the user to couple physical

602

29. Reality-Based Interaction

objects to interface objects or actions; [341] called such objects containers (because they
may represent any kind of information). Generic objects may be augmented or annotated
with information to help distinguish them from each other. The physical objects may
also be non-generic; [341] called such objects tokens. For instance, in the urban-planning
system Urp, users give input by moving physical architectural models on a table surface
[820]. The models and the movements of them help calculate the shadows for arbitrary
times of day and output is given by projecting them back over the models. Physical
objects may represent actions. The bricks in Figure 29.3 serve as generic representations
of actions like move and rotate.

Perhaps the most prominent characteristic of tangible user interfaces is that the
substrate of the interface is the physical world. [352] argued that "tangible interaction
is embedded in real space and interaction therefore occurs by movement in space" (p.
439). Thereby, computing is moved out of the computer; the social and spatial aspects of
the world thereby become key parts of the interaction. In many projects, the real-world
substrate has been tabletops (e.g., Urp, graspable user interfaces as in Figure 29.3). Many
visions of tangible computing suggest using the real world to embed information. As one
of three essential characteristics of tangible interfaces, [368] listed the "use of ambient
media such as sound, light, airflow, and water movement for background interfaces with
cyberspace at the periphery of human perception" (p. 235). While this idea has been
widely explored, it does not necessarily imply mean that the any part of the interface can
be physically manipulated.

29.3.2. Models of Tangible User Interfaces

Figure 29.4 shows a simple model of tangible user interfaces called MCRit [817]. This
model was formulated in opposition to a prominent model used in graphical user interfaces
called model-view-controller (MVC; see Chapter 38). In MVC, the model is independent
of the user interface and manages the data and logic of the system. The view makes
information accessible to the user, in graphical user interfaces, typically in a visual form.
The controller takes input from the user and uses it to affect the model or the view.
Thereby, views and controls are logically separated.

In contrast, MCRpd stands for model, control, representation—physical and digital.
Compared to MVC, the model plays a similar role, comprising the digital content of
the system. The view component, however, is replaced by representations. Those
may be physical (e.g., bricks) or digital (e.g., video, audio). In contrast to the MVC,
representations are always in the physical domain. Finally, the control component of the
interface is always fully physical. Physical representations serve both to reflect the state
of the digital model and as mechanisms for interactive control.

29.3.3. Pros and Cons of Tangible User Interfaces

Tangible user interfaces have many benefits over other types of user interface; see [740]
for an extensive review.

• Tangible user interfaces tap fundamental human skills in using our hands and

603

29. Reality-Based Interaction

Digital world

Physical world

Model

Physical
representation

Digital
representationControl

Figure 29.4.: A model of tangible user interfaces by Ullmer and Ishii [817]. The physical
world reflects the digital model, both as digital representations and as
physical representations. The physical representations serve as controls of
the digital model.

bodies for thinking and acting. For instance, early experiments with the interface
shown in Figure 29.3 showed that participants were faster with the tangible user
interface, had fewer difficulties in switching between tools because the tools were
physically represented, and could work in parallel relying on hand-eye coordination
and proprioception. This is also evident in the many tangible projects that explore
learning. Tobopo, for instance, used manual skills in assembly to facilitate interaction.
In that way, tangible user interfaces tap our understanding of physics and our body
awareness and skills [374], enhancing learnability and immediate usability.

• Tangible user interfaces also offer multiple devices for input. This enables the simul-
taneous use of multiple devices, either by two-handed interaction, or by multiple
people. On a desktop computer, people would have to take turns (or time-multiplex);
in tangible user interfaces, they can act simultaneously (or space-multiplex). Re-
actable, for instance, allows multiple users to simultaneously manipulate sound
effects and samples due to its round shape and multiple tokens [387]. This supports
social awareness and skills [374].

• Tangible user interfaces uses specific physical objects, rather than generic input
devices. In that way, what the objects do and how to use them are more readily
apparent to users. This means that actions are easily discoverable and that the gulf
of execution is lessen by the specificity of the physical objects.

• Tangible user interfaces integrate control and representation. Thus, the control
always reflect the digital model. Thereby, feedback is integrated and direct. In
tangible user interfaces, there are rarely issues of mapping because of this direct
integration.

At the same time, tangible user interfaces have limitations. Tangible user interfaces
comes with the limitations of being tied to physical objects: there are just one of an object,
they may be lost, and they may take up all the workspace or otherwise result in clutter.

604

29. Reality-Based Interaction

While this sounds like a practical concern, the specificity of physical representations
imposes severe restrictions on how well tangible user interfaces work for actual tasks.

Tangible user interfaces do not well support abstraction. Most operations are direct
manipulation and thereby share the limitations of that style of interaction by not allowing
abstract operators (e.g., wildcards) or syntax-based manipulations. This several limits
their expressivety, that is, how much may be expressed in a command, as well as their
scalability, that is, how many objects they maximally work with . Perhaps for this reason,
ultimate performance with tangible user interfaces remains low.

A third issue is that tangible interfaces need to fully align virtual and physical models.
The issue here is both to make physical models accurately and quickly reflect changes in
physical models, for instance with respect to the position of an object. The issue is also
related to retaining the properties of physical objects while using them (and all of their
properties) to control digital models.

The development and evaluation of tangible user interfaces is an active research field
and there is strong community involved in furthering the vision described in the beginning
of this section, see for instance papers and prototypes published at the annual conference
Tangible, Embedded, and Embodied Interaction.

29.4. Mixed Reality

Mixed reality (MR) refers to user interface technology that mixes virtual and real content
to create a new, augmented experience that is interactive and appears authentic to the
user. The two defining aspects of MR are (1) a programmatic association between virtual
contents and real world and (2) an interactive display of that association.

Figure 29.5 shows the first virtual reality system built by Sutherland and Sproull. The
system, called the Sword of Damocles, as it hang over the head of the user, was built in
1968, was inspiration for all future mixed reality applications based on head-mounted
displays (HMDs). Sutherland described his vision as follows:

Don’t think of that thing as a screen, think of it as a window, a window
through which one looks into a virtual world. The challenge to computer
graphics is to make that virtual world look real, sound real, move and respond
to interaction in real time, and even feel real.

The system developed consisted of a headband with CRTs (cathode ray tubes) used to
project to two lenses. The glasses showed vector graphics such as a molecule or virtual
room. The camera view was updated when the user moved. The key innovation was
that the head position of the user was tracked and linked to position of camera in the
virtual world. The authors argued that rapid response to the movement of the head is a
more important requirement for creating an illusion of three-dimensionality than having
authentic stereoscopic cues [790, p.757]:

The image presented by the three-dimensional display must change in exactly
the way that the image of a real object would change for similar motions
of the user’s head. Psychologists have long known that moving perspective

605

29. Reality-Based Interaction

Figure 29.5.: The Sword of Damocles, the first head-mounted display developed by Suther-
land and Sproull in 1968

images appear strikingly three-dimensional even without stereo presentation;
the three-dimensional display described in this paper depends heavily on this
”kinetic depth effect.”

(Presenting stereoscopic depth with glasses was possible only much later.) Beyond the
prototype was a bigger vision of computer display as a window to a virtual world. As the
virtual world was responsive and presented in an immersive way, it would feel real.

In mixed reality, the relationship between the virtual and the physical is understood as
a graded one. It is not an all-or-none decision. The mixed reality continuum of Milgram
and Kishino was an attempt to define this relationship more precisely:

Our objective is to formulate a taxonomy of the various ways in which the
”virtual” and ”real” aspects of MR environments can be realised. The perceived
need to do this arises out of our own experiences with this class of environments,
with respect to which parallel problems of inexact terminologies and unclear
conceptual boundaries appear to exist among researchers in the field.

The continuum is presented in Figure 29.6. At one extreme, there is the real environment

606

29. Reality-Based Interaction

and, at the other, virtual environment. The zone in-between them is called mixed reality,
which is further divided into two sub-regions: augmented reality and augmented virtuality.

According to Milgram and Kishino, the user interface, and especially the way it couples
display and the tracking of the user’s motion, has a decisive role. They divided interface
technology accordingly into six classes:

1. Class 1: Monitor-based, non-immersive displays, ”windows-on-the-world”. Consider
for example a ’magic lens’ or see-through view on a mobile device, one that overlays
virtual information on a camera viewfinder.

2. Class 2: Video displays as in the former class, but implemented using immersive
HMDs rather than monitors.

3. Class 3: HMD’s with optically implemented see-through capability. Graphics are
superimposed on see-through glasses.

4. Class 4: Same as Class 3 but with a video-based see-through.

5. Class 5: Completely graphic environments, to which video ”reality” is added.

6. Class 6: Completely graphic environments, in which physical objects in the user’s
environment are embedded.

The continuum was instrumental to the formation of AR and VR as active research
topics. It helped understand the design space as well as the associated engineering
challenges. For example, in Classes from 2 to 4, motion tracking and registration are
challenging. In The Sword of Damocles, both the head and hands were tracked. Sutherland
stated it would be important that the virtual environment was not only for passive viewing
but allow manipulating virtual objects directly with hands. In some of their prototypes,
hand positions were tracked with fishing lines connected to reels. Although the solution
appears crude, the technical problem of hand and finger tracking is still open. The issue
is that any inaccuracies in respect to world coordinates transfer to an offset in the way
the physical and the virtual environments are registered. Consider, for example, petting
a dog in virtual reality with hands tracked by computer vision. If the tracker is several
inches off, the hands as you feel them via proprioception will not feel like the ones that
are shown on the display.

Figure 29.6.: The reality continuum by Milgram and Kishino [529].

607

29. Reality-Based Interaction

The continuum also puts excess emphasis on visual experience [ref]. Although MR is
often about visual content, content may also be delivered through sound or haptics. A
virtual orchestra can be projected auditorily into a physical space. A haptics device on
the finger can mimic virtual surfaces when touching them with the finger.

The interactive relationship between the real and the virtual can also be more compli-
cated than that portrayed by the six classes. For example, substitutional reality refers to
a relationship where an object in the physical reality is coupled to one in the real world,
or ’substituted’ [ref]. Selected objects are ’twins’. For example, a living room can be
substituted with the command deck of a spaceship.

29.4.1. Virtual reality

Virtual reality (VR) refers to an interactive environment that responds to user’s actions, for
example via locomotion of camera control. ’A reality’ is more than just virtual ’content’.
It is usually understood as a space that binds together content. As a term, virtual reality
is surprisingly new, from the 1980s, and credited with Jaron Lanier, a computer scientist
and an artist who worked at Atari Inc with a team that invented the data glove. The first
virtual reality system, however, even if not called by that term, is attributed to Morton
Heilig. His Sensorama was a multimodal simulator. A user (or rather, viewer), would sit
down and put head inside of a large box, which showed a 3D motion picture with smell,
stereo sound, seat vibrations and blew wind in the hair.

Virtual reality is a multi-disciplinary topic drawing from computer science, electrical
engineering, and psychology in addition to HCI. Virtual reality systems, more generally,
have some sensors (to track motion), effectors (e.g., displays), and a reality simulation
(e.g,. a world model in Unity). A virtual reality system, more precisely, is defined by seven
features [Brooks]:

1. Blocking out sensory impressions generated by the real world (think: VR HMDs);

2. Continuously updated computer graphics creating a sense of immersion;

3. Tracking of user position and orientation;

4. Software for modeling the relationship between the virtual and the real;

5. Synthesized sound and possibly haptic sensations (think: vibrating steering wheels
for car games);

6. Input devices that enable interactions with virtual objects, and;

7. Interaction techniques that substitute real interactions (e.g., hand movement)

608

29. Reality-Based Interaction

609

29. Reality-Based Interaction

Paper Example 29.4.1 :

Interacting with objects at a distance A problem in virtual and augmented
reality is that objects can be further away than the user can reach. An early solution
to tackle this problem is the Go-Go Go-go interaction technique [655].

The metaphor underpinning the tehnique is that the user’s arm grows nonlinearly
in VR when the user reaches out to touch, grasp or otherwise interact with a virtual
object that is out of the user’s reach. When the user interacts within a set threshold
the virtual hand and the user’s real hand are mapped to the same place. However,
when the user extends their arm passed a threshold the virtual arm of the user, and
thus the position of the user’s virtual hand, starts to grow nonlinealy, allowing the
user to reach virtual objects that are further away than the user can normally reach.

The user’s real hand position, mapped by the vector ~Rr in the diagram below is
mapped to a virtual hand position parameterized by ~Rv. Rr is thus the length of
user’s real arm, which is also the length of the vector ~Rr. The vector ~Rr vector points
from the origin of the user’s hand. Rv is the length of the user’s virtual arm, which
is also the length of the vector ~Rv.

When the user moves their hand the virtual hand is mapped differently depending
on where the user’s real hand is located in space. This mapping is governed by
computing the length of the user’s virtual arm (Rv) as a function F of the user’s real
arm (Rr), as described in Equation 29.1:

Rv = F (Rr) =

(
Rr if Rr < D

Rr + k(Rr � D)2 otherwise
(29.1)

There are two parameters in Equation 29.1. The first is k, which is a coefficient
between zero and unity controlling the nonlinear rate of expansion of the virtual
arm. The second parameter is D, which controls the length the user’s real arm has
to be expanded to for the virtual arm to start expanding nonlinearly. This means the
parameter D is a threshold. In the original paper D is set to 2/3 of the user’s real
arm length. After the user extends the arm further the arm starts to grow nonlinearly.
This mapping between the placement of the virtual hand and the user’s real hand is
illustrated in the cure below. Note that when Rr is below D the mapping between
Rr and Rv is linear but when the Rr exceeds D the mapping smoothly transitions
from a linear to a nonlinear mapping.

610

29. Reality-Based Interaction

Like for all interaction techniques, HCI research aims to innovate and study techniques
that are performative, intuitive, and ergonomic. However, virtual and augmented reality
pose an interesting opportunity: augmenting human capabilities to operate with objects
in a way that might not be physically possible. Consider, for example, flying: mixed
reality makes it possible to transcend the limitations of the physical body. The related
research topic is camera control and control of locomotion. Several techniques have been
proposed that take inspiration from the real-world. In egocentric motion, the user’s avatar
is controlled by moving it in egocentric directions. In warping, the user moves by warping
the body to a location by touching the destination. In point-of-interest (POI) control,
the user selects an object (e.g., by tapping it), and the camera moves to the object.

Another challenge concerns manipulating and touching virtual objects that are beyond
the physical hand reach. For example, the Go-Go technique uses a dynamic control-to-
display gain approach (see Section X). It applies a linear or non-linear mapping that
effectively warps the hand to a distant location. Moving the physical hand extends it to
different locations depending on how far it is from the physical body. However, it is an
open problem how to manipulate distant objects efficiently. The issue is that the further
the object is from the viewpoint, the less perceptual information there is about it. Hence,
manipulation of distal objects requires some way to couple camera control to interaction.

Applied psychology (esp. media psychology) has taken interest in virtual reality,
proposing scientific constructs to measure how ’real’ it feels. Presence refers to the feeling
of ’being there’ in the virtual world that is being portrayed, as opposed to being present
in the physical, real world. The formation of this experience is understood as consisting
of two steps. First, the virtual space must be mentally construed from perceivable cues,
similarly as physical realities are construed. Second, the user must suspend disbelief –
disbelief about not being there in the virtual space – and experience being located within
that virtual space.

Presence as a construct has become widely used in studies of VR systems, mostly as
an index of how ’good’ the VR interface is. But how to measure presence? The obvious
idea is to let users self-report presence. However, such reports can be ’colored’ (biased)
by confounds, such as the novelty effect or trying to please the experimenter. Therefore,
self-reports should be accompanied by behavioral or physiological measures. For example,
body convection can be used. Have you ever felt like actually falling in a VR game when
coming to the edge of a cliff? Leaning back can be used as an index of how believable the
VR world is.

A related research question for psychological research is that of simulator sickness, or
the feeling of nausea during the use of virtual reality applications. Simulator sickness
is more prevalent among users who report being female [ref]. According to one theory,
sickness is caused by a mismatch between expected sensations and felt sensations [ref].
Consider for example sitting in a virtual car when it accelerates. Your brain might expect
you to force in your body due to acceleration, change in pressure in your back, and
various interoceptive sensations (feeling acceleration ’in your guts’). However, the actual
sensations would be mismatched or missing. According to another theory, egocentric
motion in virtual reality is particularly nauseating, because the vertigo (change of visual
stimuli as it comes closer to you) is not changing as expected. It is an open problem how

611

29. Reality-Based Interaction

to alleviate simulator sickness to levels acceptable more universally.

29.4.2. Augmented reality

Augmented reality adds real-world content to a virtual environment (augmented virtuality),
or virtual content to a real-world experience. Technically this requires some tracking
of the user’s position in the world and registration of virtual objects in the real-world
coordinates. An AR system, then, requires sensors that can help position (align) the
user in the physical world. In addition, it requires computations to overlay (or augment)
virtual information on a view to the physical world. The result, the augmented view
can be presented via different media, such as HMDs, projection mapping (using a video
projector to project graphics on real-world objects), handheld devices, and even contact
lenses.

Creating a perception of touching an object is an open problem for AR system. AR
interactions require inferring user’s intention: for example, which object does the user
point at or touch? Moreover, a corresponding sensation must be created, for example via
haptic stimulation. Hand-worn systems, such as gloves and exoskeletons are considered
to be unhygienic and restricting. External systems like air- or sound-based stimulation
are physically too weak to generate compelling sensations.

29.4.3. Pros and Cons of Mixed Reality

The promise of virtual reality is compelling and as timely as ever. It promises the
possibility of being ’virtually there’ []. It is already substituting our real-world experiences
of leisure and business. Mixed reality, on the other hand, promises to virtuality to the
real world around us, providing us capabilities that are physically not possible.

MR has been developed over the past 50 years, with periods of optimism due to
novel hardware that has made MR widely available, and periods of pessimism about the
fundamental limitations about this form of interaction. The pros and cons are discussed
extensively in the literature. These reviews are particularly optimistic for the following
reasons:

• MR revolutionarizes access to information. It embeds information in the real world
where it is needed, in a useful form, just when it is needed.

• MR augments people. It allows us to do impossible things, like seeing through
objects, breaking the limits of physical distance, and creating new ways of social
interaction that are not limited to physical space.

• MR enables new applications in education, medicine, and science to practice, train,
and learn.

• MR changes perceptions: It allows taking new perspective to the world and learn
about our environments and selfs.

612

29. Reality-Based Interaction

Are we far away from realizing these dreams? At the same time, mixed reality faces
a number of fundamental limitations. Current motion tracking technology is limited.
One either has to accept a highly instrumented environment or inaccuracies that hamper
experience. Any offset, spatial or temporal, between the user’s motion and the virtual
character’s motion, will degrade performance and experience, and may contribute to
simulator sickness. Such offsets can also be caused by limitations of computer networks,
the performance of which affect the temporal discrepancy between the physical and the
virtual.

For HCI research, there is a need to develop interaction techniques that are performative
in 3D interactions, learnable, and ergonomic. Users get tired for lifting their arms a lot,
and may in the worst case get fatigued in the matter of a few minutes of use.

29.5. Should we imitate reality or go beyond it?

In a classic paper, Hollan and Stornetta [340] raised an important question about com-
munication systems. They were concerned that most work on such systems were based
on a “belief in the efficacy of imitating face-to-face communication” (p. 199). This belief
could, for instance, be based on the idea that the richer the reproduction of the cues in
proximate communication, the better the communication and the better the user interface
(see media richness theory, see Chapter 9).

The research surveyed in this chapter is to some extent based on the idea that we should
imitate what people do without the involvement of interactive systems. For instance, the
intent of reality-based computing to draw on environment awareness and skills has led to
strong systems. Likewise, the idea of natural interaction is also based on the idea that we
should draw on what people find intuitive and immediate in designing user interfaces.

Hollan and Stornetta [340] pondered the limitations of this approach. In particular,
they discussed whether communication technologies could ever bring us close to the feeling
of being physically together. In doing so, they drew an analogy, which was intended to
show a way to think differently about the design of user interfaces.

It is customary for a person with a broken leg to use crutches, but how odd
it would be if they continued to use the crutches after their leg was restored
to its natural condition. In contrast, one wears shoes because they provide
certain advantages over our natural barefoot condition. Special purpose shoes,
such as running shoes, are designed to enhance our best performance. Now
crutches and shoes are both tools of a sort, but there is a difference. The
crutch is designed specifically to make the best of a bad situation -to let
someone hobble around until they are back in shape. On the other hand,
shoes are to correct some of the problems of our natural condition, and, in
the case of athletic shoes, to enhance our performance.

In that way, enhancing, compensating, and augmenting would be alternative ways to
think about the role of user interfaces in relation to their users.

Much research has attempted to devise and implement user interfaces that do not
imitate the real, but attempt to move beyond it. Willett et al. [873] described how to use

613

29. Reality-Based Interaction

the idea of superpowers from science fiction to improve our perception, the bandwidth
and acuity of our attention, and our ability to predict things. The whole idea is to leap
beyond the natural abilities of people through interactive systems; mimicking reality is
not the intention. Won et al. [892] allowed participants to control a third arm in virtual
reality by rotating their arm; participants learned to control the third arm effectively
within five minutes.

In sum, mimicking reality is useful for much technology development, also in HCI.
Reality-based interaction provides a strong framework for thinking about such interactions.
However, as a general strategy, the approach of mimicking reality is limited. The argument
of Hollan and Stornetta [340] is a strong reminder why.

Summary

• In reality-based interaction, users’ physical surroundings contribute to interaction
either explicitly (by being represented in the interface) or implicitly (by affecting
it via other factors). While mimicking reality is a great starting point, it also has
limitations.

• In mobile interaction, physical surroundings not only cause pertubations and noise,
but engage users’ to multitask, which limits their attention to the device itself.

• In ubiquitous computing, sensor data is used to infer a user’s context or goal, with
the goal of better embedding computers into everyday situations.

• In tangible interfaces, computations are associated to physical manipulations of
physical objects.

• In mixed reality interfaces, virtual content becomes associated with physical reality,
or vice versa, allowing ‘mixing’ of content in novel ways.

Exercises

1. Understanding sensing systems. Pick a sensing system you use in everyday life.
Use the questions by Belotti et al. to diagnose potential issues. Figure out how to
improve the system.

2. Ubicomp. Take a room. Count the devices in it. Chart their interrelations. Has
Weiser’s dream come true?

3. Natural interaction. Is mobile interaction ’natural’, how about tangible interaction?
What makes something ’natural’ to use?

4. Tangible interfaces. Tangible interfaces were touted as a breakthrough similar to
direct manipulation and GUIs. However, tangible UIs have not found their way
into everyday computing. Why?

614

29. Reality-Based Interaction

5. Are you actually mobile when you use your mobile phone? Which aspects of mobility
are on or off?

615

