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34. Introduction to Engineering

In HCI, engineering refers to the application of principles and methods from engineering
research to build interactive systems. We need engineering, because building an interactive
system is hard. A wide range of technical functions must be realized in software or hardware
while at the same time addressing a broad set of human-related factors. Engineering
methods systematically tackle this challenge and ensure that the resulting system can
be used efficiently and safely, manufactured at low-cost and high quality, and supported
after launch and eventual disposal.

HCI research in this area is concerned with understanding of engineering methods can
be used more effectively and efficiently in developing new methods, tools, and systems.
Below are two representative examples:

• Optical see-through augmented reality (AR) enables users to wear AR glasses and
interact by articulating gestures using their fingers and hands in 3D space. A
difficult problem for such a system to be realized is to identify such gestures within
a stream of unrelated movements, this is referred to as key gesture spotting. If the
system does not work well then it results in user frustration as intended users are
not recognized correctly and unintended gestures suddenly give rise to commands in
the system. Gesture Spotter [744] is a rapid prototyping software tool (Chapter 38)
that allows developers to easily add their own gestures and have them reliably
recognized among a continuous stream of hand and finger movement. The tool
includes both a graphical user interface that allow rapid design iteration of different
gesture sets and an application programming interface for deploying apps with
integrated gesture recognition. Evaluations with developers demonstrated both
were effective in enabling non-experts to support key gesture spotting in AR glasses
applications.

• Safety critical user interfaces can give rise to human errors that turn out to be dis-
astrous (Chapter 37). As a result there is work on using formal methods, rigorously
defined mathematical models, when designing such user interfaces (Chapter 38).
Formal methods allows user interfaces to be verified to be correct against a specifi-
cation. There are several tools available that allow HCI designers and developers to
use formal methods to verify that user interfaces are behaving correctly. However,
these tools have been developed to examine specific issues of user interface design
and it is unclear how such tools can be fruitfully used as part of a user-centered
design process (Chapter 33). Campos et al. [123] investigated three such tools to
understand how each of them would fit within a user-centered design process. A
finding is that these three tools are largely complementary and address different
aspects in a user-centered design process. For example, one tool was more suitable
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34. Introduction to Engineering

for rapid prototyping while another tool was advantageous when addressing general
usability concerns. The paper guides developers on how to select a suitable tool by
providing 22 criteria for evaluation.

Engineering is tightly interwoven with design, which we discussed in the previous
part (Part VI). A system cannot be ’just built’: its construction needs to be designed.
Therefore, problem-solving, and exploring and evaluating options are central also for
engineering. In this sense, an engineer is also a designer, designing bridges, motors, circuit
boards, mechanical structures, software, systems, and so on.

In this book, we do not attempt to clearly delineate design and engineering. The
difference is rather a shift in focus: in engineering, we focus on what is required for
building a system that has desirable properties. The system cannot be just a plan or
prototype, but must actually work and be effective, efficient, safe, and fulfill users’ needs
and wants. In order to realize this, we must design the technology itself—identify a
functional architecture for the system, translate given functions to ’function carriers’,
ensure that requirements are correct and have been met, and so on.

This Part introduces perspectives, ideas, principles, and processes from engineering and
explain how they can be used in the context of interactive systems.

The design of interactive systems is a systems engineering problem where a key challenge
is to understand the system we are trying to build and its relation to other systems.
Systems are pervasive: we are surrounded by them. We live in an ecosystem and may take
part in economic and political systems. We are typically part of some form of organizations,
such as university, and we work using computer systems that are interconnected using the
Internet. Systems are reliant on other systems to function. For instance, our computers
are reliant on the electrical grid. Further, systems are embedded within other systems: a
laptop is reliant on a display, central processing unit, memory circuits, input and output
devices, and so on. The human body consists of several subsystems, such as the circular
and digestive systems.

Chapter 35 introduces systems thinking, which is a perspective in engineering that allows
us to reason about the complexity of systems and a set of principles that help us design,
build and support systems. In addition, it is also important to be able to understand
a system, which can be done by mapping out systems from various perspectives, such
as for example from the perspective of flow of documents and information in a large
organization. Chapter 35 introduces several such system mapping techniques which can
be used to gain a holistic understanding of the internal mechanisms driving a system and
relationships to other systems.

Another key facet of engineering is conceiving, understanding, and managing appropriate
processes that allow us to systematically arriving at interactive systems with desired
qualities, namely that they are effective, efficient, safe and fulfill users’ needs and wants.

We will therefore introduce design engineering as an approach to engineering HCI
systems (item VII). Design engineering, or engineering design, is an engineering discipline
concerned with processes that allow systematic creation of products, systems and services.
We believe design engineering is very useful in guiding the design of interactive systems,
which typically exhibit a high degree of complexity and are often required to interface
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34. Introduction to Engineering

with many different types of end-users in many use-contexts.
As we will see, design engineering has an overlap with the design processes we discuss

in the chapter on design practice (item VI). The distinction we make in this book is
that design engineering is focused on arriving at a system solution for a solution-neutral
problem statement that is specified in such a detail that it can be built, verified, and
validated. As such, design engineering here provides practical guidance to the reader on
how to realize a system. Thus we believe it is more useful to treat design engineering
as an individual chapter in the engineering part, which is overall focused on providing
perspectives and techniques for realizing systems.

A third key facet of engineering is safety and risk. A system must be safe to use
and understanding how to design an interactive system that does not intentionally or
unintentionally harm users is vital. To this end Chapter 37 introduces methods that can
be used to ensure interactive systems are kept safe. We will explain what is meant by
human error, such as taxonomies for human error and how human errors are analyzed.
We will also discuss risk by defining what is meant by risk and reason about how we can
assess and manage risks. Chapter 37 presents several risk management strategies that
can be used to achieve this for interactive systems. Finally, another important aspect
of safety and risk in an interactive system is the concept of a failure—an unintended
outcome of a system. We will explain how reliability engineering allows us to statistically
model probabilities of failure and thereby provides us with a mathematical method for
estimating the reliability of various system structures.

Interactive systems rely on complex software. Chapter 38 introduces principles and
approaches in software design and architecture that enables constructing interactive
user interfaces. It then explains how toolkits can be designed to assist developers in
implementing interactive systems software. A third aspect is how to enable end-users to
program computer systems. This is known as end-user development and there are several
approaches to design such systems, such as programming by example. Finally, to ensure
our interactive systems work correctly in software we can construct a formal model of
interaction that allows us to reason about properties of interaction. For example, we can
represent interaction as a finite-state machine and use techniques from computer science
to reason about whether a user can reach all states in the system. We can also use a
formal representation to represent a system function, such as undo, and prove various
properties of such a system.

Finally, engineering is also about using computational for tackling challenging tasks
in interaction. Chapter 39 presents computational methods for interactive systems. The
central notion in this chapter is the existence of a model that allows algorithmic or
mathematical reasoning about some aspect of interaction. This chapter will begin by
explaining how such models may be created and how they can be used to analyze an
interactive system at an early stage of the design. We will discover that such models
can capture controllable and uncontrollable parameters of a system. Uncontrollable
parameters are parameters that affect the system’s outcomes but are outside the control
of the designer, for example, the user’s level of motor control, cognition, or experience
with a particular system. Controllable parameters are parameters we can tune and adjust
to improve outcomes. Thus, they allow us to perform optimization. However, we can do
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more than reason about potential outcomes and optimize controllable parameters. In
addition, we can build a system that infers or predicts users’ actions or makes decisions
in collaboration with or on the behalf of users. Techniques from pattern recognition
and machine learning allow designers to model tasks as inference problems that the
computer can address. For example, a system can recognize users’ 3D gesture articulation
from observations from a depth sensor. Chapter 39 will outline what type of tasks such
approaches can support and some key design issues to consider when using such methods
in interactive systems.

34.1. Engineering Perspectives in HCI

It is natural to ask what engineering can bring to HCI that is not already there. After
all, HCI already has multiple principles, approaches, and methods in its disposal when
designing interactive systems. Below we set out to answer this question by explaining how
engineering can serve as a complementary approach to established HCI design practice.

34.1.1. Building the Right Thing

One fundamental aspect of engineering is understanding what to do and how to do it.
This is called task clarification. An easy—but critical—mistake to make is to design a
solution for the wrong problem, or to create a solution that does not solve any problem
users are facing—a so called “solution in search of a problem”. This can be prevented by
understanding how to arrive at a valid problem statement that is relevant to the goals
users are trying to achieve.

To arrive at a valid problem statement can be more difficult than it sounds as it requires
a deep understanding of the nature of the problem which often will necessitate knowing
about all relevant aspects of the problem context, users’ needs and wants and the system
that the interactive system or service will be embedded within.

However—surprisingly—it is insufficient to merely arrive at a problem statement. This
is due to a design pitfall known as design fixation, which in essence amounts to immediately
settling on the obvious solution that first comes to mind (see section VI). This “engineer’s
decease” prevents the designer, or design team, from fully exploring a larger set of possible
solutions and artificially constrains the design space. It therefore frequently leads to less
creative and less optimal design solutions. This may sound trivial but it is a very real
design problem with potentially a very high cost. Failing to be creative about how to
do things leads to noncompetitive products and services and even failing to be creative
about how to not do things may lead to expensive product or service failings later on.
For example, failing to be creative about how to test a product may lead to a failure to
detect a product flaw which later results in expensive product recall actions.

One technique to avoid design fixation in engineering is to transform a problem statement
into a solution-neutral problem statement, which describes the problem at a suitable level
of abstraction without making any direct references to solutions. For example, instead of
starting out with a problem statement such as “Build a physical thumb keyboard that uses
the QWERTY layout for a mobile device” the design team may consider a solution-neutral
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variant: “Devise a method that allows a user to enter text on a mobile device”, or “Devise
a method that allows a user to transmit information in a mobile setting”, which has an
even higher abstraction level. Raising the abstraction level increases the search space.

Another technique in engineering to avoid design fixation is to first design a product
or service at a functional level, which only makes reference to the relationships of the
functions. For example, a keyboard can have an overall designated function Enter Text,
which can then be decomposed into its key subfunctions, such as Type Key, Provide Word

Prediction, etc. Importantly none of these functions make reference to a solution. For
example, the function Type Key can be realized using hard keys, chiclet keys, membrane
keys or touchscreen keys. These are all examples of function carriers. That is, they are
designated solutions that carry a function. Then we can later systematically explore
combinations of solutions that may lead to promising designs. This is known as concept
generation and evaluation.

34.1.2. Building the Thing Right

Having understood what to build we also need to ensure we built it correctly. To do this
we need to understand the requirements involved in building the interactive system. There
are many variants of requirements, such as user requirements, business requirements and
technical requirements, and it helps greatly to have an accurate understanding of all of the
relevant requirements at an early stage of the design process. The tasks of eliciting and
managing requirements throughout a design process is known as requirements engineering.

Requirements are important because they tell us how to “build the thing right”—a
product or service that meets its requirements specification will pass verification. Therefore
managing requirements and verification is in practice a tightly interwoven process.

Since requirements are so important to successfully arriving at a successful interactive
system, they also carry a lot of risk. It is very easy to fail to capture accurate requirements.
This can for example happen if there is a process error when eliciting requirements from
users—leading to an incorrect understanding of users’ true needs and wants. For example,
one common source of error is undetected bias, which can easily happen using for instance
a survey if only respondents representing a particular segment of the target audience
responds (for example, people who do not have to work during the day, such as retired
people). Another failure that can have disastrous consequences is failing to set up a
necessary requirement to begin with, which means it then has to be introduced late in
the design process. Managing changes in requirements throughout the design process is
known as change management and it is in practice a very important aspect of project
management. As a general rule, the later a requirement has to be changed the more
expensive and difficult it will be to implement that change. Therefore, requirements
engineering is a very important aspect of project management.

Principles of software engineering are used to implement systems that fulfill requirements.
They inform the design of software architectures that can help manage the high complexity
of interactive systems. A key aspect in software architecture is achieving abstraction,
which means hiding implementation details at a lower layer to enable designers to focus
on essential design tasks.
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34.1.3. Verification and Validation

Having built a system we need to ensure it works as intended and solves the problems
users were having to begin with. The former is known as verification and it is process of
systematic checking that the system meets all requirements in its requirements specification.
The latter is known as validation and it is the process of ensuring that the deployed
system fulfills its purpose for users.

Verification is by its very nature tightly coupled to the management of requirements
as only testable requirements can be verified in the first place. Further, successful
verification of a requirement demands a clear specification of a verification procedure,
verification environment and success criteria, which all rely on the context giving rise to
the requirement in the first place.

Successful verification means that a system fulfilling all its requirements as specified
in the requirements specification. However, a system succeeding in verification does
not mean the system is fit for purpose. This is because there may be errors in the
requirements specification. In practice, inaccurate or missing requirements is common.
Further, circumstances may have changed or new factors may have been introduced which
were unknown when the requirements were evolved. For this reason it is also critical
to validate a system, which means ensuring that the system is fit for purpose in that it
achieves its overall intended function in actual use contexts.

While HCI is to a large extent concerned with evaluation (Part VIII), verification and
validation in engineering brings their own perspectives on how to ensure an interactive
system is built correctly and fulfills its purpose.

34.1.4. Systems Thinking

Another perspective engineering brings to HCI is systems thinking (Chapter 35). User
interfaces are interactive systems that are both embedded within other systems and
related to other systems. They can also consist of subsystems that must work together to
form a coherent whole.

Further, users and other relevant stakeholders are often relevant parts of the wider
systems that interactive systems find themselves embedded within. For example, a pen
injector for injecting a medical drug may have to interact with an app calculating the
correct dosage. This system may then be further embedded within a complex healthcare
system involving a nurse administrating the dose and a patient receiving the treatment.
Such joint systems that involve both users and user interfaces necessitates for designers
to have a deeper understanding of the systems that an interactive system needs to be
used within.

Engineering provides a toolbox to assist with such an understanding of systems in
the form of system mapping methods that allow designers to create elaborate maps of
how systems are composed and how, for example, people relate to each other and how
information flows within an organization.

Systems thinking requires some similar skills design practice (item VI). The sidebox
describes a case.
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Paper Example 34.1.1 : Engineering requires getting the problem right

Engineers need not only to find best systems-level solutions but also agree on
what they are designing for. Bucciarelli and Bucciarelli [107] describe studies of
practicing engineers. The authors were motivated by the observation that engineering
is often presented as an instrumental process and not as a situated social process
where much work is needed to negotiate and define projects with others. The
book Designing Engineers describes three projects: an x-ray inspection system for
airports, a photoprint machine, and a a residential photovoltaic energy system. What
sets their studies apart is that they observed engineers in these projects in their
meetings and at their desks. The author concludes that engineering design is a social
process. It involves multiple parties beyond engineers: marketing people, researchers,
accountants, and customers. A large and critical part across all three projects was
defining what it is to be done.

34.1.5. Understanding risk and keeping people safe

We increasingly rely on interactive systems for critical tasks where the consequences can
be extremely serious if users are unable to reliably carry out their tasks. Engineering
provides methods for understanding and minimizing human error and systematically
analyzing systems to ensure their safety.

A related aspect is risk. which is when the system gives rise to undesired behavior.
Such behavior is called a hazard. The exposure of a hazard is the degree to which a hazard
is able to result in undesirable consequences. The impact of a hazard is a measurement
of how serious the consequences are if the system is impacted by the hazard. Risk is the
combination of exposure and impact. For something to be very high risk there needs to
be both a high exposure to hazard and a high impact of the hazard. Some hazards have
very serious consequences, including the death of a user. However, if the exposure is very
low the risk may still be low.

Risks are ubiquitous in societies and the wider systems they work within and since user
interfaces are embedded within these systems they also need to consider risk. Engineering
provides a rich set of risk management methods for assessing, mitigating, monitoring and
managing other aspects of risks.
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Paper Example 34.1.2 : Designing better warnings to keep web users safe

Phishing is a scamming technique used to collect user’s personal information by
exposing users to fake websites that mimic legitimate ones. To keep users safe
websites try to warn users about potential phishing websites. Egelman et al. [216]
examined the effectiveness of such warnings in a laboratory study. They simulated
a phishing attack and found that 97 % of their participants (N=60) fell to at least
one of the attacks they used in the study. They noted that active warnings were
more effective than passive warnings. In active warning, the user is required to read
the warning and click an acknowledgement of the threat in order to continue. In a
passive warning, a recommendation is provided but there is no need to acknowledge
it – it can be simply dismissed.

The authors discuss this finding in terms of a model of warnings by Wogalter
[888]. The model has consists of a communication flow between a source (delivering
warning), a channel, and a receiver. However, the receiver is receiving the warning
with other stimulation (distractions) that may distract the processing of the warning.
Egelman et al. [216] proposed seven questions to help design safer, more effective
warnings:

1. Do users notice the indicator that a warning has appeared?

2. Do users know what the indicators mean?

3. Do users know what they are supposed to do with the indicators?

4. Do they believe the indicators to be correct?

5. Are they motivated to do the correct actions?

6. Will they actually performe those actions?

7. Will the indicators interact with other environental stimuli?

This model can be used as a walkthrough to design better warnings.

34.1.6. Managing the Process

An interactive system is a complex system by its very nature as it relies on user interaction
and user behavior can rarely be precisely or accurately modeled. This complexity
is exacerbated by interactive systems tending to increase in complexity as software
and hardware become more sophisticated and allow designers to incorporate further
functions in response to users’ needs and wants. In addition, interactive systems are
increasingly becoming embedded in wider systems, such as manufacturing, smart home,
education, government and healthcare systems, which necessitates understanding the
wider implications of embedding an interactive system within a wider system.

To handle such design it is useful to systematically managing the process by using, or
at least be aware of, design engineering approaches which have been conceived to allow
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diverse design teams to systematically explore conceptual, embodied and detailed designs
all the way to deployment while managing requirements, risks and other considerations,
such as safety and usability.

34.1.7. Systematic Approaches to HCI Problems

Finally, engineering allows us to view certain HCI design problems as that can be attacked
computationally. We can represent aspects of interaction formally consequently apply a
corresponding systematic approach, such as solving an equation, systematically searching
for an approximate or exact solution, or simulating system behavior.

Computational methods in HCI model an aspect of HCI as some formalism, such as
a regression model or neural network, and then reason about that aspect, for example
making inferences about users, predicting their behavior, or finding designs that best suit
them. Computational methods have been used in HCI to, for example, to optimize input
methods and ensure that systems used in healthcare settings can be used safely.

One powerful way engineering allows us to improve HCI design is through optimization.
Certain HCI design problems, such as menu structures, the organization of keys on
keyboards and haptic design parameters can be systematically optimized to achieve as
good user performance as possible - within the assumptions that have been made. Various
ways to optimize a design have been proposed in the wider engineering literature and
many of these approaches are useful for HCI design problems too. An awareness of
such methods may allow for better designs than what may be possible to arrive at by
traditional design iteration.

Computational approaches also allow us building systems that can infer or predict
users’ intentions. Such systems rely on a pattern recognition and machine learning to
achieve their tasks. Such inference brings its own challenges in terms of ensuring such
interactive systems have a high performance, are resilient to noise and changing use
contexts, have access to representative training data and allow humans to interpret their
machine learning models and machine learning results. Engineering provides methods for
systematically tackling such challenges, although several of these methods are currently a
work-in-progress and subject to active research.

In summary, effective, efficient, and safe interactive systems that satisfy users’ needs
and wants benefit from designers aware of systems thinking and the use of computational
principles that allow them to articulate a detailed rationale behind a particular imple-
mentation and solve it with the help of algorithms. These allow designers to both build
the right thing and build the thing right.

Summary

• Engineering is about using systematic principles and methods to build systems.

• Systems thinking is paramount when building interactive systems. All interactive
systems are systems that are reliant upon other systems and embedded within
several other systems.
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• To build systems we need to ensure we build the right thing and that we build the
thing right. Design engineering is a design process that is focusing on translating a
solution-neutral problem statement into a deployed system that can be verified and
validated.

• Safety and risk are central notions when engineering interactive systems. Risk is
pervasive and it is as a consequence impossible to design a risk-free system. Risk
therefore has to be assessed and managed using systematic approaches.

• Engineering methods and principles and techniques from software development
allow us to systematically build interactive systems. Examples of such approaches
include engineering models, optimization, formal methods, pattern recognition and
machine learning, and software design and software architecture principles.
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Systems are pervasive in our lives. When you open a door, pull down the handle and pull
the door open you are interacting with a system. The door handle is a system consisting
of fittings, screws, a plate, a handle, and it is interacting with another system—the door
itself. The door in turn, is interacting with the wall it is mounted on using hinges, and
the door frame itself might even be load bearing. Further, the user opening the door
is attempting to reach a goal state, to that of the door being open, and is doing so by
planned movements executed by the user’s human motor control system. The action of
the door being opened is monitored by the user’s visual and auditory systems. At the
cellular level, neurons and synapses form complex systems carrying signals through the
human body to enable perception and action. Even the very screw is part of an intricate
design, manufacturing, and logistics system, which includes designing the screw, efficiently
producing it, packaging it, and distributing it. Finally, doors are subject to regulation, in
particular building control regulation, which will specify, among other things, acceptable
dimensions, such as the door width for accessibility.

This exercise can be repeated for just about any “trivial” everyday interaction. The
very fact you are alive when reading these words is a testament to a vast array of systems
within your body functioning. Your need for shelter, food, electricity, and so on, is reliant
on several complex systems, including a political system, an economic system, a food
production system, a transportation system, and an electricity grid, among many others.
Systems are truly pervasive and our lives depend on them.

We learn a lot from such a simple exercise. First, systems are complex—they have
many dependencies with other systems and entities. A complete understanding of a
system is therefore likely to be challenging, for example, we still do not fully understand
how the human brain works. A successful HCI system is likely to be complex in its
design and implementation. However, it is also required to interact with other complex
systems, including humans, and other technological systems, such as databases, sensors,
and machine learning systems.

Second, systems operate at multiple levels, ranging from a very low level, such as a
nanoscale motor protein, to a very high level, such as the exascale star cluster Omega
Centauri. In HCI, we frequently need to work with systems at multiple levels, as a
computer is an elegant example of systems working at multiple levels in both its software
and hardware organization, ranging from NMOS and PMOS transistors giving rise to
CMOS chips at the hardware level, to various software libraries and toolkits providing
support for drawing primitive graphics, managing user interface elements, and so on. An
app on a mobile phone frequently needs to interface with both the graphical user interface
toolkit and the many sensor systems available on the phone, such as the camera, gyro,
accelerometer, and so on.
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Figure 35.1.: A diagram of a simple interactive system.

Third, systems are coupled, that is, they depend and rely on each other in various ways.
For example, the movement of a mouse around on a desk is reflected in the movement of
a pointer on a display. This is a form of coupling. However, the coupling is mediated via
software that allows manipulation of the ratio of pointer movement in relation to mouse
movement. Manipulating this ratio allows features such as mouse acceleration. In general,
a computer decouples hardware from applications by the use of an operating system. The
more tightly coupled systems are, the more difficult it is to make changes to one system
without affecting the other.

Fourth, systems have emergent properties. Systems give rise to effects that are more
than the sum of their parts. The parts, modules, functions, and subsystems within a
system all work together to generate properties, qualities, and outputs that the individual
parts cannot provide unless they are arranged within the system.

So how do we think about systems in HCI? Let us consider an interactive system, which
is a central concept in HCI. It is system that is able to (1) receive and respond to input
events via its sensor; (2) perform computations; (3) maintain and update its state; and
(4) display its output. Figure 35.1 shows an overview of a simple interactive system. This
definition exposes challenges that characterize interactive systems engineering.

From social media applications to intelligent keyboards on mobiles, we use interactive
systems all the time. However, Figure 35.1 makes it already clear that this interactive
system is a coupled system connecting a user with a computer. However, it is also
embedded within a wider system providing a context for interaction. Further, the
technology within the interactive system is reliant on several subsystems, including sensor
and display systems, as well as means of performing computations.

As the simple diagram in Figure 35.1 makes clear, even a rudimentary interactive
systems is reliant on some understanding of several systems.

However, HCI research frequently needs to consider even wider systems, such as the
following three examples.

• O’Hara et al. [599] reports on how to use depth sensors to enable surgeons to interact
with image data in a sterile environments using gestures. The research problem
itself is due to prior research on understanding the systems surgeons are operating
with and within. A key takeaway is that for such a system to be successful it is has
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to go beyond the idea of touchless interaction in sterile environments and consider
the sociotechnical aspects that affect surgeons interacting with technology. This
includes taking into account the collaborative aspects of surgery, the fact surgeons
are not always in front of a display when they desire data, the risk gestures are
mistakenly recognized when a surgeon is merely moving their hands, and so on.

• Su and Liu [782] introduces a mobile application for nurses that enables the hospital
to move away from paper forms and at the same time provide nurses with additional
functionality. The work involves understanding existing nursing processes and forms,
needs and wants from nurses and the hospital, and the type and flow of information.

• Pu et al. [662] introduces a gesture recognition system for an entire home by
analyzing wireless signals, such as Wi-Fi. Wireless signals do not suffer from line-of-
sight problems, such as walls blocking infrared light, and therefore can be potentially
used to sense gestures regardless of where the user is in the home. The technique
detects the Doppler shift that is induced by a user moving closer and further away
from a transmitter. This information is then fed into a gesture recognizer. To avoid
false activations, the user carries out a distinct “preamble” gesture to signal the
start of a gesture. This is an example of an interactive system providing benefits
for a wider system—the house—by exploiting an existing subsystem, the house’s
Wi-Fi network.

The rest of this chapter is dedicated to this purpose: understanding systems. The next
section will begin by introducing systems thinking, a holistic approach to thinking about
systems. Systems thinking does not inform on how to build a system. Instead, systems
thinking about how to holistically consider the important aspects of systems. As such,
systems thinking is useful to keep in mind but we also need means of understanding
systems. This chapter will explain how system mapping can be used to describe a system
in order to reveal how, for example, users, tasks, information and processes link together
to form a working system. Such understanding can then be used to carry out design
activities (Chapter 33) or to carry out risk assessments (Chapter 37).

35.1. Systems thinking

Engineering is the practice of using systematic principles to design and construct machines,
structures and other systems, including interactive systems.

We live in a complex world where we are immersed in and surrounded by systems
which we often take for granted. For example, people typically live in societies and
such societies are arranged in various governing structures, such as local governments
and national governments. In addition, international agreements and frameworks across
countries govern many defense, trade, finance and climate change concerns. Societies are
in turn embedded on planet earth and interface with a variety of natural systems, such as
our ecosystems. In addition, modern civilization is supported by a range of man-made
systems governing production and delivery of food, energy and healthcare as well systems
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for controlling banking, insurance, finance, manufacturing and defense and many other
vital aspects. A typical house is a complex system relying on subsystems such as electrical
wiring, plumbing and telecommunications to allow people to live in homes that are heated
and provide us with the everyday facilitates we take for granted, such as the ability to
clean our clothes using a washing machine, heat food using a microwave oven or access
the Internet using a laptop or mobile phone. Every human and animal residing in such a
house is a system consisting of for example the musculoskeletal, circulatory, respiratory,
digestive, reproductive, and neural subsystems.

To understand a system, we often first identify its subsystems. For example, the
electrical wiring in a house is reliant on protective systems, such as fuses and residual
current devices (RCDs) to protect against faults. Fuses and RCDs are systems that are
designed to interface with electrical systems. A typical touchscreen mobile phone consists
of several subsystems such as the screen, the logic board, the central processing unit and
memory circuits. The phone software is driven by an operating system managing drivers,
processes, security and ensuring apps can run and access all required functionality. Apps
rely on software libraries to display user interface elements and to receive notifications of
the user’s actions.

As is evident in the above description, systems are pervasive in our environments—and
they are complex and difficult to understand, design, build and maintain. Systems
thinking [218] is an approach to allow designers to reason about systems. The terminology
arose in engineering as a result of a recognized need to approach system design as a
holistic cross-disciplinary team activity that considers system design across the entire
life cycle of the system. This including the system’s design, integration, management,
maintenance and eventual disposal. It also includes considerations of the system’s role in
its operating environment, which may in turn be a larger system or necessary interaction
between several systems or subsystems.

A systems thinking perspective is helpful in HCI from several perspectives. First, many
HCI artefacts provide critical capability by being embedded within a larger system. For
example, an interactive wearable patient monitoring device is embedded within a hospital
environment, which is a system with flows of patients, doctors, medication, equipment,
and information, as well as organizational hierarchies of departments and worker roles.
In addition, activities in a hospital has to follow both its internal rules and professional
and government regulation. For a wearable patient monitoring device embedded in such
an environment to be successful, it is critical the designers are aware of this complex
operational system that the device must operate within.

Second, HCI artefacts are systems in their own right. For example, a mobile phone app
is a system fulfilling a certain purpose by exposing the user to necessary functionality. As
HCI progresses, many HCI artefacts find themselves relying on hardware, such as sensors,
or necessitate developing novel hardware input or output solutions. The HCI system is
now a combined hardware and software system that requires expertise across the domains
of electrical engineering, computer science, design, and psychology.

A system is here defined as a set of parts or modules that in combination provide
emergent qualities that are not present in the individual parts or modules themselves.
Synthetic systems are designed by people and the design of such systems has an objective:
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to provide capability. It is the desire for this capability that leads to the creation of a
system in the first place. Users rarely care about the creation of a system for its own
sake. Instead system emerge out of needs that have to be fulfilled by creating systems
that are able to provide the desired capability.

A simple course hierarchy of system complexity can be decomposed into three levels
(adapted from Elliott and Deasley [218]):

Level 1 A subsystem that is managed primarily within one technical discipline and
organization. Examples include a logic board, an app and a wearable health monitor
device.

Level 2 A system that either involves two or more technical disciplines or two or more
organizations. The design of a car’s core functionality is one example as it primarily
involves mechanical and electrical engineering. A mobile phone and its operating
system is another example involving electrical engineering and computer science.
Another example is a national electronic medical records management software that
is designed to work with a variety of hospitals and other health providers.

Level 3 A system that involves many technical disciplines and is impacted by wide-
reaching social, economic, political or environmental factors. Typical examples are
major infrastructure, such power grids, air-traffic control, and military command
and control.

An individual HCI system is situated within one level of the above hierarchy but is
nearly always set to operate within another system, which may be at a different level in the
hierarchy. For example, an electronic voting user interface is embedded within at least two
systems: first, the voting machine design itself, which consists of electronic components
providing the user with means of inputting information and receiving confirmation; Second,
the voting machine is providing a critical function for society and as a consequence is
operating in a highly regulative and political system. Successful HCI design necessitates
being sensitive to this wider system, including understanding the target audience, for
example, users with disabilities, and the fact that the voting machine is embedded within
a political system [58].
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Paper Example 35.1.1 : Heating homes more efficiently by sensing and
predicting room usage

PreHeat [729] is a system for more efficiently heating homes by sensing and predicting
people’s room usage. It involves several subsystems, such as motion sensors, temper-
ature units, control units, and it has to interface with the existing heating system in
the house. The figure below shows some of these systems in one installation.

Preheat then using the sensor data to estimate people’s room usage needs and uses
a prediction algorithm to estimate when an individual room should be heated up.

PreHeat was deployed to five homes and was shown to heat the homes more
efficiently without users having to program thermostat schedules.

There are several accounts of systems thinking and no de-facto process to adopt.
However, a simple way to adopt systems thinking is to adopt the following six principles
[218]:

Debate, define, revise and pursue the purpose Refine the problem and identify the
three parameters cost, performance and timescale involved when designing the
system. Finally, do not neglect the fourth parameter: risk, which needs to be
understood for each of the three prior parameters. No system is optimal which
implies there are trade-offs in the system. These trade-offs must be understood.
Finally, requirements constrain the design space and make system designs tractable.
However, for any non-trivial system it is nearly impossible to initially arrive at the
correct set of requirements. Requirement evolve with system design.

Think holistic Systems have boundaries as without boundaries we do not have definitions
of systems. Systems are embedded within other systems. Integrated systems need
to consider the system as a whole, taking into account all components of the
system, across the lifespan of the system. The components of the system and the
environment in which the system operate are necessary to understand. In addition,
the processes, tools, and people required for design, build, deployment, maintenance,
and support are all part of the system.

Follow a systematic procedure Systems are planned, designed, and built. It is necessary
to identify and manage uncertainty throughout a project and use a robust design
process that allow iteration, working with stakeholders, and the management of
risk, changes, and rework.
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Be creative Use both innovative and conventional thinking to understand together with
stakeholders what the system must achieve, to create the system architecture, and
to help guide every stage throughout the life of the system, ranging from the design
and build stages, to the support and dismantle stages.

Take account of the people People are part of systems and they are critical for the suc-
cess of systems. People build, install, use, and support systems. They may also have
to defend, challenge, or tolerate systems. People’s motivation, competence, attitude
and capability to deliver quality matter for the success of a system. Ergonomics,
ethics, and trust, among other factors, are also critical.

Manage the project and the relationships Complex systems involve complex projects
to build them. They require many stakeholders with many roles, scattered across
different organizations. Just like systems are designed, projects to build, deploy,
maintain, and support systems also need to be designed to take all relevant factors
into consideration.

A weakness with systems thinking is that while it prescribes an approach it does not
specify specific methods or procedures that allow systems thinking. However, nonetheless
a lack of systems thinking can often be linked to failures with systems. For example,
an analysis of 12 problems in systems linked them to four categories of system thinking
failures [541]:

• A failure to consider the environment in which the system operated. For example,
wind conditions.

• A failure to understand that non-technical factors, such as organizational, political,
economic, or environmental factors, were necessary to understand and take into
account in order to solve the system problem.

• A failure to correctly address planned and unplanned interactions between compo-
nents within the system and interactions with system’s environment.

• A failure to take into account that many products are part of a wider user experience
system and that the product can therefore only thrive if such a user experience
system exists and provides adequate services.

35.2. System mapping

To understand a system we will need to describe it. System mapping refers to a set of
techniques for achieving this. System mapping allows us to describe a system in terms of
its processes, people, and flow of information.

The first step in system mapping is to establish the system boundary. Such boundary
setting clarifies the scope of the system. Determining a system boundary is particularly
important for risk assessment and we discuss this step in more detail in the chapter on
safety and risk (Chapter 37).
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0. Update Software 

2. Analyze Software Dependencies 3. Install Software1. Check Stakeholder Implications

Plan 0:

Stakeholders identified → 1

Software system boundaries identified → 2

Software update implications understood → 3

2. Elicit Issues from Subsystem Owners 3. Analyse Issues1. Identify Subsystem Owners

Plan 2:

Do 1-2; if no issues → Exit

Otherwise: Do 1-3 → Exit

Figure 35.2.: An example of a task diagram for updating software in an organization.

The purpose of system mapping is to ensure there is a clear understanding of the
structure and behavior of the system. System mapping is carried by describing the
structure and behavior of the system. Any technique that is suitable for this purpose can
in principle be used. Here we review set of common system mapping techniques.

35.2.1. Task diagram

A task diagram is a hierarchical representation of tasks and the necessary conditions for
carrying out the tasks. Diagrammatically a task diagram represents tasks as nodes and
relationships between the tasks are depicted as links. Since task diagrams are hierarchical
they can be as detailed as required. They are often used to describe complete processes,
organization of work, and user interface workflows.

Task diagrams focus on processes and procedures, user behavior, and human-computer
interaction. Tasks diagrams are frequently used to describe HCI systems but can also be
used to explain a wider system that an HCI system is finding itself embedded within. For
example, a medical app used by a nurse may be embedded within a hospital environment,
which prescribes a set of processes for the nurse to carry out a task. Task diagrams
allow such processes, which may involve steps outside the app, to be mapped out and
understood by the design team.

Figure 35.2 shows an example of a task diagram for an organization that needs to
update software. Only some tasks are shown in the figure. Each task can be augmented
with a plan that elaborates on the steps in each task and how tasks relate to each other.
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Software Installation Instructions

- Dependencies

- Procedures

- Known issues

Dependencies

- Local machine dependencies

- Network dependencies

- Hardware dependencies

Procedures

- Local installation procedures

- Network installation procedures

- Troubleshooting procedures

Software Update Policy

- Rules

- Processes

- Stakeholders

Figure 35.3.: An example of an information diagram showing a part of the hierarchy of
information that a system administrator would require to do a software
update in an organization.

35.2.2. Information diagram

An information diagram is a hierarchical representation of documentation. An information
diagram represents documents as nodes and the relationship between documents as links.

Information diagrams are used to gain an understanding of the documentation structures
within an organization, such as the degree of standardization of documents and the way
documents relate to each other. As documentation can be both electronic and on paper,
information diagrams can capture both types of documents and link their dependencies
and usages.

Figure 35.3 shows an example of an information diagram for an organization that needs
to update software. Only a part of the information hierarchy is shown in the figure.
The software update policy, for example, can be further decomposed into information
about rules and processes around software updating in the organization. The stakeholders
involved might be more usefully mapped using another diagram, such as an organization
diagram, which we describe next.

35.2.3. Organizational diagram

An organizational diagram is a hierarchical representation of people and their roles in an
organization. They represent teams, individuals, departments, etc. as nodes and their
relationships as links.

Organizational diagrams make it possible to identify users and their roles, and in
particular they allow the identification of stakeholders in an organization or wider system.
This can guide further system mapping and data collection by probing further investigation
into stakeholders in the system that might at first appearance not seem central to the
problems considered.

Figure 35.4 shows an example of an organizational diagram for an organization. In the
diagram it is clear that both system administrators, part of the IT office, and engineers,
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IT Office

Chief Information Officer

Chief Executive Officer

Chief Technical Officer Chief Financial Officer

Finance DepartmentOperations DepartmentR & D Department

Head of IT

System Administrator

R &D Lead

Engineer

DevOps Team

Head of FinanceHead of Operations

Finance Team Member

Figure 35.4.: An example of an organizational diagram for an organization subject to a
software update. DevOps stands for development operations. The DevOps
team combines the roles of software development and IT operations as one
function.

part of the research and development department, form a cross-disciplinary team managed
by the head of operations.

35.2.4. System diagram

A system diagram is used to understand how data is is transformed through processes
and activities in the system. System diagrams show where such is stored and how such
data activities and processes are sequenced to allow such data transformations.

System diagrams allow mapping out processes, in particular how users interact with
systems in order to achieve tasks. They show data-driven processes and activities. As
such, system diagrams allow analysis of data flows, functions and states in a system.
For example, system diagrams can be used to identify possible risks in a people-centric
process by allowing designers to analyze possible failure modes in such a process.

System diagram consists of two parts. First, activities that indicate the flow of data
between activities. Second, states and state transitions that indicate the state conditions
for a transition and the actions arising from a transition.

Figure 35.5 shows an example of a system diagram for an organization. The top part
shows activities as circles that a system administrator (‘sysadmin’) has to engage with in
order to update software. Generated data that gives rise to data flow are indicated below
the activities. The flow of data is indicated by arrows. The bottom part shows the states
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and state transitions in this process. Transition conditions, such as ‘Corrections required’,
are indicated next to each arrow (transition). Transition actions, when applicable, are
also indicated next to each arrow, preceded with a dash (‘-’) to disambiguate transition
conditions and actions.

35.2.5. Process diagram

A process diagram shows how serial and parallel processes and activities are structured
as a series of steps. A very common instance of a process diagram is a flow chart, though
other forms of process diagrams also exist. The nodes in process diagrams represent the
steps in a process and the links represent conditions from transitioning from one step to
another. Process diagrams show the ordering of steps within activities, if such activities
serial.

As alluded to, a flow chart is a form of process diagram. It is possible to annotate
such flow charts to include additional information, for example, by linking flow charts to
organizational diagrams in order to make it clear which stakeholders are involved in an
activity. Process diagrams can thereby be a basis to understand an overall process in a
system, linking in, for example, relevant stakeholders, documents and tasks.

Figure 35.6 shows an example of a process diagram in the form of a swim lane diagram.
The lanes, indicated with dash lines, delineate roles in the process, such as sysadmin,
subsystem owner, engineer, and so on. The flow chart begins and ends with rounded
rectangles indicating the start and end of the process. The thick horizontal bars indicate
forks and joins of activities. The rectangles indicate activities and the diamonds indicate
decisions. Arrows show process flow.

35.2.6. Communication diagram

Users that interact through a common process share information. A communication
diagram is a way to represent such flow of information between users. The nodes represent
users, or an entity representing a user group, and the links represent the flow of information.

Communication diagrams are used to show the flow of information between people
within the same teams, different teams, or even different organizations. Communication
diagrams can also be used to depict flows of information across different entities, such as
different departments in a company.

Figure 35.7 shows an example of a communication diagram that indicates the flow of
information between the system administrator, subsystem owner, engineer, and head of
IT that is required for a decision to approve a software update.

35.3. Principles for legal and ethical systems

Systems thinking invites designers to think and analyze systems beyond merely the tech-
nology. In particular, systems that are deployed must meet regulatory requirements, that
is, they have to be lawful. In addition, systems should not induce adverse effects, whether
intentional or accidental, on its users or people otherwise affected by the technology.

713



35. Systems

Sysadmin 
identifies 
affected 

subsystems

Sysadmin 
identifies 

issues with 
subsystem 

owners

Installation issues

Sysadmin 
analyzes  

issues with 
engineer

Workarounds

Sysadmin 
secures 

installation 
permission

Sysadmin 
performs 
software 
update

Installation notes

Subsystem identified

With sysadmin and subsystem owner

  - Installation issues identified

Workarounds not required

  - Sysadmin proceeds to next step

Issues identified

Workarounds required

  - Sysadmin discusses workarounds with engineer

Issues and workarounds identified

With sysadmin, subsystem owner and engineer

  - Installation notes generated 

Installation notes ready for final approval

Corrections required No corrections necessary

  - Sysadmin secures permission from Head of IT

Software update complete

Figure 35.5.: An example of a system diagram for an organization in the process of
updating software. The top part shows the flow of data between activities.
These activities give rise to data which links some of the activities. The
bottom part shows states as boxes and transitions between states as arrows.
Conditions for a transition are indicated next to each arrow as a textual
description and actions are indicated as a textual description preceded with
a dash (‘-’).
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Start

Sysadmin Subsystem Owner Engineer Head of IT

Identify issues

No issues
Issues identified

Identify 
workarounds

Make 
installation 

notes

Approve 
software 
updateNo corrections

Corrections

Identify corrections

Yes
End

Approval

No

Figure 35.6.: An example of a process diagram for an organization making a decision on
whether it is ready to update software.

Sysadmin

Engineer

Subsystem Owner Head of IT

1. Update

2. Issues

6. Approval

5. Notes

3. Issues 4. Workarounds

Figure 35.7.: An example of a communication diagram for an organization making a
decision on whether it is ready to update software.
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There is an important distinction between legal and ethical concerns. Legal issues refer
to systems that are in some ways unlawful. For example, medical devices and consumer
electronics are regulated by regional laws. Systems that break such laws can lead to
prosecution. Ethical issues are not necessarily referring to particular laws that are broken
but rather adverse outcomes of technology that are undesired according to norms. Several
communities, such as the Association for Computing Machinery, encodes these norms as
codes of ethics and professional conduct.

Systems using artificial intelligence (AI) are the latest frontier of ethical and legal
debate, for the simple reason that they touch an increasing number of everyday decisions.
Interactive systems relying on AI to carry out parts of their functions affect users and
other stakeholders in varying ways with social and financial consequences. Multiple
guidelines have been proposed to the purpose of governing and evaluating systems. Fjeld
et al. [241] presents a comprehensive summary of such principles, which we elaborate
on below, using the eight themes they suggest: privacy, accountability, safety and
security, transparency and explainability, fairness and non-discrimination, human control
of technology, professional responsibility, and promotion of human values.

Privacy Data should not be used without a person’s knowledge. Further, users should
have control over the data and an ability to restrict the processing of their data. Users
should also have the right to correct data or remove it altogether. In general, privacy
concerns should be integrated within the AI design process. There is also wide recognition
that privacy issues in AI systems require new regulatory frameworks by governments.

Accountability For systems to be accountable it is important they produce verifiable,
replicable results and can be examined in sufficient detail for their underpinning operations
and mechanisms to be validated. The impact of systems must also be assessed in so-called
impact assessments. Such impact assessments can be related to impacts on human rights
but they can also more generally study negative impacts of systems. One example is
ecological impact which highlights the need for environmental responsibility. To enable
accountability it is also important to build systems that can be audited and that the
findings of such audits can be fed back to the system. It may be necessary to create a
monitoring body, such as an internal review board, to ensure best practices during design,
development and deployment. If a system is automatic and makes decisions involving
humans then there need to be an appeal function in place to challenge such decisions.
Related, once a system’s decision has been rectified, there needs to be a mechanism to
remedy the consequences of system decisions. In general, liability and legal responsibility
for system actions must be clearly defined. As a consequence, many guides recommend
considering new regulation to ensure systems are accountable.

Safety and security Safety means ensuring the internal functions of the system are
working as expected and the need to avoid unintended consequences leading to harm.
Risk management best practices can be used to address safety. Risk management is
discussed in Chapter 37 in this book. Security is the need to address external threats to
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the system. There is a need to ensure such systems are resilient and a principle known as
security-by-design should be applied to ensure abstract ideas about security are translated
into working principles in implementations by ensuring there is a link throughout the
design, implementation and deployment process. Finally, systems should be predictable
to ensure that it is possible to recognize if systems have been compromised.

Transparency and explainability Systems should be transparent, which in this context
means they should be designed, implemented and deployed in such a way that it is possible
to have oversight of their internal operations. Explainablity concerns the need for systems
to be able to generate outputs that are intelligble and comprehensive and thus suitable
for evaluation by humans.

This is particularly important for systems with the potential to cause harm, such
as the use of AI in healthcare. One way to improve transparency and explainability
is to ensure data and algorithms used to drive system decisions are available to the
public. Governments also need to be open about their procurement and use of technology.
Importantly, people have a right to information about their involvement and interaction
with AI, for example, personal data, and mechanisms used to form decisions about
individuals. Related, individuals should be notified when decisions are made by an AI
and when they interact with an AI. In general, regular reporting can assist in AI systems
supporting transparency and explainability by routine logging of, for example, AI decisions
and the data and factors leading to such decisions.

Fairness and non-discrimination Bias means a particular option has a disproportionate
weight. Algorithmic bias is the phenomenon of bias being introduced in AI systems
through various ways, including the particular algorithms used, the training data, or the
way AI is used. Therefore it is important to work towards non-discrimination and prevent
bias in AI systems. Representative and high-quality data is therefore essential. Another
important principle is fairness, the idea that AI systems treat individuals fairly and the
design of such systems make efforts to avoid bias and other factors that can potentially
lead to unfair outcomes for individuals. A related principle is equity. This is the that
people should have the same opportunities and protections by AI systems regardless of
whether they are all similarly situated. It is also important to ensure the benefits and
positive impacts of AI are inclusive and thus reach as many people as possible. Finally,
AI systems should be inclusive in their design and thus involve diverse participation in
their various design, development and deployment processes.

Human control of technology People should be able review automated decisions and
opt out of automated decisions. Another important aspect is the ability to allow humans
to intervene a system.

Professional responsibility The people involved in designing, implementing and de-
ploying systems have responsibilities. One such responsibility is to ensure systems are
accurate, that is, they mostly arrive at correct decisions. As it is nearly always impossible
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to ensure perfect accuracy this principle is sometimes phrased as a goal rather than an
absolute requirement. Related, developers need to be careful and thoughtful. This includes
considering the long-term impacts and effects of their systems. Another concern is the
need to consult the multiple stakeholder groups that may be affected by a system. Finally,
systems should be built by people with scientific integrity and guided by established
professional values and standards.

Promotion of human values Systems should protect human values ensure humans
can flourish. This means access to technology is a critical concern to avoid systems
contributing to a growth in inequality. This not only means that the positive impacts are
felt relatively evenly across society but also that people have access to education so that
they can benefit from it as much as possible. Another factor is how access to technology
can provide people with disabilities with more opportunities, for example, by providing
automatic closed captions of online videos. A final principle is the idea that systems
should be leveraged to benefit society, that is, it should contribute to human well-being,
the environment and a more sustainable society.

35.4. Is systems thinking actionable?

Systems thinking sounds nice and a lack of systems thinking can be used to explain
designs that have failed in practice. However, there is no concrete framework, toolkit or
procedure that can be used to ensure a systems thinking is embodied in a design.

The six principles on systems thinking we introduced earlier in this chapter are high-level
principles, such as “think holistic” and “follow a systematic procedure”. However, precisely
how do I as a designer know that I am aware of all relevant components, subsystems,
extended systems, people, and other concerns so I can set a correct system boundary?
Further, even if I as a designer want to follow a “systematic procedure”, which systematic
procedure should I follow? There are many design approaches, techniques, methods,
and toolkits. Even for a niche area, such as user interface verification, there are several
sophisticated formal tools available and it is not obvious for a designer which tool is the
most suitable for a user-centered design process [123]. Further, work is required to provide
HCI designers with sufficiently robust systems thinking frameworks that can integrated
in user-centered design processes.

In addition to a lack of concrete guidance, an overemphasis on analysis can lead to
analysis paralysis: a state where decision making is halted, or making very slow progress,
due to the fear of making an error or somehow missing out on a superior solution. An
overemphasis on systems thinking may induce this state by having designers despair in
the face of an incredibly large number of options. It may also give rise to a sensation of
hopelessness when designers realize that the systems they are working with are incredibly
complex and nobody truly understands them. Finally, it may result in the design team
spending too much time trying to define a complete and correct requirements specification
and thereby never reaching a state where they can iterate implementation and evaluation.
A fallacy is to assume there is a perfect system when in actuality a perfect system is
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exceedingly unlikely to exist due to various tradeoffs that are intrinsic to the task the
system is trying to achieve.

In practice, design needs to balance overall rigor against the time and cost required
to arrive at a working system to begin with. This tradeoff can be readily seen in the
small uptake of formal methods, such as system verification, except for safety critical user
interfaces where potential errors can be catastrophic.

Summary

• Systems are pervasive and interactive systems are typically embedded within and
have to interact with other systems.

• Systems thinking is an approach for reasoning about systems, including how they
are embedded within other systems, how they work over time, and how subsystems
and other parts of a system contribute to the wider system.

• System mapping is a set of techniques for describing systems in terms of their
processes, people, and flow of information, among other things. Several system
mapping techniques have been developed to tease out particular aspects of systems,
such as task and organization diagrams.

• Principles can assist designers in ensuring HCI systems are ethical and legal.

Exercises

1. System as a concept. Consider the following systems: (1) a fall-detector device
for elderly patients in a hospital; (2) a streaming music service app; (3) a virtual
reality head-mounted display; and (4) a spreadsheet used by a professor working in
a university to record exam marks and grades. Which systems are they embedded
within and which systems do they have to interact with?

2. Systems thinking and system failure. Read up on the initial motivation and eventual
fate of the following products: (1) the 3DO Interactive Multiplayer; (2) the Apple
Newton; and (3) Microsoft Zune. Can systems thinking explain why these products
failed? Which of the six systems thinking principles could have possibly been useful
to avoid these failures?

3. System mapping. You are tasked with developing an app that assists seven-year-old
children to learn multiplication tables. The app is to run on a tablet and to provide
a scoreboard so can children can compare their results (via anonymous aliases).
Teachers and parents are required access to the results to monitor the progress of
individual children. Use system mapping techniques to describe the system.

4. AI ethics. Use the legal and ethical principles of systems to explore how they
would apply to the following AI systems: (1) a sentence generating function that
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allows nonspeaking individuals with motor disabilities to communicate faster by
allowing such users to directly select entire sentences when they type; (2) a magnetic
resonance imaging (MRI) scanner interface that takes the output from an MRI
machine with a patient inside it in a hospital, sends the data to an offsite location,
uses AI to perform image enhancements, and thereafter sends the AI-processed data
back to the doctor in the hospital for analysis; and (3) an automated dialogue agent
for handling customer complaints in a bank.

5. Safety engineering. A design team is is creating a helmet that enables rapid triage
for people in the vicinity of blast explosions in a war zone. The idea is that the
helmet has sensors that can sense the risk of brain injury due to an explosion and
communicate this information using a visual display. (a) Derive a solution-neutral
problem statement for this problem (see item VII). (b) Suggest a suitable sensor
for the helmet. (c) Propose a system boundary. Briefly motivate your choice of
boundary. (d) Draw a function structure diagram for the key functions in this design.
(e) Create a morphological chart for the key functions in the function structure
model identified in (d). (f) Generate a suitable concept through concept evaluation
and provide a brief narrative motivating the chosen concept. Provide justifications
for all criteria, weightings, and scores. (g) Carry out an FMEA within the system
boundary identified in (c) (for FMEA, see Chapter 37).

6. A patient-controlled analgesia (PCA) pump enables a patient to self-administer
pain relief medicine. Such a PCA pump is set up by a nurse, indicating medication
dosage and schedule among other things, and subsequently used by the patient. A
support engineer is responsible for ensuring the software is up to date and that
the settings are cleared between each patient. Research has shown that a frequent
source of patient injury or death is due to the user interface being difficult to use,
resulting in the United States Food and Drug Administration (FDA) to specify a
set of requirements that a user interface for a PCA pump must comply with. A
design team is tasked to create a user interface for a PCA pump. (a) Derive a
solution-neutral problem statement for this design problem. (b) Identify a system
boundary for this design problem and motivate the choice of boundary.
The following additional tasks can be done if the relevant chapters have been
covered during class: (c) Suggest a user-centred design process suitable for this
design problem. Motivate the choice of design process with reference to other
user-centred design processes that are less suitable. (d) Propose a risk management
strategy for assessing, monitoring, and communicating risk for the new PCA pump
user interface design. (e) One FDA requirement is the following: ”Clearing of the
pump settings and resetting of the pump shall require confirmation.” Explain why
this requirement is ambiguous and raises questions about the user interface design
for a PCA pump that are not explicit in the requirement.
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This chapter introduces a design engineering perspective to HCI system design. As we
have discussed in this Part, the word system has many meanings in HCI. In the context of
this chapter, the term means a set of interconnected components that give rise to emergent
properties that are not attributable to the individual components alone. As the number
of components and the interactions among the components increase, a system becomes
more complex. Integrated system design is the challenge of designing an integrated system
that meets the stated objectives.

Here are three examples of successful design engineering from the HCI research literature.

• The data glove [910] is an instrumented glove-based system that allows a computer
system to sense position and orientation information of a user’s hand and fingers.
Thus it allows a computer system to track the user’s hand and finger positions,
allowing the user actions such as picking up virtual objects and rotating them,
among other things. It also enables tactile sensation feedback below each finger.
The system is a combined hardware-system covering all aspects required to allow
a user to perform gestures and receive tactile feedback, including a manual and
automatic calibration procedures.

• KinectFusion [371] is a real-time 3D reconstruction and interaction system that is
based on a moving depth camera. Using a custom pipeline KinectFusion enables all
actions for enabling such features using a commodity depth camera and graphics
card. Example applications include low-cost 3D scanning and augmented reality
that is aware of the physical surroundings. Further, the system enables tracking of
a user’s fingers, thereby any physical surface to be reappropriated as a multi-touch
surface with passive haptic feedback.

• Dexmo [299] is a force-feedback glove intended for virtual reality applications.
Dexmo simulates forces using a mechanical exoskeleton. The Dexmo system tracks
user motion and when it detects that the user hands fingertips are grasping a virtual
object it uses a passive haptic mechanical approach to block user’s finger movements.
Thus, unlike tactile feedback, the user experiences a real force. Importantly, Dexmo
is lightweight and inexpensive to manufacture. A later commercialized version
introduced variable force feedback.

We introduce a method for integrated system design in HCI which is adapted from
design engineering [617, 251, 819].1 The previous Part on design (Part VI) explained

1Sometimes referred to as engineering design.
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methods for creating ideas and prototypes. This chapter elaborates on how to transform
problem statements into products and services using a systematic approach. In other
words, the focus here is on arriving at a system that fulfills a set of requirements enabling
to be readily realized.

We will focus on specific parts of the typical design engineering process that are
relevant to designing, implementing and evaluating interactive systems: task clarification,
conceptual design and verification. Other parts of design engineering, such as embodiment
design and detailed design tackle the specifics of constructing electro-mechanical systems
and are thus not covered. Likewise, we will not cover project management specific
techniques, such as change management. Risk management is an important aspect of all
system design which we touch on in Chapter 37.

In addition to providing students of HCI a better understanding of how engineers are
typically taught to design systems, the methods introduced in this chapter are versatile
and addresses a number of common challenges that are often encountered in the design
process.

One such challenge is design fixation, the risk of too early committing to one particular
idea without considering others (see section VI). Another is the inability to keep in mind
all objectives and constraints relevant in design. Designers also often exhibit implicit or
explicit bias, which can lead to short-circuiting the design exploration stage. When we fail
to fully explore design options, we often do not end up identifying the best solutions. A
systematic design process reduces this risk by enforcing a consistent process for exploring
alternatives.

Another design process challenge is making informed trade-off decisions. An integrated
system design is rarely, if ever, optimal in all possible aspects, mostly due to many
design factors having a negative correlation with each other. A simple example is security
and usability of a system: by improving security for example by stricter authentication
methods, one often compromises its usability. However, often these trade-offs are not
obvious and there is a risk that trade-off decisions are implicitly dictated by the design
itself by accident. This can lead to suboptimal designs that are only revealed as such when
the system is deployed and the net effect of all those trade-off decisions suddenly become
apparent. A systematic design process reduces this risk by considering the translation of
the set of functions in the design into a set of function carriers in an implemented system
as a search problem with multiple solutions. By making the advantages and disadvantages
of each solution explicit, implicit trade-offs are made explicit.

A third challenge is communication. In practice, integrated design of an HCI system
needs coordination of multiple people, or even teams, which are often distributed in
different geographies and across companies or company divisions. By documenting key
steps in a decision process, they are also made scrutinizable by other people.

A fourth challenge is integration of multiple technical disciplines, design knowledge,
people, business and regulatory concerns into a functioning system. Examples of difficult
integration challenges that arise in HCI systems include 1) systems that rely on software,
electronics and mechanical behavior, for instance, wearable devices, medical devices and
3D printers; 2) AI-infused systems that rely on subsystems inferring or predicting users’
intention or dynamically adapt based on user behavior; and 3) human-in-the-loop systems
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that rely on real-time human behavior for successful operation of the system. An example
of a system integration challenge is given in the Sidebox, which discusses the engineering
of VuMan, an early wearable computer.

A fifth challenge is carrying out an appropriate risk assessment and consequently
implement a suitable risk management strategy for the HCI system. In order to carry out
a risk assessment it is critical to understand the technical boundary of the system and the
system architecture. Only then is it possible to perform risk assessment at the relevant
level for the system. This is essential, especially for safety-critical systems. Due to the
complexities and nuanced involved when addressing risk in design, risk management is
covered in its own chapter in this book.

Paper Example 36.0.1 : Designing a wearable computer

VuMan is a wearable computer that can assist humans in navigation tasks in the
real world, such as providing information moving about in a museum or campus [50].
Developed in early 1990s, VuMan consists of a handheld controller and a wearable
display (Private Eye). By rotating the dial and clicking the buttons, a user can move
a cursor and interact with a map (e.g., a blueprint of a house) shown on the wearable
display.

Three versions of VuMan developed over several years in a multi-disciplinary project.
A key challenge to the team was integrated system engineering: how to engineer a
wearable computer that meets several requirements for use in the wild, like different
temperatures, dirt, water, shock etcetera. The project started with requirements
elicitation but later centered of the development the dial. Over several iterations
of user studies, and hardware and software engineering, the design became lighter
weight, smaller, more robust, more energy-efficient, quicker for users to use, and
cheaper to manufacture.

36.1. Design Process

The design engineering process can be decomposed into six interleaved activities:

1. Identifying the purpose of the HCI system.

2. Creating a requirements specification.

3. Arriving at a conceptual design.

4. Translating the conceptual design into an embodiment design.

5. Implementing the embodiment design into a detailed design, which is either ready
for manufacturing or deployable as a purely digital product.

6. Verifying that the system fulfils the requirements and validating that the system is
usable for its purpose.
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While the process appears linear and the above activities will be described in the above
order, it is important to note that in practice this process is rarely linear. Moreover, in
parallel to the above design process, risk management is carried out through the process
as a way to reduce both project risk and emergent risks of the deployed system.

36.2. Identifying the Purpose

One of the important tasks when designing a system is to identify the overall purpose of
the system. It may seem obvious, however, it is often surprisingly difficult for a design
team and different stakeholders to come to an agreement of the overall purpose of a
proposed system. Writing down a technical description of the purpose of a system helps
ensuring the entire design team and all stakeholders share a common understanding of
the overall objective. A useful technique for systematically arriving at such a purpose is
to evolve a solution-neutral problem statement.

A solution-neutral problem statement expresses the overall objective as a problem
statement that avoids framing the problem in solution-dependent terms. This eliminates
premature commitments to apparent-but-irrelevant constraints. It thereby helps avoid-
ing initial design fixation on a prescribed solution, which otherwise risk resulting in a
suboptimal due to an over-constrained design space, prohibiting sufficient exploration of
alternative designs.

The process of formulating a solution-neutral problem statement is straight-forward in
theory. The first step is to arrive at an initial problem statement and reflect on this problem
statement. Does it clearly express a problem worth solving? Is there anything critical
missing in this statement? Having critically challenged the initial problem statement, the
next step is to progressively raise the level of abstraction of the problem statement to a
level that is appropriate given the problem context.

The main idea in raising the level of abstraction of the problem statement is to
progressively reformulate it into solution-neutral terms. This is achieved in two steps.
The first step is to remove requirements and constraints that have no direct relationship
to addressing the problem statement. The second step is to transform quantitative
statements into qualitative statements.

By using this two-step process to gradually increase the abstraction level, the search
space of possible solutions increases as the problem statement is progressively decoupled
from solution-dependent terms. In practice, a solution-neutral problem statement is in a
continuum between the two extremes of either being completely solution-dependent or
completely solution-independent. Context and professional judgement determines the
appropriate abstraction level.

As an example, consider the following initial problem statement: “Design an updated
form-filling warehouse inventory management interface based on last year’s version of
a mobile app running on capacitive touchscreen-enabled phone, consisting of five forms
on five separate pages, each with a Submit and a Cancel button”. It can be successively
evolved into increasingly solution-neutral problem statement as follows:

• Design a form-filling warehouse inventory management interface for a capacitive
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touchscreen-enabled device, consisting of five forms on five separate pages, each
with a Submit and a Cancel button.

• Design a form-filling warehouse inventory management interface for a mobile device.

• Devise a means for inputting structured information for warehouse inventory man-
agement.

• Devise a means for managing warehouse inventory.

• Devise a means for managing information.

The above example illustrates that there is a range of successively solution-neutral
problem statements for any initial solution-dependent problem statement. However, at
some point the level of abstraction is so high that the statement is provides little to no
guidance. In practice, careful judgment is required to set the solution-neutral problem
statement at the correct abstraction level.

Once a solution-neutral problem statement has been evolved it can be used to denote
the overall function of the system. As we shall see when performing conceptual design,
an overall function is a good starting point for decomposing a function structure of the
system.

Running example: A device for affection across distance

As an example of a hypothetical design, consider a wearable device that couples affection
between two individuals separated in space. For example, such a device could take the
form of two electronic rings connected via the Internet that will glow when one of the ring
users is rubbing or turning the ring a certain way. The overall function of such a system
could be described as Couple Affection and a solution-neutral problem statement may
take the form of, for example, “Design a wearable device that couples affection between
two individuals that may be present in separate locations.”

36.3. Specifying Requirements

Having identified the overall purpose of the system it is now possible to identify more
clearly the objectives and constraints of the system. These are imposed in the form
of requirements on system behavior and qualities either intrinsic or emergent from the
system.

A requirement specification is a document that specifies characteristics of a system. It
is determined in the beginning of the design process. While a requirements specification
is ideally perfect in its first instantiation and remains unchanged throughout the design
process this is very unlikely to happen in practice. Rather, a requirements specification is
often referred to as a live document that is updated as new information alters the design
specifications.

As a requirements specification is referred to frequently in the design process it is vital
it is correct. Requirements specifications are therefore reviewed and the process of arriving
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at a requirements specification is often following a prescribed process, which is often field-
or organisation-specific. The process of arriving at a correct requirements specification is
known as requirements engineering [422] and it is an active area of research [651].

The importance of a correct requirements specification increases with the complexity
of the system. Unfortunately, in practice, it is notoriously difficult to arrive at a correct
requirements specification as this demands a complete understanding of every relevant
facet of the design. For example, requirements relating to users’ needs or wants are
difficult to elicit and unlikely to be complete or fully representative of the needs and
wants of a diverse target audience. This is due to a number of factors, including sampling
error, the robustness of the methodology, and the difficulty of users to fully anticipate
their own future needs and wants. This is one reason why requirements specifications are
live documents.

A good requirements specification provides an in-depth understanding of the problem
and covers all relevant aspects of the system design. It is also clearly written and thus
helps improve communication between different team members. As a consequence, a
well-written requirements specification reduces time and cost in the design process and is
more likely to give rise to a high-quality system.

While requirements cover all aspects of system design, they can generally be divided
into four categories:

Technical requirements cover functional and performance characteristics of the system,
such as latency and recognition accuracy.

Business requirements cover costs, scheduling and other management-related aspects of
the system and the design of the system.

Regulatory requirements cover governing laws, industrial standards and product regula-
tions.

User-elicited requirements cover the needs and wants of users.

A useful requirement has the following properties:

Solution independent A requirement should normally not prescribe a specific pre-determined
solution. A requirements should specify what needs to be done, not how it is done.

Clear A requirement should be unambiguous and understandable by all members of the
design team that need to be aware of it.

Concise The wording in a requirement should be phrased succinctly.

Testable A requirement should be testable to ensure it is possible to later verify that
the requirement has been met. In many cases, testability is ensured by introducing
quantitative target values, limits, tolerances or ranges. In other cases, testability
can be ensured by prescribing acceptance criteria.
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ID Requirement Source

1 Device must indicate its power
on status Technical team

2 Device must be comfortable to
wear Market research

3
Device must be able to sense
at least five levels of communi-
cated affection from the user

Focus group re-
search and litera-
ture review

4
Device must be able to wire-
lessly receive an affective sig-
nal from a remote paired user

Focus group and
market research

5
Device must communicate af-
fection from a paired remote
user in five discernible levels

Experimental re-
search

Table 36.1.: Example requirements for an affective wearable device.

Traceable A requirement should be traceable to its source. If the need ever arises to
modify the original requirement it is important to understand why the requirement
was specified in particular way in the first place.

In addition, the requirements specification as a whole should be complete and include
all areas of concern throughout all relevant phases of the system, which, for example,
may include requirements on disposal or re-use of the system, or system support. It is
difficult and error-prone to write a complete requirements specification without reference
to complete system functionality. Therefore requirements specifications are often written
while designing the function structure of the system, which is addressed in the next
section.

Some example requirements considering a hypothetical wearable device for coupling
affection between two individuals separated in space are shown in Table 36.1.

36.4. Conceptual Design

Having identified the overall function of a system the conceptual design phase is concerned
with two main tasks. The first is to elaborate the specific functions that the system will
be required to carry. Such functional modeling allows the design team to reason about
required functionality without premature commitment to specific solution principles that
dictate a specific method to carry out a function.

Figure 36.1 illustrates the conceptual design process as an information processing
activity. A technical description, such as an initial requirements specification, and design
resources, including design knowledge, feeds into a transformation process that turns a
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Figure 36.1.: Design engineering as an information processing activity [429].

functional description into a detailed description. A common mistake is to prematurely
commit to a detailed description without a complete understanding of the functional
description. A way to think about it is to consider the functional description the what—
what should we build?—and the detailed description the how—how should we build
it?

Also shown in Figure 36.1 is a transformation process from the detailed description to
working system. Once a working system has been constructed it is possible to undertake
verification and validation to ensure that all requirements have been met and that the
deployed system successfully addresses the solution-neutral problem statement.

36.4.1. Function Modeling

Two useful simple modeling abstractions are function structures and FAST diagrams.
FAST stands for Function Analysis Systems Technique. In both methods, a function
is described as an active verb followed by a noun (“push button”, “select shape”, “start
motor”, etc.).

A function structure is derived by first identifying the overall function. It is possible,
and often necessary, to repeat the process for several overall functions of the design.
Having identified an overall function its interaction with the environment is modeled by
flows of energy, materials and signals give rise to an overall function with inputs and
outputs of energy, materials and signals as shown in Figure 36.2.

The rounded rectangle in Figure 36.2 is the technical boundary of the system. Anything
outside it, is not modeled except as inflows and outflows of energy, material and signals.
The technical boundary of the system is important and must be set with care. For
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Overall Function 

Signals 

Energy 

Materials 

Signals 

Energy 

Materials 

Figure 36.2.: A function structure of the overall function of a system, showing the flows
of energy, material and signals. The rounded rectangle around the overall
function forms the technical boundary of the system.

example, in some cases users are included within the technical boundary of the system
because these users are carrying out functions necessary to carry out the overall function.

Function structures can be nested, which makes it possible to increase the granularity
of the functional description. Figure 36.3 illustrates this idea by breaking down the
overall function in Figure 36.2. Figure 36.3 shows an internal decomposition of the overall
function split into four main functions. Function 1 and 2 use energy to process material,
suggesting they are process functions. Function 3 and 4 manage the flow of signals and
suggest they are control signals. Further decomposition of, for example, Function 2 could
reveal, sub-functions further detailing the control and process aspects.

In the case of the wearable device coupling affection between two individuals, the overall
function is ’Couple Affection’. While simple, the function structure has already recorded
one of the most vital piece of information of any design: the overall function. To carry
out its purpose the design needs to manage flows of energy and signals.

This overall function structure for Couple Affection in ?? can then be decomposed
into a number of key sub-function as shown in Figure 36.4. The incoming signals to the
overall function have now been detailed as User Affection, sensed locally by the wearable
device, and Remote Affection, transmitted from a remote device. The function structure
identifies a functional need to Supply Energy in order to sense, modulate and send locally
sensed affection to a remote device and to be able to receive and display remote affection
provided from a remote device. Crucially, the function structure is focused on revealing
critical functions and their dependencies and does not prescribe any specific solution or
function carrier to carry out any of the functions.

FAST diagrams is another function model design method which can replace or comple-
ment function structures. The fundamental idea behind FAST diagrams is to gradually de-
compose higher-order functions at a higher abstraction level into one or several lower-order
functions at a lower abstraction level. Figure 36.5 illustrates this idea diagrammatically.
The horizontal axis is the level of abstraction, ranging from high abstract to the left to
low abstraction to the right. In other words, the further a function is to the right the
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Figure 36.3.: A breakdown of the overall function structure in Figure 36.2, revealing four
main functions and the flows of energy, material and signals between them.
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Figure 36.4.: A decomposition of the overall function structure of the wearable device
coupling affection in ??, revealing the main functions and the flows of energy
and signals between them.
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Function	 Function	

Function	

Function	

higher-order	function	 lower-order	function	

how	do	you…	why	do	you…	

when	

Figure 36.5.: A diagrammatic representation of the grammar of a FAST diagram. The
horizontal axis represents abstraction—functions at a higher abstraction
level are to the left of functions at a lower abstraction level. The vertical
axis represents time or sequential ordering of functions.

more concrete it is. The vertical axis is time, in other words, when a function is carried
out. A function to the left of a function answers the question “Why do you carry out this
function?” while a function to the right answers the question “How do you carry out this
function?”.

Figure 36.6 shows an example of a partial FAST diagram for the wearable device coupling
affection. The overall function is Couple Affection. In order to Couple Affection the
device has to be able to Communicate Affection and Perceive Affection. To Communicate
Affection the device has to Sense User Action, Module Signal and Transmit Signal. The
FAST diagram can also be read the other way around. Why does the design require a
Sense User Action? This is because it needs to Communicate Affection. Why does it
need to Communicate Affection? This is because it needs to Couple Affection.

Several controllable and uncontrollable parameters can be attached to any of these
functions as part of an early analysis of required function characteristics. This analysis in
turn can drive another iteration of the requirements specification.

For instance, consider the function Sense User Affection in Figure 36.6. A signal
corresponding to a proxy of a user’s affection can be transmitted from the user to the
wearable device in a number of ways, for example, by touch, by rubbing the device, or by
applying pressure. Another possible solution is to allow the user to communicate affection
by the duration they touch or apply pressure against the device. In such a case, duration
is an example of a controllable parameter of the function because it can be controlled by
the device designer. An example of an uncontrollable parameter would be the certainty on
whether an affective signal was intended to be communicated by the user, and if so, the
magnitude of affection that was intended. It is not possible be completely sure about the
user’s intention in this regard, even if the system detected some form of user interaction
with the device. A misdetection can happen for many reasons: sensor error, human motor
control noise, or a cognitive error, such as misunderstanding how affection is meant to be
communciated via the wearable device.

Another example is the function Display Signal in Figure 36.6. This function also
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Figure 36.6.: A high-level FAST diagram for a wearable device coupling affection between
two individuals.

depends on a number of parameters. Among the controllable parameters, it includes
concerns such as whether the device displays affection as a continuous or discrete signal,
the display resolution (for example, three discrete levels of affection), the media used (for
example, light, sound, vibration) and the governing parameters around the chosen media.
As is evident, the degree of parameterization depends to some extent on how solution
dependent the FAST diagram is. An example of an uncontrollable parameter is the
external environment the device and the user is operating in, which will have consequences
for how well a function such as Display Signal can operate. Another example of an
uncontrollable parameter is context of use, including the specific situation the device is
used in. A user may for example be standing still alone, walking in a crowded room, or
drive a car. While uncontrollable parameters cannot be explicitly controlled by the design,
their effect on the design can still be analyzed and taken into account. For example, the
effect of different room illumination on the display of an affective signal conveyed using a
LED array can be analyzed by experimentation.

To create a FAST diagram it is often best to start with general functions (“Which must
be carried out?”) and then progressively evolve a more specific function structure. For
example, in the example of a wearable device that couples affection, the two key functions
are Communicate Affection and Perceive Affection. Each function should be described
as simple as possible, ideally with a just a verb and a noun. Then chronologically trace
through each function that must be realized for the design to work. In practice, this
often requires both careful self-reflection and consultation with other members of the
design team or stakeholders to ensure all necessary functions are included. It is important
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Figure 36.7.: A FAST diagram presenting an overview of the main functions across the
lifecycle of a generic product.

to remember to include all special modes of the design, such as stand-by, start-up and
re-start of the system. The sole focus should be around system behavior. Therefore, avoid
descriptions around the embodiment of the design and in particular avoid specifying shape,
form, structure of specific solutions. Finally, it is possible to customise the FAST-diagram
by annotating it, for example, by indicating critical functions, possible parameters that
function performance is crucially dependent on, etc.

FAST diagrams are often used by engineers and designers to ensure all relevant func-
tionality is captured in the requirement specification. The decomposition process forces
everybody in the design team to be clear about exactly which functions that must be
carried out to realize an overall function. Another use of FAST diagrams is lifecycle
analysis. Figure 36.7 illustrates how the lifecycle phases of a product can be decomposed
into sets of FAST-diagrams for each relevant phase. Again, functional modeling of the
lifecycle of a product is useful to inform the requirements capture process of all necessary
functionality throughout all the phases of a product, including assembly, distribution,
support and eventual disposal or reuse.
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Figure 36.8.: A morphological chart illustrating a set of alternative solutions for a subset
of functions in a pulse meter.

36.4.2. Translating Functions into Function Carriers

Having identified the functions that must be realized by the system, the next step is to
understand how to best implement these functions. In other words, the objective is now to
carry out a design process that considers the best alternatives for translating the functions
into function carriers. A starting point for this design process is the construction of a
morphological chart.

A morphological chart is a table in which every row maps a specific function to a set
of candidate function carriers, often referred to as solutions, and sometimes as solution
principles. This chapter uses the terms function carrier and solution interchangeably.

Figure 36.8 illustrates this idea for three functions of a wearable device for coupling
affection between two individuals. The function Supply Energy can, for example, be
mapped to three different solutions: 1) the device can harvest some of the human user’s
energy; 2) the device can use a battery; or 3) the device can use solar. The function Sense
User Affection can be realized by, for example, by 1) touch; 2) a rubbing motion; or 3) a
rotating motion. Finally, the function Display Remote Affection can be realized using, for
example, 1) an LCD screen; 2) a LED array; or 3) by communicating tactile vibrations to
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the user’s skin in preset patterns (for instance, using separate codes for three levels of
affection).

All these solutions can be further detailed in a second iteration of a morphological
chart following initial selection of a preferred solution. For instance, an energy source,
such as a battery can be further explored in terms of kind of battery is the most suitable,
should it be replacable, rechargeable, and so on.

Having constructed the morphological chart the idea is now to generate combinations by
going through each function in the morphological chart and selecting a set of corresponding
solutions that realize all the functions required to carry out the overall function. For
example, in the morphological chart in Figure 36.8, Combination 1 has been generated
by selecting a partial design for a wearable device based on using a battery as an energy
source, sensing the user’s affection using touch and displaying remote affection using a
LED array.

Theoretically, assuming each function maps to exactly k solutions, there are nk com-
binations for n functions. This means that the morphological chart in Figure 36.8 can
generate nine unique theoretical combinations. As both the number of functions and the
number of solutions tend to be large in practice, it is not meaningful to exhaustively
generate all, or a large set of combinations. Instead, the design team uses professional
judgement, requirements and any other sources of design insight to generate a subset of
promising combinations.

36.4.3. Concept Selection

Having arrived at a set of combinations, the next step is to rank these combinations
and arrive at a final recommendation. As a starting point for a discussion, this can be
done by scoring conceptual designs (combinations of solutions) against relevant criteria.
Figure 36.9 score two concepts so that they can be compared numerically.

The scoring works as follows. First, each criterion is assigned a weighting in a nominal
range between 1 and 5. Thereafter each concept is scored against each criteria. This
results in another value in a nominal range between 1 and 5. This value is then scaled
by the weighting for that feature. For example, in Figure 36.9, the value for Concept 1
for the criteria Weight is 2. Since the weighting for the criteria Weight is 3 the weighted
value is 6.

The final score for a concept is thus a linear combination of the form c1v1 + c2v2 +
. . . + cnvn, where ci and vi is the ith criterion and corresponding value respectively.
By calculating the linear combination scores for the concepts the scoring mechanism
provides an overall score. For example, for Concept 1 in Figure 36.9 the combined score is
calculated as 2 · 3 + 2 · 3 + 2 · 2 + 3 · 4 = 6 + 6 + 4 + 12 = 28. For Concept 2 the calculation
is 4 · 3 + 4 · 3 + 4 · 2 + 1 · 4 = 12 + 12 + 8 + 4 = 36.

It is often useful to include a point of comparison that calibrates the quantification. One
method to do this is to introduce an ideal concept that attains the maximum weighted
value for each criterion. Figure 36.9 shows the scoring for a hypothetical ideal concept.

Another possibility is to compare against a datum, such as, for example, an existing
design based on an older product or a competitor’s product. In the latter case, the scoring
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Criteria Weighting 

Concept 1 

Value Wt val 

Concept 2 

Value Wt val 

Ideal 

Wt val 

Weight 3 2 6 4 12 15 

Appearance 3 2 6 4 12 15 

Accuracy 4 3 12 1 4 20 

28 36 60 

Power 2 2 4 4 8 10 

Figure 36.9.: A comparison of two conceptual designs scored across a set of features
against a theoretical ideal concept that scores perfectly in every category.
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Figure 36.10.: An illustration of three different functions for translating a quantity (battery
life, weight, accuracy in sensing, etc. into a value that can be used to score
concepts.

can be used as part of a competitive analysis to better understand which criteria a new
design could realistically excel at compared to an existing or hypothetical competitor in
the market.

To calculate the weighted two quantities are required: 1) the weighting for the criteria;
and 2) a function that converts a quantity, for example, battery life, weight, height,
accuracy, into a nominal value. Weightings can arise them from many sources, such
as organizational knowledge of the priority of criteria, for example by previous sales
figures and support data. It can also arise from market research based on, for example,
focus groups asking participants existing or potential customers to rank product qualities.
Weightings may also arise from domain knowledge, business concerns or regulatory
requirements.

There are also many methods for converting a quantity into a nominal value. The
simplest method is to use a zero-intercept linear function over the effective quantity range
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to linearly map a quantity to a nominal value as shown in Figure 36.10 (left). An example
is a quantity such as battery life. For a hypothetical wearable device worn around the
wrist the viable range may be determined by the designers to reside between 8 hours and
24 hours. Battery life is then mapped such that an 8 hour battery life is mapped to a
nominal value of 1, a 24 hour battery life is mapped to a nominal value 5, and any battery
life between 8 and 24 hours is linearly interpolated to a corresponding nominal value.

For some criteria, such as weight, it is more natural to map the inverse, as illustrated in
Figure 36.10 (middle). For example, If a design team has determined that the weight of
wearable device must reside in a range between 100 g and 250 g then a 100 g is mapped
to a nominal value 5, 250 g is mapped to a nominal value of 1, and any weight in between
is linearly interpolated.

The function used to calculate a nominal value does not need to be linear. Figure 36.10
(right) illustrates a non-linear mapping between a quantity and a nominal value. The
function can also be discrete, for example, mapping a wide range of quantities into the
same nominal value.

As the scoring method is merely calculating linear combinations it is very simple, which
is an advantage as it makes it easy to understand and apply. Another advantage is that the
scoring method maps directly to criteria and thus helps to ensure the conceptual design
is addressing the criteria articulated in a requirements specification. It may also make
the design team more aware of the significance of certain criteria and question whether
all relevant criteria have been fairly represented are fully reflected in the requirements
specification. Finally, the analysis elucidates intrinsic tradeoffs that emerge in any non-
trivial design, such as the inherent conflict between device size and battery life and forces
the design team to carefully consider how to balance them.

However, the simplicity of scoring concepts as linear combinations comes at a cost of
reduced accuracy and increased uncertainty. Therefore it is important to be aware of the
inherent limitations of such a scoring approach to conceptual design selection.

First, the method assumes all relevant criteria have been represented, which is hopefully
true, but often in practice difficult to ensure. Second, the method assumes weightings and
concept values are error-free point estimates when in reality they are uncertain. Third,
the method assumes all criteria can be related mathematically as a linear combination.

For these reasons, concept scoring is error prone and the results should be used with
caution. Any concept selection should not be made with sole reference to how well the
concept scores, in particular not the aggregated score, which is more useful as a method
for an initial ranking of concepts than basis for final selection. A decision to select a
particular concept should be complemented with a written narrative that explains the
reasons for selecting a concept with reference to the criteria, weightings, other concepts
and any datum, competitor product or ideal concept.

As an example of the danger of relying solely on concept scores, consider the two
concepts for a pulse meter in Figure 36.9. Concept 2 has a higher aggregate score (36)
compared to Concept 1 (28). At first glance, Concept 2 appear superior. However,
Concept 2 is scored only 1 for accuracy compared to 3 for Concept 1. Furthermore,
accuracy is the criterion with the highest weighting. Therefore, despite other drawbacks,
it may be wiser to proceed with Concept 1 instead of Concept 2 and investigate whether
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the drawbacks of Concept 1, such as the increased weight, worse appearance, and poorer
power solution can be mitigated. Alternatively, further research may be required to
investigate whether the accuracy can be improved for Concept 2. In this way, concept
scoring is used to drive further design exploration, rather than being relied upon as a
clearcut method to identify the best concept.

36.4.4. Product Architecture

Having arrived at a functional model it is possible to consider the allocation of functions
to modules and how such modules interact. A product architecture is in a continuum
between integral and modular. In a fully integrated architecture every function maps
to a single module. In a fully modularised architecture, every function maps to its own
module.

Product architecture was originally proposed by Ulrich [818] for the design of physical
products. Here a module can be seen as a physical component. In a more modular
architecture, interfaces and interactions between modules are more decoupled. This
means changes in individual modules does not necessarily imply any changes in other
modules, a similar reasoning as the encapsulation principle in, for example, object-oriented
programming. Because of this, it may be possible to design individual modules separately.
In theory, everything else equal, this allows reuse of existing modules across products
and thus can reduce design cost and in particular allow a variety of different products.
An example is a modular video camera with a separate tripod, battery, carrying bag,
lens system, etc. In contrast, in a more integral architecture boundaries and interactions
between modules are coupled and modifications in one part of the system is likely to affect
other parts. This means modules must be designed in collaboration and it is difficult
to allow for variety or change. Such integration may enable optimization at the cost of
flexibility.

A modular architecture implies some form of interface mechanism between modules.
Therefore, Ulrich [818] also proposed three archetypical modular architectures:

Slot modularity A slot modularity means modules are connected using a range of standard
interfaces. An example of this is a TV with a high-definition multimedia interface
(HDMI) connector, an antenna connector, etc.

Bus modularity A bus modularity means modules are connected using a single standard
interface, such as the Universal Serial Bus (USB).

Sectional modularity A sectional modularity means there is no standard interface and
no main module. An example is pipework.

Product architecture choices matter throughout the lifecycle of the product or the
system. At the design stage, how to realize functions, divide up design tasks and potential
reuse of existing designs depend on the architecture. At the production system stage of
a physical system, the architecture affects assembly sequences, tooling, reuse and the
equipment involved. At the production stage, the architecture helps determine unit cost,
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Figure 36.11.: A function structure of a computer peripheral indicating the flows of energy
and signals. If, for example, this peripheral was a laser printer, there
would also be flow of material (paper and toner). The function structure
has been modularized into four modules based on functional affinity: 1)
user interface board; 2) logic board; 3) cord and AC transformer; and 4)
software driver.

the ability to reuse standard parts or modules, viability of late customization and the
ability to offer product variety. During usage, the architecture will determine whether the
product is optimized for performance (which usually involves a high degree of integration)
versus generalizability and flexibility. Other factors that are may affected during usage
include the ability to adapt and maintain the system during use. Post production, the
architecture affects service and maintenance, such as the ease of replacing physical parts,
and the ability to upgrade individual software modules. In addition, the ability to change
the product or system at a much later stage is also in part determined by the level of
modularity.

The starting point for creating a modular product architecture is a schematic overview
of the product, for example, a function structure model of the system. Then select the
desired level of product variety depending on factors such as level of reuse, ability to
change the product and variety of product offerings. Finally, create modules by clustering
functions in the schematic overview. An example of this process is shown in Figure 36.11
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which shows a function structure model of a computer peripheral and the flows of energy
and signals between the functional elements. This schematic can be clustered into four
modules based on functional affinity: 1) a user interface board handling user input and
output; 2) a logic board controlling the device and communicating and connecting to
the computer; 3) a power cord and transformer; and 4) a software driver. This ability to
easily modularize a system early in the design is another advantage of function structure
models.

It is also possible to design a computer peripheral using a more integral architecture,
for example, by integrating the user interface board, logic board and power into a single
unit, for example, by allowing the peripheral to draw power from a USB connection, thus
eliminating the need for a power cord and transformer. This latter architecture can make
sense for instance if the computer peripheral is an integrated hand-held unit, such as a
hand scanner. In contrast, the former architecture illustrated in Figure 36.11 can serve as
a blueprint for a heavy duty computer peripheral that requires external power. Examples
of such peripherals include laser printers, virtual reality headsets and 3D printers.

36.4.5. Next Steps: Embodiment and Detailed Design

Once a concept has been agreed upon, the next two stages is embodiment design and
detailed design. Embodiment design is the stage in the design process that succeeds the
identification of a conceptual design. The embodiment stage results in design sketches,
prototypes, layouts of mechanical components, identification of critical software modules
and electronic components, and so on.

Detailed design is the phase in the design where the system is either ready to be
either directly distributed in the form of software or sent to manufacturing in the form of
manufacturing instructions. For example, for a software-only system, the detailed design
phase would involve designing the software architecture, class descriptions,

36.5. Verification and Validation

A fundamental activity in design engineering is verification and validation. Verification
means systematically checking that all requirements have been met. In other words,
verification is a process for ensuring a built system meets its specification. Validation,
in contrast, is the process of ensuring the system fulfils its intended purpose. There is
therefore a clear distinction between verification, ensuring the system is built correctly
according to its specification, and validation, ensuring the system is capable of assisting
end-users in solving their problem. Due to the separation of verification and validation
it is possible to succeed in one and not the other. For example, it is possible to pass
verification by building a system that fully meets its requirements, but nevertheless fail in
validation if the system is incapable of carrying out its intended function or fulfilling its
purpose. It is also possible to fail in verification and succeed in validation; a system can be
usable for its intended purpose even if it does not fulfil all requirements in its specification.
A common problem is a system succeeding in verification and failing in validation. This
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problem arises due to the high risk of a misalignment between the requirements of a
system and the qualities required of the system to be usable in practice.

36.5.1. Verification

Verification is the process of ensuring requirements have been met. In order to succeed
with verification it often helps to structure the verification process into a verification
cross-reference matrix (VCRM). A VCRM is a row-by-row specification for how to verify
individual requirements. There are many ways to set up a VCRM, however, they usually
contain following columns:

Requirement ID An identifier that matches the identifier of a requirement in the specifi-
cation.

Requirement The requirement addressed by the verification method.

Verification Method A specification that details how verification is to be carried out.

Allocation A list of components, parts, subsystems, etc. that are affected by this
verification.

Success criteria A free-text clear description of what constitutes success. This may be a
qualitative, quantitative or a combination of both.

When considering a verification method it is useful to consider a few fundamental
higher-level verification approaches.

Inspection, sometimes referred to as examination, means using one or several of the
five senses to non-destructively ensure a system posses a certain quality. For example, a
requirement to paint a door blue can be inspected by visually checking the color of the
door.

Demonstration refers to ensuring that manipulating the system according to its intended
use results in expected outcomes. For example, checking that a registered user’s finger
touch unlocks a finger-print lock.

Test is checking that feeding predefined inputs yields expected outputs. For example,
calling a software function with set input values and then programmatically checking that
that the output values of the function are correct.

Analysis means carrying out verification using calculations, models or testing equipment
to predict system characteristics based on, for example, a sampled subset of components
or samples of test data.

Table 36.2 shows an example of a partial VCRM for a wearable device coupling affection
between two individuals.

It is useful to develop a VCRM in conjunction with a requirements specification as
a VCRM forces the designers to explicitly consider viable verification methods success
criteria at an early stage in the decision process. Such design activities can also trigger
the need to construct prototypes or perform system simulation to assess the viability of
adhering to requirements at an early stage. For example, the VCRM in Table 36.2 specifies
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ID Requirement Verification
Method Allocation Success Criteria

1
Device must indi-
cate its power on
status

Inspection User Inter-
face

Visible and legible
power on status

2
Device must be
comfortable to
wear

Test Device Case

Median ratings above
4/5 on Likert scale by
representative user
sample from target
audience (n > 24)

3

Device must be
able to sense at
least five levels of
communicated af-
fection from the
user

Test User Inter-
face

Consistent ability (>
95%) by representa-
tive user sample from
target audience to
communicate five dif-
ferent levels of in-
tended affection (n >
24)

4

Device must be
able to wirelessly
receive an affec-
tive signal from a
remote paired user

Demonstration Wireless
Stack

Ability to receive and
respond to test sig-
nal.

5

Device must com-
municate affection
from a paired re-
mote user in five
discernible levels

Test User Inter-
face

Consistent ability (>
95%) by representa-
tive user sample from
target audience to de-
tect five distinct lev-
els of intended affec-
tion (n > 24)

Table 36.2.: Example requirements for an affective wearable device.
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five distinct levels of affective signals to be sensed by the user. This may require early
prototyping and experimentation to be confident that any intended hardware/software
solution is capable of satisfying such a requirement.
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Paper Example 36.5.1 : Designing a life-logging device

SenseCam [339] is a life-logging device in the form of a wearable camera that is worn
around the neck of the user, see the figure below. SenseCam takes photos periodically
based on a timer or sensor events, such as a significant change in the light level of
the camera image. In addition, it also allows the user to trigger image capture.

The SenseCam system was developed as a wearable retrospective memory-aid and
its design process begins with a requirements specification that identifies important
design requirements, such as the form factor, battery life, storage capacity, and ease
of use. This specification is then translated into a software-hardware system that
realizes the system functions, such as LEDs displaying system status, buttons for
triggering user functions, an image sensor, and so on. The hardware design is shown
below.

An important design parameter of SenseCam is battery life. The analysis below
(left) shows that taking images consumes the most power. The plot below (right)
shows continuous operation of SenseCam in hours as a function of the period between
image capture in seconds. The operating point chosen was a period between image
capture of 30 seconds, which according to the plot results in the SenseCam being
able to operate continuously for approximately 24 hours before it has to recharged.

SenseCam has been validated over a 12-month period with one user with amnesia.
The validation results show that the user was able to recall events that were previously
impossible to recall. At a final test the user was able to recall 76% of events with the
aid of SenseCam images, which is seen as exceptional for a user with amnesia.
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36.5.2. Validation

Validation is the process of ensuring the system is fulfilling its purpose for the intended
users. As such, validation is intrinsically dependent on the particular system that has
been created. See Part VIII in this textbook for detailed description of a variety of
empirical methodologies that can be used to assess whether users are able to use a system
for its intended purpose.

36.6. Design engineering and user-centered design

This chapter has introduced design engineering as a design process that addresses the
entire spectrum from the specification of a solution-neutral problem statement to the
implementation, verification and validation of an interactive system.

While there are clear overlaps between design engineering and the user-centered de-
sign processes we discussed in Chapter 33, there are three important aspects of design
engineering that in our experience can assist HCI system designers.

The first is the explicit separation of functions—the what—from function carriers—
the how. This allows HCI system designers to explore function models that can relate
functions in various ways, such as the flow of information between functions using function
structures, or the level of abstraction between functions in FAST-diagrams. This enables
exploration of solutions before even considering any concrete design solutions.

The second aspect is the systematic exploration of a mapping between functions and
function carriers using, for example, morphological charts. Such an exploration can be
aided by scoring the suitability of different function carriers using estimates of their
suitability as a function of some known quantity, such as the suitability of a battery given
battery life. This allows informed exploration of a wide spectrum of possible solutions as
well as the construction of a narrative clearly explaining a chosen concept with reference
to a set of criteria.

The third aspect is the idea that function models and conceptual designs can be
parameterized and we can use such parameterizaton to investigate the optimal values of
controllable parameters—parameters the designer can influence—and understand how
the system behaves in relation to uncontrollable parameters—parameters that are outside
the designer’s control. This allows us to carry out analyses before deciding on specific
implementation strategies and before carrying out in-depth user studies.

Finally, when building a working interactive system the management of project risk
is essential. Changing requirements late in a project may be very expensive, or even
impossible. By taking function models and the conceptual design seriously, it is possible
to rectify many design mistakes and discover many unknowns early in the design process.

Thus, while design engineering shares many traits with user-centered design process,
the emphasis on integrated system design amplifies the aspects of an implementation that
sometimes must be considered very early on in a design. For example, for the life-logger
SenseCam [339] to be effective, it was absolutely necessary to understand how the period
between image capture related to a useful battery life. This type of analysis can be
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fruitfully carried out before building a device and engaging in user studies, in particular
studies with users with disabilities.

Summary

• Systematic design processes minimize risk and improve the quality of system design.

• Design engineering can be broken down into the following activities: arriving at a
solution-neutral problem statement, elaborating a requirements specification, con-
ceptual design, embodiment design, detailed design, and verification and validation.

• A function model allows a designer to specify the interrelations of functions in a
system without considering how these functions should be carried out. It therefore
enables exploration.

Exercises

1. Concepts. Explain the difference between verification and validation.

2. Problem statements. Derive solution-neutral problem statements, ranging from
low abstraction to high abstraction, for the following design tasks: 1) an updated
model of a coffee maker for domestic use; 2) a mechanism for detecting falls among
patients in a hospital environment; and 3) a wearable device that measures the
user’s pulse and communicates the readings to the user.

3. Application case. An existing simple printer design allows the user to print by
connecting the printer to a computer via a Universal Serial Bus (USB) port. The
printer draws power from an AC mains electrical socket. The printer has a manual
paper feed, status LED indicators and buttons for turning it on and off and for
printing a test page.

a) Provide a solution-neutral problem statement for the design of the printer.
b) Identify the overall function structures, including their functional elements

and the flows of energy, materials and signals.
c) Distill a modular product architecture for the printer by modularising the

function structures identified in (b).
d) A competitor has introduced a new printer which allows a wireless connection

to the computer and contains a paper magazine, allowing the printer to print
multiple pages without manual loading. Create a morphological chart to carry
out a competitive analysis against this printer and identify solution principles
and conceptual designs that may ensure a redesign of the original printer can
result in a competitive product.
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An interactive system should be safe; that is, it should not harm its users or people
depending on it. What we mean by safety depends on the application domain. In human
factors and HCI research, safety can mean:

• Safety from death. Example: human error in the operation of a medical device that
administers medicine to a patient’s blood. Medical error is a leading cause of death
[498], and it is associated with errors at the user interface.

• Safety from physical harm. Example: physical injuries caused by machinery at facto-
ries is often associated with errors associated to inattention, fatigue, or multitasking
during operation.

• Safety from economic or social harm. Example: personal data should not be
inadvertently leaked to outsiders.

Safety is a wickedly challenging engineering objective. This is due to many factors,
but perhaps most importantly, understanding rare events that can cause harm requires
a thorough understanding of users, users’ tasks and workflows, operating environments
and the systems themselves. Safety a complex systems problem that requires a systems
approach (Chapter 35).

In this chapter we discuss the concept of safety and methods for ensuring a system
is safe to use. A first important realization is that for us to ensure a system is safe we
need to agree on a level of safety : no system can be proven to be completely safe. At a
high level, the level of safety depends on the frequency of occurrence and severity of an
incident. We next need to gauge factors that affect the level safety. What is the frequency
of occurrence of possibly adverse events? Does it range from improbable to daily? And
what is the severity, does it range from minor injury to death? Depending on the system,
it may be unavoidable to avoid harm or even death at some probable level of occurrence.

To answer these questions, we need to understand ’the human factor’ in systems safety.
Cook [168] summarizes these in his book How Complex Systems Fail. First, all interesting
systems are complex, because they need to handle different contingencies associated with
things people value. This pertains to systems related to physical safety, such as those
in healthcare, transportation, and manufacturing. But it also pertains to systems in
finance (e.g., banking), politics (e.g,. voting machines), personal data (e.g., tax data),
and even entertainment (e.g., gaming avatars). Second, complex systems are heavily
defended against failure. For an accident to happen, multiple failures must take place.
Third, human users have a critical ole in building those defenses via their actions. They
adopt safety procedures, take training and safety certificates, and so on. Humans are
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not passive actors in complex systems and therefore in their safety. Fourth, because of
the complexity, practitioner actions are gambles. All actions are taken under uncertainty.
A driver turning on an automated lanekeeping feature in car takes a risk; there is no
guarantee that can be given to its operation under all circumstances the car can enter.
Fifth, because all of this, attributing cause in the case of accidents is hard. Human error
is rarely the sole culprit. It is just one cause in a complex network of factors including
organizational, managerial, and design-related factors.

Questions of safety are serious and deeply ethical. At the extreme, safety engineering
needs to calculate with factors associated with death. When designing systems that
are inherently dangerous, such as training facilities for firefighters, how often are people
’allowed’ to die? Safety thereby becomes a management problem—the management of
risk. At a high level, the fundamental strategies of managing risk are to transfer the
risk somewhere else, avoid the risk altogether, reduce the negative effect of the risk, or
accept some or all consequences of a risk. At the same time, safety becomes an ethical
question: what is the acceptability of harm, to whom, and how much is one willing to
invest to prevent it? While methods we learn in this chapter do not help answer the
ethical question, they do help provide the necessary information to take them.

A central concept when reasoning about safety and risk is the system boundary. The
system boundary defines the system that will be considered. Importantly, in nearly every
case, the system boundary extends beyond a user interface or interactive device. At the
very least, the system boundary will include the user, but frequently further elements,
such as the operating environment, any training facilities provided for the user, other
people the user will need to interact with, and so on.

As we will see, in risk assessment the setting of a system boundary is fundamental
as it defines what will be risk assessed—anything outside the system boundary is not
considered. This both serves to make risk assessment tractable and inclusive of any
relevant elements that can affect the risk of the system within the boundary.

For example, an infusion pump is a medical device that delivers a fluid into a patient’s
body. Infusion pumps have settings that control dosage. A nurse may use a calculator to
calculate the correct dosage, for example, a calculator app on the nurse’s mobile phone.
The calculator interface of this app can now be said to be a system. However, for risk
assessment purposes we will need to include the app, the mobile phone, the nurse, the
patient, the infusion pump, and possibly the hospital context as well, for example, if
the environment provides distractions that may overload the nurse when carrying out
calculations.

Risks are pervasive in complex systems. They emerge from uncertainty in, for example,
project management, financial markets, legal liabilities, regulation, design, unexpected
usage patterns of a product or system, or deliberate attacks. It follows that, in addition to
physical risk, there are many other types of risk, such as performance risk, management
risk, development risks, commercial risks, service risks and external risks, for instance,
new regulation or unexpected market competitors.

The term risk has many definitions. Here we will view risk from the point of view of
expected system behavior. A system has a certain purpose, such as allowing users to
quickly and accurately enter text, manage their information, allow them to stay in touch
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with their relatives, etc. The possibility that the system does not behave as expected can
give rise to undesired behavior. The risk of an incident that results in undesired behavior
of the system can then be viewed as the expected value of undesired system behavior:

risk = likelihood · impact, (37.1)

where the likelihood is the probability of a specific incident and the impact is the
expected loss due to this incident. This definition restricts incidents to be binary—they
either happen or they do not happen.

In this chapter we will learn how to manage risks using a variety of techniques that
allow us to first identify and assess risks and then minimize, monitor, and control the
probabilities of undesired events.

Paper Example 37.0.1 : Usability-related risks in electronic voting.

Usability can be a factor associated with risk. example, electronic voting systems
must be usable by all citizens eligible to vote regardless of age, disability, level of
education, poverty status, etc. The design of voting technology can influence the
outcomes in elections and people’s willingness to accept election results.

In this example paper, a range of usability issues were discovered when studying
electronic voting systems that allow users to vote using touchscreens [58]. The paper
compared electronic voting systems, such as the one used in the controversial 2000
presidential election in the U.S. Examples of such voting machines are shown in the
figure below.

The paper illustrates two important issues where concepts from the safety and risk
literature can assist further analysis. The first is the importance of setting the system
boundary of the voting system, which does not only include the voting machine, but
also the voter, the voting environment, and the system in place to ensure voting
integrity. As a simple example, voters are exposed to an unfamiliar system in an
intimidating setting where other voters impatiently wait for their turn to vote. Thus
the system boundary needs to capture the voting environment in order to assess the
risks of the user failing to achieve their goal in voting for their preferred choices.

The second issue is that such systems are inherently complex and as a result it
is unsurprising that they exhibit a large number of usability problems. Given their
critical importance in society, voting technology should be systematically risk assessed
to minimize the probability that a voter is unable to vote on their preferred choices.

A hazard is the possibility of an object, situation, information, or energy to cause an
adverse effect. For example, a sharp edge in the moulding of a wearable device can cause
a cut on the user and a confusingly labeled button can cause users to accidentally delete
data.

Exposure is the likely extent the user (or other adversely affected agents in the system)
are exposed, or can be influenced by, the hazard. For example, if the sharp edge in the
moulding of the wearable device is covered by rubber coating there may be no exposure of
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the hazard to the user. A confusingly labeled button that can cause a user to accidentally
delete data would have limited exposure if access to the button is restricted.

For a risk to exist there must be both a hazard and exposure to the hazard. An
unexposed hazard is not a risk. A risk is the product of the likelihood of an incident and
the impact of the incident. A risk can therefore take on a range of values. However, a
risk is always preconditioned on the presence of a hazard.

However, sometimes it is exceedingly difficult to anticipate the consequences of future
systems as such systems may give rise to unanticipated outcomes. Consider for example
a a popular social network that uses machine learning algorithms to recommend news
story for its users to discuss with their friends. Such a system can easily reinforce what is
referred to as “filter bubbles” that may amplify a group’s perception, which may lead to
users being convinced about conspiracy theories or otherwise become radicalized. The
precautionary principle states that there is a social responsibility to protect users from
significant harm if there is a risk of such harm happening.

The rest of this chapter will explain approaches and methods for both understanding
safety and risk and mitigating them. We begin by examining the nature of human error
and reflect on the problem of attributing cause or fault when accidents happen. We will
then introduce risk management and see that it not only involves analyzing risks, but
also how to monitor and control risk. Since there are many risk assessment methods and
these methods have been developed for particular purposes, we will look at a selection of
risk assessment methods that are useful for analyzing interactive systems from different
perspectives, in particular in terms identifying, communicating, and assessing risks. We
will also learn about a few tactics for thinking about risk in design. Finally, we will treat
possible failures of components and systems statistically using a framework known as
reliability engineering. We will consider simple series and parallel systems and we will see
that if have data on failures we can calculate the reliability of a system, subsystem, or
component, which can both serve to inform design decisions and help with assessing risks
in a system.

37.1. Human error

Perfect users would never make errors. So why is that users make them? Norman [579]
argues many human errors involve tasks that rely on short-term memory, such as entering
numerical values into a device, having just been told the values by another person. He
presented an early account of human error analysis based on four limitations of human
short-term memory (see Chapter 5 for a detailed account of human memory): (1) the
capacity of short-term memory is limited, typically between five and ten items; (2) the
rate to search information in short-term memory is also limited, to approximately 100
ms per item; (3) there are only a few main types of encoding—verbal, motor, pictorial,
spatial—, and they engage separate short-term memory functions; and 4) rehearsal is
needed to retain information in short-term memory; other activities can interfere with
rehearsal. Another cognitive cause for human error is attention: we are not able to share
attention nor focus as much as we want.
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However, human error is not sufficient nor necessary for accidents [579]. Accidents can
happen without errors and many errors do not lead to accidents. Further, when errors do
lead to accidents then such accidents are usually the case of multiple factors that can be
difficult, and sometimes impossible, to untangle. However, the errors themselves can be
considered. Beyond system induced errors, Norman [579] proposes two types of human
error.

The first type of human error is mistakes. Mistakes are about the formation of an
intention. That is, the user finds themselves in some form of situation, performs a
situational analysis, and decides to take some form of action. The second type of human
error is slips. Once the user has formed an intention the user needs to execute this
intention, that is, take an action. Slips are errors in the execution of an intention.

If the user has a lack of knowledge, for instance, due to no or little experience of a
system, or a lack of training, then this can give rise to both mistakes and slips. Mistakes
can happen because the inexperienced user forms the wrong intentions due to a lack of
knowledge of the interactive system. Slips may also happen due to the inexperienced
user being unable to correctly carry out actions after having formed the correct intention.
Such mistakes and slips can, in theory, be mitigated by training users. However, even an
expert user can have a lack of knowledge because of incomplete knowledge of a situation
because there are errors in the system or because the user is overloaded. Such errors are
typically mistakes and such errors can, in principle, be mitigated by system redesigns.

However, even when the user has full knowledge mistakes and slips happen. For example,
a user may fail to correctly identify the situation they are finding themselves in, or they
may simply take incorrect decisions. Such errors can be induced by the system the user
is working with, or within, which places demands on the user, such as task demands or
environmental demands. It also possible that users make the correct intentions but fail to
carry these out correctly, resulting in slips.

Norman [579] notes that there is a fundamental problem of attributing a definitive
cause or fault when an accident has happened. Instead, accidents typically occur because
there is some cascade of factors that interact that may relate to social, environmental,
or human factors-related aspects of the system, its environment, and the task users are
carrying out.

37.1.1. Skills, rules, and knowledge

A few years later, a highly influential paper entitled Skills, Rules, and Knowledge; Signals,
Signs, and Symbols, and Other Distinctions in Human Performance Models by Rasmussen
[670] presented a framework for understanding the performance of skilled users.

Rasmussen [670] states that there are three levels of control involved in the operation
of complex systems. These levels are the skill-, rule-, and knowledge-based performance.
A simplified model of how these level of performance interrelate is shown in Figure 37.1.

Skill-based behavior emerges following a user having an intention. Such behavior
has high automaticity and happen without conscious control. Only occasionally does
skill-based behavior rely on feedback control and in such cases the feedback is simple,
such as for example a tracking task (see Chapter 4 for an in-depth discussion on motor
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Figure 37.1.: Skill-, rule-, and knowledge-based control involved in the operation of
complex systems [670]. The SRK model can be used to explain how human
operators succeed and when they fail.
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control). Automaticity allows users to free up cognitive resources to focus on higher-level
aspects of the task at hand.

At the next level, rule-based behavior is characterized by the user employing stored
procedures or rules of the type ”if X then Y”. Such rules can be learned or acquired by
experience. Performance is goal-oriented but structured by the execution of a stored
rule or procedure. The user’s selection of which rules to apply is governed by previous
successful application of rules in similar situations. If feedback correction is required
then this will require the user to functionally analyze the situation, which may rely on
knowledge-based behavior, which is described next.

At the highest level, in knowledge-based control the user is faced with unfamiliar
situations where the user has not developed any rules or knowledge for how to control
the system. In such a situation the user explicitly formulates a goal and develops a plan
to achieve this goal, which may be evolved and carried out in a trial-and-error fashion or
by contemplating the consequences of various actions.

Rasmussen [670] also makes a distinction between signals, signs, and symbols. Signals
are low-level continuous control signals that affect skill-based behavior. Such signals have
no intrinsic meaning except as control signals. Signs represent perceived information
that serves the purpose of guiding the user’s activation of predetermined actions or
manipulations of the system. Signs therefore guide the selection or modification of rules
for the sequence of actions necessary to carry out a skilled procedure. However, signs do
not have any functional meaning and therefore cannot be used to generate new rules or
reason about responses in an unfamiliar situation. Finally, symbols relate concepts to
functional properties of the system or environment and can therefore be used to reason,
for instance, to conceive a plan to achieve a goal. While signs are part of the external
world outside the user’s brain, symbols are representations of the external world inside
the user’s brain.

37.1.2. Taxonomies for understanding error

Reason [675] later contributed to an influential classification of human error. He classifies
error types based their behavioral, contextual, and conceptual level: skill-based slips, rule-
based mistakes, and knowledge-based mistakes, with the three error types corresponding
to Rasmussen’s three levels of performance [670].

Reason [675] separates out slips and lapses, which are due to a failure to execute a
particular plan, and mistakes, which are due to the plan itself being inadequate to achieve
a goal. In other words, errors can either be intentional or unintentional. Intentional errors
are when the user sets out to carry out the wrong action, such as inputting an incorrect
parameter into a system. A mistake is when the user correctly carries out an incorrect
action, such as when the user believes pressing the Escape key will exit an application.

Unintentional errors can be divided into slips and lapses. Slips are incorrect operations,
such as mistakenly hitting a neighboring key on a keyboard. Lapses means the user is
omitting a particular action necessary to reach the goal.

There is a large body of literature on human error. Given the importance of reducing
human error, several design processes have been developed for this explicit purpose, most
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notable human factors engineering, which is discussed in Chapter 33).

37.1.3. Analysis of human error

There are in-depth analysis techniques for understanding the underlying causes of accidents,
such as root cause analysis. At a high-level, a root cause analysis consists of four steps:
(1) arriving at an identification and description of the problem; (2) establishing a sequence
of events relating contributory factors, the root cause, and the investigated problem;
(3) distinguishing between root causes, causal factors and non-causal factors; and (4)
establishing a path diagram linking the root cause to the problem through a sequence of
events.

We will now discuss design methods that can be used to tackle safety and risk. We will
begin by discussing how manage risk in the next section.
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Paper Example 37.1.1 : Ensuring infusion pumps have safe user interfaces.

One way to help ensure a user interface is safe is to link safety requirements of the
user interface to verification proofs of correct operation using a formal model. Masci
et al. [507] shows how to fruitfully use this approach in the medical device domain.
A patient controlled analgesia infusion pump is a method of pain relief where the
user can administer a drug themselves using a medical device. An example of the
user interface of such a device is shown below.

The paper first formalizes the United States Food and Drug Administration
(FDA) requirements for infusion pumps. This in itself reveals ambiguities in these
requirements. Thereafter the paper reverse engineer a formal model of an infusion
pump product’s user interface.

37.2. Risk management

Having an an overall understanding of human error, it is important to design systems to
minimize risks. At its core, risk management is about identifying and assessing risks and
minimizing, monitoring and controlling probabilities of undesired events. There are many
approaches for managing risk and the precise risk management strategy will depend on
the nature of the particular interactive system. At the high-level, risk management is a
process with five steps:

Hazard identification Identify unintended system behavior that can cause unwanted
outcomes.

Risk estimation Arrive at a risk by assessing the likelihood and severity of each hazard.
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Risk evaluation Decide whether risks are acceptable.

Risk control Reduce unacceptable risks to acceptable levels.

Risk monitoring Manage a process that ensures acceptable risk levels are maintained
throughout the system’s lifetime.

Risk analysis is hazard identification and risk estimation. It involves identifying
the intended purpose of the system and its intended use, identifying possible hazards,
estimating the risks of these hazards.

Risk evaluation is about risk acceptability decisions, that is, deciding the level of risk
that is going to be acceptable for the system.

Risk analysis and risk evaluation jointly form the part of risk management known as
risk assessment. Many risk assessments exist for a variety of purposes. This chapter will
review some of the more prominent risk assessment methods that may be suitable for
assessing risk in interactive systems.

Risk control is about analyzing the options for risk management, such as changing
the way a function is carried out to reduce risk, eliminate a function, change the system
to introduce more redundancy, etc. Having identified options it is also necessary to
implement suitable options and carry out a residual risk evaluation to determine the level
of risk in the system after changes to the system. Finally, it is important to decide the
overall level of risk designers are willing to accept for the system.

Risk monitoring is about continuously assessing the implemented system and its level
of risk, taking appropriate actions as necessary. This step may also include reviews of
outcomes, the experience, and reflections on the risk management process as a whole.

To assist risk assessment it is often helpful to perform system mapping, which as its name
suggest is about creating maps of the system to understand its architecture, organization,
the role of people and functions, and the flow of various signals and materials, such as,
for example, paper forms in a hospital and emails in an office.

One very important aspect is to define the system boundary. This boundary helps
everybody involved to understand the scope of risk assessment. To set a boundary it is
typically necessary to describe a system that is more extensive than the system that is
to be studied and then, based on an understanding of this extended system, it is now
possible to set a boundary. Anything outside the boundary will not be considered in
risk assessment and, conversely, anything inside the boundary will be considered. It is
therefore very important to set the system boundary in such a way that factors that are
likely to affect risk are in fact captured. Failing to do so means there are unassessed risks
in the system, which can be very dangerous and give rise to catastrophic failures when
the system is deployed.

System mapping is frequently carried out using various diagrammatic methods, such as
task diagrams, system diagrams, or a communication diagram. We discuss various system
mapping techniques in the chapter on systems (Chapter 35).
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37.2.1. Risk assessment

Having identified the purpose of the system and its intended use, set the system boundary,
and mapped out the system, we can now carry out risk assessment.

A large number of risk assessment methods exist that have been developed for vari-
ous purposes, including medical devices, chemical process systems, aerospace systems,
healthcare, etc. At a high level they can be considered along four dimensions. First, how
in-depth they are, which affects the resources required to use them. Second, how much
they focus on 1) identifying risks; 2) communicating risks; and 3) assessing risks.

Structured what-if technique

The Structured What-If Technique (SWIFT) is a team-based risk assessment method that
prompts the team with what-if questions to stimulate thinking about identifying risks and
hazards in a system. The focus on SWIFT is to allow the design team to explore different
scenarios and contexts, and their resulting consequences, causes and impacts. Based on
such discussions it is possible to arrive at hazards and assess risks, and ultimately risk
controls.

SWIFT is based on a vocabulary which serves as prompts. The words in the vocabulary
are used by a facilitator to discuss possible scenarios, issues, operating environment
conditions, etc. that may give rise to hazards and risks. The words used as prompts
typically focus on deviations, such as “failure to detect”, “wrong message”, “wrong time”,
“wrong delay”, etc.

In practice, a SWIFT analysis is carried out by filling out a table where each row has a
set of columns. The precise set of columns can be different depending on the application
of SWIFT. Below is one example.

Identifier An identifier for the particular issue discussed.

What-if questions Questions triggering an assessment, such as “how much”, “how many”,
etc.

Hazards and risks Any hazards and associated risks that may occur.

Relevant controls The controls that are in place or need to be in place to mitigate the
risk.

Risk ranking The ranking of this risk relative to other risks identified in the exercise.

Action notes Next steps to be taken.

SWIFT can be fast and efficient with an experienced team with a good facilitator.
It focuses on solutions, not just consequences of failure. At the same time, SWIFT is
highly dependent on the experience of the team and facilitator, in particular as it focuses
exclusively on the knowledge in the team. It produces mostly qualitative results and the
results are difficult to audit as there is no formal structure to review the results against.

Compared to a method such as failure mode and effects analysis, which we describe
next, SWIFT is a relatively lightweight method.
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Failure mode and effects analysis

Similar to SWIFT, Failure Mode and Effects Analysis (FMEA) is a team based risk
assessment technique. It can be used to analyze human error at both the individual and
the team level. In general, FMEA analyzes component failures in the system. We will see
later in this chapter how to model the failure of components mathematically when we
discuss reliability.

FMEA considers each component’s failure modes and assesses possible causes for failures,
their likelihood and severity, the recovery steps available, and actions for eliminating or
mitigating the consequence of the failure mode.

There are multiple ways of carrying out FMEA. Below follows an example of the
columns that an FMEA may include.

Identifier An identifier for the particular issue.

Component The component assessed.

Failure mode The specific failure mode of the component.

Causes The possible causes of the failure mode.

Probability The probability of the failure mode. This is an estimate. It may be an actual
probability if the failure rate for the component is available. Otherwise, it may be
rating between, for example, 1–5 indicating a range between extremely unlikely to
almost inevitable.

Severity The severity of the failure mode.

Risk The risk of the failure mode, in other words the product of probability and severity.

Recovery Steps to mitigate the failure mode, which may include requirements for recovery
and mitigation.

Action notes Next steps to be taken, for instance, further investigation or changes to
components.

An FMEA may include quantitative estimates of probability if, for example, actual
failure rates of components are available. The outcome of an FMEA is a list of actions of
required changes in design to mitigate risks.

Fault tree

A fault tree is a diagrammatic method for identifying and analyzing factors contributing
to a fault—unintended behavior. Fault trees are, as their name indicates, tree diagrams
linking factors to a fault using logical relationships, such as and and or.

A fault tree is created by starting with the fault as the top-level event and then
progressively analyzing the factors that may contribute to the fault. Figure 37.2 is a
schematic illustration of a fault tree.
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Fault

and/or

Event Event Event

and/or

Event Event Event

Figure 37.2.: A schematic illustration of a fault tree. The fault is decomposed into a series
of events that may lead up the fault. The events are connected by logical
relationships, such as and and or.

Fault tree can be used to analyze causes of human error. They highlight interrela-
tionships between components, where components may be both system components and
users.

Risk matrix

A risk matrix is a simple visualization technique for communicating risk. A risk matrix
has two axes, impact and likelihood. Risks are indicated in the matrix accordingly.

A risk matrix makes it easy for a team to visualize important risks. In general, risks
in the top-right are more severe and they indicate risks with a high impact and a high
likelihood. Risk matrices are typically used in conjunction with other risk assessment
methods to assist with ranking and prioritizing risks.

37.3. Reliability

Reliability is the quality of a system to not fail. An unreliable system gives rise to a high
risk of failures, some of which can have catastrophic consequences.

Reliability engineering is a discipline that assesses the reliability of components and
systems. Any component is bound to fail eventually and therefore it is important to
estimate the probability of a component or system failure as a function of time. This is a
statistical problem that at its core requires estimating a reliability function that models
the probability of experiencing no failure as a function of time.
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Figure 37.3.: An illustration of a risk matrix. Risks are indicated on the matrix in terms of
their impact and likelihood. Progress in risk management can be visualized
by observing risks to move from the top-right corner to the bottom-left.

A component, subsystem and system can refer to a machine, an algorithm, a user
interface element, a physical control, a user, etc.

37.3.1. Series and parallel systems

To understand the reliability of any system, including an interactive system, we need
to understand the topology of the system. That is, how the components in the overall
system depend on each other in order to carry out the overall function.

The simplest system is a series system (Figure 37.4). For a series system to work, all
components need to work. The traditional example of a series system is a decorative
lights system wired in series. If a single light bulb burns out, current can no longer flow
through the wire as the burnt out light bulb becomes an open circuit. As a result, all
light bulbs in the entire light system stop working. In HCI, many systems are in fact
series systems as system functions are frequently achieved by components carrying out
tasks in a sequence, the current step in the sequence being reliant on correct execution of
the previous step. An example of a series system in HCI is a typical wizard dialog that
guides the user through a series step to assist the user to achieve a certain goal, such as to
install an application. If such a wizard dialog is purely sequential then if any step fails in
the wizard then the user will be unable to achieve their goal. To avoid such an outcome,
the wizard must allow for some form of redundancy by providing some alternative means
of progressing if any step in the sequence fails.

The opposite of a series system is a parallel system (Figure 37.5). In a parallel system
the system works as long as one component is working. Consider a graphical indicator
that monitors some system function, such as a printer having sufficient paper loaded.
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Component 1 Component 2 Component n-1 Component n

Figure 37.4.: A series system with n components. All components need to function for
the system to be able to carry out its overall function.

Component 1

Component 2

Component n-1

Component n

Figure 37.5.: A parallel system with n components. It is enough that one component
functions for the system to be able to carry out its overall function.

If the indicator relies on a single sensor and this sensor fails then the system will fail
to warn the user if the printer has insufficient paper loaded to print. However, if the
printer uses two sensors then the system exhibits parallel redundancy: it is not sufficient
for one sensor to fail for the system to fail to carry out its function—both sensors must
fail. This example also hints at why parallel systems are not as common as they maybe
should be: installing two sensors increases the complexity of the printer and the cost of
manufacturing the printer. In HCI, a simple example of a parallel system is the way a
user can delete a file on the desktop. The user may drag the file to the bin or the user
can right-click the file and select delete. If the user does not know how to carry out
one method, the other method suffices for this simple joint human-computer system to
carry out its function of deleting a file. Again, the cost of parallel redundancy is that the
system must support multiple means of achieving the user’s goal.

Now let us consider series and parallel systems mathematically. Consider a series
system with n components Ci. Now assume each component Ci has a certain probability
of failure Pi and a corresponding reliability Ri = 1 � Pi.

A series topology means all components must work satisfactorily for the system to
work correctly. The reliability Rseries of a series topology is therefore n independent
events of non-failure:

Rseries = R1R2, . . . , Rn�1, Rn. (37.2)

A parallel topology means all components must fail for the system to fail. The
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Component 1

Component 1

Component 2

Component 2

Component 3

Component 3

Figure 37.6.: An illustration of a 2-out-of-3 system. Note that the diagram describes the
function but not the implementation of such a system.

probability of all n components failing is the product of the individual failure probabilities
Pi: P1P2, . . . , Pn�1, Pn = (1 � R1)(1 � R2), . . . , (1 � Rn�1), (1 � Rn). Therefore the
reliability Rparallel of a parallel topology is:

Rparallel = 1 � (1 � R1)(1 � R2), . . . , (1 � Rn�1), (1 � Rn) (37.3)

Using the expressions for Rseries and Rparallel we can now compare these two topologies
for a simple case. Consider a rudimentary system with two components C1 and C2 with
corresponding probabilities of failure P1 = P2 = 0.1. That is, each component has a 10%
probability of failure for some chosen time interval. In a series topology the reliability
Rseries = R1R2 = (1 �P1)(1 �P2) = 0.9 · 0.9 = 0.81. In a parallel topology the reliability
Rparallel = 1 � (1 �R1)(1 �R2) = 1 �P1P2 = 1 � 0.1 · 0.1 = 0.99. In other words, within
the time interval, the probability is 99% that the system will succeed in carrying out its
overall function if the components are in parallel. If the components are in series, the
probability of success within the time period is reduced to 81%. This difference between
the series and parallel system will only increase if we increase the number of components
in the system. Assuming each component still has a Pi = 0.1 probability of failure, a
series system with five components will have a reliability of 59.049% while a parallel
system will have a reliability of 99.999%.

It is also possible to create systems in between all-series and all-parallel systems. For
example, a k-out-of-n system is a system with n components that will function if at least
k components function. For example, a 2-out-of-3 system for a sensor array may take
sensor readings from three different sensors. If two out of three sensors agree then the
system uses the sensor reading from the two sensors that agree and possibly trigger an
alert that one sensor might be faulty. A series system is the special case when k = n and
a parallel system is the special case when k = 1. Figure 37.6 shows an example of such a
system when k = 2 and n = 3.
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Paper Example 37.3.1 : The Boeing 737 Max disaster

The Boeing 737 Max was an aircraft model that experienced catastrophic failures.
An analysis of the failings of this model [807] explains both why it is dangerous to
fully automate a function and leave the user completely out of the loop and why
parallel redundancy, in the form of a user working alongside a machine, can be of
uttermost importance in safety-critical system.

Boeing management wanted to increase the number of passenger seats and this
meant increasing the size of the engines. However, to avoid the engines touching the
ground, their shape needed to be changed as well. This led to change in the engine’s
centerline toward the plane’s nose. This led to the plane pitch up and raise its nose
when thrust is applied. In turn, this led to the possibility of the plane stalling in
circumstances in which regular Boeing 737 would not stall.

Instead of rethinking the engine design, which is expensive, Boeing engineers added
a software-side solution, which is inexpensive. This ensured that 737 Max could be
branded and sold as “just another 737”. After all there is just one added feature in
comparison to 737. This also meant significant savings, as pilots required minimal
retraining and pilot training is also expensive.

The software solution involved a system called MCAS (Maneuvering Characteristics
Augmentation System), which “pushes the nose of the plane down when the system
thinks the plane might exceed its angle-of-attack limits; it does so to avoid an
aerodynamic stall.” The pilot controls pushes or pulls something called control
columns, essentially a joystick, to raise or lower the aircraft’s nose. When the MCAS
systems believes a stall is occurring it will autonomously instruct the aircraft to push
the pilot’s control columns forward and the pilot will not be able to regain control by
pulling back. This was an explicit design decision. This decision was taken despite
the fact that “a human pilot could just look out the windshield to confirm visually
and directly that, no, the aircraft is not pitched up dangerously. That’s the ultimate
check and should go directly to the pilot’s ultimate sovereignty. Unfortunately, the
current implementation of MCAS denies that sovereignty. It denies the pilots the
ability to respond to what’s before their own eyes.”

If a sensor read out was incorrect then the MCAS would take over and the results
would be catastrophic as the pilot was left with no means to recover. There was no
parallel redundancy in the form of a pilot being able to override the MCAS.

Automated systems that are designed to increase safety can easily backfire. Failures
are bound to happen in any complex system and thus failures should be considered
normal and there should be systems and procedures in place that allows for recovery.

37.3.2. Reliability and failure rate

By tracking failures it is possible to construct a histogram of failures as a function of the
lifetime of a component or system. We can fit a probability density function f(t) to this
histogram. Now introduce a random variable T denoting waiting time until failure.

From f(t) we can find the cumulative distribution function F (t) by integrating f(t).
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F (t) = Pr {T < t} models the probability of failure in time t.
We can now find the reliability function R(t) = 1 �F (t). R(t) = Pr {T � t}. It models

the probability of a non-failure in time t.
In general, reliability is defined as 1� the probability of failure. Reliability is a

probability that a product, system or service will carry out its intended function without
failure in time t. The reliability function R(t) models the probability of no failure occurring
before time t.

Failure rate is the frequency of failure of a product, system or service in terms of failures
per time unit. It is often denoted �. Often failure rates are modeled as constant. This
makes sense because of a phenomenon known as the bathtub curve (Figure 37.7). Many
systems experience an initial phase with early failures. This may be due to manufacturing
errors of hardware, installation problems, users being inexperienced in using the product,
etc. At the end of the lifespan of the system late failures start to increase as the system
ages and experiences fatigue, critical software components increasingly become obsolete,
new working practices means users tend to use the old system incorrectly, etc. During the
entire lifespan of the system the system experiences random failures due to slips, arbitrary
component failures, users dropping a device, etc. The net effect from these failure rates is
an observed failure rate that resembles a bathtub. Many different systems experience this
bathtub curve. Electronic devices, in particular, tend to closely, follow the bathtub curve.
It is important to be aware that the bathtub curve does not model an individual system’s
observed failure rate. It models the observed failure rate of a population of systems.

Assuming the failure rate is constant then a useful, and very common, metric is mean
time between failures (MTBF), which is defined as 1/�.

37.3.3. Hazard function

The hazard function h(t) (sometimes written as �(t) and called the failure rate function)
is the failure rate of the component at the next instant, given that the component has
not failed up to time t. It is therefore a conditional probability density function:

h(t) =
Pr {t  T < t + dt|T � t}

dt
)h(t)dt = f(t)dt/R(t)

)h(t) = f(t)R(t)

(37.4)

This is because of the following. First, f(t)dt is the joint probability of T in the interval
t  T < t + dt and at the same time T � t, which is the same as being in the interval.
Second, R(t) is the marginal probability that T � t.

A particularly interesting and important case arises when the time t until a failure
is exponentially distributed. The probability density function of failure is then of an
exponential distribution:

f(t) = �e��t. (37.5)
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Failure rate

Time

Early failures Late failures

Observed failure rate

Constant failure rate

Figure 37.7.: An illustration of the phenomenon known as the bathtub curve. Many
systems experience an initial phase of early failures and a final phase of late
failures. During the lifespan of the system there random failures, which give
rise to a constant failure rate. The observed failure rate due to these three
failure rates is the observed failure rate, which resembles a bathtub.
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The cumulative distribution function of an exponential distribution is F (t) = 1 � e��t.
The reliability function is then:

R(t) = 1 � F (t) = 1 � (1 � e��t) = e��t (37.6)
Hence the hazard function is:

h(t) =
f(t)

R(t)
=

�e��t

e��t
= � (37.7)

In other words, the hazard function is constant and the rate parameter � of the
exponential probability distribution completely determines the hazard function. This
follows from the memoryless property of the exponential distribution: the remaining time
until failure, given no failure in time t, does not depend on t. This models a constant
failure rate in the bathtub curve.

The constant failure rate is very common in practice as it often suffices to models
random failures due to accidents, mistakes, sudden component failures, such as a loose
wire due to a user dropping a device, or other unforeseen events. For example, the
probability a bicycle tire will experience a puncture due to hitting a nail on the road can
be modeled using a constant failure rate.

For this reason, many systems are analyzed under the assumption of a constant hazard
function. This simplifies calculations but it is important to understand that in complex
systems there are interdependencies that may give rise to hazard functions that are not
constant.

37.4. Security

Another aspect of safety and risk is security. Security is about ensuring systems are
resilient to harm from other people. As such, security is closely related to risk management
as security can be viewed as an aspect of risk. Examples of physical security includes fences,
security guards, cameras, and so on. Examples of security involving computer systems
are antivirus, cryptography, password systems, spam filters, anti-phishing mechanisms
built into web browsers, as well as physical security, such as direct access to machines.

Usable security is a discipline intersecting HCI that focuses on ensuring computer
security is usable by end-users. After all, a security system can only be as strong as its
users. If users do not understand how to use security mechanisms in the right way, such
as passwords or encryption, then there is effectively no security at all.

Whitten and Tygar [868] provide a definition of usable security:

Security software is usable if the people who are expected to use it:
1. are reliably made aware of the security tasks they need to perform;
2. are able to figure out how to successfully perform those tasks;
3. don’t make dangerous errors; and
4. are sufficiently comfortable with the interface to continue using it.
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Paper Example 37.4.1 : Why Alice and Bob cannot encrypt

The availability of security technology does not guarantee that security is established.
For this to happen users have to be able to achieve their goal of security and this
is only possible if the interfaces that they have to interact with are usable. In the
classic 1999 paper Why Johnny Can’t Encrypt: A Usability Evaluation of PGP 5.0,
Whitten and Tygar [868] explore the reasons why end-users are unable to use the
graphical user interface for the encryption program Pretty Good Privacy (PGP) 5.0.
PGP enables users to encrypt and decrypt text as a means for secure communication,
for instance, by email.

The paper identifies five intrinsic properties of security that give rise to usability
problems:

Unmotivated users Users are usually not interested in security because their goal in
using a system is something else, such as sending an email, browsing the web,
etc.

Abstraction Security is implemented by enforcing security policies that consist of
abstract rules that end-users may find difficult to understand.

Lack of feedback It is difficult for security software to provide meaningful feedback
to the user since (1) security configurations are complex; and (2) checking
whether a security configuration is accurate is only possible if users know what
they want.

Irreversibility When security fails it is typically not possible to take corrective action
and return the previous protected state. For example, if a secret is unprotected
then there is no way to know whether that secret is now in the hands of
individuals external to the organization.

Weakest link A security system is only as strong as its weakest link. This means
users cannot explore a security system using trial-by-error but instead must be
carefully guided to ensure that security is maintained at every step.

The paper examines the usability of PGP through a cognitive walkthrough and a
usability study. These methods are discussed in detail in the chapters on analytical
evaluation methods (Chapter 41) and experiments (Chapter 43).

The cognitive walkthrough revealed that PGP failed to satisfy many of the proper-
ties in a usability standard for PGP established in the paper. Examples of problems
were the use of the visual metaphors and the handling of irreverisble actions.

The user study asked 12 educated participants experienced with email to use PGP
to send secure email. Only one third of the participants were able to correctly sign
and encrypt an email. A quarter of the participants also exposed the secret key by
inadvertently sending it in an unprotected email they believed had been correctly
encrypted.

The paper concludes that while PGP uses a graphical user interface that is
thoughtful in its design, it is ultimately only usable for people who understand
public key cryptography and digital signatures. Following basic user interface design
principles is insufficient to ensure usable security.768
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A central concept in security that of a threat model. Threat models are systematic
analyses of the mechanisms of a security threat. A threat model answers a series of
questions, such as: what kinds of agents might be interested in attacking the system?;
what is the flow of data in the system?; which parts of the flow could an agent attack
and how?; what is the likelihood of such attack succeeding?; what would be the impact of
such attack?; how could the system be safeguarded against the attack? Human factors
related to security (e.g., due to phishing) can be analyzed like this.

37.5. Are there risk-free systems?

When discussing safety and risk it may be natural for designers or stakeholders to envision
a system that is completely safe, posing no risk of any adverse consequence to any user or
other person explicitly or implicitly affected by it. However, such a stance is incorrect
and not helpful. Any meaningful system will induce a level of risk. This is the reason
for designers determining the level of acceptable risk in a system. Accidents and threats
are inevitable in a system – they are normal [631]. It is better to design against them in
advance than after the fact.

Summary

• Protecting people from harm and therefore ensuring interactive systems are safe to
use is a central principle and core value in HCI.

• It is not possible to eliminate all risks in any system. Instead, designers must aim
to design a system with an acceptable level of risk.

• Human error is typically just one of many factors involved in an accident.

• Risk management is a continuous activity that does not only involve assessing risks
but also monitoring and controlling risks throughout the lifespan of a system.

• Reliability is a statistical property of a system. It depends on the system’s topology
and the individual probabilities of failure of individual components.

• Security is about ensuring systems are resilient to harm from other people. For
security to be effective it needs to be usable.

Exercises

1. Methods. Determine the system boundary for the following cases: (1) an auto-
correct algorithm for a touchscreen keyboard; (2) a 3D printer; (3) an app that
allow children to share videos online with their friends; and (4) a smartwatch app
that allow people to wirelessly transfer small amounts of money directly between
different users of the app by simply holding two smartwatches close together. Which
risk assessments methods would be useful for which case? Motivate your answer.
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2. Human error. You have been asked to design a numeric keypad for a machine that
delivers medicine to a patient. The numeric keypad allows nurses to input the exact
doses of medicine to be administered. The keypad must provide the following 13
keys: 0–-9, Set Dose, Administer Dose and Reset. To provide a dose to a patient,
the nurse is meant to first input Set Dose and then use the number keys 0–9 to
input a number in the range [1, 999]. Thereafter the nurse can administer the dose
by inputting Administer Dose. If the nurse makes an input mistake, the nurse can
reset the process by inputting Reset, which allows the nurse to start over by first
inputting Set Dose again.

a) Identify the overall function of the system and identify its system boundary.
Briefly explain the choice of system boundary.

b) Identify three sources of human error permitted by the system. What types of
human errors are they?

c) Briefly discuss how the system can be augmented to mitigate these sources of
human error.

3. Fault trees. A user is typing on a mobile phone using a touchscreen keyboard with
auto-correct and word prediction. Draw a fault tree for the event that the user ends
up typing a different set of characters for a word than the intended ones.

4. Failures. Assume a system with three components with each component having a
constant failure rate. The probability Pi of a failure of an individual component
i is independent of the other components and P1 = P2 = P3. The mean time
between failures (MTBF) for an individual component is 100,000 hours. Calculate
the probability of the system failing within a 5-year period when (1) all three
components wired in series; and (2) all three components are wired in parallel. You
will discover the reliability is substantially higher for the parallel system. So why is
not every interactive system, or any system in general, a parallel system?

5. An interactive hardware prototype has a subsystem that consists of n identical
components configured for parallel redundancy.

a) Give a definition of the hazard function and explain why it is a conditional
failure rate.

b) Assume each component has hazard function h(t) = �, where � is the failure
rate. Derive an expression for the probability of a system failure in time t.

c) Show that the hazard function h(t) can be expressed as h(t) = � d

dt
lnR(t),

where R(t) is the reliability function.
d) Now assume the n components of the system are changed into a different set of

n identical components where each component has an identical hazard function
that varies linearly with time with an intercept of zero. Derive an expression
for the probability of a system failure in time t.
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6. Case study. Consider a wearable ring device prototype that can be interacted with
using a small analog pointing stick.

a) Testing reveals that the probability density that the pointing stick fails to
function at time t during its useful lifespan is:

f(t) = (a + bt) exp

✓
�at � b

2
t2
◆

(37.8)

where a and b are parameters. Derive the hazard function of this distribution.
b) Does the hazard function found in (a) seem reasonable? Explain your reasoning,

including any assumptions of parameter values.
c) Further testing reveals that a subset of pointing sticks exhibit a Uniform

probability density of failure at time t during their useful lifespans. Derive the
hazard function for this distribution.

d) Briefly discuss the reliability implications of the hazard function in (b) compared
to the hazard function in (c), including any assumptions of parameter values.

e) A user wears the ring device and interacts with it using the pointing stick.
Derive an expression for the probability of failure of the pointing stick in time
t due to the user dropping the ring on a hard surface. Explain your reasoning.

7. The book by Perrow Normal Accidents: Living with High-Risk Technologies [631]
reports on a series of sociological analyses of accidents in tightly coupled systems
with high complexities. The central thesis in the book is that accidents are normal
in the sense that accidents are inevitable in highly coupled complex systems, in
particular if they have catastrophic potential. This does not mean normal accidents
are frequent: just as a human is expected to die at some point, a normal accident is
considered a normal, albeit infrequent, event. (a) Explain why a tightly coupled
complex system cannot be risk-free. (b) Two operators are tasked with monitoring
the nuclear power plant. One operator is incapacitated due to tripping over a
raised threshold and burning themselves with hot coffee in the process. The second
operator is busy calling for medical assistance. At this time, the automated system
has detected a deviating sensor reading indicating a reactor fault. However, as it
so happens, this sensor reading is due to faulty sensor and not due to any actual
reactor fault. Nonetheless, since the operators are both either incapacitated or
busy, they do not take the actions the protocol dictates for this particular sensor
reading. As a result, the automated system issues an alert. As a fail-safe, if the
alert is not attending to by either of the two operators, the alert is propagated to a
third operator situated in a different location with no possibility to assess whether
the sensor reading is accurate or not. As a consequence, the third operator takes
an action according to the protocol that results in a nuclear meltdown. State all
hazards in this description and draw a fault tree that explains the sources leading
to a catastrophic outcome.
For the two following subtasks, see Chapter 20. (c) Consider the user interface design
of a nuclear power plant. To avoid accidents, the user interface will incorporate
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redundancy in the form of an automated system that checks that the operators
have followed the correct protocol and taken correct actions given sensor readings
indicated through the user interface. If the automated system detects that the
protocol is not followed, the automated system seizes control and proceeds to
follow the protocol. What is the type and level of automation in this system?
(d) It is discovered that it is possible that a sensor fault leads to the automated
system in (c) to incorrectly seize control and apply an incorrect protocol. The
system is subsequently modified to merely alert operators of an incorrect action
and suggest corrective steps to ensure the appropriate protocol is followed. Suggest
three principles from mixed-initiative interfaces that are particularly important for
this task and explain how they apply to this particular design problem.
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Interactive systems ultimately rely on software. Software is what enables a design to be
translated into an implementation. To ensure we implement software that fulfills the
requirements set for it we need to apply software engineering principles.

Implementing software that is both correct and enables all desired interactions is
challenging as there are many concerns, such as handling events, interfacing with external
entities, such as network connections, and ensuring responsiveness and robust functioning
during interaction. The book The Mythical Man-Month [99] famously pointed out that
managing software development is inherently difficult and that – counter-intuitively –
adding more developers to a project can actually delay it not speed it up [99].

Software engineering is fundamentally about working with systems from a few critical
viewpoints. As we have already seen in the chapter on systems (Chapter 35), systems
frequently consist of subsystems and one way to manage system complexity is by ab-
straction. This is the fundamental approach taken in user interface software—instead of
a developer writing low-level interface code to explicitly read and work with digitized
analog signals and low-level code that specifies the exact pixel contents and locations on
a graphical display, the developer works at different high-level abstraction layers. This
is achieved through software design and software architecture that allows developers to
benefit from established programming paradigms, such as event-driven programming, and
design patterns, such as model-view-controller. Further, common functionality for realiz-
ing user interface software is provided through software libraries and toolkits that enable
developers to directly create sophisticated user interface elements, such as scrollpanes,
and provide support for advanced actions, such as gesture recognition.

HCI research has tackled many of these aspects, for example:

• The Amulet Environment [558] is an early example of a user interface developer
environment supporting cross-platform deployment across multiple operating sys-
tems. Amulet is a toolkit that provides support for building sophisticated user
interface through constructs such as graphical objects, interactors, command objects,
constraints, gesture recognition, and animation. This allows a developer to build,
for example, a graphical interactive circuit designer tool in many fewer lines of code
than using the standard software libraries.

• KidSim [761] is an end-user programming environment that allows children to create
their own computer programs.
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38.1. Software design and architecture

User interfaces need to be programmed. However, programming one from the ground
up is difficult. There are many factors that must be taken into account. For example,
managing user interface components, such as buttons, scrollbars, pull-down menus, etc.
means the programmer has to both be able to draw these elements correctly on the screen
and be able to detect and react to user input. This programming challenge is further
exacerbated by the need to support many different possible designs, which may also
rapidly change in light of additional user insight or design ideas.

To assist programmers in creating compelling user interfaces, several ideas, principles,
design patterns and tools have gradually emerged as user interfaces have become increas-
ingly sophisticated during the years. We here provide a high-level exposition of some of
the key ideas in the area of user interface software that have achieved wide adoption.

Software design is a broad term that captures the entire process including all relevant
concerns when arriving at software. This includes design concepts such as the level of
modularization and abstraction. The structure of the software is referred to as software
architecture and it is a component of software design. HCI-based user interfaces rely
established software design practices and architectures for their operation.

A user interface reacts and responds to user input. As technology has evolved, such user
interfaces have evolved from simple command line interfaces into sophisticated graphical
user interfaces with various graphical elements users can interact with: windows, panels,
pull-down menus, buttons, tables, plots, and other user interface components.

A modern GUI consists of certain expected elements: windows, panels, pull-down
menus, and buttons, and other user interface controls. A GUI relies on rules implemented
in software to manage these elements in such a way that the GUI behaves as expected. A
GUI toolkit is set of software routines that allow a software developer to easily construct
and manage a GUI.

One of the key concepts in a GUI is its representation: how user interface elements are
represented as a model accessible to the programmer. The typical method is to represent
a user interface component as an object. In object-oriented programming, an object
maintains state and behavior. The state of an object represents the data it holds and
the behavior of an object is represented by code. For example, a Button can have data
indicating its size and location on the screen, its outline color, fill color, text color, text
font, text size and the text itself. The code associated with a button can consist of code
detecting when the button is pressed, changing the appearance of the button when it is
pressed, and code notifying the rest of the program that a user has pushed the button.

38.1.1. Layout

The layout is a set of rules that determine where user interface components are displayed
in relation to each other. The simplest set of layout rules is to have none: this means the
programmer has to specify the exact pixel coordinates of each user interface component.
For example, if a user interface designer desires a button to be placed at the top left corner
of a panel then the programmer would set the button to be displayed such that the top
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Close Application 

(0,	0)	 (100,	0)	

(100,	100)	(0,	100)	

Close Application

(0, 0) (150, 0)

(150, 100)(0, 100)

Close Application

(0, 0) (50, 0)

(50, 100)(0, 100)

Figure 38.1.: An example of using no layout and instead setting exact pixel coordinates
of each user interface component, in this case a Close Application button
set to have its top left corner at (0, 0), relative to the panel containing the
button. When the panel is resized the button maintains its fixed location
and size.

left corner of the button is in the origin of the coordinate system (0, 0) (see Figure 38.1).
Such absolute positioning makes it possible to specify the precise location and size of

each user interface component. This allows a programmer to implement a highly specific
layout that is a very close to an intended design. However, this expressiveness comes at a
cost: when the panel is resized, for example because the user has resized the application
window, the absolute positioning of all user interface components in the panel remains in
their exact original positions. Figure 38.1 shows how the location and size of the button
is unchanged despite the panel changing its size. As a result, the button can get clipped
or the panel can contain excessive amounts of unused space.

To solve such problems, various layout rules have been introduced. One such layout
policy is to split the panel into five sections: north, south, west, east and the center (this
layout is known as ’border layout’ in the Java Swing GUI library). Figure 38.2 shows
different variants building on this approach.

38.1.2. Event handling

Most of the time, a user interface is doing nothing more than waiting for the user to
interact with it. This has led to the concept of event-driven programming. In event-driven
programming, the program flow is driven by events. The overall program logic takes
no action until an event triggers an action. Examples of such events include the user
triggering a user interface control, for example, pushing a button, or a timer triggering
after a preset time duration. Figure 38.3 presents an example of a listener listening to a
button and its programmed response logic.

38.1.3. Model-view-controller and other design patterns

Software design patterns are reusable strategies or solutions to common programming
problems. Several design patterns have been conceived in response to the difficulty
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Button 1 
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Button 1 
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Button 3 

Figure 38.2.: Three buttons laid out in three separate ways depending on their layout. The
leftmost figure shows three buttons laid out using a horizontal layout rule.
The spacing between the buttons is a fixed distance parameter configured
by the programmer. The width and height of each button are parameters
unique to each button set by the programmer. In the figure the width
and height of each button has been set to identical values. The layout
rule respects these width and height parameters and will as a consequence
render each button according to its individual width and height parameters.
The middle figure shows the same layout rule applied vertically instead of
horizontally. The rightmost figure shows a layout using compass rules. This
layout splits the parent component into five regions: north, south, west, east
and center.

in writing scalable and correct code for managing complex user interfaces. The most
well-known design pattern, which we will here use to illustrate this concept, is probably
Model-View-Controller (MVC).

MVC addresses the problem of decoupling three functional concerns of a typical
graphical user interface [? ]. The first concern is the model representing the data the
user is manipulating. This may, for example, be text, a list of numbers or other objects,
or a simple time series, such as (0, 2), (1, 4), (2, 6), (2, 8). The second concern is the view,
which defines what is presented to the user. The third is a controller.

MVC consists of three fundamental components:

Model The model contains the data.

View The view presents the data to the user. Note that there can be more than one view
of the same model.

Controller The controller managers user interaction by accepting user input to manipulate
the model and presenting model output to the user using one or several views.

38.2. Toolkits

Another design strategy is to provide an existing codebase at a higher level of abstraction
designed specifically to make it easy to use it for user interface development. A toolkit is
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Go 

Listener 

Program Logic 

Event	

Function	Call	

Text	

Go Go 

Click!	

Go 

Response	text	

Figure 38.3.: An example of event driven programming. The button Go is monitored by
a Listener. When the user triggers the button, this event is captured by
the Listener, which results in the listener making a function call to code
represented by Program Logic. In this example, the text “Response” is
displayed inside the initially the empty label.
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a software library defining commonly used widgets like menus, buttons, scroll bars etc.
[554].

A toolkit can be called by an application. The advantake is consistency: all UIs using
a toolkit will have a similar look-and-feel. Moreover, developers do not need to rewrite
standard widgets. However, toolkits may not be easily extended.

38.3. End-user development

Software agents have the potential to assist users in achieving their goals. However,
individual users may have individual goals. How should a user then instruct a software
agent in order for it to be able to carry out that individual user’s specific goal? This
question gives rise to the end-user programming problem [761]: how can end-users, who
are typically not programmers, tell a computer system what to do?

38.3.1. Macros

One approach is known as a macro. A macro is a collection of user actions that are
grouped together into a program. The macro is recorded by system following some form
of trigger, such as user action, which causes the system to monitor and store the user’s
actions. These actions are then form a list of actions as a program. The user can now
rerun this program when desired. A system may also allow the user to inspect the macro
and make changes to the individual user actions.

A macro thus allows a user to group a set of repetitive actions into a single action, thus
potentially saving time and frustration in repeating mundane tasks. Macros are relatively
easy for users to understand. The user merely has to trigger the system to record actions
and then trigger the system to run the macro when desired.

However, macros also have disadvantages [177]. First, they only record low-level events,
such as key presses, mouse clicks, specific pointer locations, etc. Second, macros do not
generalize. A pure macro does not have a notion of semantics that matches user intent.
For example, a macro may record the precise pixel location where a user clicks an icon
and can thus trigger a subsequent action when the macro is played back by the user.
However, if the icon is moved to another location on the display, or moved into another
folder, then the macro will fail [177]. As another example, if a user selects the words
following a prefix such as “Dear”, as in selecting “Professor Oulasvirta” from the text
“Dear Professor Oulasvirta” and selecting “Professor Antti Oulasvirta” from the text “Dear
Professor Antti Oulasvirta”, then the macro cannot automatically select “Professor Kasper
Hornbæk” from “Dear Professor Kasper Hornbæk” as the macro is unable to generalize to
select text in the form of all words following the prefix “Dear” [177].

These limitations of macros has led to the development of systems that are able to infer
users’ intended programs by demonstration, which is usually referred to as programming
by example. It is worth noting that some interactive systems now provide system functions
called “macros” that do not behave as pure macros and allow some generalization.
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38.3.2. Programming by example

The limitations of pure macros lead to the idea of programming the computer by providing
examples. This is in general known as programming by example. An early system is
Pygmalion [759] from 1975, which allows a user to create sketches of programs using icons
as representations of internal program mechanisms, such as variables, data structures, and
program flow. The system does not infer a program but instead allowed a programmer
to sketch the program interactively and have the system remember the actions, thus
gradually generating program code. When the system has incomplete information on the
program it traps program execution, prompting the programmer for more information.
An example of a partial program for computing a factorial is shown in Figure 38.4. It
is difficult to succinctly explain how a programmer can use Pygmalion to sketch and
execute a program. For a complete worked example on sketching the function required to
compute a factorial we refer the reader to [760].

A later example is Tinker [466], which is a learning environment that allows novice
programmers to teach a software agent to program. The novice programmer provides
illustrative examples and in response the system generates code that manages generaliza-
tions of the examples. The system relies on the user to provide additional information to
do this. For example, if the user specifies more than one example for a function then the
system asks the user to specify a test that it can use to distinguish the examples.

The prior examples of programming by demonstration were aimed to programmers.
In contrast, the Metamouse [512] is a software agent called Basil that assists end-users
in their tasks in a direct manipulation environment. The system monitors user activity
in a drawing program (Figure 38.5). The software agent follows along the user’s task,
occasionally interrupts the user asking for a clarification, and eventually takes over the
task. Figure 38.5 shows a complete example.

The Metamouse system induces a program by observing repetitive user behavior in
a drawing program. An important design insight is that any software agent inducing a
program for a repetitive task is going to be sensitive to user variation—a user performing
the same thing using a variety of actions. The Metamouse system uses interactivity to
reduce such variation by alternating between executing the induced program and building
it. When the user rejects the next step in the program, or no step is available in the
program, the system interrupts the user to ask for the next operation. In this sense, the
Metamouse behaves as an “eager apprentice” [512].

Eager [177] is a software agent that monitors user actions in a graphical user interface.
Eager automatically monitors user actions and checks for iterations. When an iteration is
detected the system suggests the next action to the user (??). When Eager has shown
a sufficient number of correctly predicted actions the user can feel confident Eager can
automate the task. By pressing the Eager button the system then automates the task
for the user. Unlike Metamouse, Eager cannot infer conditionals. On the other hand it
relieves the user of several burdens: it does not require the user to (1) indicate the start
of an example; (2) answer questions about generalization of the induced program; and (3)
approve or reject each proposed action.

The design philosophy in Eager is to not burden the user by requiring confirmation of
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Figure 38.4.: A snapshot of a programmer sketching out a function for computing 6! in
Pygmalion [759]. The boxes in the top-right represent icons. These icons
represent aspects of the program. For example, the equality is represented
as an icon containing two subicons. When the programmer drags a value,
such as 6, to either subicon of this equality icon then the programmer is
gradually completing the program. When both subicons have values assigned
then the equality icon can evaluate the equality, given rise to a True or
False value. These values can in turn be dragged to the conditional icon,
represented as the icon with the question mark. Depending on the result of
the conditional, either the icon marked true or the icon marked false will
execute. Pygmalion attempts to execute code as soon as possible. However,
whenever more information is required the system will trap this state and
request the programmer for additional information. In this way Pygmalion
allows the programmer to sketch out code, which is recorded by the system.
However, note that the system does not actively infer any program from
user behavior.
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Figure 38.5.: An example of the Metamouse system’s software agent called Basil, depicted
as a turtle, learning to move rectangles by predefined constraints, as taught
by the user [512]. The user (teacher) begins by drawing a reference line
G. Since the end points of the line do not make contact with any shape
the software agents asks the user if these locations are fixed or can change
during runtime. The user indicates that they can change during runtime.
The user then draws a second reference line S and moves the line so that
it touches the bottom of rectangle B. The user then moves rectangle B to
reference line G. When the user repeats the selection of reference line S the
software agent Basil has detected a loop and consequently predicts that the
user will want to move reference line S to the bottom of a new rectangle.
The user accepts this suggestion. Basil subsequently wants to move the
middle box to the left of reference line G, inferring this action by ranking
the constraints and ignoring the weakest constraint, that of direction, in
this instance. Subsequently Basil can automate the remaining alignment
tasks until the reference line S ends up up beyond the final box. Having no
new information Basil terminates.
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each automation step. Instead, Eager learns implicitly that its prediction is incorrect by
observing the user taking a different action than the action highlighted by Eager. As such,
Eager is an example of a mixed-initiative interface in which the user takes initiative using
direct manipulation to execute the program and thereby commence automation. The
software agent takes initiative in building a program in the background and communicates
its progress and current version of this program by highlighting the next element in the
graphical user interface during interaction. Importantly, the user is not required to take
any action should the user not desire any automation.

38.3.3. Visual programming languages

Another way to allow end-users to develop software is to change the medium of program-
ming from a textual list of instructions to a graphical environment. Visual programming
languages provide users with a graphical interface that allow users to create and modify
programs by

Visual programming languages have long history. For example, Smith [759] reviews
examples that were known in 1975, including a visual language based on a circuit metaphor
by W.R. Sutherland that allows the user to use a lightpen to draw logic circuits.

It is also possible to combine a visual programming language with programming by
demonstration. KidSim [761] introduces a graphical user interface that acts as a simulation
environment that enables children to construct programs graphically. The system uses
so-called graphical rewrite rules [259], also called before-after rules, to enable the user to
specify behavior.

38.4. Formal methods

We have already concluded that software systems supporting interaction are inherently
complex. So how do we know they behave correctly? This is

Another way to work with models is to use formal methods. This term refers to a set
of methods use rigorous mathematical models that can be used to specify, develop, and
verify a system.

38.4.1. Finite state machines

One example of a formal method that can be used in HCI is modeling using finite-state
machines (sometimes called a finite state automata). Such finite-state machines can be
used for a variety of applications. One usage in HCI is to use them to provide a design
vocabulary of input devices. Buxton [114] presents a set of state diagrams modeling input
(Figure 38.6).

Figure 38.6 (a) shows a state diagram for mouse operation. The input device is in State
1, Tracking, when it is tracking, that is, when the user is moving the mouse around a
surface and thereby moving the mouse cursor around on the display. However, when the
user pushes a button on the mouse this results in a state transition and the input device
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(a) (b)

(c)

Figure 38.6.: Three state diagrams modeling input [430].

is now in its Dragging state. The input device will remain in this state until the button is
released, thereby returning the input device to its Tracking state.

Figure 38.6 (b) shows a different state diagram for a touchscreen. Here there is a
State 0, which denotes Out of range. When the user’s finger is outside the range of the
touchscreen, the device has notion of it. However, when the user is within the range, this
registers as a touch and the touchscreen transitions from State 0 to State 1 and is now
in its Tracking state. That is, moving the finger when the finger is within the range of
the touchscreen results in, or at least can result in, a tracking cursor following the user’s
finger.

Note that while Figure 38.6 (a) and (b) look very similar they capture different state
transitions. There is a difference between State 0 (out of range), State 1 (tracking) and
State 2 (dragging). The mouse does not have a State 0 (out of range) as there is no notion
of a mouse being out of range in this sense. Vice versa, the touchscreen does not have a
notion of State 2 (dragging) as it is modeled as only supporting two states: registered
finger touch (State 1; tracking) or no registered finger touch (State 0; out of range).

Thus both models capture interaction but different kinds of interaction for different
types of input devices. Can we also consider an input devices that supports all three
states—out of range, tracking, and dragging? Figure 38.6 (c) shows one such example.
It is a stylus that is operated with in conjunction with a graphical tablet. The stylus
can be moved above the tablet by the user. However, if the stylus is out of range (State
0) then the system is unaware of such movement. A state transition occurs when the
stylus is registered by the tablet and the system is now in State 1 (tracking)—moving the
stylus can now results in, for example, cursor movement being displayed on the tablet.
However, if the user provides additional pressure on the stylus it is possible to sense this
using, for example, a switch in the tip of the pen. This can then lead to a state transition
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from State 1 (tracking) to State 2 (dragging). In this sense, the stylus and the graphical
tablet provides a richer interaction potential than the mouse or the touchscreen since it
supports three rather than two states.

This is an example of using state diagrams to provide a design vocabulary. It allows
us to discuss the expressiveness of, in this case, input devices, to compare them, and to
consider whether we can add additional states. For example, is it possible to add a State
2 (dragging) for a touchscreen, and if so, how?

Paper Example 38.4.1 :

Designing safe number entry systems.
Data entry is pervasive and used in many critical environments, including healthcare,

aviation, and finance. An analysis of number entry interfaces [800] found that such
interfaces often contain design problems that give rise to errors.

The figure below shows a typical number interface from the paper (used under
Creative Commons License). As the paper points out, the layout does not specify
any interaction decisions. For instance, does the button C serve to make a correction,
or does it cancel?

Thimbleby [800] identifies a large number of design problems in number entry
interfaces, including unclear and unstated design requirements, unclear record keeping
protocols of interaction steps, problems with interacting with negative numbers,
problems with timeouts, etc. In total, the paper identifies 16 common design defects
on numeric keypads.

Thimbleby [800] argues user testing is insufficient as it is not possible for user
testing to guarantee coverage. Instead a formal approach is necessary. Thimbleby
[800] demonstrates that it is possible to design formal rules for interaction with
numeric keypads using Hoarle logic. An important insight is that many years of
user-centered research has failed to identify easily rectified design defects. Thus,
user-centered design for critical user interfaces should be complemented by formal
approaches that can provide coverage to detect such design defects.
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38.4.2. Formal modeling of undo

Other formal methods than state diagrams are possible, and sometimes more fruitful. As
an example, let us consider the undo function that is present in many interactive systems.
Undo allows users to revert the system state to a previous state, for instance, if the user
has made an error or changed their mind.

However, the undo function is surprisingly complex. First, there are several ways of
supporting undo in a system. The simplest model, called flip undo, simply allows a single
level of undo and redo. In such a system the user may input a sequence of commands
and the effect of the last command can be removed by invoking undo and re-added by
invoking redo [196].

A more common implementation of undo, called backtrack undo, involves the system
maintaining a record of every command that has been invoked. When the user invokes
undo, the last command (excluding meta-commands, such as undo) is removed. When
the user invokes undo again, then the next last command is removed, and so on. When
the user issues a command and then all undo commands are forgotten [196].

A variant of backtrack undo, called stack-based undo/redo, further allows the user to
redo, that is, to undo the effect of an undo. Such a system typically maintains a separate
list of undone commands. When a redo is invoked the previously undone commands in
this list are invoked again. This effectively allows a user to move back and forth in the
state history of the system by repeatedly invoking undo and redo. When the user invokes
an ordinary command then the list of undone commands are forgotten [196].

As you may now realize, implementing a correct undo policy is not as easy as it may
initially seem. A straight-forward definition of undo is that if we invoke undo following a
command c then the state of the system should be return such that command c effectively
never happened. We can write this down in a formal way as follows:

c _ undo ⇠ null (38.1)

This notation specifies that the system state of a command c that is followed by (_)
undo should be equivalent to (⇠) the system state of invoking a null command, that is,
a command that does nothing. If we exclude undo from any valid command c (treating
undo as a meta-command) then this property is called the strong-cu property.

However, we can also introduce a similar notion for undo commands, called the strong-
uu property—that is, an undo followed by an undo should result in the same system state
as invoking a null command:

undo _ undo ⇠ null (38.2)

The combination of the strong-cu and strong-uu properties seem intuitively appealing.
However, they have been shown to be inconsistent. In fact, it can be proven that no
undo system with more than two internal states can support both of these properties
simultaneously.

This can be illustrated by drawing a state diagram, which we leave to the reader. In
this case, we have three states, our initial state s0, and states sa and sb, which arise after
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the user has invoked command a and b respectively. Now, the user can go back from state
sa or sb to the initial state s0 by invoking undo. In other words, a _ undo ⇠ null, and
b _ undo ⇠ null. This follows from the strong-cu property that a command followed
by undo results in the system state as if merely invoked the null command. That is, if
undo follows a command we are back at our initial system state. However, what happens
when the user thereafter invokes undo again? According to the strong-uu property this
should result in the same system state as had we originally invoked the null command. In
other words, undo _ undo ⇠ null. However, if the diagram is correctly drawn, it can be
seen that an undo followed by an undo is now inherently ambiguous. We may according
to the strong-uu property either end up in state sa or state sb. In other words sa = sb.
However, now consider that a and b are arbitrarily chosen commands. This means any
command will result in the same effect in state s0, which for any real system is obviously
not the case. Hence, undo cannot be treated as an ordinary command. It must be seen
as a meta-command with special properties.

Summary

• Software design and architecture enables user interfaces to be efficiently and effec-
tively developed. A prominent design pattern for user interfaces is called model-
view-controller.

• End-user development refers to techniques, approaches, and systems that allow
end-users to designing and building executable programs.

• Formal methods enable designers to specify, develop, and verify user interfaces.
Formal methods have wide uses, for instance in modeling undo functionality, but
are most frequently used in critical applications.

Exercises

1. Consider the following systems: (1) a fall-detector device for elderly patients in
a hospital; (2) a streaming music service app; (3) a virtual reality head-mounted
display; and (4) a spreadsheet used by a professor working in a university to record
exam marks and grades. Which systems are they embedded within and which
systems do they have to interact with?
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Models

Previously in this book, we have explored a number of methods to design and engineer
interaction. These approaches apply knowledge from user research, theories, technical
and business requirements, designers’ know-how, and so on, to create a system. In these
processes, available data influences the final design through the designer. It is the designer
who interprets the data and creates solutions based on their understanding.

In this chapter we consider a complementary perspective that allows computing ap-
propriate solutions to well-defined problems in interaction. We represent key features
of interaction computationally, pull several such features together to a model, and then
compute on this model. Such computational methods can optimize interfaces, adapt them,
make inferences about users, and learn from interaction. Examples include the following:

• Nonspeaking individuals with motor disabilities frequently rely on augmentative and
alternative communication devices to communicate. Such devices provide users with
a means to enter text that can then be read out to the speaking partner through a
speech synthesizer. A common problem in this area are low communication rates.
As a consequence, researchers have been investigating techniques to improve rates,
including the use of word prediction, sentence retrieval, and sentence generation
techniques that adapt to the user’s own vocabulary over time. By creating a
computational model of interaction it is possible to predict the performance of such
systems before testing them in deployment studies spanning weeks or even months.

• Augmented reality glasses allow users to interact with digital information registered
in the physical world. However, for such virtual content to be effective, the user
interface that is used to manipulate them has to be salient to users (see Chapter 3).
By creating a model of visual saliency for such user interfaces it is possible to
optimize the presentation to make it maximally visible to users.

• Graphical user interface design is hard. Designers need to coordinate decisions
between multiple levels from pixel-level (padding between buttons) to high-level
decisions (functionalities offered to a user). Computational methods can assist
designers by generating design ideas. These are often of two types: explorative
ideas or ideas that refine an existing design. Under the hood, these methods model
key features of the existing design and link it to variables of interest, such as those
related to visual appeal or usability. They can algorithmically search for alternatives,
thus complementing designers’ creative effort.
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What these examples have in common is that they need to represent interaction in
order to create a computational model. Once such a model has been obtained it is possible
to compute with it.

Models are at the centerpoint of such methods. Models are simplified representations
of interactive systems that capture some essential aspects in some formalism that allows
reasoning with it. Mathematics and computer science offer us a rich toolbox of formalisms
to this end, each with different properties. In this book, we have learned about a number
of models, such as saliency models using deep nets, motor control laws based on regression
equations, and models of human cognition.

When we have a model, we can predict, for example, the performance of a system,
before engaging in empirical user testing. For example, models of visual discrimination
ability (see Chapter 3) are used for engineering the quality of displays. A model can also
be used to simulate outcomes. Simulations allows us to learn about system behavior.
We can detect risks and analyse the underlying causes. For example, models of pointing
are used to analyze intelligent text entry methods. They can simulate how users type,
including their errors, which helps then test methods like autocorrection. We can also use
models to study the limits of behavior. Models allow us to chart the operating envelopes
of user interfaces – the upper and lower bounds of performance with different (extreme
but realistic) assumptions. In sensitivity analysis, we do this systematically by varying
input to a model and study the effect on outcomes at the system level. ’What would
happen to performance of a search engine if the queries were formulated by a non-native
speaker with spelling mistakes?’ Such analyses can guide us by telling which conditions
are likely to hurt system performance. We will discuss the nature of models and explore
how we can use such models to analyze system outcomes.

We can also use models to drive algorithmic improvement of designs. One of such
methods is called optimization. This involves engaging in a systematic search process
to obtain such values to parameters that allow desirable outcomes of the system. For
example, a keyboard can be optimized by trying positioning the keys on the keyboard
in such a way that the average predicted time it takes for a user to type the next key is
minimized. Optimization can algorithmically generate a keyboard layout that maximizes
entry rate. In this chapter we will explore the concept of optimization and demonstrate it
in the case of keyboards.

Models can also be incorporated into interactive systems. Models can help infer user
intent, make recommendations, and carry out actions automatically. Methods of machine
learning and pattern recognition are used to create a model of interaction. Such model
can enable new forms of interaction or enhance existing ones. For example, a speech
recognition system receives data on the user’s speech as an audio signals and uses a
machine learning model to translate these observations into hypotheses about what the
user wanted to communicate.

In this chapter we will discuss how to create models that allow us to perform prediction,
envelope analysis, optimization, and inference. However, to do so we must first understand
how to represent interaction in a format that enable us to create a model that can be
subsequently used in computations.
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39.1. Representations and models

A computational model allows the computer, or us as designers, to perform computations
relevant for interaction. For example, a computational model of visual saliency for a user
interface will allow us to maximize visual saliency, as described by the model, by finding
the parameter settings that result in the model predicting maximum saliency. The “as
described by the model” part is important as such a hypothetical model is only as good
as the model is in accurately representing the relevant elements of interaction.

This leads us to representations. A key part in arriving at a good computational model
of interaction is to identify a suitable representation. A representation here means a way to
describe relevant elements of interaction. Such a representation can be simple or incredibly
complex depending on the purpose of the modeling effort. In general, a computational
representation is about identifying the most important features of interaction and a
computational model is about a description of how these features interact to give rise to
outcomes relevant for interaction.

Any computational model in HCI can be analyzed from this perspecctive. An example
of a simple but popular model is Fitts’ law, which we discuss in detail in Chapter 4:

MT = a + b log2

✓
D

W
+ 1

◆
(39.1)

Briefly, Fitts’ law predicts that the average movement time MT is a function of the
distance D to a target and the width W of a target. In other words, the interaction we
are studying is the average time it takes a user to press a button, select an icon, and so
on.

Fitts’ law represents interaction (pointing) is through three constructs: movement time,
which is what we wish to calculate, and two features of interaction: (1) the distance to
a target; and (2) its width. Note that there are other potential features that might be
hypothetically relevant, such as the color of the target. However, according to the model,
such additional features are not informative.

Having arrived at a representation we can now investigate a model. The model in Fitts’
law has two components. The first is the construct index of difficulty (ID), which is
usually defined as follows:

ID = log2

✓
D

W
+ 1

◆
(39.2)

This construct captures the so-called “difficulty” required to select a target at a nominal
distance D with nominal width W . Since the base of the logarithm is 2 the units are
in bits. It implies causality in that the experimenter is meant to manipulate D and W ,
and hence create a distinct value of ID in order to influence average movement time. A
higher difficulty implies an increased average movement time. The second construct in
the model underpinning Fitts’ law is that movement time MT varies linearly with index
of difficulty (ID). This linear relationship can be written as

MT = ↵ + �ID (39.3)
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Figure 39.1.: Fitts’ law is an example of a model that links movement time (MT ) to an
index of difficulty (ID). The equation underpinning the model is MT =
↵ + �ID.

Here ↵ and � are parameters with ↵ determining the intercept and � the slope. The
linear relationship is shown in Figure 39.1.

Assuming ↵ and � are controllable, that is, we are able set them to what we want, we
could optimize movement time by attempting to set a and b to values that minimize MT .
However, as it turns out, these parameters are task and device dependent and therefore
not generally controllable. We cannot just set them to arbitrary values. Instead, we can
minimize average movement time by minimizing D, that is, attempt to bring targets that
the user are likely to hit in succession closer together, and by maximizing W , that is,
trying to make targets the user is likely to want to hit as large as possible. In this way,
Fitts’ law can serve as a building in an optimizing process, allowing a designer to explore
different user interface configurations in order to minimize average movement time.

In summary, Fitts’ law is a model that relies on a representation of interaction: it
represents the act of hitting a target as involving two fundamental controllable parameters:
the distance to the target, and the width of the target. In particular, it does not, for
example, involve additional elements, such as the color of the target in its representation,
as such a representation is an irrelevant factor for determining movement time. Much of
research is about understanding how to represent things and interaction is no different.
If we want to infer users’ actions or optimize an interface in a systematic way, we need
a model to represent what we mean by those actions. Further, this model needs to be
described in such a way that we can encode it into a format a computer can understand
so we can build systems that can use such models.
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39.1.1. Feature engineering

The first step to arrive at a computational model is to determine a suitable representation.
Only when we know how to represent interaction we are able to model it. In Fitts’ law
we represent the act of a user attempting to point at a target by considering the target’s
width and the distance to it, and the average movement time required to hit the intended
target. If we instead wish to come up with a model for human speech, we would desire
a representation that is informative for that domain. In such a case, an expert might
represent a waveform of human speech as Mel-frequency cepstral coefficients, which is a
computational representation of human speech that models the human auditory system’s
response. In general, we typically want to identify the qualities, or features, of interaction
that are useful for building a model of interaction.

A feature is a quality of interest to our representation. A way to help understand
which features are important is a process called feature selection, sometimes referred
to as feature engineering. Feature selection has traditional gained a lot of attention in
pattern recognition and machine learning and several procedures exist for finding the
most effective features in that domain.

Consider the problem of allowing users to issue commands by touchscreen gestures. Such
a gesture recognition system translates a series of touch point observations into hypotheses
about which gesture class the user intended to articulate. This is a classification problem.
We have a set of labeled gestures in the system and we wish to assign a label to an
unknown gesture articulation provided by the user.

One way to achieve this task is to use a Rubine recognizer [698]. This is a linear
classifier treats a user’s articulation of a gesture as a feature vector consisting of 11
features representing properties of a 2D single stroke gesture trace, such as the initial
angle of the gesture, the length of the gesture, and so on. Collectively, these features
result in an 11-dimensional feature vector. The Rubine recognizer can now be trained
by showing it example gestures for each gesture class. For example, a gesture class
that is meant to resembling a rectangle can be trained by showing the system a set of
gesture articulations that represent this gesture. This step allows the Rubine recognizer
to train weights for each of the features of the feature vector for each gesture class. At
classification time, the recognizer extracts the same 11-dimensional feature vector from
the user’s gesture articulation and identifies the gesture class that is the closest to this
feature vector. The Rubine recognizer is reliant on its representation of a gesture as
an 11-dimensional feature vector. Because of the number of dimensions, it is hard to
visualize the features. For this reason it is frequently useful to try to plot 2D and 3D
visualizations to understand how such features work in practice.

More generally, features helpful for creating a representation may have one or several
of the following properties:

Observable For a feature to be effective there must be a means to capture the feature
by some measurement procedure. A directly observable feature is a feature that
can be measured through a sensor or direct observation. An indirectly observable
feature is a feature we can only capture by a proxy measurement. For example, a
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touch point an a capacitive touchscreen is directly observable feature while a user’s
emotive state is only indirectly observable.

Informative A feature should provide useful information about the interaction that is
represented. For example, if the goal is to identify a computational representation
about usable scatter plots then a useful feature would tell us something about the
visual saliency of scatter plots.

Distinct A feature should provide complementary information in relation to other features.
Features that have a very high correlation provide redundant information. For
example, if the goal is to identify a computational representation of a

Computable For a feature to be effective it must be possible to arrive at the feature
by some systematic procedure. This means it must be tractable to, for example,
calculate a feature value or estimate it by some procedure. Further, even if a feature
is computable it may still not be practical to use the feature if the computation
takes a long time, is unreliable, or requires significant resources. For example, while
it may be informative to have a feature representing users’ energy expenditure when
they perform fine-grained finger movement, such as a feature is very difficult to
measure and hence compute.

Comprehensive Collectively, a set of features should be as complete as possible in forming
a computational representation of the interaction of interest. That is, all relevant
features that can be captured in practice and complement each other, should be
part of the feature set. For example, a model of pointing is not comprehensive if it
only considers target distance but not target width.

39.1.2. Modeling

Having arrived at a representation it is now possible to develop a computational model.
Such models utilize representations to capture and compute on relevant qualities of
interaction which can subsequently be used in a design, or to guide design.

To provide the intuition of models, let us consider two variables, x and y. A very simple
model is then (identity):

y = x (39.4)

This model is shown in Figure 39.2. This model is making a claim: the independent
variable y takes on the same value as the dependent variable x. However, what if y is not
related to x?

Consider the following model:
y = c (39.5)

where c is a constant. Here y represents the dependent variable, the effect, and c is a
parameter that can be set to any value, such as c = 2. This model is shown in Figure 39.3.

This model is also making a claim: the dependent variable y is unchanged as a function
of the independent variable x. That is, the model claims y is invariant, or independent,
of any value of x.

792



39. Computational Representations and Models

Figure 39.2.: The dependent variable y varies linearly with the independent variable x.
The equation underpinning the model is y = x.

Figure 39.3.: The dependent variable y is invariant of the independent variable x. The
equation underpinning the model is y = c, where c is a constant and c = 2.
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Figure 39.4.: The dependent variable y is varying linearly with the independent variable x.
The intercept is ↵ = 2 and the slope is � = 1.25. The equation underpinning
the model is y = ↵ + �x.

More commonly, our models do predict y varies as a function of x and the model makes
a claim about this particular relationship. We previously saw Fits’ law which makes a
claim that movement time MT varies linearly with the index of difficulty ID for hitting
a target. In general we can replace movement time MT , our independent variable, with
y and index of difficulty ID, our dependent variable, with x. We then arrive at the
following expression:

y = ↵ + �x (39.6)

This model predicts y varies linearly with x and is shown in Figure 39.4. If it is a
model of interaction then there is usually implied causality: we cannot directly control
y but we have ways to change x. For example, in Fitts’ law we cannot directly control
average movement time. However, we can directly control how large the targets are and
where they are located on a visual display.

In this equation we have model of interaction with three parameters: (1) ↵; (2) �;
and (3) x. The independent variable x is a variable we control, perhaps by changing
some quality in the user interface. The parameter ↵ is here the intercept: it specifies
the value of the dependent variable y when the dependent variable x = 0. In interaction
is is often thought of as some form of offset. For example, if the dependent variable x
represents task time then x = 0 is the point in the model when the user has not begun
the task. The parameter � describes the slope of the line in Figure 39.4. This parameter
frequently describes a rate because it informs us how much y changes when we change x.
For example, if we assume y represents search time and x represents a measure of visual
display clutter, then the rate � would tell us how much search time increases when the
measure of visual display clutter increases. The intercept would in this instance provide
us with an offset or baseline, as it would tell us what the predicted search time is when
the measure of visual display clutter is zero.

More generally, models are functions—expressed as formulas or as computer programs–
that produce an output given an input. They contain two types of mathematical constructs
(1) parameters; and (2) mechanisms that link parameters together.
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Figure 39.5.: Three examples of simple models: a decision tree, a linear model, and a
non-linear model.

To build a model, we require some formal mechanism that mediates inputs and outputs.
Such a mechanism can be, for example, a regression equation, a deep neural network, a
decision tree, a physical simulation, or something else.

These mechanisms work with variables which are typically referred to as parameters.
Parameters express the values of some event or state. These parameters need to be
updated with different inputs. For example, the parameters of a visual saliency model
are millions of neural network parameters that are trained using eye-tracking data (see
Chapter 3). When fed with an image a user might see (input), these parameters gain
values (they are activated) in order to predict which regions of the image the user might
attend (output). A different image gives rise to a different neural activation.

Problems in HCI can be modeled in different ways. Figure 39.5 illustrates this. It
shows three different models for a toy task. We have a single parameter, the complexity
of a website, which we define as the number of links on the page. We also have a single
outcome, search time, which we will define as the time it takes a user to find the link they
are looking for.

The first model in Figure 39.5 is using a a tree structure to model a binary outcome
based on a threshold. If the complexity is above a threshold then the outcome is predicted
to be either below or above a predefined value. This model is simple to understand but it
is also very limited. First, the model is based on a threshold that needs to be set somehow.
Second, the outcome is binary and lacks resolution.

The second model in Figure 39.5 is a linear model. It predicts the outcome as a function
of the parameter value. As a model this is more informative. The slope of the line tells
us how the model predicts search time increases as complexity increases. The intercept
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encodes a fixed cost in search time, it tells us that no matter the complexity the model
predicts there will be an initial cost in search time. Unlike the tree-based model this
model predicts a range of values in the outcome and it does not rely on a threshold to
make this prediction.

The third model in Figure 39.5 is a non-linear model. It is similar to the linear model
except the values of the outcome is not predicted to vary linearly with the values of the
parameter. This property allows the non-linear model to make richer predictions. For
example, unlike the linear model this model predicts that at a certain range of complexity
the search time will rapidly increase.

The three models are simplistic. First, it is unlikely a single parameter, such as
complexity, can fully determine search time. A useful model would at the very least need
to capture complexity through several parameters, such as the number of links on the
page, but also the number of additional elements, their organization, and so on. Second,
the user’s strategy in engaging with the system may also affect the outcome. A complete
model would therefore not only have to account for the parameters of the system but also
the parameters governing the user’s interaction. While the three models may not be the
most valid models, there may still be cases in which they could be useful. In engineering
applications, accuracy and practicality are equally important.

By using more sophisticated models we can perform simulations of user interface
outcomes. A simulation refers to the operation of a model, ”the intention is to draw
conclusions, qualitative or quantitative, about the behaviour or properties of a real-
world process or system over time” [553]. In practice, simulations are executions of a
computational model to approximate the behavior of an interactive system or part of.
Simulations allow studying different conditions in human-computer interaction, including
extreme and risky conditions. For example, we can simulate handover situations in a
semiautonomous vehicle without actually risking anyone.

39.2. Envelope analysis

Models allow us to gain an understanding of the effect of parameter values on outcomes.
As an example, suppose we wish to provide users with a touchscreen interface that allows
users to correct speech recognition mistakes using a touch modality instead of a speech
modality. We will use an example of such a design problem from the literature [? ]. This
research tackles this problem by providing the user with two methods to correct speech
recognition utterances (Figure 39.6).

The speech recognizer generates a search lattice to identify the user’s utterance. The
system processes this speech lattice into a word confusion network. A word confusion
network is a time-ordered series of clusters of candidate words along with their posterior
probabilities.This network is shown in Figure 39.6. Every column consists of the following
elements: (1) the current output word (which may be changed by the user); (2) the 1-best
hypothesis, that is the speech recognizer’s best guess on the user’s intended word; (3) a
series of alternative words ordered by their posterior probabilities from the cluster in the
word confusion network at this location; and (4) a delete button that deletes the word.

796



39. Computational Representations and Models

The system supports the following actions:

Substituting words The user can substitute a word by touching an alternative word in
the word confusion network. The user can also substitute multiple contiguous words
by crossing them. The user can also touch a word which opens up a keyboard
interface. In this interface the system shows morphological variants of the word, for
example, morphological variants of the word “constitutional” in Figure 39.6 include
“constitute”, “constitutes”, and “constitution”.

Editing words The user can edit words by touching them in the top row or by double-
tapping any other word. This opens up a keyboard interface that allows the user to
either edit the word or type a new word.

Deleting words The user can delete words by touching the ‘X’ buttons in the bottom
row. The user can also slide their finger and delete a sequence of words at the same
time.

Inserting words The user can delete a word using three methods. First, the user can
touch a word in the word confusion network and then drag that word to the top
location. This is useful if the intended word is on the display but is not present in
the correct column. Second, the user can touch the space between two words at the
top which opens up a keyboard interface, allowing the user to type in a new word
to occupy the space in between the two surrounding words. Third, the user can
select a preceding word, which opens up the keyboard interface, and then type a
space followed by a new word.

The different interfaces supporting these actions are shown in Figure 39.6. This system
is on the surface fairly complex with many possible design choices for parameters. For
example, how many clusters should the system display? If the system displays too few
then there is a higher probability the user’s intended word is not present and the user
has to rely on the keyboard. On the other hand, if we show too many then the buttons
will be small and difficult to select. Can we somehow quantify the effect this parameter
setting will have on the desired outcome?

The researchers did this by means of simulation [831]. By essentially playing back
recorded audio they are able to construct word confusion networks from the resulting
speech lattices and then simulate different system parameters to assess their effects on
the outcome. The outcome of interest in this case is word error rate, a lower word error
rate is better. To simulate user behavior they used an oracle. An oracle is an assumed
expert user that performs optimally in the interface.

Figure 39.7 (left) shows the result of one such analysis. The word error rate achieved
by the oracle is shown as a function of the number of word alternatives that are provided
in each column (cluster). The figure plots four performance curves for four different user
configurations. We can observe that increasing the cluster size reduces word error rate,
however the majority of the gain is realized by providing the first 3–4 word suggestions
for a recognized word. This informs a trade-off design decision on the balance between
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Figure 39.6.: An example of a touchscreen-based mobile speech interface [831]. The
interface allows the user to correct recognized utterances (shown at the top)
by either direct manipulation of the word confusion network or by engaging
with a keyboard that provides word prediction and a choice of morphological
variants of words.

providing more word suggestions at the cost of having to make the buttons smaller.
Adding the capability to delete a word reduces word error rate, and adding the copy
option, and the ability of the user to touch a word and choose a morphological variant of
the word directly reduces the word error rate further.

Figure 39.7 (right) investigates the reduction in word error rate as a function of the
number of word predictions offered by the user. The constant line at the top represents a
baseline which does not offer any word predictions. Since this baseline is independent
of the number of word predictions offered, it is constant. We can observe reductions in
word error rate are obtainable using a variety of word prediction methods. The highest
reductions in word error rate is possible by using an acoustic model that predicts words
that sound acoustically similar to the word. However, such acoustic predictions are
difficult for a user to understand, for example, “aback” is acoustically similar to “attack”
[831]. Similar reductions in word error rate are obtainable using statistical language
models that take preceding or following words into account. However, such predictions
depend on surrounding words and may be difficult for a user to understand. Finally, the
lowest word error rate reduction is realized by using morphological variants. In the paper,
the designers chose this option because although it did not achieve the highest word error
rate reduction, these predictions are easier for users to understand [831], demonstrating
that these analyses are guidance for design, rather than strict design directives.
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Figure 39.7.: Analyses of the speech recognition interface shown in Figure 39.6 generated
by playing back recorded audio and then simulating a perfect user. This
has resulted in the ability to plot the oracle word error rate as a function of
a design parameter for several different interaction methods.

39.2.1. Carrying out envelope analysis

As the previous example shows, simulating outcomes and analyzing the effect on outcomes
can be a very useful, complementary, method to understand HCI systems. There is no
formal term for this type of analysis but we are going to call this envelope analysis (cf. flight
envelope, back-of- the-envelope analysis, etc.). The idea is to extract design parameters
from the functional description of the system and simulate potential performance by
investigating a range of parameter choices.

We first have to consider the function parameters. Having identified a functional
model it is possible to parameterize the model. There are fundamentally two classes of
parameters:

Controllable parameters These govern function execution and can be set by the designer.
These parameters are of great interest as they enable optimization towards design
objectives.

Uncontrollable parameters These govern function execution and cannot be explicitly set
by the designer. Understanding these is also possible as they allow us to carry out
a sensitivity analysis to understand how sensitivity the outcomes to variations in
these parameters.

It is also worth noting that the effects of these parameters can be investigated in various
ways besides envelope analysis, such as in experiments with users, prototyping and
measurements, etc. There are three common strategies: (1) keystroke level method and
similar approaches; (2) Wizard of Oz methods; and (3) computational experiments.

One way to carry out envelope analysis is to use the keystroke level method. This method
assumes error-free expert behavior and further assumes reliable fixed time estimates are
available for all operators. This method, and other variants, is described in detail in the
chapter on analytic evaluation methods (Chapter 41).
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Figure 39.8.: The first plot show measured entry rate as a function of session for a dwell-
free eye typing using a a simulated recognizer. The second plot shows
different operating points of dwell-free eye typing. The entry rate varies as
a function of two parameters: (1) the uncontrollable parameter overhead;
and (2) the controllable parameter dwell time. For any realistic operating
point involving these two parameters, dwell-free eye-typing is faster [430].

Another method is using computational experiments that generate system outcomes
through a model, thus allowing designers to study the impact of parameters on performance.
This is the approach taken by the mobile speech interface we discussed earlier in this
section. For such experiments it is often useful to represent an expert user. This
representation is sometimes referred to as an oracle. An oracle in user interface simulation
is a simulation of a user that performs optimally. It is also possible to create an imperfect
oracle, sometimes referred to as a stochastic oracle [429]. Simulation by an oracle is a
very useful way to carry out rudimentary envelope analysis to tease out trade-offs and to
help prioritizing features.
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Paper Example 39.2.1 :

Understanding why word prediction may not be beneficial
Word prediction is a common functionality on mobile touchscreen keyboards.

However, large-scale empirical research has suggested word predictions may not be
that useful [620]. However, what is the mechanism explaining this observation? Using
envelope analysis it is possible to gain an understanding of the factors contributing
to this empirical observation [429].

A high-level function structure (see item VII) of a word prediction system is shown
below:

From this functional model we observe that we have two input signals, and they
can be parameterized as follows:

• Tkey: the time it takes the user to hit a key.

• Treact: the time it takes a user to react to a word prediction suggestion.

A latent set of parameters, strategy, generates process interaction between the
design parameters:

• Lmin: restrict word prediction usage to words of a minimum length.

• klook: type k keys, then look.

• pmax: only attempt to check word predictions up to pmax keystrokes per word.

Note that all these parameters are uncontrollable. Other strategies are of course
possible and in reality a user is likely using a mix of strategies. This parameters
can now be investigated by implementing a simulation of a user typing text and
interfacing with word predictions using the above parameters. The result is a set of
envelopes of performance, one of them is shown below.

The plot shows net entry rate as a function of two strategy parameters, klook and
Lmin. The other parameters are fixed in this analysis. We note that under these
assumptions, performance is strongly tied to the choice of typing strategy. The black
dotted line is the zero-crossing and marks the boundary between performance gain
and loss due to predictions.

Any strategy that looks at word predictions without typing at least one letter is
shown to slow the user down. Performance gains are only realized if the user types at
least the first two letters of each word before looking at predictions. The reliability
of predictions increases with the number of letters typed. Net entry rate can range
from -8.8 to +2.9 words per minute solely as result of the choice of typing strategy.
The highest point identifies the optimal typing strategy: Lmin = 6 ; klook = 3. In
other words, unless word predictions are unlikely to provide average users with any
noticeable gain and may very well slow them down.

This is an example of an analysis that would be difficult to carry out in an
experiment (Chapter 43) as there are so many parameters that need to be controlled.
Further, it is questionable whether it is even possible to reliably control study
participants’ strategy in an experiment.
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39.3. Optimization

Optimization refers to algorithmic search for solutions that best meets stated objectives.
In HCI, optimization serves as a computational method for design and adaptation of user
interfaces [614]. It has been applied to the computational design of keyboards, menus,
information displays, information visualizations, and interaction techniques. In adaptive
UIs, it has been applied to enhance distributed UIs, cross-reality displays, and web layouts.
The method can be beneficial in conditions in which obtaining a good design is hard, for
example because of a large number of decisions, constraints, or objectives. It can also
applied in cases where design-choices must be automated, for example when adapting
or personalizing a user interface. The main benefit of the method is the exploitation of
powerful search algorithms (solvers). The main drawback is that optimization task must
be precisely defined in order for the outcomes to be relevant.

Optimization is a constructive method : it can not only evaluate a solution, it can
generate solutions. It can propose values of decision variables such that the solution
that they jointly describe achieves a minimum or maximum of some stated objective.
These could also be the types of representations we have discussed earlier. For example,
to decide the position of a button on a display, one would need to decide its x and y
coordinates, so two variables. To also determine its size, one would need to decide the
(x, y) coordinates of both the top-left and bottom-right corner, so four variables. The
objective function assigns each candidate solution a score that tells how good it is. For
example, we could use Fitts’ law to assess how quick to use button designs are.

An objective function states what makes a design good. The function can be about
anything regarded desirable, such as surface features of the interface (e.g., minimal white
space) or expected performance of users (e.g., ’task A should be completed as quickly
as possible’) and so on. In HCI, the quality of a interface is primarily determined by
reference to end-users, for example user performance and experiences. Several objective
functions have been proposed, ranging from performance to ergonomics, learnability, and
aesthetics [614]. There are many principled (and unprincipled) ways to obtain objective
functions: 1) literature (a model or theory from prior work), 2) data-driven approach (e.g.,
learning a function from human data), 3) standards (e.g., W3C accessibility requirements),
and 4) design heuristics.

After a practical problem has been formulated like this, numerous efficient algorithmic
methods (solvers) are available to solve it. They can search large numbers of possible
solutions to the problem. The solution that best meets the objectives is called the optimal
design. The process of ’solving’ can be intuitively understood as search for highest peaks
(when maximizing), or lowest valleys (when minimizing), in a vast ‘landscape’.

Optimization offers a rigorous and actionable formal definition of what design is. Design
task is an optimization task that consists of three elements:

A design space (a.k.a. search space, candidate space): a defined set of alternative designs
to be considered. The design space is defined by definining a set of decision variables
(e.g., “The x-coordinate of the ‘Cancel’ button”) with limited ranges.

Objective function Defines what a ‘good’ or ‘desirable’ design is. In practice, maps
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a design candidate (that belongs to the design space) to an objective score that
quantifies its goodness.

Task instance Defines task-specific variables (e.g., which menu commands must be placed
into a menu system).

Formally, optimization in HCI can be defined as search for a design vector in a design
space that maximizes the objective function:

Find x =

0

BBBB@

x1

x2
...
xn

1

CCCCA
2 X which maximizes f✓(x)

where:

• x is an n-dimensional design vector, each dimension describing a design variable;

• X is the set of candidate designs;

• f is the objective function; and

• ✓ is a set of parameters defining the task instance.

The first benefit of this approach for engineering is clear now: Defining a design space
like this allows examining its size and structure. When we start doing this for design
problems in HCI, we quickly realize that HCI’s design problems can be very large. For
example, for n functionality, there are 2n � 1 to combine them to an application, which
for only 50 functions means 1,125,899,906,842,623 possibilities. Combinatorics can be
used to analyze problem sizes.

Another benefit is that optimization provides methods to quantify how certain we can
be that our result in design is good. In optimization, a design is considered to be the
global optimum when the search method guarantees that it achieves the highest possible
objective score in the whole design space. Such guarantees are offered by methods like
exhaustive search and so-called exact methods (e.g., integer programming). When we do
not have access to those methods, for example because the complexity of the objective
function, we may claim global optimality. A design is approximately optimum when its
objective value is within some margin of the optimal design, or when there is a good
chance that only marginally better designs exist. Most of the methods we use in HCI can
only offer approximatively optimum solutions. To sum up, to say that a design is optimal
is to say that in the defined set of candidate designs, there is no better design (global
optimum has been identified). Indeed, the term ’optimal’ is overused and misused. In
order to claim that a design is optimal, one must answer the following questions: 1) The
best out of which options? (design space); 2) The best for what? (design objectives and
task instance); 3) The best with what guarantees? (search method)
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In comparison to formal methods in HCI – such as logic or state machines – optimization
offers an effective yet flexible way of expressing design knowledge and objectives in a
computationally approachable manner. Compared to data-driven approaches such as
artificial neural networks, optimization retains direct control of assumptions in design, in
particular via the definition of the design objectives. Optimization, furthermore, does not
depend on one’s ability to obtain a large training set, although its input parameters can
be learned from datasets using machine learning methods, if needed. On the negative
side, formalizing an optimization task does require careful analysis of the main factors in
play in a domain.

One outstanding problem is how to allow designers apply optimization in their practice.
The main issue is that designers are rarely able to express their problem at the level of
precision required to form an optimization. task. The “one shot” paradigm of optimization
is often impractical. In design practice, problems are ill-defined and designers learn and
update the problem definition and the design space (see item VI). Optimizer-in-the-loop
methods can help designers address this problem. In interactive design tools, designers
may explore designs, compare them, and find rationale for them.

39.3.1. Example: Assignment problems

The assignment problem is the most widely studied class of optimization problem in HCI
research. The task is to find a one-to-one correspondence between n items (e.g., letters)
and n locations (e.g., keyslots), such that the total cost of the assignment is minimized.
A valid assignment x can be defined formally such that every item must be assigned to
exactly one location, and every location must have exactly one item.

In the linear variant of the assignment problem, the objective function is a linear
function, for example X

i,k

cikxik (39.7)

Here, xik tells the assignment, i.e. that letter i was assigned to slot j, and cik tells the
cost of that assignment. Modern solvers can find the optimum solution efficiently.

However, in many HCI applications of the assignment problem, we need to account for
interactions among items and locations. These require adding a quadratic term of the
form X

i,j,k,`

cijk`xikxj` (39.8)

to the objective function. Here, we need to consider all pairwise assignments xik and
xj`. For example, the cost can be the time cost of moving the finger from key to another
key when typing typical bigrams or phrases in a language. In this case, c would be the
probability of that transition in language multiplied by the time cost. In Chapter 4, we
provided several motor control models, such as Fitts’ law, which can predict this time as
a function of movement amplitude and target size.

This quadratic formulation is flexible, as more objectives can be combined into the cost
term c, and they can be individually weighted against each other. For example, Feit et al.
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Figure 39.9.: The new Azerty standard was designed with the help of multi-objective
optimization [235].

used this formulation to help redesign the new French keyboard standard for Azerty [235].
They optimized the assignment of special characters against four objectives: performance,
intuitiveness, learnability, and ergonomics. These were based on HCI research or models
of data collected specifically for this study. Examples of assignment problems beyond
keyboards are the linear and grid menu problems. Given a set of commands and positions,
the goal is to assign the commands to positions in the menu.
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Paper Example 39.3.1 :

Adapting XR display locations with optimization
In cross-reality interaction, information displays need to be placed such that they

are reachable and visible to the user. Moreover, they should not occlude virtual nor
physical objects of interest. How to achieve this without writing a handcrafted rule
set?

Belo and colleagues presented an optimization-based approach to adapting infor-
mation displays while considering the geometric relationships that a user has with the
environment [230]. They define an optimization task with weights for user-defined
objectives. The objective function is a weighted sum of several objective terms:
reachability, visibility, occlusion etc. These objectives control where in the 3D space
a display is positioned in relation to the user’s current position:

End-users and developers can determine the weights:

Task instance is defined by the current positions of the display and the user in its
environment. Simulated annealing is used to solve the resulting optimization problem
in real time.

39.4. Pattern recognition and machine learning

Machine learning is fundamentally about computer programs that do not need to be fully
prespecified but that learn from data. That is, a programmer does not need to hand code
the precise behavior of the system. Instead, the system learns how to make, for example,
decisions by observing training data.

In general, a machine learning system extracts features from domain objects, that is,
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the objects we which to process, for example photographs that we wish to classify. The
features feed in as data into a model trained by a learning algorithm. The model provides
output. In other words, the machine learning task is the model taking data as input
and providing output in the form of, for example, classification decisions. The learning
problem is to come up with learning algorithm that can take training data as input and
provide a model as output.

Machine learning tasks are solved by using the right features to build the right models.
Thus, tasks are addressed by models. Learning problems are solved by learning algorithms
that produce models.

There are several tasks that we can use machine learning for:

Classification This means learning a classifier that can assign a label to data points,
called feature vectors, it has not seen before. A special case is binary classification
where we only consider two classes, such as classifying something as either true or
false.

Regression This means learning a real-valued function from training examples labeled
with the true function values. An example of a regression model is linear regression.

Clustering This means grouping data without prior information on the groups.

In addition, to these tasks there two fundamental classes of machine learning approaches.
First, we can learn from from labeled training data. This can for example be photographs
that are labeled with salient keywords describing the key objects in the photographs.
This is called supervised learning. However, it is also possible to learn from unlabeled
data. This is called unsupervised learning. In general, unsupervised learning is a more
challenging machine learning problem. However, it is useful as it may be difficult to
collect a large amount of representative labeled training data.

An important aspect when using machine learning in interactive systems is validation—
how do we evaluate machine learning algorithms? Unlike many other technical problems,
machine learning problems usually do not have a correct answer. Data is nearly always
noisy. For example, training data points are mislabeled and features contain errors, which
means it does not make sense to perfectly predict the training data as this would lead to
overfitting and a poor ability to generalize.

We therefore need to evaluate machine learning algorithms based on their ability to
perform classification, regression, and other machine learning tasks. For example, if we
count the number of correctly predicted data points and dividing by the total number of
data points we have tested, this provides us with a proportion which is known as accuracy.

To avoid overfitting on training data, that is, a poor ability to generalize, it is important
to split the data into training and test sets. To improve the robustness of this procedure
we typically apply this train- test split repeatedly in a process called cross-validation.
Split the data randomly into k parts of equal size and use k � 1 parts for training and
1 part for testing. We do this k times (k folds) and use the average test performance,
along with other measures of uncertainty such as standard deviation, as an indicator of
performance.
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Machine learning is a research field in itself and there are a wide array of approaches
available. Here we will describe a few fundamental machine learning algorithms in some
detail to give a flavor of how such models operate.

39.4.1. An example of machine learning: linear machines

As an example of what machine learning is about, let us consider what is known as a
linear classifier. This class of machine learning algorithms is also referred to as linear
machines.

We will consider what is called binary classification, which means we will attempt to
classify unknown data points as belong to one out of two predefined classes.

Linear discriminant functions. If there exists a linear decision boundary separating two
classes then the two classes are said to be linearly separable. If this is true then we can
form a linear decision boundary. This is defined by the equation w · x = t, where w is
a vector perpendicular to the decision boundary, x points to an arbitrary point on the
decision boundary, and t is the decision threshold.

The vector w is pointing from the center of mass of the negative examples n to the
center of mass of the positive examples p. w is therefore proportional to p � n.

By setting the decision threshold appropriately we can intersect the line from n to p at
its midpoint. This line is called a linear discriminant function in machine learning, and
w is a linear combination of the examples. Figure 39.11 illustrates this idea.

Any unknown data point will be classified as a positive example if it is above the line in
Figure 39.11 and otherwise as a negative example. This example uses binary classification
as it is straightforward to visualize. However, linear discriminant functions can also be
used to perform multi-class classification.

A linear classifier based on a linear discriminant function is a simple model that is
optimal under certain specific assumptions. However, when these assumptions do not
hold, which is frequently the case, then this method performs poorly. An example of
its use in HCI is as a machine learning method for allowing a designer to specify pen
gestures that can subsequently be classified by the system [698].
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Figure 39.10.: An illustration of a linear decision boundary separating positive and nega-
tive examples.

Support vector machines. For high-dimensional data, the data space is vast and as a
consequence the examples tend to be much further apart. Linearly separable data does
not uniquely indicate a decision boundary in such cases and therefore we face a problem:
which of the decision boundaries should we choose?

A margin of a linear classifier is the distance between the decision boundary and the
closest instance. A common decision is to prefer a classifier where the margin is the
largest. A particularly well-known example of a learning algorithm that attempts to
identify such “maximum margins” is what is known as a support vector machine (SVM).
This classification method is also popular in HCI applications that require classification
of, for example, sensor data as an SVM is more robust to noise than using a linear
discriminant function.

Assume we have some form of distance or scoring function that defines a decision
boundary: w · x � t. Then a true positive example data point xi will have the following
margin:

w · xi � t > 0 (39.9)

Further, a true negative example data point xj will have the following margin:

� (w · xj) � t < 0 (39.10)

For a given training set and decision boundary, let m+ be the smallest margin of any
positive example data point and let m� be the smallest margin of any negative example
data point. Then the sum of m+ and m� should be maximized for the maximum margin.
Further, since this sum is independent of the decision threshold t, we can readjust t so
that of m+ and m� are equal. The figure below illustrates a support vector machine with
a decision boundary and a margin separating positive and negative data points.

If the data is not linearly separable then we need to modify our support vector machine.
We can do this by relaxing the constraints when identifying the support vectors by
allowing some of the examples to be inside or at the wrong side of the margin. This
results in a soft margin support vector machine. The degree to how much the margin
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Figure 39.11.: An illustration of a suppor vector machine separating positive and negative
examples with a decision boundary (indicated by solid line) with a margin
(indicated by dashed lines).

is allowed to be influenced by this relaxation is controlled by a complexity parameter,
typically denoted C, which controls the optimization.

Support vector machines are capable of generalizing beyond linear decision boundaries.
This because support vector machines represent a notion of distance between data points,
and this distance is represented by a kernel. The default kernel is linear but several other
kernels exist. Changing the kernel allows a support vector machine to find nonlinear
decision boundaries in the data space. It is also possible to convert the distance between
a data point and the decision boundary to a probability through a process known as
calibration.
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Paper Example 39.4.1 :

Interactive machine learning
Interaction with AI can benefit AI systems developers as well as end-users. Inter-

active machine learning [231] is the idea to assist the machine learning algorithm by
allowing the designer to rapidly provide training data to correct errors made by the
learning algorithm.

The idea is exemplified a system that lets designers to quickly build a pixel-based
image classifier that allows the designer to focus on classification problems rather
than image processing, algorithm selection, or parameter tuning.

The image below illustrates the concept. The user first imports images to the
system and then performs manual classification. This provides the system with
labeled images. The system uses this dataset to train a classifier and provides visual
feedback on classification accuracy. The designer can now refine the classifier by
providing manual classifications. In the image below this is illustrated by the system’s
increasing ability to detect the hand in the image following additional classifications
by the designer.
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39.5. The limits of a model define the limits of its application

The success and failure of a computational method critically rests on a central element—
the information contained in its model. However, situations in HCI can be represented
in various of ways. Consider the creation of an algorithm that generates an information
visualization for a provided dataset. This visualization should allow users to quickly
understand the key facts in the dataset. To be useful, such a model need to cover
the key factors about the user’s task, the dataset, and possibly information about
human perception and decision-making. Such information can be represented in many
ways: as rules, mathematical models, and neural networks, among many other potential
representations. However, how do we know if the right information is there? To answer
this question, we need to open up ways in which a model can fail to represent the world.

One way for the model to fail is if it does not represent the true tendencies in the
world. For example, the model could hypothetically fail to represent the way in which
the color blue is hard to discern against a dark or red background. A common reason for
such failures is that there is simply too much variation in the data. This results in the
algorithm being unable to pick up the underlying trends in the data. The term aleatoric
uncertainty refers to such uncertainty caused by stochasticity.

Another way a model can fail is that it lacks knowledge about a relevant factor. This
is a much more challenging problem. For example, the visualization algorithm might
lack information about the limits of visual attention. Without such knowledge, there
is no reason why such an algorithm should not try to pack all information in a dataset
into a single graph which would be impossible for a user to comprehend. The model
underpinning the algorithm could also fail to contain information about the situations
in which its outputs are used. A mobile user, for example, can only distill the gist of a
complex dataset due the small form factor of the display. Without such knowledge, the
algorithm will generate charts that are unusable for such a situation. The term epistemic
uncertainty refers to uncertainty caused by lack of knowledge.

Models can also be biased in the way they capture certain factors. There are two
interpretations of bias, which are often confused. Statistical bias refers to the misrepre-
sentation of a distribution. For example, the visualization algorithm might favor certain
plot types, such as line charts, over others, with no basis in real data. The much harder
type of bias to catch is ethical bias, which refers to ethically questionable applications of
a model’s result. For example, our visualization algorithm could, without it “knowing,”
use labeling or color combinations that are considered offensive to some users.

HCI research plays a critical, but often underappreciated, role in identifying and recti-
fying inadequacies of models. It is through user research that we can expose requirements
that make us realize we need to include additional factors. Further, it is through evalua-
tions that we can expose biases and uncertainties in a model. Such shortcomings may
not be visible when examining the algorithmic accuracy alone. However, at the end of
the day, observations about models must be translated to the model, either through new
modeling assumptions or by making use of new datasets. Here HCI researchers have a
critical role in helping to ensure the representation is the right one, so that it represents
what it is supposed to represent without biases.
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Summary

• Computational methods rely on models that represent aspects of interaction for
computation.

• In envelope analysis, we chart the range of behaviors of an interactive system in
different conditions.

• In optimization, we search for best solutions to a well-stated design problem.

• In learning, we learn a model from data in order to solve a learning problem such
as classification.

Exercises

1. Feature engineering. Consider an accelerometer as a sensor. You are given the
task of designing an input technique using the sensor. When the sensor is lifted
quickly, it should trigger an event. What kinds of features would be informative for
detecting this action?

2. Optimization. Consider deciding the size of a button using Fitts’ law. According
to this model, if you want to minimize selection time, what happens to the size of
the button? Now, this design problem becomes much more interesting if you have
two or more buttons. Next, consider the case where you have a screen that has two
buttons next to each other. The screen has limited size of ws. You now need to
optimize the sizes of the two button to minimize expected selection time. What
happens to the sizes? Let us next assume that the two buttons 1 and 2 are accessed
with probabilities p1 and 1 � p1, respectively. What happens to the sizes of the
buttons?

3. Envelope analysis. This task continues from the previous one. Consider 1) button
size to be a controllable parameter, limited in the way described above, and 2)
parameter b to be uncontrollable parameters describing users’ properties. Carry
out envelope analysis for button size; that is, plot the envelope of button size as a
function of b.

4. Computational design. Consider a linear menu with n items. Formulate the task of
deciding the order in which the items should appear. Assume that you are given a
distribution that tells the frequency with which the items are selected by users. To
solve this exercise, we recommend first verbally defining the task, then defining the
variables that need to be decided, then defining the objective function, and then
possible constraints. Hint: This can be formulated as an assignment problem.

5. Developing a gesture recognizer. This task is for students familiar with neural
networks. The homepage of the book offers a real dataset on gestures recorded
using a computer vision sensor. The homepage offers a skeleton for a Pytorch-based
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recognizer. Define a classification problem, a neural network structure, a loss
function, and then train the network. What would be a sufficient level of accuracy
for a real application?
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