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40. Introduction to Evaluation

HCI is human centered. In other words, it takes an interest in the people who use
computers. An essential challenge therein lies in assessing whether an interactive system
will be or is ’good’ for people, works as intended, and whether adverse effects will occur.
We must ensure that the systems are practical, usable, and accessible and that they can
deliver the value to the people its designers imagined. In HCI, such assessments are called
evaluations. This part describes how to conduct evaluations of interactive systems.

In general, evaluation refers to the attribution of value. An evaluation states whether
something is ’good’ or ’bad’, or if it ’fails’ or is ’acceptable’. To arrive at such a judgment
for an interactive system, one must assess a design against some evaluation criteria, some
yardstick. These allow us to conclude in some definite way how good the system is.

Evaluation in this sense is different from the common-sense understanding of the word.
Introspective opinions from the developer do not suffice because they – in most cases –
are not a valid estimate of value offered to end-users. It is unwise – and often ethically
untenable – to base an evaluation on self-reflection, as such information is inherently
biased and unrepresentative. Evaluation methods should be systematic so that their
results can be trusted, replicated. and scrutinized by others.

Evaluations have played a central role in HCI through its history. They have taught a
lot about which design solutions work and in which way they do not work. For instance,

• Consolvo et al. [165] developed a mobile system to encourage physical activity and
combat a primarily sedentary lifestyle. They evaluated how 12 people used the
system for three weeks as part of their daily life. This evaluation showed us what
types of physical activity the participants performed and what activities the system
could and could not infer.

• Amershi et al. [19] collected 18 guidelines for a successful collaboration between
humans and AI. They show how practitioners can use the guidelines to evaluate
systems that rely on artificial intelligence. For instance, a guideline called “Make
clear why the system did what it did” helped practitioners identify many cases
where the systems violated the rule.

• The paper box below shows a classic HCI evaluation, which used experiments and
quantitative measures of usability to improve a system called Superbook over several
iterations. This evaluation helped improve the Superbook from being a reasonable
manual to being better than paper manuals.

Evaluation is related to other parts of the book, but distinct. User research (Part III
consists in obtaining concrete insights about particular users, their activities, their needs,
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40. Introduction to Evaluation

wants, and context of use. These insights are not evaluative and are typically collected
before anything is designed. In contrast, evaluation is about evaluating the value of an
interactive system for end-users. It is done after at least some implementation of an
interactive system has been produced. In other words, evaluation is about how good an
interactive system is, whereas user research is about informing what a good system might
be. Somewhat confusingly, some empirical methods may be used for either purpose. An
interview (see Chapter 11), for instance, may be used to understand users’ activities and
to evaluate a system; a think-aloud study (see Chapter 42) may be used both to learn
about a user’s work and to identify problems with usability. What differs is the intention
of the researcher in applying the method. Evaluation is also part of engineering methods
in HCI. Although there is great overlap with the methods covered here, Part VII discusses
two specific types of evaluation: verification and validation.

It is worth being clear on why we evaluate systems. For these reasons, evaluation has
become part of most models of human-centered system development. They include the
following.

• It is nearly impossible to make systems correct in the first attempt. Gould and
Lewis [280] pointed out that everyone builds a prototype. Some evaluate it one or
more times, and some simply deliver it to the customer or the marketplace.

• Evaluation is profitable. The literature on the return-on-investment of evaluations
is unequivocal. When money is spent on an evaluation, it is returned many times
[72].

• Evaluation can involve and engage users. Involving stakeholders in the design and
evaluation of interactive systems leads to better adoption of the systems and helps
keep ”continuous focus on users and their tasks” [280].

• Early evaluation helps prevent poorly thought-out or developed ideas from being
designed and introduced to people. Again, this saves resources. For comparison,
computer scientists and engineers often check and test that the systems store data
reliably, do not crash, and give accurate results. However, they rarely consider the
user perspective.

• Lack of evaluation can negatively reflect on designers and their organizations.
The Association of Computing Machinery’s code of ethics states that a computing
professional should “strive to achieve high quality in both the processes and products
of professional work”1.

Next, we first discuss in more depth the objectives of evaluation and then turn to the
yardsticks that may be used as the standard of evaluation. Based on this, we give an
overview of evaluation methods and discuss their key quality characteristics.

1https://www.acm.org/code-of-ethics
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40. Introduction to Evaluation

Paper Example 40.0.1 : Can computers better support reading than
paper?

Throughout the history of HCI, researchers have tried to understand why paper, as
a material, is so good for reading and how to create interactive systems that could
perform better than paper. The work on Superbook [215] is an example of iterative
evaluation of a system. Superbook, a version of which is shown on the left, is a
hypertext browsing system that provides access to content about statistics.

The evaluation of SuperBook consisted of three rounds of iterative software de-
velopment and evaluation. Evaluations were carried out as comparisons of searches
in SuperBook and printed manuals that offer the same information for tasks that
required finding answers to a question and an essay writing task.

The evaluations revealed three important results. First, as shown in the figure
to the right, the first version of SuperBook performs worse on question-answering
than the printed manual. People’s use of paper is flexible, and here even some of the
brightest minds of HCI could not make a system that in one iteration performed
better than the paper baseline. Second, through iterations, careful observations of
interaction patterns and usability problems helped to improve the system. Third,
the work shows that evaluations can use tasks that challenge users. In one test,
participants wrote essays using either the SuperBook or the printed manual. An essay
could, for instance, be about comparing three different functions of the statistics
system described. Among other things, an expert in statistics assessed the essays.
This example shows that an evaluation can address even complex tasks. One potential
benefit is that challenging tasks can better tease out differences among systems.

40.1. Goals of Evaluation

Evaluations may be performed for a variety of reasons. In general, those reasons shape
what is done in an evaluation, how it should be carried out, and how it is interpreted and
reported. Therefore, being upfront about the goals of an evaluation helps to make the
appropriate choices and plan the evaluation in the best possible way. Start with why.

A primary reason for performing the evaluation is to improve an interactive system.
This is a frequent activity in the practical development of interactive systems. Most
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40. Introduction to Evaluation

Attribute Measuring
concept

Measuring
method

Worst
case

Planned
level

Best case Now
level

Initial use Conferencing
task

No. of suc-
cessful interac-
tions in 30 min

1–2 3–4 8–10 ?

Infrequent use Task after 1-2
weeks disuse

% of errors Equal to
product
B

50% bet-
ter

0 errors ?

Preference
over product
B

Questionnaire
score

Ratio of scores Same as
B

None pre-
fer B

?

Table 40.1.: Examples of quantitative goals of a summative usability evaluation; adapted
from Whiteside et al. [867], p. 799.

software companies have people trained to conduct human-centered evaluations of their
software. These evaluations may identify features of the system that unexpectedly do
not work well for a particular group of users, a particular task, or in a particular use
situation. We may then change those features in a future version of the system. For
this reason, evaluations for this purpose are called formative because they help shape a
system. Formative evaluation is essential in the iterative development of a system because
it provides information on what to improve in the upcoming iterations. As an example of
improving a system with evaluation, icons in the early Xerox Star computer (early 1980s)
were extensively evaluated [70]. Among other things, the evaluation investigated whether
users could precisely associate a name with an icon and to what extent they found an
icon easy or difficult to “pick out of a crowd”. This evaluation helped to choose the set of
icons used for the Star.

The other main reason for evaluations is to discover how well an interactive system
performs given some objective. The goal here is not to inform the design but to ensure
that the system satisfies the objectives. This objective may be part of a requirement
specification, be included in a contract, be used to select a system for procurement or
establish a superior design. This use of evaluation is often called a summative evaluation.
As an example, Whiteside et al. [867] proposed the establishment of quantitative objectives
for different aspects of an interactive system. Table 40.1 shows three examples of such
objectives for a conference system. The specific methods used to investigate these
objectives may be of any kind.

A related but important goal of the evaluation is identify system features that work
well. This is not related to the two main evaluation goals but is important because it
may help confirm that our expectations of a particular design have indeed been fulfilled.
Moreover, pointing out the positive features of a design has been found to be a good
way to make the evaluation stakeholders, for instance, developers of interactive systems,
appreciate the evaluation. Therefore, usability reports often list positive findings, and
meeting non-functional objectives (such as those in Table 40.1) may also be an important

819



40. Introduction to Evaluation

finding. Evaluations can also teach us about factors outside the evaluation criteria. They
may teach us about users and their tasks. For instance, a user in a think-aloud study
may react to a task by saying “we do not usually do it that way”, which is important
information. Therefore, we are essentially getting information from the evaluation that is
usually obtained through user research. An example of a discovery made in an evaluative
study is given in the paper box.

Paper Example 40.1.1 : Discovery of cascading error patterns in speech
input

Evaluative studies sometimes lead to discoveries. A study is run and an anomaly is
found, some pattern that goes against expectations. By further analysis of process
data – that is, measurements of what happened during interactions – potential causes
are exposed.

For example, the discovery of cascading errors in speech input has been motivated
for years by a finding made in 1998. Halverson et al. [304] studied three commercial
automatic speech recognition systems from the late 1990s. Although the recognition
accuracy was not as high as currently, the error type that the authors found remains
relevant.

The authors found that the input of speech was not at the level of efficiency of
keyboards. Even after extensive practice, the performance of users was inferior by
a large margin. This finding went against the prevailing idea that speech input is
’natural’ for users. Speaking to a computer is very different from speaking to another
human. In particular, users make very different types of error.

Trying to learn more about this, the authors discovered a prevalent types of error:
the cascading error. When a speech recognition error occurs, the user tries to fix
the error by indicating which word needs to be fixed and then redictating the word.
However, since the word was incorrectly recognized the first time, it still has a
higher than average chance of being incorrectly recognized. Moreover, providing
voice commands, like UNDO, to delete a word, can themselves be misrecognized.
Shortcomings like these can lead to frustrating episodes in which a user tries to fix
the same word over and over again in different ways. Even a single episode like
this can destroy a user’s average performance in an evaluative study. The discovery
of cascading errors motivated several interaction techniques and speech recognition
approaches specifically addressing this problem.

40.2. Yardsticks of Evaluation

As mentioned above, evaluations strive to attribute value to an interactive system. Such
attribution requires some way of measuring value for end-users. However, to state that
something is ’good’ in the case of interaction is tricky. What is ’good’? If a system is
very responsive, does it mean it is usable? It depends. If a user is skilled at using a
poorly designed system, does it mean that the system is usable for that person? Again,
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40. Introduction to Evaluation

it depends. A defining characteristic of evaluation in HCI is that neither people nor
technology can determine evaluation alone. What is ‘valuable’ emerges via interactions
between people and technology.

The basic question in evaluation, then, is how we set our ‘yardstick’ against which we
evaluate systems. Such yardsticks are typically derived from our view of what a good
interaction is (see Part IV) or from the design objectives of user interfaces (see Part V).
For instance, an interactive system is only useful if it is usable. Thus, we may use a
particular task as a yardstick and assess a system as good if a large percentage of users
(say 80%) can complete it.

Table 40.2 shows some examples of the kinds of interfaces that interactive systems
may be evaluated against. Some of these are absolute. For instance, we may assess
an interactive system on user satisfaction and use a questionnaire for which we have
standard. Some ways of measuring user satisfaction provide reference values (e.g., the
System Usability Scale gives a score between 0 and 100; typically, systems score 70 [40]).
We may also set a goal for a system so that it is learnable over a certain period of time.
Absolute yardsticks may be applied to a single system. Other yardsticks are relative.
That is, an interactive system can only be considered valuable in comparison to another
system, be it a competitor, an earlier version, or an alternative user interface. This is
often accomplished by experiments.

To use a yardstick for evaluation, it should be operationalized. That means that general
constructs (such as finding “no usability problems”) need to be turned into a procedure
that allows us to measure a system against the yardstick. For example, usability is often
operationalized as a usability test where selected tasks are given to invited participants to
complete, while their task completion time, errors, and satisfaction are measured. ‘Error’
can be measured in many ways, such as inaccurate presses, misconceptions, or entering
faulty states in the system.

Finally, we need to make conclusions based on the data obtained. If a user fails three
times in completing a task out of ten, can the system be considered ’usable’? Because
the constructs are about good interaction, many of them have been covered in earlier
parts of the book. For instance, they include usability, accessibility, autonomy, awareness,
memory load, and many more.

Note that merely describing a person’s interaction with a system does not constitute
an evaluation. We may describe which commands people use to interact with a system,
in which posture they interact, or with what type of content they engage. None of these,
however, gives us information about whether the interaction is good or bad. For instance,
even something as straightforward as time requires a standard: low time usage may be
interpreted as lack of engagement, or it may be interpreted as high efficiency [346]. The
valuation you make depends on your evaluation standard. However, descriptions may be
useful in themselves. They may also, in combination with a yardstick of what is good
or bad, be used for evaluation. Such a standard may be an optimal set of commands to
compare against a biomechanically efficient pose, or the content of positive valence.
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40. Introduction to Evaluation

Yardstick Definition Example method

No (critical) usability prob-
lems

The system does not make the user
err, confused, or give up a task

Think aloud
study

Don’t make the user think The system should not “make me
think” unnecessarily [431]

Think aloud
study

Comply with guidelines The system should comply with
known characteristics of good sys-
tems as captured in guidelines.

Heuristic evalua-
tion

Meets usability goals The system should meet specified,
quantitative goals for non-functional
requirements

Summative us-
ability test

Compares favorably to X The system should be better than
some baseline system X on some
measure of usability, accessibility, or
similar

Experiment

Compatibility with user
practices

The system can be adopted, appro-
priated, and accepted to the every-
day life of users

Field study

Reduce cost of maintaining
system

Reduce calls to support center Deployment
study

Safety The system does not subject anyone
to an unacceptable level of risk

Multiple

Meets user requirements Requirements specified based on
user research are met

Multiple

Table 40.2.: Examples of yardsticks against which to evaluate interactive systems.
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40. Introduction to Evaluation

Paper Example 40.2.1 : Evaluating Sustainability

Yardsticks for evaluation may be complicated to articulate and operationalize. This
is because the evaluation may concern any aspect of when the interaction is good.
To illustrate this complexity, let us consider how to evaluate whether a system is
sustainable.

Sustainability has emerged as a topic in HCI since around 2007 [78]. Naturally,
sustainability can act as a yardstick against which to evaluate a system. One such
evaluation was done by Preist et al. [657], who were interested in how the digital
service provides might accurately assess the greenhouse gas emissions associated with
particular services. In particular, they were interested in quantifying the amount of
greenhouse gas emissions resulting from a year of YouTube use.

The evaluation showed that YouTube use in 2016 created greenhouse gas emissions
similar to those of Frankfurt or Providence.

Moreover, people often use YouTube only for audio. In the case where half of
the music streaming on YouTube is audio only, it is possible to directly save 6%
of the total greenhouse gas emissions. Moreover, the evaluation shows that the
infrastructure for streaming content, in particular user’s devices and the mobile
network, contributes the most to emissions. According to Preist et al. [657], these
network costs should be part of the sustainability evaluation.

40.3. Evaluation Methods

Evaluations are done with established systematic procedures to carry out them. Such
procedures are called evaluation methods. Evaluation methods contain at least some
yardstick for evaluation, a process for performing the evaluation, tools to support the
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40. Introduction to Evaluation

evaluation, and a standardized way of reporting the evaluation. Considerable research
has gone into establishing good ways of evaluating systems that are valid, reliable, and
useful as a way of giving input to the design of interactive systems.

Table 40.3 shows an overview of some key evaluation methods that will be covered in
detail in subsequent chapters. These methods differ in some key ways. Often analytic
and empirical methods are distinguished. In analytical evaluation methods, an evaluator
compares an interface to guidelines, principles, or theories of good interaction. The
assessment of the interface does not involve (actual) users. In empirical methods, users
interact with the interactive system, and that is used as the basis for evaluation.

Another distinction between evaluation methods is whether they are performed in
laboratory versus evaluations done in the field. Laboratory evaluations are done ’in vitro’,
away from the users’ usual use context. They may therefore be done on interactive
systems that are incomplete. The laboratory also allows for experimental control. Field
evaluations are carried out during the actual use of a system. They offer fewer options
for control. They emphasize realism [518]. Neither of these two approaches is superior
to the other; each of them simply has different benefits and limitations. For a recap of
realism, generalizability, and precision, and McGrath’s arguments about the fallibility of
all methods, see Part III.

Evaluation methods also differ with respect to what representations of systems they
may be based on. Early representations of systems, including use cases, scenarios, and
storyboards, can be evaluated. Paper prototypes, hi-fidelity prototypes, and interac-
tive systems that have been used for years may also be evaluated by some techniques.
Evaluation methods exist for all types of system representation.

As mentioned, the methods discussed in the user research part (Part III) may also
form part of evaluations of interactive systems. Thus, all forms of interviews discussed
in the chapter on interviews (??) can be part of the evaluation. The defining feature
of evaluations is that they assess the value of systems relative to some yardstick. In
themselves, interviews do not help to do that—we need some way to turn the content of
interviews into a valuation of the interactive system.

40.3.1. Tailoring Evaluation Methods

Evaluation methods are not generic to all people, activities, technologies, and contexts.
They may be tailored to particular instances of those, just as we learned that understanding
people may draw on specific information about a group of people or a certain domain.
For instance, Druin [210] discussed the strengths and challenges of involving 00 children
in the testing of interactive systems. She argued that children can offer suggestions on
tests that are surprising to adults. They must also be handled differently from adults
during the test. The literature also contains adaptations for elderly users and people with
disabilities [824].

Similarly, for specific technologies, we might also draw on evaluation approaches that
are tailored to those technologies. For instance, researchers have developed guidelines
that fit a range of technologies, including artificial intelligence [19], displays that are
distributed in the environment [501], or groupware application [641].
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40. Introduction to Evaluation

Method Definition Pros Cons

Heuristic evalua-
tion

An analytic evaluation
method in which evalua-
tors go through an inter-
face using a list of features
of good user interfaces

Inexpensive, can
be used on all rep-
resentations of a
system

False positives

Think aloud test-
ing

Users verbalize what they
think about while they
solve tasks with an inter-
active system; the thinking
aloud is analyzed to find
usability problems.

Inexpensive, con-
vincing

Short-term use,
difficult to find
some problems

Usability test An evaluation of the usabil-
ity of an interactive system
with representative users
doing representative tasks

Direct assessment
of usability

Misses the
broader context
of use

Experiment An experimental compari-
son of the usability of at
least two user interfaces

High precision;
clean comparisons

Limited realism

Deployment
study

Measure evaluation criteria
after deployment with real
user

Problems are real Expensive, may
disrupt work

Table 40.3.: Central evaluation methods and their pros and cons.
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40. Introduction to Evaluation

Evaluation methods can also be tailored to particular activities. For example, the
evaluation of games has seen the development of particular heuristics [805] and methods
[521], the evaluation of mobile computing has seen the extensive use of treadmills as a
way to simulate the demands of walking [64].

In all cases, the evaluation methods are improved by being more specific and tailored
toward specific users, activities, contexts, or technologies. Unfortunately, little is known
about how these customized evaluation methods perform relative to generic ones.

40.3.2. How to Choose an Evaluation Method?

At this stage, the reader might ask: Which of all these methods should we use in a given
project? Due to the diversity in interactive systems, user goals, and use contexts, there is
no silver bullet of method choice. Professional evaluators master a toolbox of methods
and tailor them in a case-specific manner. Part of their considerations revolve around
the goals of the evaluation relative to the pros and cons of each method. For instance,
analytical methods work best for relatively simple designs and assume that experienced
evaluators are available. Due to their high false negative rate, they should not be trusted
for complex or safety-critical systems. For the novice evaluator, think-aloud testing is
often a good choice.

40.3.3. Validity, Reliability, and Impact

As with user research methods (see Part III), evaluation methods raise several fundamental
questions about the quality of their application. Some of these are similar to those discussed
in the earlier part, but some are different.

The validity of an evaluation is about whether the evaluation result is the real value of
the system. For instance, usability problems predicted by an evaluation method should
be real problems for real users doing real tasks; otherwise, the evaluation is invalid.

In general, the results on the validity of different validation methods are mixed. However,
a couple of findings stand out. First, numerous studies have shown that analytic evaluation
can find a high proportion of problems that cannot be found in think-aloud studies. Second,
even usability problems found in think-aloud tests might not be serious if the users that
run into them in a test find a workaround that they can apply every time they subsequently
face the problem.

The reliability of an evaluation refers to whether the findings of an evaluation would
be changed with another set of evaluators or if it is repeated. If that is the case, the
trustworthiness of findings is reduced, and it is unclear if action should be taken on
the problems, as they might disappear if the evaluation was run again. Reliability has
been the topic of much work on evaluation methods [e.g., 539, 375]. The Comparative
Usability Evaluation (CUE) studies, for instance, have numerous times compared the
performance of different evaluators or teams of evaluators on the same evaluations find
markedly different usability problems2.

2See more at https://www.dialogdesign.dk/cue-studies/
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40. Introduction to Evaluation

Impact is about ensuring that the evaluation results can be used for their purpose, in
particular, with regard to formative evaluation. Impactful results will help change systems
for the better by being convincing and offering concrete input or ideas on how to solve
problems. John and Marks [380] compared the so-called persuasive power of usability
evaluation methods. This refers to whether a developer, upon reading a description of a
usability problem, actually changes the interactive system.

One of the advantages of usability tests, for example, is that they help convince
developers that problems are significant. By seeing videos of users struggling, developers
might be more easily persuaded that they must fix usability issues within a system.

40.4. Is Evaluation Needed?

Evaluation requires choosing appropriate yardsticks that best appraise the system against
its intended effects. Such yardsticks vary greatly but may include benchmarking against
other systems, avoiding usability problems, or increasing subjective satisfaction.

The assumption behind this is that evaluation, in particular empirical evaluation, is
indispensable in HCI research and practice. However, several researchers have tried to
nuance this view. It is worth emphasizing that these voices are primarily addressed toward
HCI research and not HCI practice.

One example is an essay written for CHI Fringe3 in 2003 entitled the “Tyranny of
Evaluation” [1]. The essay does not say that evaluation is useless but laments the perceived
sentiment (at the time) of top HCI publication venues being reluctant to accept HCI
research papers proposing new ideas and systems without evaluation. The essay argues
that it is frequently not possible to carry out sufficiently controlled experiments for the
results to be reliable. Therefore, caution is advised and it is necessary to accept a plurality
of ways of appreciating HCI research.

Five years later, a paper by Greenberg and Buxton [285], entitled “Usability Evaluation
Considered Harmful (Some of the Time)” expanded on the essay. The argument in this
paper is that often usability evaluations are carried out without much thought, merely
because it is usually required or, as we have argued earlier, because there is an idea that
evaluation is indispensable in HCI. However, thoughtless evaluations can harm scientific
and practical progress. For example, evaluation does not help idea generation and, on the
contrary, may undermine it. Evaluation does not help anticipate how people will adopt
and adapt technology. Further, visions of future interfaces often necessitate a gradual
evolution of imperfect prototypes. Such prototypes, particularly at the early stages, are
unlikely to perform well in initial ’thoughtless’ summative evaluations.

Another counter-argument to the need for evaluations is the view that interactive
systems are objects of design or art. Their value is derived from the artist’s or designer’s
vision and intuition; therefore, it is unnecessary to evaluate them. This view essentially
means that the designer is giving up on being human-centered. To claim that a design

3CHI Fringe was a special ad-hoc track at CHI 2003. The first year the track was rather informal, and
contributions were simply made available on individual authors’ websites. Later, CHI Fringe became
a formal track at CHI, which is currently referred to as alt.chi.
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process has been human-centered places a burden of responsibility to demonstrate evidence
that the results achievable with a system can be positive.

In summary, interactive systems are complex and simply assuming that they work as
intended by their design is naive. Evaluation is about appraising whether a design meets
its objectives. Evaluation is essential for the development of human-centered technology
and indispensable for HCI research. Yet, there are cases where HCI-focused evaluation
is not possible or needed. Evidence should be commensurate with claims. Whenever
our design intends to have an effect on users, we should try to validate those claims via
evaluation. Empirical evaluation is one way to do that but, as we learn in this Part, not
the only way. However, if the objectives are not human-centered, but technology-focused
or economical, the methods in this part may not be relevant. For example, if your work
focuses on reducing rendering latency on a VR headset, technical measurements may
suffice, assuming that other aspects affecting user experience are not changed. Yet, we
believe that the fact that evaluation is hard and not infallible should not shun one away
from it.

Summary

• Evaluation is necessary because systems are never perfect and because of the
complexity of people, their activities, and physical, social, and organizational
context.

• Evaluation methods have different strengths and weaknesses; they may be tailored
to specific technologies and user groups

• Validity, realiability, and impact are key concerns for evaluation methods.
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41. Analytical Evaluation Methods

Most evaluation methods we will discuss in this part are empirical ; that is, their primary
source of data is derived from measurements and observations of real people. Although
empirical methods offer the gold standard for evaluation, they are labor-intensive, costly,
and at times ethically problematic. Evaluators therefore started to ask if it would be
possible to evaluate a design pre-empirically; that is, without involving users.

Analytic evaluation methods in HCI are a class of evaluation methods that do not
require the collection of data on (real) users. Their purpose is to assess the usability of a
design and expose probable errors based on good questions, rules of thumb, or models of
performance prediction with a user interface. In general, analytical methods consist of
(a) a process for performing the evaluation and (b) a set of resources to be used in the
process. The resources help the evaluator predict what problems a user might encounter
when using an interactive system, which parts of a user interface to focus on, or what the
users’ performance with the system might be. Importantly, some of these resources serve
as a yardstick against which to compare a user interface or a design.

The main idea of an analytic method is simple to demonstrate: Let us consider the
task of sending a message using your email app. First, take your mobile phone and open
the messaging application. Then, decide on a recipient and a message that you would
like to send. Then execute this task. While doing that, write down on paper all steps you
needed to take; steps such as clicking, touching, scrolling, searching, deciding, etc. Now,
repeat the sequence, but this time purposefully introduce one error somewhere in the
sequence. For example, you could press the wrong button when you are supposed to send
the message. What happened? Did the interface try to prevent you from making an error,
for example, by disabling that button? Did it inform that there is an error? Did you
easily recognize that you had made a mistake? If so, did the design help you recover from
that error? These considerations exemplify one heuristic evaluation guideline, called “Help
users recognize, diagnose, and recover from errors” (see section 41.1 for a comprehensive
set of heuristics). Heuristic evaluation is one of the lightest-weight analytic methods,
meaning that it is inexpensive and can be applied at all times throughout development.

Heuristics are rules of thumb that are often expressed as guidelines. They are imperatives
that instruct how to design and how not to design: for example, strive for consistency
[752]. HCI has a long history with guidelines, with guidelines developed for almost every
interface technology, from computer terminals in the 1970s to AI systems in the 2020s.
All major organizations have their design guidelines and associated design systems.

But where do the guidelines come from? Guidelines, as all analytical methods discussed
in this chapter, are inspired by either the experience of professionals working in the
field or theories of cognition. Most design guidelines are based on expert experience.
They summarize what works and what does not. Johnson [383] is a recent example of
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attempts to rethink guidelines from the cognition point-of-view. Johnson argues that
proper rationale should be given for the guidelines. Many of them are directly rooted in
an understanding of human cognition. Table 41.1 lists the guidelines based on Johnson’s
book Designing with the Mind in Mind.

Analytical evaluation methods, in general, are used for three purposes [32]:

1. In design, they are used to identify potential usability problems so that they can
be rectified in design before deployment; this is a form of formative evaluation.
For example, Langevin et al. [447] developed a heuristic evaluation method for
conversational agents. The method can be used to identify potential usability
problems of a prototype design. The heuristic sets expand that of Nielsen and
Molich [576], which has been popular in GUI evaluation, and include the following
heuristics: Visibility of system status; Match between system and the real world;
User control and freedom; Consistency and standards; Error prevention; Help and
guidance; Flexibility and efficiency of use; Aesthetic, minimalist and engaging design;
Help users recognize, diagnose and recover from errors; Context preservation; and
Trustworthiness.

2. In evaluation, they are used to assessing usability against a baseline design or
assess how ready a design is for deployment; this may be formative or summative
evaluations. For example, a cognitive walk-through can be used to assess if users face
problems learning to use a new system. Information systems for nurses, for example,
often need to work intuitively. In a recent study [234], five expert assessors evaluated
a nursing information systems. They identified 24 unique usability problems. The
authors argued that by fixing some of the most critical issues, the learning time
and cognitive load experienced by nurses could be improved.

3. In accident investigation, they are used to identify factors that can increase the
chance of accidents. Human error analysis, for example, is used in aviation in
accident analysis [870].

Analytic methods are appealing because of their cost-efficiency: The savings can be
remarkable compared to an empirical study. Unlike other forms of evaluation (such as
think-aloud studies, see Chapter 42), analytic evaluations are relatively quick to perform.
The cost of an analytical evaluation is primarily composed of the cost of the salary for the
evaluators. However, not anyone will do. For high-quality evaluations, evaluators need
to be trained in the methods. The higher the expertise, the better the results. Analytic
methods can also be used on all types of representations of designs, from a system in
use to an early mock-up of a design idea. Finally, analytic evaluation methods can help
identify solutions to a problem. If a heuristic like “Help users recognize, diagnose, and
recover from errors” is breached, it may trigger ideas on how to fix the situation.

However, analytical evaluation methods are not a replacement for empirical studies.
Compared to empirical studies, analytic methods tend to have high rates of false positives
and false negatives. Cockton and Woolrych [160] found that 65% of the predictions from a
heuristic evaluation were incorrect; Hvannberg et al. [361] found that 62% of the problems
could not be found in a usability test.
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Guideline Cognitive Factor Example
Design for a biased
perception

Perception is biased by experi-
ence and goals

Placing ’OK’ button to an unfamiliar
place may make users not see it

Design for fig-
ure/ground percep-
tion

Perception evolved to see struc-
ture in environment

Structure information into wholes using
visual cues like proximity, closure, and
common area

Design for easy
scanning of text

A visual hierarchy (e.g., headings,
bulleted lists, tables) helps form
structure

Instead of writing out a paragraph of
text, show it as a heading and bulleted
list of steps or points

Design for limited
memory

Human working memory is lim-
ited and easily distracted

Avoid moded designs, i.e. that effects of
input depend on which state the inter-
face is in, as the mode can be forgotten
by user

Design for goal-
driven attention

Attention is biased toward goal-
relevant items in an interface

Present task-relevant information in a
way and position that is relevant for the
on-going task of the user

Design for recogni-
tion, avoid insisting
on recall

Recognizing stimuli is faster and
less error prone than actively re-
calling facts

Show options from which users can
choose (e.g,. icons, images) rather than
requiring them to recall names (e.g,. lo-
gin names, passwords)

Design for goal-
driven attention

Attention is biased toward goal-
relevant items in an interface

Present task-relevant information in a
way and position that is relevant for the
on-going task of the user

Design for the right
level of skill

Frequency, regularity, and type
of practice affect the level of skill
that can be expected from user

Use consistent terminology and labels
throughout the user interface

Design for slips A wrong routine can be incor-
rectly executed if the visual en-
vironment bears similarity with
the right one

If a rare interaction has risks involved,
make it visually dissimilar from routine
ones

Table 41.1.: Practical design guidelines rooted on study of human cognition. Adapted
from Johnson [383].
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A common cause for the low hit rate is that their successful application heavily depends
on the skill of the evaluator. If two evaluators were to perform the same analysis for the
same case, their results might be different. In other words, inter-evaluator agreement
tends to be low, leaving also analytic evaluation methods threatened by the evaluator
effect (see Chapter 42). The limited scope of analytic methods is another threat to validity.
Analytic methods pertain to a few predefined aspects of usability. Analytic evaluation
methods do not reliably capture phenomena within their scope; and they never capture
those outside of their scope. For these reasons, analytical methods are not a replacement
for empirical evaluations. They are best seen as complementary. When correctly applied,
analytic methods decrease the cost of iterative design and increase its chances of success.

In the rest of this chapter, we look at five different approaches to analytic evaluation.

1. Heuristic evaluations, which capture theories and practitioners’ experiences in what
causes problems in interaction;

2. Human error identification method, which is used to identify the potential for human
error;

3. Cognitive walkthrough, which builds on a theory of human cognition to propose
how to evaluate the learnability of a design;

4. Keystroke-level modeling, which is a simple mathematical model of experienced
users’ performance that predicts users’ task completion time; and

5. Automated usability evaluation, where a yardstick for user interfaces is applied
automatically to interactive systems.
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Paper Example 41.0.1 : Analytic evaluation for inclusiveness

Analytic methods are cost-efficient methods often considered to be limited to usability.
But plenty of methods have been developed for other factors that is important in
HCI, including inclusiveness. How could one evaluate if a design is inclusive?

GenderMag is short for Gender Inclusiveness Magnifier [111], an evaluation method
created to investigate the inclusiveness of an interactive system. The idea is to
combine personas (see Chapter 15) with walkthroughs, which we talk about later in
this chapter.

The method presents three customizable personas: Abi, Patricia/Patrick, and Tim.
While Abi and Tim represent deliberately gendered personalities, Patricia/Patrick is
decidedly neutral in those aspects and stronger in other facets (e.g., learning style).
All three have five facets describing them in more detail: motivation, computing
self-efficacy, risk attitude, information processing style, and learning. Self-efficacy
here refers to beliefs about one’s ability to complete computing tasks successfully.
The evaluator starts by filling in these characteristics in light of user research data.
They also walk through like actions and related those to the personas. In all steps,
the evaluator can identify problems with the interactive systems.

An evaluative study reported a high positive rate in predicting a software’s inclu-
siveness.

InclusiveMag is a generalization of GenderMag that considers not only gender but
eight diversity dimensions [522].

41.1. Heuristic Evaluation

The term heuristic refers to a ’rule of thumb’. It is a rule of sort, but typically loosely
defined. For example, if you love cooking, you may know a heuristic for checking whether
an egg is edible or not. If you place an egg in boiling water, and it floats, instead of
sinking to the bottom, it is likely to be inedible. In computer science, heuristics refer
to rules to solve computational problems. For example, a useful heuristic in computer
science is the following: a list of numbers can be sorted in increasing order by following a
rule: Pick any item: if it is smaller than the one before it, swap the two. If you continue
applying this rule, eventually the whole list will be sorted. In HCI, heuristics refer to the
best practices identified by practitioners working in the field. They are typically expressed
as ’dos and don’ts’. Applied to a design, they can identify potential problems in usability.

A usability evaluation heuristic is a rule for evaluating a user interface. They are used
to detect probable usability problems. In a heuristic analysis of an interface, an evaluator
is provided a set of heuristics and the interface. The task is used to detect breaches of
the heuristics; in this case, the heuristics serve as the yardstick for the evaluation. In
case of breaches, the inference is that users will experience usability problems in using
the system or that the usability of the system will be negatively affected.

Numerous heuristics have been presented for different platforms and uses, from graphical
user interfaces over games to web pages [690]. The most popular heuristic evaluation
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method is attributed to work by Molich and Nielsen in the 1990s [540, 576]. They clustered
hundreds of evaluation guidelines available at that time. They found that a small set
of guidelines described much ground. Based on feedback and a factor analysis study, a
revised list, still considered the main heuristic set.

Visibility of system status The current state of the system should be visible to the user.
A simple example is a progress bar that indicates the progress of a long-term
operation (such as downloading a large file).

Match between system and the real world The user interface should follow the lan-
guage and any relevant conventions users are already aware of. If a user has to look
up a term to understand it, then usability is reduced.

User control and freedom Users should be encouraged to explore different ways of achiev-
ing their goals in the user interface. To allow this, it is important that users can
reverse their actions. The ubiquitous undo and Redo functions are examples of
interface features introduced to support this heuristic.

Consistency and standards First, user interfaces should follow standard platform, sys-
tem, and industry conventions. This is sometimes known as maintaining external
consistency. Second, similar interface features should be consistently labeled and
visualized throughout the application or system. This is known as internal consis-
tency.

Error prevention The user interface should be designed to prevent errors, for example,
by displaying a warning and requiring user confirmation before a non-reversible
action is triggered, such as deleting a file.

Recognition rather than recall It is more difficult for users to recall from memory how
to trigger an action than it is to recognize a mechanism for triggering the action
shown on the display. Therefore, any information required to trigger common
actions, such as labels, buttons, and menu items, should be either immediately
visible or easily retrievable.

Flexibility and efficiency of use Since users inevitably vary in their proficiency of a user
interface, it is often effective to provide interface features that tailor to different
users. A simple example is providing keyboard shortcuts for menu items and toolbar
buttons that allow an expert user immediate access to these functions, while a
novice user can still use direct manipulation to easily locate them (albeit at a slower
pace). Another strategy is to allow users to customize the user interface or have
the user interface adapt to the user.

Aesthetic and minimalist design Ensure that the user interface focuses on content and
information essential for allowing users to achieve their primary goals. Avoid
providing information that is rarely relevant and avoid introducing user interface
elements that may distract users.
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Help users recognize, diagnose, and recover from errors Provide error messages that
are understandable by users and offer a clear solution path to rectify the problem.

Help and documentation If documentation is required, ensure that it is focused on
aiding users in their tasks and is easy to search. If possible, present documentation
within the context it is required, such as a step requiring the user making a decision.
Any help is best provided by listing the concrete steps necessary for the user to
carry out the task.

41.1.1. How to do a Heuristic Evaluation?

Heuristic evaluation is best learned through an exercise. Take your laptop and open the
settings panel of your OS (operating system). Decide a setting you want to change, such
as the way your mouse cursor behaves (its ‘transfer function’), and the particular value
you want to set it to. Now go to starting view and execute the required (i.e., correct)
actions and write down all steps on paper. Then go through each step and compare
against each heuristic of Molich and Nielsen given in text. What to do with the result?
First, count the number of heuristic violations. Is this an acceptable number? However,
counting does not tell much about the real-world relevance of those violations. Second,
think about your users: what is important to them and which violations would be harmful
to them? Now classify the violations into three classes of severity: (1) minor, (2) critical,
(3) catastrophic. Mark the severity of each violation in the list above. If you have a single
critical violation, you can consider that the design failed.

Slightly more formally, the resources that evaluators use in a heuristic evaluation are
(a) the choice of heuristics and associated training materials, (b) a way of going through
parts of the interactive system that is being evaluated, (c) a process for evaluation, and
(d) analysis and reporting of the problems identified.

Choice of Heuristics

For choice of heuristics, the most common is the Molich and Nielsen heuristics described
above. This is a safe option. Typically, each of these heuristics is associated with a more
extensive explanation or teaching material. For example, the visibility of the system
status concerns whether the user knows what an interactive system is currently doing
and what it is possible to do with it. For instance, showing that the CAPS lock key on a
keyboard is active (for instance, by a light on it or a “CAPS LOCK ON” text field on a
display is a way of making the system status visible. Material for the above heuristics is
available in Nielsen [574].

However, heuristics that are customized for a particular use situation or user group
can have better hit rate. But how to construct an effective heuristic set? Some heuristic
sets are based on an authorative expert’s view: ‘This works but this doesn’t’. This is
fair: to the extent that these are empirically validated and their scope is well known,
it does not matter where heuristics come from. However, to develop a set of heuristics
that better captures consensus in a specific application area, several experts must be
involved. This can be done either pre-hoc, by including several experts to jointly develop
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heuristics, or post-hoc, by clustering heuristics that experts have already developed. Such
specialized examples include heuristics for evaluating displays that are distributed in the
environment [502], mobile computing [68], and the playability of games [186]. A longer
worked example of heuristics developed for interactive AI given in the Paper Example
box below.

Choice of System Parts to Evaluate

The original instructions for heuristic evaluation were unclear as to which parts of a
system to evaluate and how to go through them [161]. Several different approaches have
emerged. The evaluator may follow a system scanning approach. In that, the evaluator
scans the system, looking for a breach of heuristics. This helps cover most of the features
of a system. Alternatively, the evaluator may use a set of tasks that are representative
of what users would like to do with the interactive system. This helps to keep the
evaluation focused on what users would want to do and helps to uncover dependencies and
inconsistencies in a larger task. The choice is up to the evaluator, but the task approach
is often preferred because it helps keep false positives somewhat better in check.

Which heuristic to consider and when? Some recommendations ask us to focus on one
heuristic in one turn. This makes it easy to scan the system or go through a task keeping
just one heuristic in mind. An alternative is to consider all heuristics at each step of a
task or for each feature. Again, the choice is up to the evaluator: The former runs a risk
of false positives (e.g., because an evaluator might report a breach of a heuristic because
they focus on that heuristic) but the latter is harder for the evaluator (i.e., it is easier to
forget particular heuristics).

Process of Evaluation

A heuristic evaluation is typically done alone. However, it is desirable to use several
evaluators who first work individually and then combine their results. One reason for this
is attention to reliability: If individual evaluators might not spot the same problems, it is
useful to combine the work of several evaluators. This is a general approach to improving
reliability—it is for the same reason that you may ask about the same construct with
multiple questions in questionnaires, see Chapter 13). Moreover, working together, they
may bias each other to see the same usability problems. For these reasons, the process is
typically that heuristic evaluators first perform individual walkthroughs and then discuss
their results.
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Paper Example 41.1.1 : Heuristic evaluation of interactive AI

Heuristic sets can be developed for a given class of technologies. As discussed in
the text, this can be done through expert panels and empirical studies. A timely
example is heuristics for evaluating systems that use interactive AI. Amershi et al.
[20] proposed and developed a list of 18 heuristics:

1. Make clear what the AI system can do

2. Make clear how well it can do what it does

3. Time services based on context

4. Show contextually relevant information

5. Match relevant social norms

6. Mitigate social biases

7. Support efficient invocation

8. Support efficient dismissal

9. Support efficient correction

10. Scope services when in doubt

11. Make clear why system did what it did

12. Remember recent interactions

13. Learn from user behavior

14. Update and adapt cautiously

15. Encourage granular feedback

16. Convey the consequences of user actions

17. Provide global controls

18. Notify users about changes

An example is given in Figure 41.1.

Analysis and Reporting of Usability Problems

Based on the heuristics and the choice of system, an evaluator will have made a list of
notes on the problems.

Analysis is often under-appreciated in usability evaluation [247]. However, because
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Figure 41.1.: Example of heuristic evaluation applied to an autocomplete feature in text
entry. Based on Amershi et al. [20].

heuristics are just resources that an evaluator judiciously applies, considering and analyzing
the potential problems is an important step. Does it seem plausible that a particular
potential problem is actually a problem? What is the cause of a particular problem?
What could be done, if anything, to resolve a problem? A couple of resources can help in
the analysis of problems.

• Frequency. It is useful for an evaluator to assess how often a problem would occur
for prospective users. One commonly used scale separates (a) rare, (b) occasionally,
and (c) frequent.

• Severity rating. This expresses, according to the evaluator, how serious a problem
is for users. One commonly used rating scale is (1) Minor: the user is temporarily
delayed. (2) Serious: the user is delayed significantly but can eventually complete
the task. (3) Catastrophic: prevents the user from completing a task.

• Persistence. This assessment concerns whether the problem is a one-off occurrence
that users will learn to work around, or something that will bother them time and
again.

• Cause. What is the cause or reason for the problem? Even if an issue is pointed
out by a heuristic, it may not be clear what in the interactive system that is behind
a problem; this is even a bigger problem in empirical evaluation (see Chapter 42)
where mapping users’ expressed frustration to issues in the system may be very
difficult.
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Description Difficulty
for user

Cause Frequency Severity Solution

"Open
report" is
hidden

The user
needs to
search the
entire page
to find the
link

The link is
located in
a spot that
the user
might not
notice.

Frequent:
The user
will expe-
rience this
difficulty
every time
they log in

Serious: the
user may
struggle to
find the link
for a while

Move the
link "open
report" to
the upper-
left corner

Table 41.2.: Example of a usability problem reporting format.

• Redesign suggestion. This asks the evaluator to consider how the interactive system
might be redesigned to avoid the problem. Redesigns can help evaluators avoid
reporting problems that have no solution; it also impacts the clarity and usefulness
of the problem to other people [347].

The reporting of problems has been shown to be an important resource in the analysis
of problems. The above items, for instance, can be simultaneously addressed using a
structured reporting format, such as that shown in Table 41.2.

41.1.2. The reliability of heuristic evaluation

Heuristic evaluation has a role in quick assessment of designs, however, is not a panacea
and not a replacement for empirical studies. The known benefits and drawbacks of
heuristic evaluation include:

• High efficiency: Some usability problems can be spotted with little effort and
experience

• Limited scope: Heuristics are limited to aspects of usability that can be attributed
to visible parts of the UI.

• High false positive and false negative rates: Many important problems are not found,
and some problems are identified that are not problems.

• No guarantees: The results cannot be trusted to be comprehensive, reliable (large
variability), nor generalizability (except for most obvious usability problems)

• High variability: Evaluators, even experienced, show drastically varying hit rates.

One core reason for these issues is that evaluators, even experts, are imperfect as ‘signal
detectors’. Every time an evaluator inspects some facet of a design, with some probability,
some problem is found. However, this can be a false positive or false negative error. In
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other words, the evaluator may have falsely ’found’ an error while in fact there is one, or
missed an error that actually is there, believing that there is none. The more complex
the system, and the more problems, even obvious ones, the more the evaluators will miss.
A statistical analysis illuminates this.

From a statistics perspective, an attempt to use a heuristic to detect a violation can be
thought of as an experiment. It is a trial with two possible outcomes: success or failure.
You can think of it as analogous to the tossing of a biased coin: either a usability problem
is detected (success) or not (fail). In statistics, experiments with two outcomes are called
Bernoulli trials. We use Bernoulli trials here to answer a central question in heuristic
evaluation: What is the proportion of problems that we expect k evaluators to be able to
find? Given n possible usability problems,

Number of evaluators

Bernoulli trials provide insight into the question of how many evaluators are needed. We
start with the case of a single usability problem and ask how k (the number of evaluators)
affects the probability of its detection. Let us assume that our k evaluators are often
imperfect. They can spot a real usability problem with probability 0  pDETECT  1.
We further assume that if an evaluator detects a problem, that it exists. In other words,
for simplicity, there are no false positives in this model.

Now, let the random variable X denote the number of evaluators needed such at that at
least one detects the usability problem. This follows the Bernoulli distribution, X ⇠ B(p).
In a Bernoulli process, a Bernoulli trial is repeated for k times. In this case we are
interested in the occurrence of any true positive within that sequence, which is given as
p(X > 0) = 1.0 � pk

DETECT
:
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The plot shows that we only need two expert evaluators (red line) to detect a usability
problem with high probability (� 0.95), but four or more when they are intermediately
skilled (blue). Note that for a novice, for example, a starting computer science student,
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detection probability is between 7 and 75 % [576], and often around 30%. The black line
shows that seven or more such computer science students would be required for reliable
detection. In summary, the skill of the evaluator matters.

Coverage of problems

We can now look at the case where we have several usability problems. Let us assume
that, unbeknown to us, a system has n usability problems. We ask a group of equally
skilled evaluators to evaluate it,assuming that their individual detection probability to be
pDETECT .

Let the random variable X denote the number of usability problems observed by
the evaluators together. Now the number of problems found in n trials with detection
probability pDETECT follows a Binomial distribution: X ⇠ B(n, pDETECT ). Now, the
number of usability problems found is simply npDETECT :
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Putting the first and second results together, we learn the following.

1. High coverage of real problems is hard to achieve without experts (red). Only
experts provide a high detection probability.

2. Evaluations by a single evaluator are inherently unreliable. Even an expert evaluator
will miss an unacceptably large proportion of ’obvious usability problems’ (blue)

3. On the other hand, even a poor evaluator will find some usability problems.

The moral of these analyzes is to show that heuristic evaluation is not a silver bullet
nor replacement for empirical evaluations. However, well-trained experts can detect
a nontrivial proportion of true problems. This calls for caution in applying heuristic
methods and rigor in training and evaluating their accuracy.
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41.2. Identification of human error potential

Human error identification (HEI) is a class of analytic evaluation methods for identifying
the possibilities of human error in interaction. HEI techniques were originally developed
for safety-critical applications, but the main idea generalizes to most state-based user
interfaces. It can be used to spot interactions where users might be confused, or make a
mistake or error.

One key difference from heuristic evaluation is that HEI is preceded by task analysis
(Chapter 15). In practice, this means that the goals and states of an interface are first
identified. A user is then ’simulated’ going through the states toward a goal, while asking
what kinds of errors might happen.

Consider a vending machine and the task of buying a can of soda. This task is actually
quite complex. It consists of several steps, more than one might think, such as finding the
desired soda on the list, pressing the button, finding wallet, finding credit card, inserting
it, entering PIN, waiting for the soda, and picking it up. The basic idea of HEI is to look
at transitions between steps. What can go wrong when moving from one step to another?
For example, why would a user not find the credit card or insert it to the wrong place?
HEI can reveal possibilities for taking wrong steps.

A central concept in HEI is state. At any given time, the interface can be in one state
where it is ready to receive input from the user. Some actions are available, but others
not. The system communicates its state and possible next actions on its display, for
example via text, graphics, etc.

To utilize HEI, we should first enumerate all states of the UI. We then form a matrix
showing possible transitions between states. We then label each sell to show if a transition
is available: (1) legal, (-1) illegal (erroneous; should not be done by user), and (0) not
available.

This state matrix is now used as a basis of simulating users. Take a user persona and
a particular task of that persona. Then start from the state in which the user would
encounter the device. Then enumerate possible reasons why the user might take wrong
action in that state.

HEI provides three main categories to this end, but in principle any cause of error can
be used:

1. User confuses the correct action with something else

2. User confuses the state of the machine

3. User selects erroneously

For each illegal (wrong) action, assess the consequences of that error. What would happen
and how severe would the cost be?

Can HEI techniques actually predict errors? To answer this question, Baber and
Stanton observed public vending machine use for 24 hours, totaling 300 observations of
transactions [32]. They categorized and tabulated the found usability problems, finding
problems such as money insertion (27%), zone or destination selection (22%), ticket type or
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travelcard selection (21%) are the most common. This formed their ground-truth dataset.
Independently of these observations, they carried out HEI. Their task analysis diagram
had 11 subtasks with some substructures at depth of there, reflecting the non-triviality
of the machine. Error analysis was performed by taking a state and enumerating all
available actions. The transitions caused by these actions were then mapped to other
states, forming a matrix. The matrix marks legal (1), illegal (-1) or not available (0)
transitions.

Their analysis exposed the following problems with a vending machine, which may be
familiar to many of us:

1. Not understanding what to do

2. Selecting wrong ticket

3. Selecting wrong station

4. Selecting wrong zone

5. Problems in inserting money

6. Confusing mode

7. Pressing wrong buttons

8. Using a machine that is closed

9. Confusing return from cancel

10. Use a machine that is waiting

Comparing these with the ground truth dataset, the authors concluded that one
evaluator using the method could identify more than 80% of real usability problems. This
analysis took about 3.5 hours per evaluator, which is a significant saving over real-world
observations.

41.3. Cognitive walkthrough

Cognitive walkthrough is an analytical evaluation method based on mental simulation of
the way users think. It is an instance of a broader class of walkthrough methods used
across engineering disciplines, for example, architectural walkthroughs in architecture and
code walkthroughs in software engineering.

In cognitive walkthrough, similarly, an artifact is inspected systematically, in a step-by-
step manner, and evaluated against criteria. In this sense, it is similar to HEI. What makes
the cognitive walk-through special is that evaluation criteria are related to thinking and
cognition. The method relies on the evaluator simulating in his/her mind to determine
whether a user might succeeds or fails in the interaction. The user is simulated in guessing
and exploring how to use an interface. However, walkthroughs are not just any form of
imagery, but follow systematic procedures and conceptual apparatuses.
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Figure 41.2.: Human error identification methods focus on the identification of possibilities
for transitioning to wrong states. Here, a diagram showing the possibilities
of taking a wrong step in vending machine operation [32].

The goal of cognitive walkthrough is to expose possible problems impairing the ease-of-
use and learnability of a system. The method is recommended for understanding how
novice users may figure out how to use a system. Its scope is different from other methods
discussed in this chapter, which focus on user performance, errors, and usability problems.

Cognitive walkthrough as a method is straightforward but substantially more laborious
than heuristic evaluation. The inputs to the method are (1) the user interface, (2) a task
scenario that tells what the users are supposed to accomplish, (3) assumptions about the
users and the contexts of use, and (4) a sequence of actions that complete the tasks. Task
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41. Analytical Evaluation Methods

analysis is needed to prepare point (4). In most cases, the analysis of subtask sequences
suffices.

There is good evidence that it can predict a significant part of learnability-related
problems. In the original comparative study by Lewis et al. [462], cognitive walkthrough
detected 50% of problems exposed in an empirical user study. Similar results have been
observed in later studies.

41.3.1. How to do a Cognitive Walkthrough?

In a walk-through session, tasks are demonstrated to a team in a step-by-step manner,
attempting to explain, plausibly, how the user might solve four issues related to use:

1. Will the user try to achieve the right effect?

2. Will the user notice that the availability of the correct?

3. Will the user associate the correct action with the intended effect?

4. If the correct action is performed, will the user be aware that the task is progressing
as intended?

If a plausible explanation cannot be given, this is recorded as a critical issue. These
critical issues are reviewed together with the team to identify design gaps and set goals
for the next iteration.

41.3.2. A theory of how people learn via exploration

Cognitive walkthrough is rooted in a theory of how people learn interfaces. Informally it
could be called a theory of how people guess what to do next. The theory of cognitive
exploration was proposed by Polson and Lewis [653].

The crux of the theory is this: To complete a task, the user must set a goal relevant
to the task and achieve the subgoals on the way there. However, each subgoal consists
of actions. Each action, finally, insists that the user selects the right action, executes it
correctly, and can confirm that it is indeed progressing the interaction as desired.

How do people solve this then? They must be able to cross two ’gulfs’: the gulf of
evaluation, or determining the right action for the goal, and the gulf of execution, or
successfully executing the action and confirming that it was a success (see Chapter 18).
For an artificial agent learning, this would be a hard task, because it requires generalizing
from past experiences to a novel, previously unseen task.

According to Polson and Lewis, people first establish goal structure. This goal structure
associates sub-goals to the top-level goal. For example, when cooking pasta, the subgoals
are related to acquisition of ingredients, preparation of the cooking space, familiarization
with the recipe, etcetera. However, the goal structure may be incomplete. The missing
subgoals must be figured out on the go, which puts further emphasis on how well the user
interface guides the user.
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Figure 41.3.: Cognitive walkthrough: Simulating a user solving of a task step-by-step.

A key part of the theory concerns the representation of a subgoal. A subgoal is a
representation associated to (1) other subgoals, (2) actions, and (3) perceptual cues.
Consider the sub-goal of turning on a stove as an example. This subgoal is associated
to the top-level goal of making tea, as well as the previous and following subgoals (e.g.,
putting the kettle on the stove). It is associated with actions that are needed to accomplish
the goal, such as turning a knob. It is also associated with perceptions, or cues, such
as those of the knob and the stove and the kettle. According to the theory, these cues
activate the representation of the associated goals and actions. Just seeing the knob
activates the subgoal of turning on the stove. However, when the subgoal is completed,
the representation is deactivated. Thus a representation can be activated and deactivated
(inhibited) by its associates. When interaction flows well, percepts activate the right
subgoals, which activate the right actions. When taking that action, the state changes
such that the next subgoal is activated again, and so and so forth. However, when there is
no highly activated action, the user must explore, just try out something. This inevitably
leads to errors. On the other hand, the erroneous paths will be deactivated, and a better
goal structure learned over time.

One of the benefits of the theory is that some of the issues can be addressed in
design prior to evaluation. Lewis et al. [462] propose four design tactics for improving
guessability:

1. Make the repertory of available actions salient.

846



41. Analytical Evaluation Methods

2. Provide an obvious way to undo actions.

3. Offer few alternatives.

4. Require as few choices as possible.

CW is more time-consuming to apply than heuristic evaluation, and it insists on a
trained evaluator. Deployment in software teams has been reported to face problems due
to time pressure [767]. Similarly to heuristic evaluation, the high rate of false negatives
in cognitive walkthrough is a recognized problem. While capturing some problems is
always better than capturing none of them, one must remember that a large proportion of
problems is not identified. While cognitive walkthrough complements heuristic evaluation,
neither is comprehensive. Cognitive walkthroughs are best used in early, noncritical stages
and should preferably be carried out by experienced evaluators.

Several adaptations of the method have been created for various purposes. Mahatody
et al. [496] provides an overview of variants and extensions of CW. A faster version has
only two questions [767]:

1. Will the users know what to do at this step?

2. If the do take the right action, will they know that they did the right thing and are
making progress towards their goal?

41.4. Keystroke-level modeling

Keystroke Level Model (KLM) is a simple mathematical model to assess the performance
of tasks. In particular, it can predict task completion time of experienced users. KLM was
introduced by Card, Moran, Newell in their 1983 book Psychology of Human-Computer
Interaction as a simplified version of GOMS [129], a more comprehensive model based on
a cognitive architecture (Chapter 5).

KLM deals with tasks that have sequential sub-structures, such as form-filling, text
editing, data entry, or setting manipulation. KLM is limited to sequential tasks with clear
task boundaries, no parallelisms (e.g., multitasking), and little dependencies between
subtasks. By assuming that performance in each sub-task is independent of performance
in the others, task completion time can be modeled as a sum of time spent in the sub-tasks.

KLM is ”keystroke-level” in the sense that higher order control nor carry over is not
assumed. In other words, behavior is deterministic, goes form one subtask to another, and
task completion time is simply the sum of time spent in ”atomic” responses and actions.
There is no learning or memory assumed in the user. Every atomic response takes place
regardless of what happened in the past. Although KLM was derived from GOMS, it
is not a cognitive model but a performance evaluation model. It does not say anything
deep about how the mind works in interaction. However, even if the model is simple, it
serves well user interfaces that are sequential in nature.
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41.4.1. How to do a KLM analysis?

KLM starts by analyzing user’s task to find the most likely way, or ways, of accomplishing
it. This task performance is broken down according to three categories of operations:
physical, mental, and system. Mental operations refer to events such as recalling a
command name or verifying that an answer is correct. The system operation is the system
response time, the time spent waiting. These operations are counted, and the times spent
in each are estimated using guidelines and look-up tables. Task completion time (T ) is
then their linear sum:

T = tK keystroking

+tP pointing

+tH homing

+tD drawing

+tM mental operation

+tR system response (41.1)

But how to determine these values? These have been empirically estimated [127].
Keystroking is around .12 - 1.2 s, .28 for most users. However, the level of expertise
affects this. An expert typist has an average keystroke time of .12 seconds, whereas
someone with less exposure to keyboards has 1.2 s. Clicking a mouse button is 0.20 s.
Pointing averages at 1.1 s, but with varying movement distances, should be determined
by a Fitts’ law model. Homing is the act of moving the hands between the mouse and
the keyboard. It takes about 0.4s. Mental operations are in the range of .6 - 1.35 s, but
1.2 s is recommended. Mental operations are required when initiating a task, making a
strategy decision, recalling something from memory (e.g., password), finding something
on the screen, thinking about what to do, or verifying the correctness of inputs. System
response time must be measured and depends on the per case.

The procedure for KLM modeling includes eight steps [129]:

1. Choose one or many representative task scenarios.

2. Specify the design to the point that keystroke-level actions can be listed for the
scenarios.

3. For each scenario, identify the most likely ways users will accomplish the tasks.

4. List the keystroke-level actions and the physical operators involved in doing the
task.

5. If necessary, include wait operators for those those time when the user is waiting
the system to respond.

6. Insert mental operators for when user has to stop and think.

7. Look up the standard execution time to each operator.
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User action KLM event time (seconds)

Reach for mouse H:mouse 0.40
Search "Replace" M :visual search 1.20
Move pointer to "Replace" button P : menu item 1.10
Click on "Replace" command K:click 0.20
Home on keyboard H:keyboard 0.40
Type word to be replaced "might" K:type 0.60
Reach for mouse H:mouse 0.40
Point to correct field P :field 1.10
Click on field K:click 0.20
Home on keyboard H:keyboard 0.40
Recall word M :recall 1.20
Type new word "will" K:type 0.48
Reach for mouse H:mouse 0.40
Move pointer on "Replace All" P :button 1.10
Click on field K:click 0.20
Wait R:system 0.50
Verify M :verify 1.20

Total 11.08

Table 41.3.: Example KLM model in a replace task in text editing.

8. Sum up execution times for the operators. This is the estimated task completion
time.

41.4.2. A Worked Example

Let us consider a simple example with physical, mental, and system operations. An expert
user is editing a document and wants to replace all words "might" with the word "will".
Table 41.3 shows the breakdown of actions. They can be summarized as follows.

T = tK + tP + tH + tM + tR

= (0.60s + 0.48s + 3 ⇥ 0.20s) + (3 ⇥ 1.10s) +

(5 ⇥ 0.40s) + (3 ⇥ 1.20s) + 0.50s

= 11.08s

The analysis reveals that the user spends almost one-quarter of the time just moving the
hand between the mouse and the keyboard.
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41.4.3. Limits of KLM

In empirical studies, KML has proven to be effective at predicting task completion time
within a large but acceptable limit of tolerance. In a recent evaluation, KLM’s predictions
were compared against 20 expert users [390]. Across six tasks and UIs, KLM predicted
human performance in four tasks. Average difference to human data was 5.5 s (range: 0.8
- 13.35) and slightly smaller for GOMS.

While the time spent in system operations can be exactly measured and the time in
physical operations can be estimated from observational data, mental operations pose a
problem. How to identify them? Best practices in KLM modeling suggest that it is more
important to get the type and number of operations right than to determine the order in
which they occur. Moreover, very different interfaces paradigms should not be compared
without identifying better values for M . For instance, command-language interfaces and
GUIs have different requirements for recall, so using the single constant for both will bias
the estimates.

There is a number of other criticisms levelled at KLM, including the following [602].
First, KLM assumes expert performance, a user who is able to directly use the most
efficient strategy and carries out tasks without error. In this respect it complements
cognitive walkthrough that focuses on how people ’guess’ what to do. Second, KLM ignores
flexibility in human activity. In Chapter 21, we learned about behavioral strategies and
how they adapt to the structure of the task. Full-fledged cognitive models are needed when
behavioral adaptation is a defining part of users’ performance. Third, KLM ignores the
variation in performance. It is known that there are dramatic inter- and intra-individual
differences even in the lowest levels of actions, such as in button-pressing. However, KLM
collapses that variability to a single-point estimate. If the statistical distributions of
KLM operators were known, they could be used to sample value combinations. There are
attempts to collect such distributions among different factors, such as age [274]. Fourth,
KLM assumes no parallel activities in the mind; even though dual- and multitasking is a
pervasive aspect of computer use.

41.5. Automated Usability Evaluation

In recent decades, much research has been done in trying to eliminate the need for
an evaluator and make usability evaluation method automatic [370]. The core idea of
automated usability evaluation is that an evaluation tool encapsulate some yardstick for
good interaction. That yardstick may be that an interactive system is accessible, that it
is easy to perceive the information on the display, that links are not broken, and so on.

Let us consider some examples. Aalto Interface Metrics [611] takes a web page as input
and computes its accessibility, aesthetics, and support for accurate color perception, among
others. The evaluator of a web page may use these descriptors to make inferences about
how well the web page supports users. For accessibility, the world wide web organization
maintains a list of tools that help automatically check (see https://www.w3.org/WAI/).
These tools typically takes a web address as input and creates a list of possible or likely
issues with accessibility. However, their scope is more limited than that offered by HEI,
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CW, and KLM.

41.5.1. Interactive Modeling Workbenches

Computational cognitive models simulate human cognition through the stepwise execution
of a program. Generally, computational models are superior to KLM and cognitive
walkthrough thanks to their ability to simulate cognitive states, strategies, and motor
actions. This allows insight beyond mere task completion time, into what constitutes
successful and failed task performance. Generally, these tools are best suited for modeling
skilled users.

A bottleneck in the use of cognitive architecture models has been that the task procedure
must be provided by the researcher. In the minimum, this involves a demonstration of a
sequence of actions. Interactive modeling workbenches allow you to specify a procedure
simply by demonstrating it on a UI.

CogTool is a modeling workbench that uses a version of GOMS for predicting how atten-
tion, motor control, and memory work during interaction [274, 381]. Some comparisons
against empirical results suggest prediction error of about 10-15% in task completion time
depending on the UI and the individual. Distract-R is a simulation workbench specific
for multitasking in driving [705]. It uses ACT-R with a model of multitasking called
threaded cognition. Evaluators can specify a secondary user interface (e.g., media player
UI), some limited aspects of the driving task (e.g., speed), and user (e.g., age). Distract-R
then computes task completion and lane deviation predictions and provides a video of
simulated driving.

41.6. Which Analytical Evaluation Method to Use?

Analytic methods are best at identifying usability problems, but no serious project should
rely just on them, especially for critical conclusions such as those concerning safety, product
launch, inclusivity, or accessibility. Analytic methods are – nonetheless – powerful and
flexible complement to empirical methods.

But which method to use when? To understand the relative merits of each method,
Blandford et al. [77] conducted one of the most comprehensive comparisons of analytic
methods so far. They compared eight methods in the case of a human–robot interaction
task. They propose a few dimensions to consider when picking an analytical method:

Scope What kinds of usability problems should be found?

Suitability What type of interaction and user group is in question?

Reliability What is the minimum reliability that should be achieved?

External validity How important is the transfer of findings to real use?

Efficiency How much information is gained per unit of resource use? Resources here can
refer to the work time of an expert evaluation, human participant etc.
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Persuasiveness How to communicate the results in a way that convinces the audience?

Blandford and colleagues concluded that no single method offered superior coverage of
problems, but rather each conquered its own ’niche’ in the space of usability problems.
Concerning analytic methods, they conclusions were as follows. First, heuristic evaluation
identified a broad range of issues, but was most unreliable. The interpretation of the
heuristic (e.g., what is ’consistent’?) is left to the evaluator, producing large inter-rater
variability. On the positive side, the openness of the heuristics leaves room for more
qualitative consideration of the causes and consequences of issues, which is useful for design.
Second, cognitive walkthrough complemented other methods by exposing issues related
to user misconceptions, consistent with the cognitive exploration theory. Surprisingly,
it encourages the identification or more issues than strictly within its scope, perhaps
similarly as in heuristic evaluation, thanks to open-endedness. Third, cognitive models,
especially GOMS and thereby KLM, best support the identification of system-related
problems, such as the lack of ’undo’, redundant operators, or long action sequences, as well
as some problems in synchronizing users’ actions with that of the system. Model-based
methods have a focus on timing information, for example, how long actions or tasks take
to complete. This is due to focus on skilled users with little considerations of errors,
learning, and behavioral variability.

Summary

• Analytic evaluation relies on expert analyst systematically going through a design
and procedurally checking system responses against some criteria.

• Analytic methods have low reliability when applied outside of their scope or by
inexperienced analysts.

• There are analytic methods for covering different aspects of usability from perfor-
mance to errors and learnability. Walkthrough methods are being developed to
assess inclusiveness of a design against persona-based criteria.

• Analytic methods are best utilized as cost-efficient complements in earlier parts of
design; they are not a replacement for empirical evaluation methods.

Exercises

1. Heuristic evaluation. Pick a simple user interface (e.g., a travel planner, a homepage
for a volunteer organization, a magazine app). Then conduct a heuristic evaluation
individually and report the problems following the format of Table 41.2. While
doing the evaluation, note down difficulties, questions, and insecurities about the
method.
Next, consider the following questions and, if possible, discus it with peers who
have also done an evaluation of the same interface.
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• What was hard in doing the evaluation and what was easy?
• If other people have evaluated the same interface, do your evaluations agree?

Do the three most critical problems overlap? Why or why not?
• Given how you, and your peers, did the evaluation, what are the three main

concerns about the validity, reliability, and impact of the evaluation?
• An open question in research on analytic evaluation methods like heuristic

evaluation is whether evaluators see problems and then justify them with a
heuristic or whether they use the heuristic actively to identify problems. Which
description best fit your work and why?

2. Cognitive walkthrough. Do a cognitive walkthrough of the same interface. Consider
the same questions as in the previous exercise.

3. KLM. Take two designs for the same task, e.g. two designs for login into an
information system. Conduct KLM analysis of alternatives and compare them.
What aspects that might affect task completion time are not covered

4. Designing with analytical models. Take the UI you analyzed in the previous exercise
and redesign it to improve predicted TCT (task completion time).

5. Comparison. Consider again the Cognitive Dimensions Framework in Chapter 27.
Is that an analytical evaluation method? Why or why not?

6. Designing with KLM. A smartphone app enables a user to achieve a task through
two alternative methods. In the first method, the user must push a button on the
screen, navigate to a menu with five choices, and choose the fifth choice. This brings
up a Yes/No confirmation dialog box. The user must answer Yes. In the second
method, the user must hold a physical button down for one second until the system
plays a brief audio beep and then speak a command. This results in the system
playing a different audio beep to indicate it has commenced speech recognition,
and yet another different audio beep to indicate speech recognition has concluded.
Assuming speech recognition successfully recognized the command, at this point
the system uses audio to ask the user for a confirmation. The user has to again
hold a physical button down for one second until the system plays a brief audio
beep and then speak ”Yes”. (a) Carry out a KLM analysis to understand the time
durations required to carry out the task using both methods. Propose any operators
necessary and estimate their time durations. Briefly motivate the operators, their
estimated time durations, and the operator sequences involved. (b) Explain the
limitations of the KLM analysis carried out in (a) with reference to the following
design issues: (1) novice versus expert performance; (2) the uncertainties inherent
in interaction when attempting to carry out the task using the two methods. (c)
There is a risk an undesired event occurs when the user attempts to carry out the
task. This happen when upon confirmation the user indicates ”No”. Draw a fault
tree to understand the possible causes of such an event. (Fault trees have been
introduced in Chapter 37).
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Imagine you are to evaluate a computer system and put a prospective user in front of
the system with a task they want to accomplish. But then nothing observable happens.
Although their eyes might move and their hand approaches the mouse, you can decipher
next to nothing about what they are pondering or why they hesitate when interacting.
As they finally begin to use the system, they swiftly complete their task in silence. You
have learned nothing about what works or does not work with the user interface.

When we evaluate user interfaces, our job would be easy if we had access to what goes
on in people’s heads as they use the system. We would know what they think about the
elements of the user interface, how they match their goals to those elements, how they
interpret feedback, and what they feel. The focus of the present chapter is a methods—the
think-aloud study—which aims to give some form of access to what goes on in people’s
minds as they use computers.

The think-aloud study consists of a few core steps; depending on the purpose of the test,
these may be altered. The evaluator gives the participant a set of instructions, typically
including specifics on how to think aloud and possible tasks or activities to engage in.
The participants then verbalize their thinking when they interact with the system under
evaluation or immediately afterwards. The evaluator captures the verbalization and other
notable events, and then analyze these data to derive insights into the thinking of the
participants.

Think-aloud studies are common among practitioners [233]; they are used to identifying
usability problems in an application (e.g., the user gives up on a task that it is possible
to solve, and the user has to find a workaround to a task). Examples of HCI applications
include:

• Srinivasa Ragavan et al. [770] studied how users understand formula and cells in
spreadsheet applications such as Microsoft Excel. They conducted a think-aloud
study of 15 professionals who read others’ spreadsheets as part of their work. They
found that 40 % of time is spent in searching for additional information needed
to make sense of the spreadsheet. These episodes were felt as feeling overwhelmed
and the users failed often. Verbal protocols exposed a pattern that the authors call
‘’over-the-hood” comprehension and ‘’under-the-hood” comprehension. Over-the-
hood comprehension is when users examine what is visible on the spreadsheet, like
text, numbers, and charts. Most of this understanding took place by reading labels,
which took place via systematic scanning. In under-the-hood comprehension, by
contrast, the users wanted to understand a formula and needed to seek information
about the involved variables. This is complex because variables can refer to other
formulas and other cells in complex ways. Sometimes users needed to recreate
information in a spreadsheet to understand how it works.
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• Oh et al. [597] studied ‘’AI Mirror”, a user interface that tells how aesthetic their
photos are based on a deep neural network model. The mirror provides an aes-
thetic score between 1 and 10 based on its training data. The authors used a
mixed-methods approach where think aloud protocols were used to understand
thinking and experience during using the mirror. The authors found that different
users understand the AI method using their group-specific expertise. Users with
machine learning expertise used technical concepts like ‘’algorithm”, ‘’model” and
‘’classification” to understand the AI. For example, they speculated about the source
of the dataset trying to explain anomalies in the AI’s scores. Participants with
photography background, in contrast, mentioned concepts like ‘’light”, ‘’composi-
tion”, and ‘’aperture” in understanding the scores. The third group represented
the general public and focused on their favorite objects, beautiful landmarks and
landscapes. They did not fully grasp the AI’s scores and why it did not always
match their own views, and they had weaker conceptual background to attempt to
provide explanations.

• Tamas et al. [795] compared residential thermostat designs in Canada, with the
goal of understanding how their design affects usability, and how that in turn
affects energy saving practices. They compared manual, programmable, and smart
interfaces using a mixed-methods approach. It included think-aloud protocols
collected during task performance. The authors concluded that smart interfaces
are significantly more usable. Protocol analysis showed that almost a third of
users were confused when attempting to program their programmable thermostat.
The programmable thermostat, with its small user interface, is overly complex for
residential users who rarely need to interact with it.

Nielsen called think-aloud as the “single most important usability engineering method”
[574]. However, many uses of think-aloud studies in HCI have nothing to do with usability.
For instance, they may be about understanding how users learn an application through
the analysis of their verbalization. Therefore, we prefer the more general term think-aloud
study. Many more thorough introductions to think-aloud studies exist, see for instance
Rubin and Chisnell [697] and Dumas and Loring [213].

Next, we cover the basic steps in a think-aloud study, focusing in particular on the
effect of instructions, how to analyze think-aloud data, and the pros and cons of the
method.

42.1. Understanding Thought Processes

Think-aloud is grounded in the belief that it provides access to what goes on in people’s
heads, that is, helps understand thought processes. The key argument for this belief
comes from research in psychology, notably the work by Ericsson and Simon on verbal
protocols [225]. Verbal protocols refer to the outcome of think-aloud studies, the analysis
of what users said based on audio recordings of their verbalization.
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Ericsson and Simon studied think-aloud as a method used across the behavioral sciences
to gain insights into though processes. They were focusing on concurrent verbalization,
where thinking aloud occurs during task completion. However, for tasks of up to 10
seconds in duration, retrospective verbalization may also give valid insights into though
processes. In retrospective verbalization, users are asked to tell what they thought after
they complete a task.

Ericsson and Simon also distinguished three levels of verbalization.

Level 1 In Level 1 verbalization, the participants are told to concurrently report what
they think about in the same form as their thoughts. This happens, for instance,
if participants report verbal information that they are about to enter in a user
interface.

Level 2 In Level 2 verbalization, participants may transform information that they are
considering from non-verbal to verbal form. This could be describing mental imagery.

Level 3 In Level 3 verbalization, participants are required to provide explanations, filter
information, or relate to information not currently held in working memory (e.g., in
retrospective reports).

In Ericsson and Simon’s view, only Levels 1 and 2 provide valid information about
the mental processes of the user because those levels only asks about information that is
currently needed in short-term memory. Level 3 verbalizations significantly changes task
performance and consequently the value of their think-aloud data as accurate reflections
of what goes on in their thinking. For instance, giving rationales for what you do might
improve your performance on a task, even if thinking aloud should slow you down.

This view has been criticized. These critiques argue that people know much more
than they may express in verbalization; that is, that think-aloud studies does not give a
complete picture of mental processes. Another critique is that think-aloud studies are
reactive; that is, that thinking aloud may help or hinder task performance. Nevertheless,
most researchers maintain that think-aloud studies give some important information on
thinking. The critiques has led to a variety of methodological elaborations we discuss
later.

Think-aloud studies have been used in HCI for at least 40 years [461]. As in the broader
behavioral sciences, the use has been to gain insight into what participants are thinking
during interaction. For instance, Mack et al. [487] explored how users learn to use text
editors (see the paper example box). One widespread use of think-aloud studies in HCI
has been to help identify usability problems in interactive systems. There, participants’
thinking aloud is analyzed to find evidence of errors or lack of clarity in the user interfaces.

Think-aloud studies have many strengths for understanding mental processes. The key
strength of the think-aloud study is its precision [518]. It allows for a close analysis of
the user’s thought processes. It is also a relatively inexpensive form of study because it
requires little more than note-taking, recording equipment, or a video link. Although
think-aloud studies may be analyzed in depth, less intense analysis may give useful.
Actionable insights into mental processes or may help discover usability problems in an
interface. Formative think-aloud studies are used frequently in industry.
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Think-aloud studies also have a range of limitations. As mentioned above, thinking
aloud can influence how tasks are performed, the workload experienced during the task,
and how quickly tasks are completed. This is in particular the case where participants
generate Level 3 verbalization. It is also clear that thinking aloud does not produce a full
and complete picture of what participants think: it requires verbalization, some thoughts
might be suppressed because of the think-aloud setting, and so on. And thinking aloud
has been shown to be culturally specific, which means that the information that think
aloud gives might vary just due to the cultural background of the participants [153].
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Paper Example 42.1.1 : Think aloud and word processing software

An early think-aloud study was born out of an interest in how people learn to use
text editing systems [487]. The authors were interested in both specific issues in
learning to use two different word processors and general issues and mechanisms
around learning to use software.

Ten participants were asked to spend four half-days learning to use either system.
The researchers where with the participants during that time to “prompt them to
continue verbalizing, but did so nondirectively to avoid suggesting what they should
think about” (p. 255). Participants received a self-study manual to aid in their
learning, which was about how to do things with the text editing system.

Below is an example of participants’ verbal protocols. One notable thing is that
the experimenter (denoted with an E) asks very uniform and undirected questions to
the participant (denoted P). Further, the participant gives verbal reports that are
rich and hints at a couple of important mistakes about the editing system.

In the analysis of these data, the authors did not code for frequencies of particular
problems, but aimed to be both “clinical and inductive” [p. 258]. They mean that
they try to infer the causes of the observed problems and learning difficulties. Their
approach is inductive in that they try to generalize across examples. They illustrate a
range of situations in which participants have difficulty learning, and hence experience
frustration and have a hard time applying what they learn. They also show that
participants have a hard time using the help system, in part because it is not clear
to them what to ask for when they encounter a challenge. These observations were
instrumental in helping researchers design better help systems, training materials,
and user interfaces.
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42.2. Instructions and Tasks

The instructions for think-aloud studies, including the tasks, strongly influence the results
that can be obtained. Let us outline the best practices for each.

42.2.1. Instructions

The original instructions from Ericsson and Simon were to simply prompt users to “keep
talking”, typically after a fixed duration of silence (e.g., 30 seconds). Participants should
also “think aloud as if you were alone in this room”. Those instructions have been used
extensively in HCI, where they are often referred to as classic thinking aloud. These
instructions are believed to influence the participants minimally.

Alternative instructions have been studied. Boren and Ramey [87] propose a variant
informed by speech genres, where the experimenter should follow the classic variant, but
also (a) explain that the participant is not the object of the test, the system is; (b) ensure
that the participant is the expert and primary speaker; (c) acknowledge thinking aloud
by “mm hmm”, “yeah”, “ok”.

In relaxed thinking aloud, more emphasis is placed on explanations and reflections.
Although this is not valid according to Ericsson and Simon’s account—because it is based
on level-3 verbalizations—the additional information might be useful in HCI. Researchers
might ask “what are you trying to achieve?” or “what are you thinking?”. The reason
is that explanations of interaction are useful, for instance, because they help diagnose
usability problems, offer ideas for redesign possibilities, or help to understand the rationale
behind a certain interaction.

The different types of instructions for verbalization have different consequences. Hertzum
and colleagues [2009] compared those two variants of verbalization studies of the con-
sequences of different variants. They found that relaxed thinking aloud affected visual
search behavior, navigation behavior, and mental workload. Therefore, a seemingly minor
decision in think-aloud instructs impact interaction significantly; this should be kept in
mind when choosing think-aloud instructions. It is also important to remember that a
think-aloud study is not an interview [327]. Users’ actual attempts at doing tasks are the
basis for the think-aloud study; thus, the focus is on concrete behavior and observations
of that behavior are invaluable to understanding think-aloud.

Alhadreti and Mayhew [16] compared three think-aloud methods: concurrent, retro-
spective, and hybrid (both). The participants were asked to use a library test while using
one of the three methods. They found that the concurrent method is superior to both the
retrospective and the hybrid method. More usability problems were detected than when
using the retrospective method, and was comparable to the hybrid method. However,
concurrent methods are less time-consuming for the evaluator.

42.2.2. Tasks

The other main contributor to the validity and variability of the findings of a think-aloud
study is the task.
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Tasks may be selected to maximize realism in the sense of McGrath [518]. It is important
that tasks be representative of the tasks that users would do. For instance, they may be
based on tasks identified in user research (see Chapter 15). They may also be open-ended
tasks that users themselves make concrete as part of the test. It is recommended to not
use terms that precisely describe functionality, particular options in systems, or help
participants express what they want to do in the terminology used in the system. This
reduces realism because participants would have to figure this out on their own if they
did not write down tasks.

For think aloud, several specific recommendations for tasks have been suggests. It is
good practice to check tasks for think aloud studies in relation to these recommendations.
They are as follows.

1. The tasks, in particular, the first few, should be easy. The idea is to help users learn
to think aloud rather than struggle with the task. An easy first task also removes
any nervousness about the study situation.

2. The tasks should be central to the users’ real or imagined activities.

3. The tasks should be expressed in terms of users’ real or imagined activities, not in
terms of the system. The latter are called "hidden help" because the task helps
users identify which feature in a system to use to accomplish the task.

4. It should be clearly stated when the task is completed. This is important because
evaluators would like to know if users understand that they are done. If they do
not, perhaps the system needs to give better feedback.

5. Tasks can be open-ended, so that they are in part specified by the user. For instance,
rather than asking a user to book a 1-person flight from a given city, one could
ask about their travel plans and use that (i.e., the city, the number of people in
the party) as the task. This is more realistic and might reveal interesting usability
problems when a user’s particular travel requirements are not well supported.

42.3. Analysis

Analysis of think-aloud protocols has a number of steps, with implications for reliability.
In pre-processing, the experimenter cleans the verbal data, transcribes them, and segments
them according to participants, tasks, and so on. The transcribed data may be combined
with data from other sources, such as video, eye tracking, or logged interactions.

In the identification phase, important or interesting aspects of the pre-processed data
are identified and possibly classified. The purpose of separating this from transcription is
that the interpretation may be made by different people and that inter-rater reliability
may be assessed.

This is typically done in one of two ways. In bottom-up analysis, insights are grouped
based on their frequency or prominence in the data. For instance, this may be done by
affinity diagramming or thematic analysis, as discussed earlier (see subsection 11.5.3).
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In top-down analysis, an existing framework, classification, or set of codes is used. The
classification to use is, of course, determined by the purpose of the think-aloud study. To
identify usability problems, for example, the User Action Framework has been used [312].
This framework separates different types of usability problems and helps diagnose the
cause of the problem.

Think aloud studies are commonly used in usability tests. The goal is to identify
usability problems. A usability problem may be one of three main types (adapted from
Jacobsen et al. [375]):

Failure to reach goal For example: the user articulates a goal and cannot succeed in
attaining it within three minutes; the user gives up; the user produces a result
different from the task given; the system crashes or reaches state from which the
user cannot recover.

Misunderstandings about the system For example: the user knows what the goal is but
cannot pick the right action; the user expresses surprise; the user expresses ways to
improve the system.

Negative experience For example: the user expresses a negative feeling; the user says
something is a problem; the user expresses a negative sentiment toward the system.

The focus is then to identify such problems from the verbal data, to synthesize the types
of problems across users, and to develop ideas on what to do about the problems. The
usability problems are typically reported in usability problem lists, which can separate (a)
the problem, (b) its causes, (c) its behavioral consequences for users, and (d) any design
changes that can alleviate the problem.

In the synthesis and implications phase, the classified think-aloud data are used to
draw implications. Such implications may be about how to fix problems; while seeing
problems is easy, discovering how they can be solved can be difficult.
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Paper Example 42.3.1 : The evaluator effect in think-aloud studies

The evaluator effect is the phenomenon that different evaluators find different usability
problems; this is the case for both analytic evaluation techniques and think-aloud
studies aimed at identifying usability problems (see Chapter 41). This is essentially
related to the reliability of usability evaluation.

The evaluator effect was named by Jacobsen et al. [375]. They found that the same
evaluators identified markedly different problems. The evaluators were told to look
for usability problems, defined as occurrences in video recordings with the following
characteristics:

What was striking about the results by Jakobsen et al. is that the evaluators
agreed to a very limited degree. The figure below shows that usability problems
(UPT is "Unique problem token") are not regularly found by all four evaluators of
the system. Thus, only a fifth of the problems were found by all evaluators and about
half of the problems were found by just one evaluator.

These results cast doubts on the reliability of think-aloud studies and evaluations
more generally.

42.4. Variations on Think-aloud Studies

The HCI field has seen many variations on think-aloud studies as they have been discussed
so far. A few are worth discussing because they offer important new ways of dealing with
the issues in think-aloud studies.

In collaborative think aloud, multiple users collaborate to use an interactive system.
Rather than being instructed to think aloud “as if alone in the room”, they simply talk to
each other as part of interacting with the technology. Thereby, thinking aloud becomes
more natural for participants. Sometimes researchers who apply this approach use
techniques for classifying and making sense of data drawn from studies of conversation. In
general, these approaches works well in creating unencumbered talking but face concerns
about validity because they are about explanations and because they reintroduce the
aspects of conversation that Ericsson and Simon tried to eliminate.

Another variant is remote usability studies, where users think aloud away from the
evaluator.
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42.5. Verbal protocols: A forgotten secret?

Think-aloud methods were covered in virtually all HCI curricula in the 1990s and early
2000s, but gradually fell out of fashion for an unknown reason. Think aloud is in a
privileged position in the toolbox of evaluators. It remains the best method to obtain
access to what users think and feel during computer use. Unlike other methods, such
as questionnaires and analytic methods, it is open-ended : it allows users to express
themselves without imposing a predefined taxonomy on them.

Fan et al. [233] conducted a survey study of usability professionals in 2020 (N = 197).
They asked about their practices of using think aloud as a method. They made a surprising
finding about the popularity of the method. A majority of professionals (86 %) reported
using think alouds in their usability tests. The main motivation was either to inform
design or to inform design and measure performance. Concurrent think aloud was more
common (61%) than retrospective.

They also found that practices tend not to follow the best-practice recommendations
of Ericsson and Simon [225]. A majority of 61% of respondents ”almost never” asked
their users to practice think aloud before entering the study. Moreover, practitioners
often posed leading prompts to users, such as asking them to talk about their emotions.
Improving on rigor is something where easy gains are achievable.

To this end, the authors conclude with recommendations for think aloud studies:

1. Practice sessions should be conducted to ’warm up’ users and get them verbalize
more often.

2. Instructions on what to report should be neutral (and not leading).

3. Evaluators should not interrupt the participants during verbalizations.

4. Think alouds are not limited to lab studies, but can be done in remote usability
tests. (Remote usability tests are carried out over a virtual connection, for example
using a remote desktop feature and video conferencing.)

5. Improve the efficiency of data analysis to increase the value of think alouds. This
can be achieved by developing reusable coding schemes, using machine learning
methods for speech recognition, and interactive tools for labeling.

Finally, it is worth nothing that recording think-aloud studies can have an impact
on stakeholders. Usability problems become relatable when seeing a short video of a
struggling user and talking aloud. In this regard, think-aloud studies trump most other
evaluation methods.

Summary

• Think-aloud studies give an insight into users’ thinking processes and may be used
to infer usability problems.
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• Think-aloud studies are persuasive and inexpensive, although the evaluator effect
suggests that reliability may be low.

• Following best practices increases the cost-efficiency and reliability of the method.

Exercises

1. Task selection. Selecting tasks for think-aloud studies. Find a selection of tasks
made for usability studies; the cooperative usability evaluation studies (CUE) show
many. The data are available at http://www.dialogdesign.dk/ CUE.html. Discuss
them.

2. Conducting a think-aloud study. Select a website (or application, or other type
of user interface) that helps people plan trips. Plan a think-aloud study for the
website, focusing on creating a set of suitable tasks and the instructions to give the
participants. Then conduct the think-aloud study. Reflect on what was hard and
easy.

3. Comparing approaches. Molich [538] gives an overview of comparative usability
studies, a series of studies that compare the results of usability evaluations (including
evaluations performed by professionals using think-aloud tests). Pick one of the
studies using think aloud and compare the variation in one aspect of the planning,
running, or analysis of the study. What works well and what does not work well?
What do you think might impact the test?
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Imagine that you have developed a new version of a search feature for an operating
system. Users can click a magnifier glass icon and type in a search query, results would
be listed underneath. You are certain about the benefits of the new design, but you need
something to convince other people. What kind of test could show, convincingly, whether
users actually like the feature better than the previous version? You could ask people to
use the new feature and inquire if they like it. But that would not help you relate it to
the previous search feature; you would not know if it is better. You could ask users of the
old feature and users of the new feature to rate how well they liked the respective search
features and compare those ratings. But even if a difference was found, an inconvenient
alternative explanation would be there: Perhaps the users in the two groups were different,
for example, in their experience or age, and that would illustrate the difference. You
could also seek expert opinion, consulting colleagues and HCI researchers to learn which
search feature is best. However, this may be difficult to assess, even for experts. In the
worst case, it might turn into a clash of opinions where everything is trumped by the
HIPPO, or the highest-paid person’s opinion (see [420]). What you need is a method
that allows you to firmly attribute an observed difference to the new search feature and
nothing else. That method is called an experiment.

An experiment is “a study in which an intervention is introduced to observe its effects”
[738, p. 12]; see also Figure 43.1. An experimenter changes something, or intervenes, while
keeping everything else the same, and observes the effect of the change. An experiment
is a deliberate change in circumstances: The experimenter imposes some condition or
constraint in it. Such intervention may be of a variety of kinds; in HCI it is often a
technology, but could be different kinds of training, user groups, use situations, or tasks.
In common practice, an intervention is designated as a level of treatment (e.g., comparison
of user interface designs), group (e.g., comparison of two age groups), or condition (e.g.,
comparison of different instructions to users).

The design of experiments boils down to defining an intervention and what is being
measured. An experimental design associates variables defining the intervention (inde-
pendent variables) and what is being measured (dependent variables). Something that is
systematically varied in an intervention is called an independent variable. Consider, for
example, changing the color of a button as one independent variable, or the age group
of the user. The effects of the intervention are measured as dependent variables, those
that depend on the intervention. For example, one could measure task completion time
or errors. In HCI, measures are often related to usability or experience of the technology.

If the relationship between the dependent and the independent variables was fully
under the experimenter’s control, the observed changes in the dependent variables could
be attributed to the intervention, and to that only. However, experiments with human
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Figure 43.1.: The main components of experiments.

participants need to deal with a plethora of other factors besides the independent variable.
Image a study where users were first asked to carry out a task A with a user interface
and then task B. Here, the order of the interventions interacts with users’ learning. Any
measurements in task B would be affected by what users learned in task A. In general,
such factors influence the situation under study, and thus potentially affect the dependent
variables. Such factors are called nuisance factors: a nuisance in the sense that a factor
like this threatens the attribution of cause to the intervention. Was it the task or was it
learning that caused the observed difference? Experimental designs have many ways to
deal with nuisance factors: controlling such factors, holding them constant, or distributing
them randomly across levels of the independent variable. Consider, for example, getting
rid of the effect of users in a study having seen the old features in their work. If we would
like to get rid of that effect, we talk about controlling it.

Finally, the choice of interventions and measurements must not be arbitrary. Hypotheses
are statements that connect variation in independent variables with expectations about
variation in the dependent variables. Would you expect your new feature to be better than
the baseline design in usability; and if so, why? Explicating hypotheses is critical for high
quality evaluations. Hypotheses can avoid being fooled by observations subject to noise
and error, to avoid being biased by one’s own intuitions, and to avoid second-guessing.

Note that the above definition excludes the understanding implied in some common
usages of the word experiment, including that of “trying something new” or “an innovative
act or procedure”. In contrast, experiments in the context of evaluation aim to establish
causal conclusions about which factors influence a situation. Experiments try to rule out
alternative explanations besides the factors being manipulated. This chapter concerns how
to enable such conclusions to be drawn, in particular about the use of interactive computing
systems. The following subsections explain these components of the experiments in more
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detail; the box below summarizes an early and influential experiment.
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Paper Example 43.0.1 : Development of an experimental paradigm for
evaluating input devices

In 1978, Card et al. [128] reported a now classic experiment with input devices.
The study contrasted the efficiency of input techniques for selecting text. At that
time, such comparisons were rare; the paper was among the first in HCI reporting
experiments involving a mouse and using Fitts’s law [493] (see Chapter 4 ).

The authors had five participants use a mouse, a rate-controlled isometric joystick,
and two variants of keys; participants used all four. In the experimental task, the
participants had to select highlighted text at varying distances (1 to 16 cm) and sizes
(1 to 10 characters). Participants used each device until they did not improve in
performance. They did from 1200 to 1800 selections for each device, or four to six
hours of pointing.

This experimental design allowed Card and colleagues to plot the development
in learning to use the device. They did so in the plot below, which illustrates a
power low of practice: Tn = T1 � n�a, where Tn is the time used at trial n and a is a
constant. In a log plot this shows as a line whose slope indicates the learning rate.

The authors also use the experiment to plot the positioning time (their main
dependent variable) against the index of difficulty – a measure combining the size of
targets and the distance between them, two independent variables.

The lesson here is that experiments can help characterize an essential aspect of
input interaction. The study by Card et al. precisely characterized how users learn,
as well as which input device is good for selection. A careful experiment can remove
or minimize the effects of confounds, or alternative explanations. In this case, the
authors could better understand the level of performance as a function of practice.
Because of the extensive number of trials, the experiments by Card and colleagues
also provide us information about skilled use and not just first impressions or initial
use. The assumption here is that findings about these fundamental pointing tasks
predict how well users can input data in their real tasks.
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43.1. Research Questions

Planning an experiment, even for evaluative purposes, should always depart from the
research questions one wishes to address. A research question is a ”stated lack of under-
standing about some phenomenon in human use of computing, or the stated inability
to construct interactive technology to address that phenomenon for desired ends” [608].
In short, experiments are motivated by knowledge gaps. For example, in the example
starting this chapter, this knowledge gap concerned the effect of the new search feature
on usability.

More broadly, research questions can be divided into three classes: (1) empirical ques-
tions: phenomena and effects in human-computer interaction, (2) constructive question:
the ability to construct systems and designs with desirable properties, and (3) concep-
tual questions: relationships between theoretical constructs that represent interaction.
Experimental research can serve all three. In addition to empirical questions, we can
conduct an experiment with the purpose of setting objectives for design (constructive), or
to distinguish between competing theories (conceptual).

But how to come up with a good research question? One can think about this by
starting form the opposite: a poor research question. Let us entertain two common
objections to a finished and written up experiment: (1) “so what” and (2) “no surprises”
[236]. The “so what” objection suggests that the imagined results of an experiment should
be interesting and nontrivial; they should matter to theory or practice. Even if running
and analyzing the experiment proceeds as imagined, will people find it interesting? Will
it add to our understanding of HCI in important ways? Every so often, this objection
is voiced by reviewers as “this is not significant”, meaning that while the findings are
novel and valid, they do not add to the research literature in a substantial and important
manner.

The “no surprises” objection suggests that the results should add to or depart from what
we already know; they should not be predictable given earlier studies. One should not
do an experiment if the results are clear in advance. For instance, if a simple predictive
model shows a user interface superior to another or if a technology is without doubt
superior to an alternative, then the experiment does not have the possibility to surprise
us. Sometimes, of course, new technologies, use situations, or user groups may make
it hard to know if earlier findings or theories apply. The “no surprises” objection may
be raised both because the experimental setup is biased (we will discuss how to avoid
this later) and because the results are easily predictable from the literature (we will also
discuss how to avoid this later). Most importantly, both of these objections should be
considered before deciding to run an experiment.

The experimental method is only one of the many approaches available in evaluation.
The decision to choose should be based on careful consideration of the pros and cons.
And this boils down to the research questions. Following the discussion of McGrath [518]
in Chapter 10, one reason is that experiments maximize precision, but this is achieved at
the expense of generalizability and realism. Experiments also allow precise manipulation
of tasks and settings, as well as detailed data collection. This allows us to understand
specific mechanisms involved in interaction. Experiments also allow us to control external
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factors that may be hard to exclude by other means. For example, if you want to evaluate
user performance of a mobile application, you may want to prevent notifications and
multitasking during your measurements, because they would add noise to the data. They
also allow us to collect fine-grained data about how users behave with an interface.

Laboratory conditions permit the use of measurement devices such as eye-trackers,
motion trackers, and physiological sensing like electromyography (EMG), which annot
be easily deployed outside laboratory conditions. If these qualities are important for
your research questions, the experimental method is well suited. Another reason is that
experiments allow us to investigate research questions about the use of technology without
actually deploying it. This is valuable when a prototype does not have all features a real
product would need. Experiments are also efficient: they allow us to ’compress time’ and
study phenomena that occur infrequently. For example, you can arrange a laboratory
study that goes through 5-10 tasks within an hour, while the chances of those occurring
in real-world use might take days or weeks. Finally, in experiments, we can organize
circumstances where we can safely study events that would otherwise be unethical because
of causing harm to participants. Research questions along these lines are suitable for
experiments.

Another important reason for experiments is the egocentric fallacy [443]. According to
this fallacy, we tend to overestimate the power of our own intuition of human behavior.
However, intuition is weak in discovering latent (unobservable) mechanisms behind our
behavior and experience. The mechanisms behind human behavior are beyond intuition.
At the same time, we underestimate the extent to which we differ from other people.
This is particularly problematic in HCI, where a number of technologies that we propose
will have been developed and iteratively refined by ourselves or by close collaborators.
Experiments help overcome this fallacy.

In the same spirit, there are also some research questions for which experiments are ill-
suited. They rarely work well for studying how people decide to act with technology in real
circumstances. See instead the chapters on interviews (??) or field studies (Chapter 12).

43.2. Research Hypotheses

Research questions may be further elaborated as research hypotheses. Hypotheses are
statements that link manipulations of the independent variables to differences in the
dependent variables. For example, Nass et al. [565] hypothesized that “subjects will
perceive a computer with dominant characteristics as being dominant” (p. 288). Gutwin
and Greenberg [301] held the hypothesis that “better support for workspace awareness can
improve the usability of these shared computational workspaces” (p. 511). Hypotheses
are important also in evaluative studies. However, creating good hypotheses is hard.

Good hypotheses are (a) testable, (b) concise, and (c) name key constructs. The first
example given above is testable because one may compare computers with and without
dominant characteristics and expect a significant difference in participants’ perception of
dominance. That example names the key construct dominant, both as something that may
be manipulated in computer interfaces (an independent variable) and as something that
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participants perceive (a dependent variable, assessed, for instance by a questionnaire).
There are many benefits of formulating research questions as hypotheses. First, hy-

potheses help gain clarity about what one is doing and may help focus a research question.
Second, formulating hypotheses helps one think through what earlier work says about
the experiment being designed. Third, hypotheses help report an experiment. Fourth,
hypotheses are tied to theory. They help think through explanations in advance and allow
for genuine surprise about the experimental results.

Not all experiments, however, need hypotheses. The questions that drive the experi-
ments fall in two broad groups, sometimes summarized as ”testing theory” and ”hunting
phenomena” [258]. In the former group, there are clear expectations about the outcome of
the experiment, typically build on predictions from earlier work. This is often formulated
as hypotheses, statements that link the levels of what the experiment is manipulating to
outcomes in the measured variables. In the latter group, the experimenter holds less clear
expectations and holds more open-minded curiosity. These are also called explorative
experiments.

43.3. Independent Variables

Independent variables refer to the types of events or factors that we want to draw causal
conclusions about. Independent variables can be about anything we can systematically
control. They can be about the types of users (e.g., novice, intermittent, expert), types
of user interface (e.g., command-line, graphical), form of instruction (offline, online), the
type of feedback, and so on.

In selecting independent variables, it is important to remember that the experiments
are carried out to gain information. Results should not be obvious in advance, and
experiments should not be set up to generate winning conditions and losing conditions.

To ensure that we do not pick arbitrary IVs, the choice of independent variables should
follow from stated research question. However, that there are many traps in bridging the
two. For instance, let us consider again the example from the first part of this chapter
(page 865). Recall that we wanted to compare two versions of a search function. In doing
so, we need to establish what is considered belonging to the search function: do we want
to include the highlighting of search results in our study? Do we want to consider search
results opening to a context menu underneath the search button or in a new window, or
both? What if the new search function has a case-sensitive option whereas the old does
not? For each of those questions, a careless experimenter may invalidate the experiment.

43.3.1. Levels of an independent variable

The levels of the independent variable are all possible values that an IV can take in an
expeeriment. For example, if your study compares three UI features, the independent
variable ’UI feature’ would have three levels. If you compare two systems, ’the system’
would be one IV with two levels (system A and system B).
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43.3.2. Eliminating confounds

One difficulty lies in making levels of the variable (say, two versions of an interface) similar
in all essential aspects, except that one is manipulating. If the interfaces one is comparing
are not similar, the effects one is studying may be confounded by the dissimilar features.
The concerns relating to making conditions similar require an experimenter to ensure
that:

• all non-essential aspects are similar. So for instance, if search is supported, it should
be across all conditions. If shortcuts are available, it should be in all conditions;

• the screen real estate is similar across interface;

• the training and the users’ skill with the variants of interface is similar;

• the setting in which the interfaces is used is similar;

• comparable information available in the interfaces;

• comparable hardware is used (e.g., for input and output);

• the time allotted and the criteria for success are similar across levels of the indepen-
dent variable.

43.3.3. Selecting meaningful baselines

Another concern is to ensure meaningful baselines. A ”strong baseline” refers to a solution
that is considered best on the market or literature, the state-of-the-art alternative. This
could, for instance, be an interface that implements the typical way of performing a
task. Our concern here is to ensure that the baseline (or control) is as strong as possible.
Munzner [551] discussed what she termed “Straw Man Comparisons”, that is, cases where
authors compared their interfaces against outdated work, rather than the state-of-the-art
approaches. Although Munzer wrote about information visualization, studies in HCI
more generally are sometimes done by comparing novel interfaces with weak or incomplete
versions of the current state of the art.

43.4. Participants

The participants in the experiments are the people whose interaction with technology we
want to study. They should be seen as a representative sample from the group we want
to draw conclusions about. The selection of participants impacts which conclusions can
be drawn. It also shapes the practicalities of running the experiment.

The key question is who should participate. Representativeness is important. Re-
cruiting a convenience sample – whoever happens to be available – should be done with
caution. Barkhuus and Rode [45] found that about half of a sample of studies from the
CHI conference used students. Increasingly, participants are also recruited online, for
instance, through Amazon Mechanical Turk. The participants hape what happens in the
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experiment as well as how well we may generalize findings. We may choose experienced or
inexperienced computer users; we may find domain experts or novices. Thus, they should
be selected so that we can validly answer the research question we are interested in.

Another important question is how many should participate. Typically, the number
of participants in studies in HCI is around 12 [119]; for controlled experiments where
participants are present in person, the number is about 20. However, crucially, this does
not mean that 12 is enough for your study, only that this number is about the average
across most of the published literature.

The principled way of finding an appropriate number of participants is to do power
analysis [162]. Power analysis helps estimate the probability that one detects a difference
in dependent variables between the levels of the independent variable if one knows (or
can qualify a guess about) the magnitude of the effect one is examining. Power analyses
are often a depressing reading. Typically, many participants are required to achieve a
reasonable power; say, an 80% probability of finding a difference. To detect medium-sized
differences between the two conditions at this probability, one would need 64 participants
in each condition in a between-subjects experiment. Medium-sized effects found in the
HCI literature include differences between broad and deep menus, or between selection
with mouse and keyboards. There are tools to help with such analysis (e.g., G*power).

43.5. Research Ethics

A key consideration in experimental research is the ethical treatment of the participants.
They should in no circumstances be harmed. Participating in the study should not
have negative consequences on their lives. The principles for the ethical treatment
of participants in behavioral research have been established, the Helsinki Declaration
on Ethical Principles for Medical Research Involving Human Subjects; recent updates
include the American Psychological Association’s Ethical Principles of Psychologists and
Code of Conduct (http://www.apa.org/ethics/) and the code of conduct for the ACM
(https://www.acm.org/code-of-ethics). Research organizations have formal guidelines and
requirements in place to ensure respectful, legal, and ethically defensible experiments.

Key goals for ethical experimentation include:

• Treat participants with respect: value their time, honor their opinions, take any
criticism seriously.

• Do not expose participants to dangerous or potentially harmful situations; this
includes physical, mental, and emotional concerns.

• Make sure participants want to participate; get informed consent (there are templates
available online and your institution might also offer one).

• Make sure any reimbursements to participants are adequate: they should not make
it necessary for participants to enroll in your study but still compensate for their
time and any expenses incurred by participating (e.g., transportation costs).
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• Make sure to debrief the participants, explaining them about the purpose of the
experiment and taking any questions they might have about your research.
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Paper Example 43.5.1 : Controversial Facebook experiments

In 2014, it was reported that a large-scale experiment had been conducted on Facebook
which attempted to manipulate the emotions of its users [424]. Close to 700,000
Facebook users had their feed of stories manipulated so that they experienced a
reduced amount of emotional content. The figure below shows how the manipulation
(negativity reduces among one’s friends or positivity reduced) change the positive
and negative words that users post subsequently (the dependent variable). This
figure shows a clear impact of the experimental conditions compared to the control
conditions (no change in emotional content. This results are significant because it
shows that emotional contagion, having your emotional state changed based on the
people that surround you, can happen on social networks and without any direct
interaction between people.

However, the paper was controversial. The Facebook users who were part of the
study did not give informed consent as would be normally expected in research and
did not, in a clear manner, give permission to have their emotions manipulated
experimentally.
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43.6. Experimental Design

Let us consider again the search functionality example we started with. If you conducted
a study where the only functionality being assessed was the new feature, you could not
draw a conclusion on whether it improved over the original or not. You would not have a
baseline to compare against. This is an example of why we need to introduce experimental
conditions that allow us to answer our research questions. The variables to which we map
those conditions are called independent variables. They are called independent because
the observations collected in those conditions are independent of each other. This is
ensured by allocating participants either systematically or randomly to those conditions.

Experiments in HCI almost always involve more than one level of an independent
variable, for instance two alternative interfaces for a task, a range of different instruction
materials, or different approaches to delivering notifications. The assignment of partici-
pants to the levels of the independent variable is the main consideration in experimental
design. The aim is to ensure internal validity, that is, the ability of an experiment to
attribute differences observed in the dependent variables to manipulations of independent
variables [738]. Furthermore, experimental design need to consider subsequent running
and analysis of experiments. Simple designs are typically easier for participants; the
statistical analysis and interpretation are easier for experimenters.

One key decision is whether participants experience all or just one level of the inde-
pendent variable. The former type of design is called within-participants, because the
independent variable is varied for each participant, the latter type is called between-
participants.

In within-participants experiments, participants serve as their own control. So even if a
person varies in some trait or behavior, a so-called wild-card participant, that variation is
cancelled because the participant uses all levels of the independent variable. However, those
types of designs are not without problems. For instance, within-participant experiments
suffered from learning effects. Participants may learn about the interface or the task, and
therefore their experience or performance might change during the experiment.

Between-participant experiments have many benefits. They are easy to analyze and
they do not suffer from the possibility of influence across conditions because participants
use just one level of the independent variable. The key drawback of between-participant
experiments is that they cannot control for individual differences and therefore require
more participants.

As suggested in Figure 43.1, other factors in experiments may influence the experimental
situation. There are several ways to deal with these. The workhorse of experimental
design is randomization; this is often cited as a defining characteristic of experiments.
Randomization means that participants are assigned to conditions at random. Thereby,
the influences of other factors than those being manipulated are randomly distributed over
conditions. One of the authors of this book has the motto “when in doubt, randomize”.
Control means simply restricting the variable to one level; one may experiment, for
instance, with only left-handed persons. Thereby, the influence of handedness can be
ignored in the analysis of the experiment.

Sometimes experiments have more than one independent variable, which complicate
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their design. For instance, an experimenter may want to study three interfaces (say, a
command line versus a graphical user interface versus a non-computer method). There
are easy ways to combine such variation in independent variables, called Latin squares. If
we use the first letters of the interfaces (C, G, N) as shorthand, we could have one use
do C, then G, then N. Another could do G, N, C. Another, N, C, G. That organization
protects against a number of issues in the experimental design by having an equal number
of users use each interface first, second, and last (you can see this from Latin squares in
that the count of interfaces in each column is the same). More complex ways of setting
up experiments. For instance, if we want to compare the interfaces just discussed across
three ways of training (hints vs paper manual vs integrated manual), then we can use a
Greco-Latin square. It could lead to us organizing the experiment as follows:

1 2 3

User A: C+H G+P N+I

User B: G+I N+H C+P

User C: N+P C+I G+H

Again, the sum of types of training is similar across columns and each combination of
training and interface occurs just once. Generators for Latin and Greco-Latin square
designs may be found online.

43.7. Dependent Variables

In experiments, the aim is to understand how the independent variable influences the
interaction. By convention, we call measures of this influence dependent variables because
they depend or result from our manipulations of the independent variable. Another way
to think of dependent variables in HCI is that they indicate the quality of the interaction
numerically, say with the duration or accuracy of the interaction.

A crucial question for dependent variables is conceptualization [738]. Conceptualization
concerns making the meaning of concepts in an experiment’s research questions clear,
defining them precisely, and separating different dimensions of meaning. For instance,
while the learnability of a user interface is (superficially) easy as a dependent variable,
defining it is much harder. Grossman et al. [291] showed how the literature displays
many understandings of learnability. If an experiment does not clearly conceptualize
learnability, the validity of any inference from that experiment may be reduced because
learnability may mean many different things. Similarly, task completion time is easy to
measure in many experiments. But it may not be the best conceptualization of quality of
an interface. For instance, studies vary in whether they see low task completion times as
good (minimizing resource expenditure) or bad (expressing a lack of engagement); see
Hornbæk et al. [351]. Unthinkingly measuring task completion time therefore reflects too
poor a conceptualization of quality. Another example is the notion of user friendliness,
which has been used in HCI for decades. On the surface, it may seem like a natural
ingredient of a research question and therefore as a dependent variable. But it is difficult
to define and it is hard to separate its dimensions. Conceptualization shows that it is a
dead end for many experiments.
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Several tools of thought help conceptualizing dependent variables. First, one may refer
to the models and findings in previous chapters on user experience, usability, performance,
and collaboration. Each of these represents important concepts that we may use to make
research questions more precise. For instance, the discussion of independent dimensions
of usability suggests that we should consider whether we are thinking of effectiveness,
efficiency, or satisfaction when we are experimentally trying to find out which of a a set
of interfaces that is more usable. Or perhaps we need to consider all of them. Second,
Newman and Taylor proposed to think about the critical parameters of a certain situation
[571]. A critical parameter is a performance indicator that captures aspects of performance
that are critical to success, which is domain or application specific, and which is stable
over variations of interface. Part of the challenge in applying catalogs of measures is to
ensure that at least some measures chosen are critical in the above sense (and not just
generic time or error measures).

A second crucial question for dependent variables is operationalization [738]. Opera-
tionalization is about turning the concepts that our research question name into something
we may measure. The main consideration concerns the extent to which the actual mea-
sures collected reflect what the experimenter wishes to measure, or whether it is possible
to make “inferences from sampling particulars of a study to the higher-order constructs
they represent” [738, p. 65].

We may ponder the following questions in operationalizing dependent variables. First,
how will we actually obtain the measure. Second, use validated measures and ques-
tionnnaires. Third, multiple measures of the same construct increase reliability and
strengthen the validity of claims about constructs. Using just one operationalization of
the construct faces a mono-method threat to validity [738]. It means that we are more
prone to not measuring what we think we are measuring if we use just one indicator for a
construct.

Most measures in research studies in HCI are task completion time, accuracy or error
rates, and questionnaire answers. However, a couple of additional types of data are
worth collecting in experiments. One important type is about the interaction process, for
instance, which commands participants activate or how they move their mouse. Such
data may help us understand the interaction process (rather than just the outcome) and
may help us think about why something happens in an experiment.

Whereas dependent variables need to be numeric, many exemplary experiments also
collect qualitative data, for instance in the form of interviews and observations. Some
experiments also rely solely on qualitative data. For instance, O’Hara and Sellen [598]
reported a much-cited experiment on reading from paper and from a computer. While
they used an experimental setup—using for instance random assignment of participants
to either paper or a computer condition—they only reported qualitative data on reading
strategies and activities that differed between paper and computer. Such data is valuable
when experiments go well (as in O’Hara and Sellen’s study), but it is also useful in
understanding why an experiment failed.
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43.8. Experimental Situation

Experiments put participants into experimental situations: the particular circumstances
where they are asked to carry out tasks. The design of these situations matters.

One decision concerns the activities that participants will engage in. They are often
prescribed as tasks. One may select tasks in many ways. One is to select tasks that are
representative of what users would do outside the experiment. Munzner [551] discussed
selection of tasks in information visualization and wrote ‘A study is not very interesting
if it shows a nice result for a task that nobody will ever actually do, or a task much
less common or important than some other task. You need to convince the reader that
your tasks are a reasonable abstraction of the real-world tasks done by your target users
” (p. 147). One way of ensuring representativeness is to use tasks that users have been
observed doing.

Another approach to selecting tasks is to use simple tasks that capture the essence
of what is being investigated. The idea is to reduce variation and remove non-essential
features of a task; this idea is similar to the approach for selecting independent variables
that was earlier referred to as essential features. For instance, many studies of pointing
techniques use the ISO multidirectional tapping task. This task type requires participants
to tap circular or square targets arranged in a circle. It does not represent pointing in
the wild, but is widely accepted as a useful task for experiments.

Another decision about the experimental situation concerns whether the experiment
take place in the lab or in the field. In lab experiments, the setting is controlled and the
effect of external influences minimized. In field experiments, the setting is real, although
the experimental manipulations are instigated by the experimenter. The view taken here
is that neither choice of setting is better than the other; rather, they have relative benefits
and drawbacks. We discuss field experiments in Chapter 40.

43.9. Analysis and Interpretation

What should one do with the collected data? The naive approach would be to take means
of data in different conditions and compare them. What could go wrong with this? If
users report an experience of 3.5 in condition A and 4.2 in condition B, is this not a
sufficient basis to conclude that the one is better than the other?

Perhaps the most critical piece of knowledge in analysing data concerns variance.
Every observation in an HCI experiment is susceptible to variation. Observations are
compromised by variation in repeated attempts of users, our measurement instruments,
and various random effects. If variance in the two conditions A and B is large enough, it
could be that the means differ because of chance. In other words, if you were to repeat
the experiment, the result could be different, even flip.

Statistical analysis gives us rigorous tools to understand what we can conclude from
data. Statistics is the science of drawing valid conclusions from datasets. In HCI, we use
statistical analysis for different purposes, including:

• Exploring and learning about the distribution of variables or their relationships;
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• Describing relationships between independent and dependent variables;

• Testing if relationships describe reliable differences in the population from which
the sample was taken;

• Identifying a factor that caused or contributed to an observed effect;

• Testing if a statistical model accurately describes the dataset.

In this book, we do not offer a comprehensive overview of statistical methods for HCI.
We here review some of the more popular frequentist methods and thinking behind them.
For a more thorough treatment, see the book on the topic by Robertson and Kaptein
[682]. Recent research has also looked at Bayesian methods for statistical testing, such as
the Bayes factor. An in-depth treatment of frequentist and Bayesian statistics can be
found in Cox [171]. Note that we discuss the analysis of qualitative elsewhere in the book:
In chapters on interviews, think-aloud protocols, and conversational analysis.

Statistical analysis is divided into two main classes according to purpose:

• Descriptive statistics, where the goal is to describe relationships between variables
in the dataset;

• Inferential statistics, where the goal is to draw a conclusion about the population
from which the sample was drawn.

It is a good practice to start analysis by describing the dataset. Descriptive statistics
refers to the use of summary statistics, like graphs, tables, and models, to describe a set
of data. For example, imagine you had collected data on accuracy and speed of pointing
with two input methods A and B. What you should do is to plot the distributions of
the two dependent variables for the two methods. What could you learn? For example,
are the distributions normally distributed, are they skewed, how much variance is there?
Based on this information, you could produce summary statistics, such as mean, median,
min and max of each variable. Graphs can then be used to visualize them further, for
example histograms, scatter plots, line plots etc. Bivariate graphs show relationships
between two variables, trivariate among three, and multi-variate more than that.

Inferential statistics refers to the attempt to generalize observations in a sample. A
distinction is made between the set of observations and the population it comes from.
For example, in the case of the search functionality example, one may be interested in
estimating what task completion time is for regular users (population), not just the one
recruited to the study (sample). Obviously, if the sample is not representative, conclusions
drawn based on it can be flawed. There are many reasons why the sample may be
unrepresentative. For example, we often use university students to represent regular
users. However, they may differ in many respects: age, socio-economic and background,
etcetera. This is why it is important that participants and tasks are sampled such that
they represent the population. There are several strategies to ensure that: random
sampling, stratified sampling, and systematic random sampling, for example.

Inferential statistics may also start by plotting. Confidence intervals provide estimates
for the range of values that we think the true population value should fall in. For example,

880



43. Experiments

if the 95 % confidence interval of our task completion time variable was [14.5, 17.9], it
would mean that we are 95 % confident that the true population value was between 14.5
s and 17.9.

Statistical testing refers to testing if a difference exists between conditions. Since we are
talking about inferential statistics, we are not interested whether the difference exists in
the dataset, because there almost always is some difference, but whether this represents
a true difference in the population. Here, the research hypotheses need to be translated
into statistical hypotheses, which can then be tested.

Multiple methods exists for statistical testing. They can be divided into two main
groups: parametric and non-parametric. Parametric tests use parameters to describe the
population. They make distributional assumptions about the population, which must be
first checked in order to proceed to use the corresponding test. The most commonly used
parametric tests are t-test and its generalization ANOVA. Non-parametric tests make no
assumption about the underlying distribution, which makes them more flexible as a class
of tests.

Regression models help us understand the nature of relationship among two or more
variables. In a regression model, we try to understand the relationship between predictor
and response variables. Typically predictor variables would be our independent variables,
and response variables the dependent variables. However, any covariant, or uncontrolled
but recorded variable, could be included, too. For example, we could use regression to find
a relationship between age and task completion time. If the p-value of the regression was
below an apriori threshold (often 0.05), we can conclude that there would be a significant
trend.

43.10. Hypothesis Testing

A very common approach to analyze experiments in HCI is through hypothesis testing.

43.10.1. Statistical significance testing

The high-level logic of a hypothesis testing is as follows. Assume you have a sample X
with n measurements, X = {x1, x2, . . . , xn}.

We now assume that this sample was drawn from a particular distribution, let us call
it N . We call this assumption the null hypothesis and it is typically denoted H0.

We can now ask whether our sample was indeed drawn from a particular distribution N
and we do this by asking whether it is possible to reject the null hypothesis. This means
that we are asking whether we can, with some probability, state that the sample was not
drawn from the distribution N .

While not a typical significance test in HCI, let us consider the distribution N we are
interested in to be a standard Normal distribution N(x) ⇠ N(0, 1). We can then ask
whether an individual measurement x in our sample is drawn from N . In this case, this
means x should not deviate much from 0. If a measurement x in our sample is large, say
3, then the probability that it is drawn from a standard Normal distribution is very low.
However, if a measure x in our sample is small, say 0.3, then the probability is quite high.
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This can be readily realized by considering that the range |x|  1 occupies 68% of the
probability mass of a standard Normal distribution. In other words, the higher x is, the
more confident we can be that x was not drawn from a standard Normal distribution.

In hypothesis testing we define a criterion value for determining whether the probability
that x is not drawn from N justifies rejecting the null hypothesis. Common criterion
values are 0.05, 0.01, and 0.001. These criterion values are called confidence levels. For
example, if we set the confidence level to 0.046, then we would reject the null hypothesis
for a measurement x if x different from the value x = 0 by 2. That is, for any value of
x = 2 or higher would give us cause to reject H0 at significance level 0.046.

Statistical significance tests perform this type of hypothesis testing. However, they also
take into account additional factors, such as several measurements in the sample, and
they consider more appropriate distributions than a standard Normal distribution.

43.10.2. Example: between-subjects analysis of variance

Assume there is a difference in the measurements we obtained via the dependent variables
when we manipulated the independent variables. This difference can be due to two things.

1. Our manipulation of the independent variable.

2. Error, which in this context means there is no true difference. Instead, the difference
we measured was just due to random chance.

Significance tests help us decide whether measured differences are statistically significant,
meaning that we can be reasonably confident that the difference is not due to chance but
due to our manipulation of the independent variables.

Now assume we have sampled two groups from a user population and we exposed each
group to a different method, say Method A and Method B. The method is then our
independent variable with two levels: Method A or Method B.

We now believe a right way to compare these methods is to investigate if the means of
the measures we have taken differ between the two groups. The null hypothesis H0 says
that for some predetermined confidence level there is no actual difference between the
means and any measured difference is solely due to sampling error. If we reject the null
hypothesis H0 then we have a significant result at said confidence level.

We will demonstrate statistical significance testing in HCI by using a method called
one-way analysis of variance (ANOVA). It is a significance test used to determine whether
two sample means are significantly different in the statistical sense. The sample means
must have been generated from a between-subjects experimental design.

The statistical term error is the amount an observation differs from the population
mean. Typically the population mean is unobservable.

The statistical term residual is the amount an observation differs from the sample mean.
Unlike the population mean, the sample mean is observable.

Assume we have obtained samples from a Normal distribution: X1, X2, . . . , Xn ⇠
N(µ,�2). Then the sample mean is:
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Figure 43.2.: An illustration of the acquisition of two samples from two populations.

X̄ =
X1, X2, . . . , Xn

n
(43.1)

and the error is ei = Xi � µ and the residual is ri = Xi � X̄.
Now, why would there be a difference between the sample means of group A and B

(Figure 43.2)? There are two possible reasons:

1. Because of group membership. This means the difference is due to an effect of the
independent variable on the dependent variable.

2. Not because of group membership. This means the difference is merely due to
sampling error.

The logic of ANOVA is as follows. There are two independent estimates of the population
variance that can be obtained: (1) a between-groups estimate, which is the effect of the
independent variable and error; and (2) a within-groups estimate, which is just error.

Our null hypothesis H0 is that the two populations A and B have equal means:

H0 : µA = µB (43.2)

Given H0, the between-groups and within-groups variance estimates should be equal.
This is because H0 assumes the effect of the independent variable does not exist. Then
both variance estimates reflect error and their ratio is 1. A ratio larger than 1 suggests
an effect of the independent variable.

A sum of squares (SS) is simply the sum of the squared residuals:

SS =
X

i

�
Xi � X̄

�2 (43.3)

Now let us consider the sources of variability in a between-subjects analysis of variance.
The total variability within Sample A is:
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SSA =
X

i

�
XAi � X̄A

�2 (43.4)

The total variability within Sample B is:

SSB =
X

i

�
XBi � X̄B

�2 (43.5)

Finally, the total variability between Sample A and Sample B is:

SSA =
X

i

�
XAi � X̄AB

�2
+ SSB =

X

i

�
XBi � X̄AB

�2 (43.6)

We can now define the variability due to error. This is the total variability within
Sample A and Sample B—this variability is not due to manipulation of the independent
variable and is thus regarded as a source of error :

SSerror = SSA + SSB (43.7)

The total variability between Sample A and B is:

SStotal = SSA+B (43.8)

Finally, The effect is the part of the total variability that cannot be explained by the
source of error:

SSeffect = SStotal � SSerror (43.9)

What we have effectively done is we have partitioned the different sources of variability
in the samples: (1) variability due to error, that is, the sum of the variability within each
group; (2) total variability across both groups; and (3) variability due to an effect of a
manipulation of the independent variable—variability that cannot be explained by error.
This partitioning is shown graphically in Figure 43.3.

We have found a way to separate out the error from the effect in the data. We first
measure the variability of the data within each group (group A and B separately). This
gives us the error. Thereafter we measure the total variability (collapsing group A and B
into a single group). This gives us the effect + error. We can now obtain the effect by
subtracting the error from the total variability.

The sums of squares provide unscaled measures of variability in the data. This can
be readily observed because as we keep adding more and more summands the sum
becomes larger and larger. Since sums of squares are unscaled they need to be eventually
normalized so that we can compare different sums of squares.

Scaled sums of squares are called mean squares (MS). Mean squares are obtained by
scaling sums of squares by their degrees of freedom (df).

First, we have the degrees of freedom dferror within group A and group B, recall this is
the error. dferror is the number of ways you can arrange the residuals and still have them
sum to zero for each group:
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Figure 43.3.: A graphical illustration of how one-way ANOVA partitions sums of squares.
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dferror = n � participants � m groups (43.10)

Then, we have the degrees of freedom dfeffect between group A and B, recall this is
the effect. dfeffect is the number of ways you can arrange their deviations away from the
mean so that their average always sum to zero:

dfeffect = m groups � 1 (43.11)

Now we can obtain the mean squares for error and effect:

MSerror =
SSerror

dferror

(43.12)

MSeffect =
SSeffect

dfeffect

(43.13)

Finally, we can calculate the F -ratio, frequently referred to as the F -statistic:

F =
MSeffect

MSerror

(43.14)

The F -ratio will become large if the effect is larger than the error. Vice versa, if the
F -ratio will become small if the effect is smaller than the error. This is because the
ratio of the between-groups estimate and the within-groups es/mate gives rise to an
F-distribution when H0 is true.

The F-distribution varies as a function of a pair of degrees of freedom, one for each of
the variance estimates.

43.11. Experiments need Explanations

The primary goal of evaluation is to estimate the value a design offers to users. Often
this goal is better achieved if the obtained result can be explained.

A small thought experiment illustrates this. You run an evaluative study of a prototype
design and find that average task completion time is 47.5 seconds, average error rate 0.5,
and SUS (system usability scale) 65. What do such results tell you and how confident
can you be when taking further actions based on them?

Explanations help understand distributions of dependent variables. Why, for example,
had task completion time an average 47.5 s and not, say, 14.4 s? Data collected during
the experiment may offer explanations. Verbal protocols, video recordings, interviews etc.
can illuminate explanatory mechanisms that link independent and dependent variables.
Often in HCI experiments, we discover usability problems, conceptual misunderstandings,
or issues in perceptual or motor performance.

Without such explanations, results may be ’fragile’. There is a threat that the obtained
results do not generalize. Quantitative findings may be underpinned by factors that are
contingent (dependent on) experimental conditions. If those conditions change, even
slightly, the result may change, too. For example, if your users are not native speakers,
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perhaps they failed to find an item because they missed the meaning. Now, were you to
deploy your system to native speakers, the results might change entirely.

We may also seek explanations outside of data – from theories. For example, theories
of cognition may help understand why users have hard time recalling facts or events,
and theories of communication may expose why users do not want to engage with a
user community. For example, Cockburn et al. [159] used decision-making theories
from psychology and economics to explain user behavior in using intelligent text entry
systems. Because the effect of an intelligent text entry method can be fleetingly small,
and contingent on a number of factors, it is important to understand the mechanisms
that underpin a user’s decision to use a method in a particular way.

To sum up, results of experimental research are more robust and generalizable if they
can be explained.

Summary

• Experiments helps give precise measurements and comparisons.

• Explicating research questions and hypotheses is important for high quality evalua-
tions.

• Validity and reliability are key concepts for ensuring trustworthy experiements.

• Data analysis uses methods from descriptive and inferential statistics to draw
conclusions about the effects of independent variables on dependent variables.

Exercises

1. Understanding experiments. For each of the questions below, discuss if an experiment
is a suitable evaluation approach.

a) What does it feel like to interact with a chatbot?
b) Why do people not upgrade software on their devices?
c) How quickly can people input text on a QWERTY keyboard?
d) How do we figure out how much people use their mobile phones?
e) What is the most effective way of organizing email?

2. Formulating testable hypotheses. Please create a hypothesis for an experiment
investigating the effects of embodying different avatars in a virtual reality game.
Check if you have clear dependent and independent variables. Explain these links
with theoretical hypotheses if you can.

3. Experimental design. Please design and run an experiment that will investigate the
appropriate mid-air gestures turning on and turning off a television.

887



43. Experiments

4. Comparative studies. You have been asked to run a study that investigates whether
a mobile phone application for exercising more during the workday is better than
a baseline application. Please consider to think about ”better’ and how to select
dependent variables for the study. One of your collaborators suggested using step
count; what are your considerations about validity for this dependent variable?
Another colleague considers how to capture the subjective of exercising; how do you
engage in discussing this consideration?

5. Measuring user experience. Everybody wants satisfying user interfaces. Imagine
that you are conducting an experiment where you are interested in satisfaction.
Consider how you would operationalize that in the experimental setup that you
imagine. What are the essential and less important aspects of satisfaction? How
will you measure them?

6. Improving experimental designs. Read the paper by Card et al. [128] and come up
with an improved version of the experiment.

7. Reflecting on evaluative practices. Describe how you have previously evaluated
designs or software, for example on classes or in your work. Then compare that to
the usability testing method as described in this chapter. Give a concrete example
and tell how that was tested. Explain whether it was tested from a human-centered
perspective. Describe why, or why not, this was done. Next, compare this previous
approach to usability testing. Is testing with people relevant or not? Is it your
responsibility? What happens if no testing with people is done?
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The evaluation methods considered so far are similar in one important respect: they do
not consider the context of use. The methods concern primarily controlled settings (e.g.,
think-aloud studies) or general models of human performance (e.g., KLM). In the terms of
the overview chapter (Chapter 40), those methods maximize precision and generalizability.
But what about realism—is not important to get as close as possible to the real contexts
of use in evaluation? Collaborative, communicative, and material practices are bound to
the contexts in which they emerge.

This poses a formidable challenge for evaluation. If we wish people to engage in their
real tasks, in their real contexts, and fueled by their own motivations, how do we carry
out an evaluation? If we wish the social and organizational context to remain unaffected
by evaluation, how do we study it without changing it? In fact, all the challenges outlined
in the User Research part (III) seem to apply here. If we want to study an interactive
system in its real setting, we need a fully developed system, and we need people and
organizations willing to use the system as part of the evaluation.

This chapter concerns evaluation using field and deployment studies. This encompasses
three ideas.

• Field evaluations of prototypes: One idea is to bring out prototypes of interactive
systems in their thought use setting; viz., the field. As an example, Bardram et al.
[41] conducted a 14-week field trial of a personal monitoring system for bipolar
patients. The key focus here was on the patients’ experiences with the system as
part of their lives.

• Pilot studies: Another idea is to partially implement an interactive system and
put it in use to learn about its use. Then, those learnings are used to improve the
design of the system and fully implement it. For instance, Hertzum et al. [332]
studied a pilot implementation of a system for patient transportation at a hospital.
The pilot implementation showed a potential of the system to support porters’ self
organization, but that crucial functionality in the system were missing for that goal.

• Deployment studies: A third idea is to gather information about a fully functional
system and improve it as part of its maintenance. DiMicco et al. [193], for instance,
built and deployed a social networking system called BeeHive within IBM.

Next, we elaborate on each of the three types of studies. We reflect on the pros and
cons of field and deployment studies, including their relation to user research (as described
in Part III).
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Paper Example 44.0.1 : Using an app to reach AAC professionals in the
field

Augmentative and alternative communication (AAC) is a field investigating techniques
and approaches for enabling nonspeaking individuals with motor disabilities to
communicate. A challenge in such research is to reach users to evaluate prototypes.

Fontana and colleagues [248] presents research that is based on reaching AAC
professionals by releasing an app on an app market. The app presents a novel interface
for AAC users that rely on symbols to communicate. The app enables the user to
select a photo from a photo album. The app will use then use a system to extract
meaning from this photo and ultimately generate a set of symbols for the user to
choose from. These symbols will be associated with words. In addition, the system
will predict phrases, consisting of sequences of symbols. The interface components
are shown in the figure below. Users are able to reorder the symbols, remove them,
edit words associated with symbols, and add new words and sentences. The user can
speak a symbol or phrase by tapping on it.

To evaluate the system, the researchers released the app on an app market and
were through the app able to recruit AAC professionals willing to try out the app
with AAC users. This enabled the researchers to carry out in-depth interviews with
AAC professionals, reporting on the usefulness of the app for their users in-situ. It
allowed the researchers to understand how this app can be used to support language
learning in a school and in therapy. They discover that the immediate access to a
relevant vocabulary by tapping a photo contributes to reducing the conversational
partner’s workload, and may help AAC users in understanding symbols and sentence
construction. Overall, the paper reports a rich interview material from a diverse set
of AAC professionals which would be difficult to source using traditional means.

44.1. Field Evaluations

One major decision point for evaluations is whether to carry it out in the laboratory or
in the field. In a laboratory evaluation, an evaluator can control what happens during
an evaluation: the tasks users are carrying out, the instructions they receive, and other
factors that may affect user performance and behavior. Researchers can also ensure that
observations are independent, that is, that participants do not influence each other. These
practices minimize the risk that factors irrelevant to the aim of the evaluation compromise
the validity of any conclusions drawn from a study.

Field evaluations are attractive because they tend to provide a higher ecological validity :
The conditions in which the study is arranged have a higher resemblance to the real-world
conditions of use that a system might be used in.

44.1.1. Degrees of Field

It is convenient to think about the field as a matter of degree. So, rather than a strict
distinction between lab and field, we can imbue evaluations with more or less features of
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the field. Again, this is about realism, in the sense of [518]. So evaluations may be more
field-like in terms of people, activities, contexts, and technologies (see Chapter 10).

Let us give some examples. For instance, many think aloud studies can be done at
users’ workplace, ensuring that the physical and social contexts are more similar to the
imagined use context than a usability laboratory. This is similar to the approach by Rico
and Brewster [679]. They evaluated the social acceptability of a gesture-interaction set
for mobile phones on the pavement near a bus stop and an underground station on a busy
city street. In that way, the context of the evaluation was allowed to influence its results
and increase its realism. We can also vary the activities that people engage it, for instance
the tasks. This is why tasks in think-aloud studies are sometimes supplied by users
themselves (see Chapter 42). This make them more realistic and closer to what would
happen in the field (aka real life). In the study by Rico and Brewster [679], although the
setting was the field, the researchers gave the tasks.

In an attempt to get evaluations to be more like the field, researchers sometimes
focuses on particular aspects of the lab–field continuum. In the 1980s and 1990s, usability
researchers were spending energy on constructing usability labs that looked like users’
workplaces or experimental settings constructed to resemble living rooms. Such attention
to mundane realism is warranted but is likely less important than, for instance, ensuring
that participants in an evaluation sees it as meaningful and engaging or that the tasks in
an evaluation reflects tasks participants would do in real life [351].

44.1.2. Evaluation Methods for the Field

If we wish to increase the realism of an evaluation and do it in the field, which evaluation
methods can we apply? The short answer is that all empirical evaluation methods may
be used. Thus, we can use all the method covered in this part, including the think aloud
method in the field and experiments.

However, we can also use the methods discussed in the part of user research III, including
interviews (Chapter 11), observations (Chapter 12), and unobtrusive data collection (??).
Recall that the goal of an evaluation is to valuate a system against some standard. In
contrast, the studies discussed in the part on user research were often about understanding
users existing work. Thus, the intention differs between the use of, say, interviews for
user research and for evaluation.

44.1.3. Experiments in the Field

One method that has been particularly adapted to the field is the experiment. Field
experiments need to balance the causal logic of experiments with the realism of the field.
As an example of how the deployment environment can change results, consider a field
test of two deployed mobile text entry methods: an auto-correct keyboard and a gesture
keyboard Reyal et al. [678]. This field test compared the lab text entry performance of
both text entry methods with the text entry performance that could be measured when
users were using both text entry methods installed on their phones and used in everyday
life.
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When thinking about experiments in the field, three core assumptions of experimental
research are threatened: random assignment, control, and independence of observations.
First, we may not be able to randomly assign users to particular conditions in the field.
We need to work with users who happen to use some user interface or have a need to
carry out particular tasks.

Second, we cannot control events to the same extent as in a laboratory setting. Field
studies are open to a surprising number of unexpected events and factors that may
substantially affect any outcome. For example, while you may ask users to carry out
their everyday work task using a prototype instead of some established user interface,
something unexpected may happen, such as a crisis at work, new work rules, a new
workflow, or new colleagues, that alter the way users interact with the prototype.

Third, our observations may not be independent of each other. For example, if you want
to evaluate a system with a school class, it can—or, rather, will—happen that students
talk about the experiment with each other, which will influence their behavior.

In the literature on experimental methods, field experiments are sometimes called
quasi-experiments for the reason that they often violate assumptions of experimental
research [739]. Quasi-experiments call for caution in analyzing data. We cannot rely
on the same statistical methods for drawing conclusions from data collected in field
experiments.

A particular type of quasi-experiments are natural experiments. In such experiments,
a happening in the world works as the experimental manipulation—the influence of
COVID-19 on communication is one of the most well-known natural experiments. Such a
happening allows us to study its influence in the real world. It is not a full experiment
because assignment is not random and the happening may be associated with many
causes.

As an example, Griggio et al. [287] studied the influence of a new privacy policy for
WhatsApp, in particular if the policy would make new users switch to other platforms.
Using surveys immediately after and a while after, the authors were able to conduct an
experiment-like comparison using an happening in the real world.
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Paper Example 44.1.1 : Field evaluation of an interactive tutorial for
Wikipedia

Sometimes evaluation studies can only be carried out in the field. Narayan et al.
presented an interactive tutorial for learning Wikipedia [561]. The goal was to
encourage positive behavior and high quality contributions. Wikipedia suffers from
high rate of change in its communities, and newcomers should be quickly mobilized
to ‘the ways of the house’. It is also vulnerable to norm violations and malevolent
behavior like trolling. Such behaviors can compound, as newcomers are less likely
to join communities where they experience demoralizing behavior by others or are
not assured by the quality of contributions. TWA – The Wikipedia Adventure – is
structured in the form of a game (adventure) and uses methods from gamification
research (see Chapter 8). It covers critical ares affecting Wikipedia contributions:
wiki-markup, community policies, and communication with other editors. It allows
exploring and learning in a ‘sandbox’, safely without the fear of ‘looking stupid’ among
other editors. Users go through seven ‘missions’ [p.1788]: ‘’setting up their user page,
communicating effectively with other users, making basic edits, maintaining a neutral
point of view, evaluating content quality, understanding revisions, and using built-in
tools like watchlists and history pages to see how articles can be maintained over
time.” Missions are themed as stories and completing them is rewarded with ‘badges’,
a common gamification technique.

The authors hypothesized that, in order to become a Wikipedian, novices should
be able to perceive that even tiny contributions can be valued in the community,
when done according to the norms of the community. To arrange a field evaluation,
the authors collaborated with Wikimedia Foundation. They first organized a user
survey among Wikipedia editors, who were invited to comment the tutorial. The
goal was to collect formative feedback that helped the authors evolve the design of
TWA. 90% of 600 respondents reported feeling more confident as an editor after
passing the tutorial and helping them to understand Wikipedia better. However,
the authors noted that a survey-based evaluation with experienced editors may not
carry over to newcomers, which was their initial target group. In the second phase,
they wanted to see if TWA would actually help newcomers to increase the quality of
their contributions even after completing TWA. They hypothesized that gamification
might help them increase confidence and self-efficacy (beliefs that they are able to
master Wikipedia). To recruit users, the team invited users via talk pages to play
TWA. This, obviously, limited their sample to newcomers who chose to opt-in to
the study. To learn about the effect of TWA, the authors needed to compare two
types of newcomers: those using and those not using the system. Their solution was
to divide invited users according to whether they chose to use TWA or not. The
authors placed opted-out users to a control group.

Contrary to results from Phase 1, the authors found no measurable effect of TWA
on newcomer participation in Phase 2. All outcome metrics the authors used, which
measured the quality of contributions 180 days after taking TWA, failed to reject the
null hypothesis of no effect. The authors attributed this to the self-selection effect:
that that users who chose to take TWA were different from others. The authors
concluded their evaluation: ‘’In a project like Wikipedia that depends heavily on
intrinsically motivated members to make contributions, a gamified tutorial may be
helpful and fun to use, but ultimately unsuccessful at building long-term commitment
and retention” [p.1796].
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44.2. Pilot Studies

In item VI we discussed prototypes as a way to get hands-on experience with a design.
Can we do that in the field for systems that have been sufficiently developed to be used
there? If so, this would allow us to evaluate a system in its intended use context.

Pilot implementations have emerged as an answer to this question [331]. A pilot
implementation is “a field test of a properly engineered, yet unfinished system in its
intended environment, using real data, and aiming—through real-use experience—to
explore the value of the system, improve or assess its design, and reduce implementation
risk”. This allows evaluators to test the entire sociotechnical system (see Chapter 33)
rather than a smaller part of the interactive system.

A pilot implementation differs from a prototype in a few, key ways: (1) it is always
done in the field, (2) it is “used in its intended environment for a limited period of time,
with real data and special precautions against breakdowns” [331], (3) it is done when
feasible to test both the design, the engineering, and the implementation, and (4) it is
done for weeks or months. In these ways, a pilot implementation is a partial deployment
study.

Let us consider an example where a pilot implementation was used. Systems in health
care are complex, but in particular their fit to the organization at hospitals have proven
surprising when many systems have been brought into use. As part of the development
of an electronic patient record (EPR), a part of the EPR was pilot implemented at a
hospital [329]. For five days, the pilot implementation of the EPR replaced all paper
records in the hospital unit. A back office was staffed for all five days to help resolve
breakdowns, unavailable features, and other contingencies.

The pilot implementation showed that the EPR and the associated work procedures
were successful in achieving many of the changes that were planned. Some consequences
of the interactive systems that were unexpected were also found. For instance,

the nurses engaged in a process of collective reading at their handovers,
during which the EPR screen was projected on the wall and thereby visible to
everybody. The electronic records were inspected by the group of nurses, and
they collectively participated in interpreting the status and condition of the
patients, guided by the nurse team leader. The nurse team leader navigated
the EPR and read selected passages aloud to draw attention to them and set
a shared flow in their reading. This collective reading was a marked change
in the nurses’ work practice. During nursing handovers with paper records
the nurse team leader provided an oral report of each patient by scanning the
patient’s record and reading key information out loud; patient records were
seldom seen by clinicians other than the nurse team leader.

In this way, the pilot implementation helped the evaluators uncover emerging but impor-
tant phenomena surrounding the use of the interactive system.

Pilot implementations as a concept are related to other ideas about bringing essential
parts of an interactive system into use in the field to be evaluated. With technology probes,
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researchers deploy simple and adaptable interactive systems [359]. The goals of doing so
are threefold.

• to understand the real-world needs and desires of users,

• to help users and designers conceptualize new technologies, and

• to field test the interactive system.

In that way, technology probes bridge work on understanding users, on designing interac-
tive systems, and on testing the interactive system in the field.

Another related concept is the minimum viable product [681]. The idea is to create
and release a version of a new interactive system that allows its designers to collect the
maximum about of information from users with the least information. That way, actual
behavior with the product may be observed and use to improve it and take business
decisions about its future. As with the general idea of pilot implementation, the product
is partial and need not be fully working but perhaps just simulated behind the facade of
an interactive system.

44.3. Deployment Studies

When a product, system, or service has been designed and built, it is ready to be deployed
to end-users. Often ignored in research, deployment is a critical stage in the development
of any product, system or service. In deployment studies, interactive systems are fully
deployed and as they are used, evaluators collect data about the success of the system.

The reasons for conducting such evaluations vary. First, support costs might be reduced
by learning from the issues that users face with the real-life use of a product. Second,
evaluators may be interested in ensuring that the intended effects of a system are realized;
studying the deployment of systems is a way of doing that. At a fundamental level, it
is only at the deployment stage that it will be possible to fully know that a system is
fulfilling its purpose in helping users achieving their goals in relevant use contexts. Third,
future versions of the system may be improved through the feedback. Deployment allows
studying systems released to the actual intended users who will use these systems to
achieve their goals in their sociotechnical context.

Chilana et al. [149] conducted a large-scale survey of what they call post-deployment
usability. They showed that only half of the 333 HCI professionals are involved in usability
work after the deployment of a system. Frequent activities for studying deployment
include interviews/surveys, informal usability testing, analysis of customer support data,
satisfaction surveys, and monitoring of discussion forums, and analysis of logfile data.

Let us next look more closely at a few examples of methods used in deployment studies.
As noted earlier, many of those methods were covered already in the part on user research
(Part III).
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44.3.1. Analysis of User Feedback

One form of deployment studies are to gather users’ feedback and use that to evaluate a
system. Of course, such feedback may be elicited through questionnaires (see Chapter 13)
or interviews (see Chapter 11). Howevver, a prominent approach is to use feedback that
users give independently of the evaluation. Users may provide such feedback in the form
of support calls, reviews of the system, or comments on community support forums. For
example, Zhai et al. [904] deployed the ShapeWriter WritingPad on an app store and
analyzed reviews that users wrote about the app. All of these types of feedback may be
analyzed to evaluate the deployed system.

44.3.2. Logfile Analysis

Similarly to unobtrusive research (see Chapter 14), evaluators may use web site analytics
and logfile analysis to evaluate a deployed system.

44.3.3. App Store Deployment

One of the main costs in deployment studies are distributing the software to users. A
popular methodology in HCI research was developed along with the rise of app stores for
downloading software for mobile phones and tables [520].

44.3.4. Longitudinal Studies

Longitudinal evaluations are field evaluations that follow a prototype or product for a
longer period of time. Although such evaluations may be done in the lab, they often draw
on the intrinsic motivation of field evaluations.

So what counts as longitudinal? There is no clear answer, however, longitudinal studies
typically have a duration of weeks, months, or even years. The duration of study depend
on what is examined, for example, habits and social practices may require longitudinal
studies of a very long duration.

Longitudinal studies are not only expensive to organize, but also difficult to analyze.
During an extended period of time, numerous events can occur that change the subject of
evaluation. Users may not only develop as users but also go through significant life events,
such as changing jobs, getting children, and so on, that may change the way they use the
system. However, we sometimes wish to carry out evaluation studies in the field. Such
studies can be organized by, for example, recruiting users or groups to adopt a prototype
for some agreed-on period of time. Modern software markets and app stores also make it
possible to deploy prototypes to end-users directly.

For example, Vitale et al. [838] observed users during an operating system upgrade
and followed them over four weeks afterwards using a diary method. An often overlooked
source of frustration for end-users are the updates and upgrades needed for an interactive
system. Yet, the ways that updates and upgrades happen are designed and those designs
may be evaluated for their effects on users. Their field data showed that participants had
negative reactions to the upgrade process.
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44.4. Is it worth the Hassle?

Field studies offer the highest realism out of evaluation methods in HCI, however they
are also costly. Are field studies “worth the hassle”? Researchers most of the time decide
”no” [414]. At the same time, many argue that field-based evaluations are critical, even if
they costly and difficult to conduct. What are such insights that can be obtained only in
the field?

A study looking at the usability of a mobile medical informatics system tried to answer
this question [414]. To the surprise of the researchers, a comparable amount of usability
problems were found in both settings. Moreover, usability problems that were closely
intertwined with the use context were found both in the lab and in the field; finding such
problems would typically be considered a benefit of field-based evaluations only. So in
this particular study, the field-based evaluation were not worth the hassle.

We find these views problematic. Field and deployment studies have a number of
pros and cons. In line with earlier methodological discussions in this book, neither field
studies or lab studies are inherently good. Rather, they are methodologies that allow us
to focus on certain information with associated methodological qualities (see Chapter 10).
Table 44.1 contains a summary of the main tradeoffs to consider when choosing between
field- and lab-based evaluations. Field studies are stronger in realism, which allows them
to expose phenomena that laboratory studies might not reach. On the other hand, they
lack the precision and cost-efficiency that lab studies offer.

Summary

• Field and deployment studies help evaluate systems by enhancing the realism of
the evaluation.

• Realism and therefore the field is a matter of degree; many evaluations may be
improved by increasing their degree of realism.

• Systems may be partially or fully deployed to evaluate them.

Exercises

1. Methods. Recall the field evaluation methods discussed in this chapter. Which
method woudl you use for the following research needs: 1) learning how Facebook
users use a new AI-boosted newsfeed; 2) learning about the usability of a tangible
UI design for aging adults; 3) learning about the navigation behavior of users on a
newly launched banking web site.

2. Experimental control in the field vs. the lab. Consider having to run a usability
evaluation of a wearable interface developed for firefighters that enables them to
communicate without a mobile device when on a mission. How would you arrange
a 1) laboratory-based usability study and 2) a field-based usability study? Discuss
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Type Pro Explanation

Field
Realism Brings evaluation to the context and activities

in which the interactive system will be used.
Socio-technical fit Enables the discovery of the fit, or lack thereof,

between social activities and structures and the
system.

Can be of long duration Field evaluations typically last from a few days
to a few months

Lab
Precision It is easy to obtain detailed measures of the use

of the system and to control other factors that
are not being studied.

Low-cost Requires fewer resources than a field study.
Can evaluate unusual
tasks

Tasks that occur rarely ’in the wild’ can be ar-
ranged

Do not require a robust
system

Studies can be run with rough prototypes

Table 44.1.: An overview of the main differences between doing evaluation in the field
and in the lab. Note that this is phrased as a binary decision, although it is
a matter of degree (see the text).
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external validity and construct validity of each. Which aspects can be appropriately
staged in laboratory setting and which cannot?

M
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