MS-A0402 Foundations of discrete mathematics Department of mathematics and systems analysis Aalto SCI J Kohonen Spring 2024 Exercise 6B

6B Number theory

6B1 (Parity) Early on the course we defined *even* and *odd* integers, both by *existential* statements:

 $n \text{ is even} \iff \exists k \in \mathbb{Z} : n = 2k$ $n \text{ is odd} \iff \exists k \in \mathbb{Z} : n = 2k + 1$

Straight from these definitions, it is not obvious that these two are negations of each other (recall that by de Morgan, $\neg \exists \dots$ is equivalent to $\forall \neg \dots$). In fact there *are* numbers for which both statements are false (e.g. 2.5) so it seems this is a peculiar property of *integers*.

- (a) Prove that if n is an integer, it cannot be both even and odd.
- (b) Prove by induction that if $n \in \mathbb{N}$, then it is either even or odd. (Hint: Take 0 and 1 as base cases.)
- (c) Prove that if $n \in \mathbb{Z}$, then it is either even or odd.

6B2 (Modulus operation) The *modulus* (or *remainder*) of $a \in \mathbb{Z}$, when dividing by $b \in \mathbb{Z}$, is the *smallest* element of the set

$$S = \{a - kb : k \in \mathbb{Z} \land a - kb \ge 0\}.$$

It is written $a \mod b$, and by definition it is always a nonnegative integer. An intuitive explanation is that we look at all multiples of b (that is, numbers kb), and take the *biggest* of them that does not exceed a. Then take the difference a - kb, which is automatically nonnegative because of the way we defined it. Note that here mod is treated as an arithmetical *operation*, whose result is an integer.

In the following problems, a and b are integers.

- (a) Find 123 mod 100.
- (b) Find $(-123) \mod 100$.
- (c) What is $a \mod 2$ when a is even?
- (d) What is $a \mod 2$ when a is odd?
- (e) What is $a \mod 1$?
- (f) What are the possible values of $a \mod 3$?
- (g) Prove or disprove: $a (a \mod b)$ is divisible by b. Give an example or a counterexample.
- (h) Prove or disprove: $(a + b) \mod c = (a \mod c) + (b \mod c)$. Give an example or a counterexample.

MS-A0402 Foundations of discrete mathematics Department of mathematics and systems analysis Aalto SCI J Kohonen Spring 2024 Exercise 6B

6B3 (Congruence) Two integers a, b are said to be *congruent modulo* n if $n \mid (b-a)$. It is written

$$a \equiv b \pmod{n}$$

(sometimes without parentheses). Note that congruence is a *relation* between numbers a and b. Also there is nothing preventing from one or both being negative: $9 \equiv -1 \pmod{10}$.

If we have a big bunch of congruences, all with the same modulus n, we often write simply

 $a \equiv b$

and perhaps clarify just once that "all of these are mod n".

Prove or disprove each of the following (all are mod n, and a, b, c, d are integers). For true statements give a simple example. For false statements give a simple counterexample.

(a)
$$a \equiv a$$
.

(b)
$$(a \equiv 0) \iff (n \mid a).$$

(c) If $a \equiv b$ and $c \equiv d$, then $a + c \equiv b + d$.

(d) If $a \equiv b$ and $c \equiv d$, then $ac \equiv bd$.

(e) If
$$a \equiv b$$
, then $a^2 \equiv b^2$.

(f) If
$$a^2 \equiv b^2$$
, then $a \equiv b$.

- (g) If n = 2 and $a^2 \equiv b^2$, then $a \equiv b$.
- (h) If $a \equiv -1$, then $a^2 \equiv 1$.
- (i) If $a^2 \equiv 1$, then $a \equiv 1$ or $a \equiv -1$. (Hint: Consider n = 8.)
- (j) If $ab \equiv 0$, then $a \equiv 0$ or $b \equiv 0$.

Some of these statements show that congruences are a bit similar to identities, but not in all respects. If in doubt, always recall what a congruence really says (divisibility of the difference of LHS and RHS).

6B4 (Powers)

- (a) When is $2^k \equiv 1 \pmod{3}$, if $k \in \mathbb{N}$?
- (b) When is $3^k \equiv 1 \pmod{10}$, if $k \in \mathbb{N}$?

MS-A0402 Foundations of discrete mathematics Department of mathematics and systems analysis Aalto SCI J Kohonen Spring 2024 Exercise 6B

6B5 (Practical divisibility) When integers are written in the usual ten-based notation, some divisibility questions are easy even without performing a division. Note that if a is a nonnegative integer, then $(a \mod 10)$ is its last digit, and $(a \mod 100)$ are its last two digits.

Prove or disprove the following. For false statements give a counterexample. For true statements, give also an example of a where both sides of the equivalence are true, and a is bigger than 100.

- (a) $2 \mid a \text{ if and only if } 2 \mid (a \mod 10).$
- (b) $3 \mid a \text{ if and only if } 3 \mid (a \mod 10).$
- (c) $4 \mid a \text{ if and only if } 4 \mid (a \mod 10).$
- (d) $4 \mid a \text{ if and only if } 4 \mid (a \mod 100).$
- (e) $5 \mid a \text{ if and only if } 5 \mid (a \mod 10).$

6B6 (Last digits) Calculate the last two digits of 2024^{2024} .

Hint: Start by studying small powers of 2024 and try to argue how the sequence continues.

6B7 (Diophantine equations) Do the following Diophantine equations have solutions $x, y \in \mathbb{Z}$? If yes, find all solutions. If not, justify your answer.

- (a) 20x + 10y = 65
- (b) 3x + 6y = 7
- (c) 20x + 16y = 500