6B Number theory

6B1 (Parity) Early on the course we defined even and odd integers, both by existential statements:

$$
\begin{aligned}
n \text { is even } & \Longleftrightarrow \exists k \in \mathbb{Z}: n=2 k \\
n \text { is odd } & \Longleftrightarrow \exists k \in \mathbb{Z}: n=2 k+1
\end{aligned}
$$

Straight from these definitions, it is not obvious that these two are negations of each other (recall that by de Morgan, $\neg \exists \ldots$ is equivalent to $\forall \neg \ldots$). In fact there are numbers for which both statements are false (e.g. 2.5) so it seems this is a peculiar property of integers.
(a) Prove that if n is an integer, it cannot be both even and odd.
(b) Prove by induction that if $n \in \mathbb{N}$, then it is either even or odd. (Hint: Take 0 and 1 as base cases.)
(c) Prove that if $n \in \mathbb{Z}$, then it is either even or odd.

6B2 (Modulus operation) The modulus (or remainder) of $a \in \mathbb{Z}$, when dividing by $b \in \mathbb{Z}$, is the smallest element of the set

$$
S=\{a-k b: k \in \mathbb{Z} \wedge a-k b \geq 0\} .
$$

It is written $a \bmod b$, and by definition it is always a nonnegative integer. An intuitive explanation is that we look at all multiples of b (that is, numbers $k b$), and take the biggest of them that does not exceed a. Then take the difference $a-k b$, which is automatically nonnegative because of the way we defined it. Note that here mod is treated as an arithmetical operation, whose result is an integer.

In the following problems, a and b are integers.
(a) Find $123 \bmod 100$.
(b) Find (-123) mod 100.
(c) What is $a \bmod 2$ when a is even?
(d) What is $a \bmod 2$ when a is odd?
(e) What is $a \bmod 1$?
(f) What are the possible values of $a \bmod 3$?
(g) Prove or disprove: $a-(a \bmod b)$ is divisible by b. Give an example or a counterexample.
(h) Prove or disprove: $(a+b) \bmod c=(a \bmod c)+(b \bmod c)$. Give an example or a counterexample.

6B3 (Congruence) Two integers a, b are said to be congruent modulo n if $n \mid(b-a)$. It is written

$$
a \equiv b \quad(\bmod n)
$$

(sometimes without parentheses). Note that congruence is a relation between numbers a and b. Also there is nothing preventing from one or both being negative: $9 \equiv-1(\bmod 10)$.

If we have a big bunch of congruences, all with the same modulus n, we often write simply

$$
a \equiv b
$$

and perhaps clarify just once that "all of these are mod n ".
Prove or disprove each of the following (all are $\bmod n$, and a, b, c, d are integers). For true statements give a simple example. For false statements give a simple counterexample.
(a) $a \equiv a$.
(b) $(a \equiv 0) \Longleftrightarrow(n \mid a)$.
(c) If $a \equiv b$ and $c \equiv d$, then $a+c \equiv b+d$.
(d) If $a \equiv b$ and $c \equiv d$, then $a c \equiv b d$.
(e) If $a \equiv b$, then $a^{2} \equiv b^{2}$.
(f) If $a^{2} \equiv b^{2}$, then $a \equiv b$.
(g) If $n=2$ and $a^{2} \equiv b^{2}$, then $a \equiv b$.
(h) If $a \equiv-1$, then $a^{2} \equiv 1$.
(i) If $a^{2} \equiv 1$, then $a \equiv 1$ or $a \equiv-1$. (Hint: Consider $n=8$.)
(j) If $a b \equiv 0$, then $a \equiv 0$ or $b \equiv 0$.

Some of these statements show that congruences are a bit similar to identities, but not in all respects. If in doubt, always recall what a congruence really says (divisibility of the difference of LHS and RHS).

6B4 (Powers)

(a) When is $2^{k} \equiv 1(\bmod 3)$, if $k \in \mathbb{N}$?
(b) When is $3^{k} \equiv 1(\bmod 10)$, if $k \in \mathbb{N}$?

6B5 (Practical divisibility) When integers are written in the usual ten-based notation, some divisibility questions are easy even without performing a division. Note that if a is a nonnegative integer, then $(a \bmod 10)$ is its last digit, and $(a \bmod 100)$ are its last two digits.

Prove or disprove the following. For false statements give a counterexample. For true statements, give also an example of a where both sides of the equivalence are true, and a is bigger than 100 .
(a) $2 \mid a$ if and only if $2 \mid(a \bmod 10)$.
(b) $3 \mid a$ if and only if $3 \mid(a \bmod 10)$.
(c) $4 \mid a$ if and only if $4 \mid(a \bmod 10)$.
(d) $4 \mid a$ if and only if $4 \mid(a \bmod 100)$.
(e) $5 \mid a$ if and only if $5 \mid(a \bmod 10)$.

6B6 (Last digits) Calculate the last two digits of 20244^{2024}.
Hint: Start by studying small powers of 2024 and try to argue how the sequence continues.

6B7 (Diophantine equations) Do the following Diophantine equations have solutions $x, y \in \mathbb{Z}$? If yes, find all solutions. If not, justify your answer.
(a) $20 x+10 y=65$
(b) $3 x+6 y=7$
(c) $20 x+16 y=500$

