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1B Sets

1B1 (Subsets) We have defined that A ⊆ B means that every element of A is also an element
of B. (If A is empty, this is automatically true.) Also, two sets are the same if they contain
exactly the same elements. Working with these definitions, prove the following. (Hint: Some of
these are really straightforward, but try to be precise in what you claim. Your proofs should
generally have the format, “if x is any element of this set, then because so-and-so, it is also an
element of that other set.”)

(a) Reflexivity: A ⊆ A for every set A.

(b) Antisymmetry: If A ⊆ B and B ⊆ A, then A = B.

(c) Transitivity: If A ⊆ B and B ⊆ C, then A ⊆ C.

(d) There are sets A and B such that neither A ⊆ B nor B ⊆ A.

The first three properties mean that the relation “is subset of” is a so-called partial order. It
is somewhat similar to the usual order of, for example, the real numbers, in that sets can be
“compared” to each other. However, the last property is different from real numbers, because
for any two real numbers a, b, either a ≤ b or b ≤ a.

Solution.

(a) Let A be any set. To show that A ⊆ A, we need to show that every element of the left
hand side (set A) is also an element of the right hand side (which is here the same set
A). This is of course true, because we have the same set A on both sides: if x ∈ A, then
x ∈ A.

(b) Let A,B be any sets such that A ⊆ B and B ⊆ A. If x ∈ A, then also x ∈ B (because
A ⊆ B). And if x ∈ B, then also x ∈ A (because B ⊆ A). So, there cannot be any x that
would be in just one of the sets but not in the other. In other words, they have the same
elements. By definition this means they are the same set (A = B).

(c) Let A,B,C be any sets such that A ⊆ B and B ⊆ C. We need to prove (for A ⊆ C) that
whenever x ∈ A, we also have x ∈ C.

First we note that if x ∈ A, then (by A ⊆ B) also x ∈ B. Then (by B ⊆ C) also x ∈ C.
We have proved what needed to be proved.

(d) To prove that “there are such things”, it is sufficient to show just one example. Let, for
example, A = {1} and B = {2}. Clearly neither is a subset of the other.

1B2 (Associativity) Prove that for any three sets A,B,C, the unions (A∪B)∪C and A∪(B∪C)
are exactly the same sets. (This means that we can simply write A ∪ B ∪ C without worrying
which union operation is performed first.)
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Solution. First, suppose that x ∈ (A∪B)∪C. By definition, this means that x ∈ (A∪B) and
x ∈ C. From the first one we also see that x ∈ A and x ∈ B. Now, because x ∈ B and x ∈ C,
we have x ∈ B ∪ C. Because also x ∈ A, we have x ∈ A ∪ (B ∪ C).

We can similarly show the opposite direction. Put together, this shows that the two sets
have the same elements so they are the same set.

1B3 (Big intersections) The intersection of an infinite sequence of sets A1, A2, . . . , is denoted

∞⋂
k=1

Ak,

and is defined to contain every such object x that is an element of every Ak. (Thus, if there is
(at least one) positive integer k such that x /∈ Ak, then x is not in the intersection.)

Find the following intersections:

(a)
∞⋂
k=1

[0, 1/k]

(b)
∞⋂
k=1

]0, 1/k[

(c)
∞⋂
k=1

Bk,

where Bk = {k, k + 1, k + 2, . . .} is the set of all integers that are greater or equal to k.

(In the first two parts, the sets are either closed or open intervals of real numbers.)

Solution.

(a) Let us consider three kinds of real numbers: negative, zero, and positive. (This is an
exhaustive division.)

• If x < 0, then x /∈ [0, 1/1], so x is not in the intersection.

• If x = 0, then x ∈ [0, 1/k] for every positive integer k, so 0 is in the intersection.

• If x > 0, then consider what happens when k is an integer bigger than 1/x. (It should
be obvious that however small x is, 1/x is some positive real number and there is
some integer that is bigger than 1/x.) In this case x > 1/k, so x /∈ [0, 1/k]. Thus x
is not in the intersection.
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Having considered all real numbers, we found out that zero is the only element of the
intersection. That is, the intersection is {0}.

(b) Similar to part (a), except that zero is not in the intersection; indeed, already at k = 1
we have 0 /∈]0, 1/k[=]0, 1[. So now the intersection is empty.

(c) Clearly we only need to consider positive integers, since already the first component B1

contains only positive integers. Now if x is any positive integer, we note that x /∈ Bx+1.
Thus x is not in the intersection. The intersection is again empty.

It is probably useful to draw a picture. In (a) and (b), the components of the intersection
are always nonempty, and they are getting ever shorter. In either case, after any finite number
of “steps” you still have some nonempty interval. But what happens at infinity may be a bit
surprising. (c) is similar in spirit.

1B4 (Jaccard similarity) The Jaccard similarity of two finite sets A and B is

J(A,B) =
|A ∩B|
|A ∪B|

.

If both sets are empty, the similarity is defined to be 1. Find the following Jaccard similarities:

(a) J({1, 3, 5}, {2, 4, 6})

(b) J({1, 2, 3, 4}, {3, 4, 5, 6})

(c) J({1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6})

(d) J({1}, {1, 2, 3, 4, 5, 6})

Solution.

(a) |∅| / |{1, 2, 3, 4, 5, 6}| = 0/6 = 0.

(b) |{3, 4}| / |{1, 2, 3, 4, 5, 6}| = 2/6 = 1/3.

(c) |{1, 2, 3, 4, 5, 6}| / |{1, 2, 3, 4, 5, 6}| = 6/6 = 1.

(d) |{1}| / |{1, 2, 3, 4, 5, 6}| = 2/6 = 1/6.

1B5 (Jaccard distance) The Jaccard distance is dJ(A,B) = 1− J(A,B).

(a) What is dJ(A,A)?
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(b) Prove that if A 6= B, then dJ(A,B) > 0.

(c) Prove that the Jaccard distance is symmetric, that is, dJ(A,B) = dJ(B,A) for all finite
sets A and B.

(d) What is the largest possible value of dJ(A,B)? When exactly does it occur?

(e) What is the smallest possible value of dJ(A,B)? When exactly does it occur?

(f) (** Challenging – not required for scoring this problem.) Prove the triangle inequality: If
A,B,C are finite sets, then

dJ(A,C) ≤ dJ(A,B) + dJ(B,C).

Jaccard distance is commonly used to define how dissimilar two objects are — based on so-
me sets of “features”, with each object having some subset of these features. The properties
(a),(b),(c),(f) together show that the Jaccard distance is a proper metric, or a distance func-
tion, which is useful in many algorithms. (We might, for example, want to group a large number
of objects into “clusters” such that objects within a cluster have small distances.)

Solution.

(a) To be precise, we have to consider two possibilities: A could be empty or nonempty.

If A is a nonempty set, then A ∪ A = A ∩ A = A, thus dJ(A,A) = 1 − J(A,A) =
1− |A|/|A| = 1− 1 = 0.

If A is empty, then by our special definition we have dJ(A,A) = 1− J(A,A) = 1− 1 = 0.

Why did we use a special definition for J(∅,∅)?? Because the general definition would
give 0/0 and we don’t want to divide by zero. Now, since there is a special case in the
definition, we have to always be careful in our proofs, and consider whether our arbitrary
set A might actually cause this special case to be invoked. If that is possible, we have to
handle that case separately, otherwise our proof is incomplete!

For the thoughtful reader: Please consider what happens to J(A,B) when only one of the
sets is empty. Is the general definition then mathematically valid?

(b) Let A,B be any sets such that A 6= B. Then at least one of them is nonempty, and
A ∪B 6= ∅. So the divisor in Jaccard similarity, |A ∪B|, is a positive integer.

Certainly A ∩ B ⊆ A ∪ B. But we also note that because A 6= B, at least one of the
sets contains an element x that is not in the other; now x ∈ A ∪ B but x /∈ A ∩ B. So
A ∪ B contains at least all the elements of A ∩ B and the element x. It follows that
|A ∩B| < |A ∪B|, thus J(A,B) < 1, and dJ(A,B) = 1− J(A,B) > 0, as claimed.

Although this proof is written in quite some detail, it still consists of several steps of
arguing, and a careful reader must read every step and stop to think: do I actually see
why this step is true? For example,
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• At the step “certainly A∩B ⊆ A∪B”, did you just read it and think “yeah, sure it is
true”? Did you take the author’s word for it? Or did you check that you understand
why this is necessarily true? The author could have written even more about that
particular step, but that might be distracting. It is the idea that the reader of a
proof is able to verify the steps with their own understanding, sometimes (if needed)
by filling in some more steps.

• At the step “now x ∈ A∪B but x /∈ A∩B”, did you check that you understand why
this follows from what was said earlier?

• When we finally reached dJ(A,B) > 0, did you check that this is what we were
supposed to prove?

(c) If A = B = ∅, then dJ(A,B) = dJ(∅,∅) = dJ(B,A).

If at least one is nonempty, then because both ∩ and ∪ are symmetric operations, we
have

dJ(A,B) = 1− |A ∩B|
|A ∪B|

= 1− |B ∩ A|
|B ∪ A|

= dJ(B,A).

(d) We always have J(A,B) ≥ 0 (cannot get a negative number by dividing a nonnegative
by a nonnegative). Thus dJ ≤ 1. The upper bound is reached, that is dJ = 1, whenever
J(A,B) = 0, which happens when A and B have no common elements at all (but at least
one of them is nonempty): in that case the intersection is empty, so the dividend in Jaccard
similarity is zero. For example, if A = {1} and B = {2, 3}, then dJ(A,B) = 1− 0/3 = 1.

(e) We always have J(A,B) ≤ 1, because A ∩ B cannot have more elements than A ∪ B.
Thus always dJ(A,B) ≥ 0. The lower bound is reached, that is dJ(A,B) = 0, whenever
J(A,B) = 1, and this happens exactly in the case that the A = B. (Otherwise, the
intersection would be have fewer elements than the union.) For example, if A = B =
{1, 2, 3}, then dJ(A,B) = 1− 3/3 = 0.

We note in the case that A = B = ∅ we also have dJ(A,B) = 1− 1 = 0.

(f) See, for example, Sven Kosub: A note on the triangle inequality for the Jaccard distance,
arXiv preprint, 2016, https://arxiv.org/abs/1612.02696.

1B6 (Subsets in Cartesian products) Prove that if A ⊆ B and C ⊆ D, then A× C ⊆ B ×D.

Solution. Suppose that A ⊆ B and C ⊆ D. Let (a, c) ∈ A × C be arbitrary. Then a ∈ B
(because A ⊆ B) and c ∈ D (because C ⊆ D). Putting these together, this is exactly what is
needed to show that (a, c) ∈ B ×D.
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Problem 1B7 is marked with stars ** to indicate it is a “challenge”. A full solution is quite
challenging at this point of the course. The problem counts as “extra”: When calculating the
exercise points for the course, Session 1B is considered to have six exercises (and six points),
but it is in fact possible to obtain seven points if you also solve 1B7.

1B7 (** CHALLENGE: Ordered pairs defined as sets) The lecture notes claim that “everyt-
hing” in math can be defined as sets. Yet we have introduced another seemingly basic construc-
tion, the ordered pair (a, b). Its key property is “elementwise equality”: any two ordered pairs
(a, b) and (c, d) are equal if and only if both a = c and b = d.

Suppose all we have is sets, and we define that for whatever elements a and b, the ordered
pair notation (a, b) means the set

{{a}, {a, b}}. (*)

Prove that the elementwise equality then always holds. Hint: To prove an “if and only if”, you
need to prove it both ways. (1) You must prove that if a, b, c, d are arbitrary objects and a = c
and b = d, then (a, b) = (c, d), where each ordered pair is understood as a set according to (∗).
(2) Then prove the opposite direction.

Solution. Part 1. First, let us prove that if a = c and b = d, then (a, b) = (c, d), where each
ordered pair is understood with our set-based definition. In other words, we have to prove that

{{a}, {a, b}} = {{c}, {c, d}}.

To show that the LHS and RHS sets are equal, we consider each of their elements in turn, and
show that the same element appears also on the other side.

• LHS element {a}: Because a = c, we have {a} = {c}, and indeed {c} is an element of the
RHS.

• LHS element {a, b}: Because a = c and b = d, this element is the same as {c, d}, which is
an element of the RHS.

• RHS element {c}: Because a = c, we have {a} = {c}, and indeed {a} is an element of the
LHS.

• RHS element {c, d}: Because a = c and b = d, this element is the same as {a, b}, which is
an element of the RHS.

We have shown that the LHS and the RHS are the same sets.

Part 2. Then let us prove the other direction: that if (a, b) = (c, d), then a = c and b = d.
So, suppose that (a, b) = (c, d), which here means that

{{a}, {a, b}} = {{c}, {c, d}}. (†)
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What we know is the equality of two sets (and from this we must infer something else). If two
sets are equal, it means they have the same elements, in some order.1

There is a catch. Although both LHS and RHS look like two-element sets, we must observe
that if a = b (which is quite possible), then in fact {a, b} is a one-element set, because {a, a} =
{a}.

So let us break into cases. Certainly the LHS has either one or two elements. (It is not
empty, and it does not have three or more.) Also we know, by the equality, that the RHS has
the same number of elements. So we have two cases.

Case 1: LHS and RHS are two-element sets. This implies that a 6= b, and c 6= d. Let
us consider the two elements of the LHS set, namely {a} and {a, b}. Now {a} has one element,
so it is equal to {c} on the RHS (it cannot be equal to {c, d}, which is a two-element set). From
{a} = {c} we easily see that a = c. The other LHS element {a, b} must then equal the other
RHS element {c, d}, and since a = c, the other elements must also match, that is b = d. We
have proven that a = c and b = d as required.

Case 2: LHS and RHS are one-element sets. In this case the two apparent elements
of LHS are in fact equal, {a} = {a, b}. This implies that a = b, and the LHS set is simply
{{a}, {a}} = {{a}}. Similarly on the RHS we see that c = d, and the RHS set is {{c}}. Our
equality (which we know to be true) is now {{a}} = {{c}}. Each has one element, so the
elements are equal, that is {a} = {c}. From this we see that a = c. Also, because we know that
a = b and c = d, we have b = d.

With the symbol we can indicate that our (possibly long) proof is complete.
Although this proof is about rather simple matters (sets of one or two elements), it shows

some techniques for arguing about equality or inequality of sets. Also it shows a general method
of proving things step by step. We start from something that is known. Then we observe some
new things that must then also be true, “accumulating” a base of established truths. If at some
point we do not know which of two (or more) possibilities is true, we can break into cases and
prove the desired outcome in each case. Finally, hopefully, we establish the truth of what we
are trying to prove.

When following (or writing) a long proof, it is essential to keep in mind two kinds of claims:
the ones that we already know to be true, and the ones that we don’t know but are trying
to show to be true. These must never be confused, otherwise we easily create invalid circular
“proofs”. — Observe that both parts 1 and 2 were dancing around the same set equality (†),
but it had quite different roles. In part 1 it was something we were trying to prove. In part 2
it was something we knew, and from which we were trying to prove other things!

Don’t worry if this felt too complicated at this point of the course. After you have learned
more about proof techniques, you can revisit the proof.

At least, memorize now that LHS and RHS are shorthands for left hand side and right hand
side (of an equation).

1For example, from {a, b} = {1, 2} we cannot infer that a = 1 and b = 2. It could be the other way.

7 / 7


	Sets

