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2B Proof techniques

2B1 (Cartesian products) For each of the following equations, either prove it true,
or prove it false by a concrete counterexample (an element of one side of the equation
that is not an element of the other side).

(a) (Z× R) ∩ (R× Z) = Z× Z

(b) (Z× R) ∪ (R× Z) = R× R

Solution.

(a) True.

To show (Z× R) ∩ (R× Z) ⊆ Z× Z:
Let (a, b) ∈ (Z×R)∩ (R×Z). Then (a, b) ∈ Z×R and (a, b) ∈ (R×Z). Hence
both a, b ∈ Z ∩ R = Z. We conclude (a, b) ∈ Z× Z.
To show (Z× R) ∩ (R× Z) ⊇ Z× Z:
Let (a, b) ∈ Z × Z. Notice Z × Z ⊂ Z × R and Z × Z ⊂ R × Z, because
Z ⊂ R. Therefore (a, b) ∈ Z × R and (a, b) ∈ R × Z. We conclude (a, b) ∈
(Z× R) ∩ (R× Z).

(b) False. Counterexample: (0.5, 0.5) ∈ R × R. But (0.5, 0.5) /∈ (Z × R) and
(0.5, 0.5) /∈ (R× Z) because 0.5 /∈ Z, so (0.5, 0.5) /∈ (Z× R) ∪ (R× Z).

2B2 (Parity) Prove that if n ∈ Z, then n2 + 3n + 4 is even. Hint: Direct proof by
cases: case 1 for n even, and case 2 for n odd.

Solution. Case 1: Let n ∈ Z be arbitrary even integer. Then both n2 and 3n are
even, because any multiple of an even number is still even. Also, 4 is even. The sum
of even numbers is even, therefore n2 + 3n+ 4 is even.

Case 2: Let n ∈ Z be arbitrary odd integer. Then both n2 and 3n are odd because
any odd multiple of an odd number is still odd. The sum of two odd numbers is
even, therefore n2 + 3n is even. Finally 4 is even, and the sum of even numbers is
even, therefore n2 + 3n+ 4 is even.

2B3 (Multi-way De Morgan) On the lectures we learned about De Morgan’s law
for two propositions. An obvious-looking generalization is the following claim (where
p1, . . . , pn are arbitrary propositions):(

¬(p1 ∨ . . . ∨ pn)
)
⇐⇒

(
(¬p1) ∧ . . . ∧ (¬pn)

)
.
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(a) Prove the claim for n = 3 directly by a truth table of 8 rows.

(b) For n = 10, how many rows would you need, if you wrote the full truth table
explicitly? Can you characterize in just a few words how the table would look
(on which rows would the results of the LHS and the RHS be “true”, and on
which rows would they be “false”)?

(c) Prove the claim for all integers n ≥ 2 by induction. (Hint: A conjunction of n
propositions can be decomposed into a two-way conjunction of one proposition
and the conjunction of the remaining n− 1.)

Solution.

(a) For the sake of space, define the shorthands Q1 =
(
¬(p1 ∨ . . . ∨ pn)

)
and

Q2 =
(
(¬p1) ∧ . . . ∧ (¬pn)

)
. The truth table is as follows:

p1 p2 p3 p1 ∨ p2 ∨ p3 Q1 ¬p1 ¬p2 ¬p3 Q2 Q1 ⇔ Q2

0 0 0 0 1 1 1 1 1 1
0 0 1 1 0 1 1 0 0 1
0 1 0 1 0 1 0 1 0 1
0 1 1 1 0 1 0 0 0 1
1 0 0 1 0 0 1 1 0 1
1 0 1 1 0 0 1 0 0 1
1 1 0 1 0 0 0 1 0 1
1 1 1 1 0 0 0 0 0 1

In particular we observe that the truth values of Q1 and Q2 are identical,
therefore Q1 ⇔ Q2 is always true.

(b) For n = 10 the truth table would consist of 210 = 1024 rows. Both the LHS
and RHS propositions would be true only when p1, . . . , p10 are all false.

(c) For the base case, we note that P (2) has been already proven by a truth table.

For the induction step, we will prove that if n ≥ 2 and P (n) is true, then also
P (n + 1) is true. The method is to break the (n + 1)-way disjunctions and
conjunctions into smaller ones, to which we can apply the smaller cases of De
Morgan.1

1We assume that e.g. p1 ∧ . . . pn ∧ pn+1 is defined by putting parentheses around the first
n propositions, that is, (p1 ∧ . . . pn) ∧ pn+1. Similarly for the disjunction. If we had proven the
associativity of big conjunctions and disjunctions, we could also put parentheses anywhere, but
that is not needed here.
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¬
(
p1 ∨ . . . ∨ pn ∨ pn+1

)
⇐⇒ ¬

(
(p1 ∨ . . . ∨ pn) ∨ pn+1

)
(Added parentheses)

⇐⇒
(
¬(p1 ∨ . . . ∨ pn)

)
∧ (¬pn+1) (By P (2))

⇐⇒
(
(¬p1) ∧ . . . ∧ (¬pn)

)
∧ (¬pn+1) (By P (n))

⇐⇒ (¬p1) ∧ . . . ∧ (¬pn) ∧ (¬pn+1). (Removed parentheses)

By induction we have proven P (n) for all integers n ≥ 2.
Note the method of stringing together several equivalent propositions. This
is understood as a conjunction: that the first is equivalent to the second, and
the second is equivalent to the third, and so on. This proves that the first is
equivalent to the last, just like a long equation like a = b = c = d proves
a = d. This method is very compact but should be used with care, because
every step really has to be an equivalence, not only an implication. A string
of implications to the right would only prove an implication, not equivalence.
(Likewise, in arithmetic, a = b ≤ c = d does not prove a = d, but it proves
a ≤ d.)
Thinking of the reader, a long string of symbolic math can be difficult to follow.
You can help the reader by hinting, on each line, why the step is equivalent
with the previous one.

Alternative proof. We argue that for each of the LHS and RHS proposition,
it is true if and only if all p1, . . . , pn are false. The claim then follows.
For the LHS proposition: Let n ∈ N be arbitrary. Suppose p1, . . . , pn are all
false, then p1∨ . . .∨pn is false, therefore

(
¬(p1∨ . . .∨pn)

)
is true. On the other

hand, suppose not all p1, . . . , pn are false, that is, at least one of them is true.
Then p1 ∨ . . . ∨ pn is true, and hence

(
¬(p1 ∨ . . . ∨ pn)

)
is false. We conclude(

¬(p1 ∨ . . . ∨ pn)
)
is true if and only if p1, . . . , pn are all false.

For the RHS proposition: We argue by induction. Define the statement P (n):(
(¬p1) ∧ . . . ∧ (¬pn)

)
is true if and only if p1, . . . , pn are false.

Consider P (1). If p1 is false, then (¬p1) is true. On the other hand if p1 is true,
then (¬p1) is false. Therefore P (1) is true.
Assume that P (n) is true for some n ∈ N \ {0}. Consider P (n+ 1).
Suppose all p1, . . . , pn+1 are false. Then (¬pn+1) is true, and by assumption(
(¬p1)∧ . . .∧ (¬pn)

)
is also true. Therefore

(
(¬p1)∧ . . .∧ (¬pn+1)

)
=
(
(¬p1)∧

. . . ∧ (¬pn)
)
∧ (¬pn+1) is true.

On the other hand, suppose not all p1, . . . , pn+1 are false, that is, at least one
of them is true. Consider two cases below:
Case 1: At least one of p1, . . . , pn is true. Then by assumption

(
(¬p1) ∧ . . . ∧

(¬pn)
)
is false. Therefore

(
(¬p1)∧. . .∧(¬pn+1)

)
=
(
(¬p1)∧. . .∧(¬pn)

)
∧(¬pn+1)

is false, regardless of what pn+1 is.
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Case 2: All of p1, . . . , pn are false. Then pn+1 must be true, and (¬pn+1) is false.
Therefore

(
(¬p1) ∧ . . . ∧ (¬pn+1)

)
=
(
(¬p1) ∧ . . . ∧ (¬pn)

)
∧ (¬pn+1) is false,

regardless of what
(
(¬p1) ∧ . . . ∧ (¬pn)

)
is.

Putting together, we conclude that P (n + 1) is true. By induction, P (n) is
true for all n ∈ N \ {0}.

2B4 (Sums of powers)

(a) Prove by induction that
∑n

j=0 2
j = 2n+1 − 1 for all integers n ≥ 0.

(b) Prove by induction that
∑n

j=0 3
j = (3n+1 − 1)/2 for all integers n ≥ 0.

(c) Prove by induction that
∑n

j=0 10
j = (10n+1 − 1)/9 for all integers n ≥ 0.

Calculate a few first values of the LHS and RHS. Does the result look obvious?

Solution.

(a) Define the statement P (n):
∑n

j=0 2
j = 2n+1 − 1.

For P (0), we have

LHS = 20 = 1 = 2− 1 = 20+1 − 1 = RHS.

Therefore P (0) is true.
Assume P (n) is true for some n ∈ N. For P (n+ 1), we have

LHS =
n+1∑
j=0

2j =
n∑

j=0

2j + 2n+1 = 2n+1 − 1 + 2n+1 = 2n+2 − 1 = RHS,

where the third equality follows from the assumption. Therefore P (n + 1) is
true. By induction P (n) is true for all n ∈ N.

(b) Define the statement P (n):
∑n

j=0 3
j = (3n+1 − 1)/2.

For P (0), we have

LHS = 30 = 1 = (30+1 − 1)/2 = RHS.

Therefore P (0) is true.
Assume P (n) is true for some n ∈ N. For P (n+ 1), we have

LHS =
n+1∑
j=0

3j =
n∑

j=0

3j + 3n+1

= (3n+1 − 1)/2 + 3n+1

= (3n+1 − 1 + 3n+1 · 2)/2 = (3n+2 − 1)/2 = RHS,

where the third equality follows from the assumption. Therefore P (n + 1) is
true. By induction P (n) is true for all n ∈ N.
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(c) Define the statement P (n):
∑n

j=0 10
j = (10n+1 − 1)/9.

For P (0), we have

LHS = 100 = 1 = (100+1 − 1)/9 = RHS.

Therefore P (0) is true.

Assume P (n) is true for some n ∈ N. For P (n+ 1), we have

LHS =
n+1∑
j=0

10j =
n∑

j=0

10j + 10n+1

= (10n+1 − 1)/9 + 10n+1

= (10n+1 − 1 + 10n+1 · 9)/9 = (10n+2 − 1)/9 = RHS,

where the third equality follows from the assumption. Therefore P (n + 1) is
true. By induction P (n) is true for all n ∈ N.
Some concrete examples: For n = 1, we have 11 = (100− 1)/9; For n = 2, we
have 111 = (1000− 1)/9, and so on.

2B5 (Faulty induction) Consider all one-colored socks in the world. (For brevity we
will just call them “socks”. We do not consider socks that contain multiple colors.)
We assume here that color is a well-defined property: the colors of any two socks are
either same or different. Here is a purported proof that all socks in the world have
the same color.

“Proof.” For every integer n ≥ 1, let P (n) be the claim “Every collection of n
socks is unicolored” (i.e. the socks in the collection have the same color). We prove
by induction that P (n) is true for all n. In particular, P (n) is true when n is the
number of all socks in the world. Find the error in this proof.

• Base case: Clearly P (1) is true, because in any one-sock collection there is only
one color.

• Induction step: Suppose that for some n, P (n) is true. We will prove that
P (n+1) is then also true. Consider any collection of n+1 socks, and name its
socks s1, s2, . . . , sn+1. By the induction hypothesis, the first n socks (s1, . . . , sn)
all have the same color. Also by the induction hypothesis, the last n socks
(s2, . . . , sn+1) have the same color. Because s1 has the same color as s2, and
all the remaining socks also have the same color as s2, clearly all n + 1 socks
have the same color.

• By the induction principle, P (n) is true for all n. The proof is complete.

Solution. The argument on P (n + 1) is not sound. There it is implicitly assumed
that for any n ∈ N, for the set {s1, . . . , sn+1} of n+1 socks, there exist two different
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non-empty subsets S1 and S2, both of size at most n, such that S1 ∩ S2 6= ∅ and
S1 ∪ S2 = {s1, . . . , sn+1}. E.g. S1 = {s1, . . . , sn} and S2 = {s2 . . . , sn+1} with the
intersection {s2, . . . , sn} as stated. But this assumption is false. In particular, when
n = 1, for the set {s1, s2} of socks, the only non-empty subsets of size 1 are {s1}
and {s2}, which have an empty intersection.

2B6 (Fibonacci parity) The Fibonacci numbers are the sequence f0, f1, f2, . . . where
f0 = 0, f1 = 1, and fn = fn−1 + fn−2 when n ≥ 2.

(a) Calculate the first ten Fibonacci numbers f0, . . . , f9 and circle those that are
even.

(b) Study the indices n of your circled numbers, and guess a very simple rule that
allows you, by looking at the index n to decide whether fn is even or odd
(without having to calculate fn).

(c) Prove your rule for all n ∈ N by induction.

Solution.

(a) f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, f7 = 13, f8 = 21,
f9 = 34. The ones that are even are f0, f3, f6, f9.

(b) A natural guess is that fn is even if n is a multiple of 3, and otherwise odd.

(c) Statement P (n): fn is even if n is a multiple of 3, and fn is odd otherwise.
For P (0), we have f0 = 0 by definition, which is even, and 0 is a multiple of 3.
For P (1), we have f1 = 1 by definition, which is odd, and 1 is not a multiple
of 3. Therefore the statement is true for P (0) and P (1).
Suppose P (n− 1) and P (n) are true for some n ∈ N \ {0}. Consider two cases
for P (n+ 1).
Case 1: n+ 1 is a multiple of 3. Then both n− 1 and n are not multiple of 3,
and by assumption both fn−1 and fn are odd. The sum of two odd numbers
is even, therefore fn+1 = fn−1 + fn is even.
Case 2: n+1 is not a multiple of 3. Then one (and only one) of n−1 and n is a
multiple of 3, and by assumption one of fn−1 and fn is odd, another one is even.
The sum of one odd and one even number is odd, therefore fn+1 = fn−1 + fn
is odd.
Putting the two cases together, we have that P (n + 1) is true. By induction,
P (n) is true for all n ∈ N.

Again the “challenge” problem is worth an extra point. That is, by doing any
six problems (whether it includes the challenge problem or not) you gain six points,
which is considered 100% of this set. By doing all seven you gain seven points, which
is considered 7/6 = 1162

3
%.
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2B7 (** CHALLENGE: Golomb rulers) AGolomb ruler is a set A ⊆ Z, where the
smallest element is zero, and each pair of elements has a different distance (between
its two elements).2 Distance means arithmetic difference. For example, {0, 1, 2} is
not a Golomb ruler, because between 0 and 1 there is the same distance as between 1
and 2. But {0, 1, 5} is a Golomb ruler, because all its pairs have different distances:
1−0 = 1, 5−1 = 4 and 5−0 = 5. (We do not consider distances of elements to
themselves — they would of course all be zero — and we only consider the positive
distances b − a where b > a.) The length of a ruler is the distance between its
smallest and largest element. Golomb rulers have real-world applications in error-
correcting codes, X-ray crystallography, radio frequency selection and radio antenna
placement. One common problem is to find the shortest Golomb ruler of a given
cardinality. The elements are called “marks” in analogy to actual rulers.

(a) Find a Golomb ruler with three marks and length 3.

(b) Prove that there is no Golomb ruler with three marks and length smaller than
3.

(c) Find a shortest possible Golomb ruler with four marks. Prove that there is no
shorter one. (Hint: It is probably a good idea to break into cases. There are
many different ways of doing that.)

Solution.

(a) One example is {0, 1, 3}. Its length is 3− 0 = 3. It is straightforward to verify
that the pair-wise distances are 1, 2, 3.

(b) Suppose (towards contradiction) that there exists such a Golomb ruler. Let
it be {a, b, c} where a = 0 and b, c ∈ Z. Without loss of generality assume
b < c. Since the length is smaller than 3, we have either c = 1 or c = 2.
But c = 1 is not possible, since this contradicts with the existence of b where
0 < b < 1. Therefore c = 2, and the only possibility of b is 1. But then the
distance between a, b and that between b, c are both 1, a contradiction to the
definition of a Golomb ruler. We conclude that there does not exist a Golomb
ruler with 3 marks and length smaller than 3.

(c) One example is {0, 1, 4, 6}, of length 6. Below we show that there does not
exist a Golomb ruler with 4 marks and of length smaller than 6.

Suppose (towards contradiction) that there exists such a Golomb ruler. Let it
be {a, b, c, d} for some a, b, c, d ∈ Z. Without loss of generality assume a = 0
and a < b < c < d. Since the length is smaller than 6, we have d equals either
1, 2, 3, 4 or 5. That d equals 1 or 2 is not possible, since this contradicts with
the existence of two distinct integers b, c where 0 < b < c < d. Therefore d
equals 3, 4 or 5.

2The usual definition does not require the smallest element to be zero, but here we do so for
simplicity.
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Suppose d = 3. Then the only possibility of b, c is b = 1 and c = 2. But then
the distance between a, b and that between b, c are both 1, a contradiction to
the definition of a Golomb ruler. So d = 3 is not possible.

Next suppose d = 4. Consider the possibilities of b, c here. With the same
argument as above, we know that b = 1 and c = 2 is not possible. There are
two cases left. The first is b = 2 and c = 3, but the distance between b, c and
that between c, d are both 1, a contradiction to the definition of a Golomb
ruler. The second is b = 1 and c = 3, but then the distance between a, b and
that between c, d are both 1, a contradiction.

The only remaining case is d = 5. With the same argument as above, we know
that b = 1 and c = 2 is not possible. The remaining possibilities of (b, c) are
(1, 3), (1, 4), (2, 3), (2, 4) and (3, 4). We check all cases. If (b, c) = (1, 3) then
c − b = d − c = 2, a contradiction. If (b, c) = (1, 4) then b − a = d − c = 1,
a contradiction. If (b, c) = (2, 3) then b − a = d − c = 2, a contradiction. If
(b, c) = (2, 4) then b − a = c − b = 2, a contradiction. If (b, c) = (3, 4) then
c− b = d− c = 1, a contradiction.

In all cases we have a contradiction. Therefore we conclude that there does
not exist a Golomb ruler with 4 marks and length smaller than 6.

If you want to learn more about Golomb rulers, see for example the Wikipedia
page Golomb ruler. Today the minimum-length Golomb rulers are known up to 28
marks. The 28-mark ruler was determined through a massive distributed computa-
tion using the spare time of thousands of computers, beginning in 2014 and finishing
in 2022, see distributed.net: Completion of OGR-28 project.
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