3A Relations

3A1 (Parity arithmetic) The parity of an integer means whether it is even or odd. We say that an integer n is even if $n=2 k$ for some $k \in \mathbb{Z}$, and odd if $n=2 k+1$ for some $k \in \mathbb{Z}$.

For simplicity, we assume now (without actually proving it) that every integer is either even or odd, but not both. (We may return to this topic later on the course.)

Find the parities of $a+b$ and $a b$ in each of these cases, when a and b are arbitrary integers. You can start by calculating some examples (if you need), but you should then prove that your claims hold for all integers. (Hint: Induction is probably not needed. Clever use of quantifiers should be enough.)
(a) a is even and b is even
(b) a is even and b is odd
(c) a is odd and b is even
(d) a is odd and b is odd

Is it possible that $a+b$ and $a b$ are both odd? Is it possible that both are even?

Solution.

(a) Let $a=2 k$ and $b=2 h$ for some $k, h \in \mathbb{Z}$.

We have:
$a+b=2 k+2 h=2(k+h)=2 q$ for some $q \in \mathbb{Z}, q=h+k$
$\Rightarrow a+b$ is even
$a b=2 k(2 h)=2(2 k h)=2 s$ for some $s \in \mathbb{Z}, s=2 h k$
$\Rightarrow a b$ is even
(b) Let $a=2 k$ and $b=2 h+1$ for some $k, h \in \mathbb{Z}$.

We have:
$a+b=2 k+2 h+1=2(k+h)+1=2 q+1$ for some $q \in \mathbb{Z}, q=h+k$
$\Rightarrow a+b$ is odd
$a b=2 k(2 h+1)=2(2 k h+k)=2 s$ for some $s \in \mathbb{Z}, s=2 h k+k$
$\Rightarrow a b$ is even
(c) Same as the part above.
(d) Let $a=2 k+1$ and $b=2 h+1$ for some $k, h \in \mathbb{Z}$.

We have:
$a+b=2 k+1+2 h+1=2(k+h+1)=2 q$ for some $q \in \mathbb{Z}, q=h+k+1$
$\Rightarrow a+b$ is even
$a b=(2 k+1)(2 h+1)=4 k h+2 k+2 h+1=2 s+1$ for some $s \in \mathbb{Z}, s=2 k h+k+h$
$\Rightarrow a b$ is odd

Conclusion: It is not possible that $a+b$ and $a b$ are both odd; but it is possible that both are even, which happens when both a and b are even.

3A2 (Combination of equivalences)
(a) Prove or disprove: if R and S are equivalence relations, then $R \wedge S$ is an equivalence relation.
(b) Prove or disprove: if R and S are equivalence relations, then $R \vee S$ is an equivalence relation.

Solution. Recall: A relation is equivalence if it is reflexive, symmetric, and transitive.
(a) Let A be the set where R and S are equivalence relations of. Let an element $a \in A$. Since R and S are equivalence relations, they are reflexive
$\Rightarrow(a, a) \in R$ and $(a, a) \in S$
$\Rightarrow(a, a) \in R \wedge S \Rightarrow R \wedge S$ is reflexive.

Let $(a, b) \in R \wedge S$
$\Rightarrow(a, b) \in R$ and $(a, b) \in S$
$\Rightarrow(b, a) \in R$ and $(b, a) \in S$, since R and S are symmetric
$\Rightarrow(b, a) \in R \wedge S \Rightarrow R \wedge S$ is symmetric.

Let $(a, b),(b, c) \in R \wedge S$
$\Rightarrow(a, b),(b, c) \in R \Rightarrow(a, c) \in R(R$ is transitive $)$
$\Rightarrow(a, b),(b, c) \in S \Rightarrow(a, c) \in s(S$ is transitive)
$\Rightarrow(a, c) \in R \wedge S \Rightarrow R \wedge S$ is transitive.

Hence, we have $R \wedge S$ as reflexive, symmetric, and transitive. We can now conclude that $R \wedge S$ is equivalence.
(b) (giving a counter example)

Let $A=\{1,2,3\}$ be the set where R and S are equivalence relations of.
Let $R=\{(1,1),(2,2),(3,3),(1,2),(2,1)\}$
$S=\{(1,1),(2,2),(3,3),(2,3),(3,2)\}$
$\Rightarrow R \vee S=\{(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2)\}$
We have $(1,2) \in R \vee S$ and $(2,3) \in R \vee S$; however, $(1,3) \notin R \vee S$
$\Rightarrow R \vee S$ is not transitive
$\Rightarrow R \vee S$ is not equivalence.

3A3 (Bit strings) An n-fold Cartesian product of a set S by itself can be denoted as

$$
S^{n}=S \times S \times \ldots \times S
$$

In particular, $\{0,1\}^{n}$ is the set of all strings (tuples) of n bits. (A bit is one of the two integers 0 and 1.) We define a relation R in $\{0,1\}^{n}$ such that $R(x, y)$ holds if and only if the strings x and y contain the same number of ones.
(a) Prove that R is an equivalence.
(b) Let $\mathbf{0}=00 \ldots 0$ be the string of n zeros. What is the equivalence class [0]?
(c) How many equivalence classes does R have?

Solution.

(a) For any string a in $\{0,1\}^{n}, R(a, a)$ must hold, as any string would have the same number of one as itself.
$\Rightarrow R$ is reflexive
If $R(a, b)$ holds, then $R(b, a)$ must also holds for any $a, b \in\{0,1\}^{n}$. This is because if a and b have the same number of ones, then b and a will also undoubtedly have the same number of ones.
$\Rightarrow R$ is symmetric
If $R(a, b), R(b, c)$ hold, then $R(a, c)$ must also hold for $a, b, c \in\{0,1\}^{n}$. This is because if a and b have the same number of ones, b and c have the same number of ones, then a and c must have the same number of ones.
$\Rightarrow R$ is transitive
Hence, R is an equivalence relation.
(b) The equivalence class $[\mathbf{0}]$ with respect to R is the set of all strings that have the same number of ones as the string $\mathbf{0}=0000 \ldots 0$ (n number of zeros) in set $\{0,1\}^{n}$. Since the string $\mathbf{0}$ contains all zeros, any string in the equivalence class must also consist of all zeros. There is only one such string, namely 0 itself, so the equivalence class is just the set containing that one element. That is the class is $\{\mathbf{0}\}$.
(c) Recall: Every equivalence relation on A divides A into disjoint equivalence classes of elements that are in the equivalence relation with each other - from lecture notes

In the case of R, each equivalence class will correspond to a different number of ones in the strings. There are n bits in a string; hence, the number of ones ranges from 0 to $n, 0$ and n inclusive.
\Rightarrow There are $n+1$ equivalence classes for R

3A4 (Divisibility) When a and b are positive integers, we say that a divides b (written $a \mid b$) if there is an integer k such that $b=k a$.

Prove that \mid is an order, but not a total order, on positive integers.
You may notice that our definition really talks about multiplication, not about division. We'll talk more about this later on the course, in number theory. Instead of "divides", you could read $a \mid b$ as " b is a multiple of a " (or more precisely, "an integer multiple"), or " a is a factor of b ".

Solution. Recall: a relation \preceq on A is an order relation if it is reflexive, antisymmetric, and transitive. - from lecture note

For any positive integer $a, a \mid a$ holds because $a=1 a$
$\Rightarrow \mid$ is reflexive
For any positive integer a and b, if $a \mid b$, and $b \mid a$ then $a=b$ as:
$a \mid b \Rightarrow b=k a, k \in \mathbb{Z}$
$b \mid a \Rightarrow a=m b, m \in \mathbb{Z}$
$\Rightarrow a=m k a$
$\Rightarrow m=k=1$ and $a=b, a, b \neq 0$ (positive integer)
$\Rightarrow \mid$ is anti-symmetric
For any positive integer a, b, c, if $a \mid b$ and $b \mid c$, then $a \mid c$:
$a \mid b \Rightarrow b=k a, k \in \mathbb{Z}$
$b \mid c \Rightarrow c=h b, h \in \mathbb{Z}$
$\Rightarrow c=(h k) a$
$\Rightarrow a \mid c$
$\Rightarrow \mid$ is transitive
Hence, \mid is an order. A total order requires that for any positive integer $a, b, a \mid b$ or $b \mid a$ must hold. However, this is not the case, as illustrated with the counterexample: $2 \nmid 5,5 \nmid 2$. Hence, \mid is not a total order on positive integers.

3A5 (Same set, different orders) We define two different orders on \mathbb{Z}^{2}, the pointwise order

$$
\left(a_{1}, a_{2}\right) \preceq_{P}\left(b_{1}, b_{2}\right) \quad \text { if and only if } a_{1} \leq b_{1} \wedge a_{2} \leq b_{2}
$$

and the lexical order

$$
\left(a_{1}, a_{2}\right) \preceq_{L}\left(b_{1}, b_{2}\right) \quad \text { if and only if }\left(a_{1}<b_{1}\right) \vee\left(a_{1}=b_{1} \wedge a_{2} \leq b_{2}\right) .
$$

(a) Prove that both are orders.
(b) Which one(s) of them are total orders? Prove it.
(c) Prove that for all points $a, b \in \mathbb{Z}^{2}, a \preceq_{P} b$ implies $a \preceq_{L} b$.
(d) Visualize both orders by taking some point, say $b=(4,2)$, and drawing the sets $\left\{a \in \mathbb{Z}^{2}: a \preceq b\right\}$, where \preceq is either \preceq_{P} or \preceq_{L}.
(e) Give an example of a third order on \mathbb{Z}^{2} (different from both \preceq_{P} and \preceq_{L}) and visualize it.

Solution.

(a) Proof for pointwise order:

For any $\left(a_{1}, a_{2}\right) \in \mathbb{Z}^{2}, a_{1} \leq a_{1}, a_{2} \leq a_{2} \Rightarrow\left(a_{1}, a_{2}\right) \preceq_{P}\left(a_{1}, a_{2}\right)$
$\Rightarrow \preceq_{P}$ is reflexive
If $\left(a_{1}, a_{2}\right) \preceq_{P}\left(b_{1}, b_{2}\right)$ and $\left(b_{1}, b_{2}\right) \preceq_{P}\left(a_{1}, a_{2}\right)$
$\Rightarrow a_{1} \leq b_{1} \leq a_{1}$ and $a_{2} \leq b_{2} \leq a_{2}$
$\Rightarrow\left(a_{1}, a_{2}\right)=\left(b_{1}, b_{2}\right)$
$\Rightarrow \preceq_{P}$ is anti-symmetric
If $\left(a_{1}, a_{2}\right) \preceq_{P}\left(b_{1}, b_{2}\right)$ and $\left(b_{1}, b_{2}\right) \preceq_{P}\left(c_{1}, c_{2}\right)$
$\Rightarrow a_{1} \leq b_{1} \leq c_{1}$ and $a_{2} \leq b_{2} \leq c_{2}$
$\Rightarrow a_{1} \leq c_{1}$ and $a_{2} \leq c_{2}$
$\Rightarrow\left(a_{1}, a_{2}\right) \preceq_{P}\left(c_{1}, c_{2}\right)$
$\Rightarrow \preceq_{P}$ is transitive
Hence, \preceq_{P} is order.

Proof for lexical order:
For any $\left(a_{1}, a_{2}\right) \in \mathbb{Z}^{2}, a_{1}<a_{1}$ is false, but $a_{1}=a_{1}$ and $a_{2} \leq a_{2}$ hold
$\left(a_{1}, a_{2}\right) \preceq_{L}\left(a_{1}, a_{2}\right)$
$\Rightarrow \preceq_{L}$ is reflexive
If $\left(a_{1}, a_{2}\right) \preceq_{L}\left(b_{1}, b_{2}\right)$, and $\left(b_{1}, b_{2}\right) \preceq_{L}\left(a_{1}, a_{2}\right)$
$\Rightarrow a_{1}<b_{1}<a_{1}$ is false and it must be that $a_{1}=b_{1}$
Since $a_{2} \leq b_{2} \leq a_{2},\left(a_{1}, a_{2}\right)=\left(b_{1}, b_{2}\right)$
$\Rightarrow \preceq_{L}$ is anti-symmetric
If $\left(a_{1}, a_{2}\right) \preceq_{L}\left(b_{1}, b_{2}\right)$ and $\left(b_{1}, b_{2}\right) \preceq_{L}\left(c_{1}, c_{2}\right)$
\Rightarrow either $a_{1}<b_{1}<c_{1}$ holds or $a_{1}=b_{1}=c_{1}$ holds.
Since $a_{2} \leq b_{2} \leq c_{2}$ holds anyway, we have $\left(a_{1}, a_{2}\right) \preceq_{L}\left(c_{1}, c_{2}\right)$
$\Rightarrow \preceq_{L}$ is transitive
Hence \preceq_{L} is order.
(b) A total order in this case is when either $\left(a_{1}, a_{2}\right) \preceq\left(b_{1}, b_{2}\right)$ or $\left(b_{1}, b_{2}\right) \preceq\left(a_{1}, a_{2}\right)$.

First we look at pointwise order:
Counter-example: $(1,2)$ and $(2,1)$
Neither $(1,2) \preceq_{P}(2,1)$ nor $(2,1) \preceq_{P}(1,2)$ holds.
$\Rightarrow \preceq_{P}$ is not a total order.

Secondly, let's look at lexical order:
For any $a, b \in \mathbb{Z}^{2}$, we have 2 cases:

- $a_{1} \neq b_{1}$:

Either $\left(a_{1}, a_{2}\right) \preceq_{L}\left(b_{1}, b_{2}\right)$ and $\left(b_{1}, b_{2}\right) \preceq_{L}\left(a_{1}, a_{2}\right)$ must hold, as it is true that either $a_{1}<b_{1}$ or $b_{1}<a_{1}$

- $a_{1}=b_{1}$:

It is either that $a_{2} \leq b_{2}$, in which case $\left(a_{1}, a_{2}\right) \preceq_{L}\left(b_{1}, b_{2}\right)$ holds;
Or $b_{2}<a_{2}$, in which case $\left(b_{1}, b_{2}\right) \preceq_{L}\left(a_{1}, a_{2}\right)$ holds.
Hence, \preceq_{L} is a total order
(c) $a \preceq_{P} b$
$\Rightarrow a_{1} \leq b_{1} \wedge a_{2} \leq b_{2}$
$\Rightarrow\left(a_{1}=b_{1} \vee a_{1}<b_{1}\right) \wedge a_{2} \leq b_{2}$
$\Rightarrow\left(a_{1}=b_{1} \wedge a_{2} \leq b_{2}\right) \vee\left(a_{1}<b_{1} \wedge a_{2} \leq b_{2}\right)$
In the both cases above, we can conclude that $a \preceq_{L} b$.
This means that $a \preceq_{P} b$ implies $a \preceq_{L} b$.
(d) With $b=(4,2)$, for the set $\left\{a \in \mathbb{Z}^{2}: a \preceq_{P} b\right\}$, the elements must satisfy $\left(a_{1} \leq 4\right) \wedge\left(a_{2} \leq 2\right)$. For the set $\left\{a \in \mathbb{Z}^{2}: a \preceq_{L} b\right\}$, the elements must satisfy $\left(a_{1}<4\right) \wedge\left(a_{1}=4 \vee a_{2} \leq 2\right)$.
Thus, for $\left\{a \in \mathbb{Z}^{2}: a \preceq b\right\}$ where \preceq is either \preceq_{P} or \preceq_{L}, the elements must satisfy $\left.\left(a_{1} \leq 4\right) \wedge a_{2} \leq 2\right) \vee\left(a_{1}<4\right)$.
We have the visualisation:
(Note that the set is only comprised of elements in \mathbb{Z}^{2}.)

(e) There are many valid solutions. The relation just needs to fulfill the three requirements (reflexivity, antisymmetry, transitivity). Reflexivity is probably easy to achieve. Antisymmetry, however, may cause a surprise. Note that any two different points a, b could be in the relation in one direction, that is $a \preceq b$ or $b \preceq a$, but not both. An order is not allowed to contain "loops", so that from a point you could move to a different "larger" point and then again "larger" and come back to the original point. The third allowed possibility is that they are not in relation in either way (two points can be incomparable).

- A simple example is the equality of both coordinates, $a_{1}=b_{1} \wedge a_{2}=b_{2}$. Every point is comparable only to itself. This is a valid partial order (if not a very useful one).
- Another example is a linear order within each horizontal line, and incomparability of points on different lines: $a_{1} \leq b_{1} \wedge a_{2}=b_{2}$. This illustrates that in a partial order, not all points need to be comparable with each other.
- A different kind of example comes from taking any already known order relation (e.g. pointwise or lexical order) and reversing it. E.g. the reverse of the pointwise order: $a_{1} \geq b_{1} \wedge a_{2} \geq b_{2}$.

There are many other valid solutions.

3A6 (Manhattan) We define the Manhattan distance between points in \mathbb{Z}^{2} as

$$
d\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right)=\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right| .
$$

(You can think of a point as an intersection of streets in a city following a grid plan, and the distance is measured along the streets, with one block counting as one unit in either horizontal or vertical direction). We then define an equivalence relation R in \mathbb{Z} by saying that $R(a, b)$ if and only if $d((0,0), a)=d((0,0), b)$. What are the equivalence classes? Visualize.

We usually think of square-shaped city blocks here. In reality the typical blocks on Manhattan are not squares at all, but rectangles whose "width" is much bigger than their "height".

Solution. Relation $R: R(a, b)$ if and only if $d((0,0), a)=d((0,0), b)$
This means that for each equivalence class, the points share the same Manhattan distance from the origin. Let's name C_{k} the set of those points that have distance k.

Equivalence class $C_{0}=\{(0,0)\}$:

Equivalence class $C_{1}=\{(1,0),(-1,0),(0,1),(0,-1)\}$:

Equivalence class $C_{2}=\{(2,0),(0,2),(-2,0),(0,-2),(-1,1),(-1,-1),(1,1),(1,-1)\}$:

Equivalence class C_{3} :

MS-A0402 Foundations of discrete mathematics

and so on...

