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3A Relations

3A1 (Parity arithmetic) The parity of an integer means whether it is even or odd.
We say that an integer n is even if n = 2k for some k ∈ Z, and odd if n = 2k + 1
for some k ∈ Z.

For simplicity, we assume now (without actually proving it) that every integer is
either even or odd, but not both. (We may return to this topic later on the course.)

Find the parities of a+b and ab in each of these cases, when a and b are arbitrary
integers. You can start by calculating some examples (if you need), but you should
then prove that your claims hold for all integers. (Hint: Induction is probably not
needed. Clever use of quantifiers should be enough.)

(a) a is even and b is even

(b) a is even and b is odd

(c) a is odd and b is even

(d) a is odd and b is odd

Is it possible that a+ b and ab are both odd? Is it possible that both are even?

Solution.

(a) Let a = 2k and b = 2h for some k, h ∈ Z.
We have:

a+ b = 2k + 2h = 2(k + h) = 2q for some q ∈ Z, q = h+ k
⇒ a+ b is even

ab = 2k(2h) = 2(2kh) = 2s for some s ∈ Z, s = 2hk
⇒ ab is even

(b) Let a = 2k and b = 2h+ 1 for some k, h ∈ Z.
We have:

a+ b = 2k + 2h+ 1 = 2(k + h) + 1 = 2q + 1 for some q ∈ Z, q = h+ k
⇒ a+ b is odd

ab = 2k(2h+ 1) = 2(2kh+ k) = 2s for some s ∈ Z, s = 2hk + k
⇒ ab is even

(c) Same as the part above.

(d) Let a = 2k + 1 and b = 2h+ 1 for some k, h ∈ Z.
We have:

a+ b = 2k + 1 + 2h+ 1 = 2(k + h+ 1) = 2q for some q ∈ Z, q = h+ k + 1
⇒ a+ b is even

ab = (2k+1)(2h+1) = 4kh+2k+2h+1 = 2s+1 for some s ∈ Z, s = 2kh+k+h
⇒ ab is odd
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Conclusion: It is not possible that a+ b and ab are both odd; but it is possible
that both are even, which happens when both a and b are even.

3A2 (Combination of equivalences)

(a) Prove or disprove: if R and S are equivalence relations, then R ∧ S is an
equivalence relation.

(b) Prove or disprove: if R and S are equivalence relations, then R ∨ S is an
equivalence relation.

Solution. Recall: A relation is equivalence if it is reflexive, symmetric, and transi-
tive.

(a) Let A be the set where R and S are equivalence relations of. Let an element
a ∈ A. Since R and S are equivalence relations, they are reflexive

⇒ (a, a) ∈ R and (a, a) ∈ S
⇒ (a, a) ∈ R ∧ S ⇒ R ∧ S is reflexive.

Let (a, b) ∈ R ∧ S
⇒ (a, b) ∈ R and (a, b) ∈ S
⇒ (b, a) ∈ R and (b, a) ∈ S, since R and S are symmetric
⇒ (b, a) ∈ R ∧ S ⇒ R ∧ S is symmetric.

Let (a, b), (b, c) ∈ R ∧ S
⇒ (a, b), (b, c) ∈ R⇒ (a, c) ∈ R (R is transitive)
⇒ (a, b), (b, c) ∈ S ⇒ (a, c) ∈ s (S is transitive)
⇒ (a, c) ∈ R ∧ S ⇒ R ∧ S is transitive.

Hence, we have R ∧ S as reflexive, symmetric, and transitive. We can now
conclude that R ∧ S is equivalence.

(b) (giving a counter example)
Let A = {1, 2, 3} be the set where R and S are equivalence relations of.

Let R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}
S = {(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)}
⇒ R ∨ S = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)}
We have (1, 2) ∈ R ∨ S and (2, 3) ∈ R ∨ S; however, (1, 3) /∈ R ∨ S
⇒ R ∨ S is not transitive
⇒ R ∨ S is not equivalence.
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3A3 (Bit strings) An n-fold Cartesian product of a set S by itself can be denoted
as

Sn = S × S × . . .× S.

In particular, {0, 1}n is the set of all strings (tuples) of n bits. (A bit is one of the
two integers 0 and 1.) We define a relation R in {0, 1}n such that R(x, y) holds if
and only if the strings x and y contain the same number of ones.

(a) Prove that R is an equivalence.

(b) Let 0 = 00 . . . 0 be the string of n zeros. What is the equivalence class [0]?

(c) How many equivalence classes does R have?

Solution.

(a) For any string a in {0, 1}n, R(a, a) must hold, as any string would have the
same number of one as itself.
⇒ R is reflexive

If R(a, b) holds, then R(b, a) must also holds for any a, b ∈ {0, 1}n. This is
because if a and b have the same number of ones, then b and a will also
undoubtedly have the same number of ones.
⇒ R is symmetric

If R(a, b), R(b, c) hold, then R(a, c) must also hold for a, b, c ∈ {0, 1}n. This
is because if a and b have the same number of ones, b and c have the same
number of ones, then a and c must have the same number of ones.
⇒ R is transitive

Hence, R is an equivalence relation.

(b) The equivalence class [0] with respect to R is the set of all strings that have
the same number of ones as the string 0 = 0000...0 (n number of zeros) in set
{0, 1}n. Since the string 0 contains all zeros, any string in the equivalence class
must also consist of all zeros. There is only one such string, namely 0 itself, so
the equivalence class is just the set containing that one element. That is the
class is {0}.

(c) Recall: Every equivalence relation on A divides A into disjoint equivalence
classes of elements that are in the equivalence relation with each other - from
lecture notes

In the case of R, each equivalence class will correspond to a different number
of ones in the strings. There are n bits in a string; hence, the number of ones
ranges from 0 to n, 0 and n inclusive.

⇒ There are n+ 1 equivalence classes for R
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3A4 (Divisibility) When a and b are positive integers, we say that a divides b
(written a | b) if there is an integer k such that b = ka.

Prove that | is an order, but not a total order, on positive integers.

You may notice that our definition really talks about multiplication, not about
division. We’ll talk more about this later on the course, in number theory. Instead
of “divides”, you could read a | b as “b is a multiple of a” (or more precisely, “an
integer multiple”), or “a is a factor of b”.

Solution. Recall: a relation � on A is an order relation if it is reflexive, anti-
symmetric, and transitive. - from lecture note

For any positive integer a, a | a holds because a = 1a
⇒| is reflexive

For any positive integer a and b, if a | b, and b | a then a = b as:
a | b⇒ b = ka, k ∈ Z
b | a⇒ a = mb,m ∈ Z
⇒ a = mka
⇒ m = k = 1 and a = b, a, b 6= 0 (positive integer)
⇒| is anti-symmetric

For any positive integer a, b, c, if a | b and b | c, then a | c:
a | b⇒ b = ka, k ∈ Z
b | c⇒ c = hb, h ∈ Z
⇒ c = (hk)a
⇒ a | c
⇒| is transitive

Hence, | is an order. A total order requires that for any positive integer a, b, a | b
or b | a must hold. However, this is not the case, as illustrated with the counter-
example: 2 - 5, 5 - 2. Hence, | is not a total order on positive integers.

3A5 (Same set, different orders) We define two different orders on Z2, the pointwise
order

(a1, a2) �P (b1, b2) if and only if a1 ≤ b1 ∧ a2 ≤ b2

and the lexical order

(a1, a2) �L (b1, b2) if and only if (a1 < b1) ∨ (a1 = b1 ∧ a2 ≤ b2).

(a) Prove that both are orders.

(b) Which one(s) of them are total orders? Prove it.

(c) Prove that for all points a, b ∈ Z2, a �P b implies a �L b.
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(d) Visualize both orders by taking some point, say b = (4, 2), and drawing the
sets {a ∈ Z2 : a � b}, where � is either �P or �L.

(e) Give an example of a third order on Z2 (different from both �P and �L) and
visualize it.

Solution.

(a) Proof for pointwise order :

For any (a1, a2) ∈ Z2, a1 ≤ a1, a2 ≤ a2 ⇒ (a1, a2) �P (a1, a2)
⇒�P is reflexive

If (a1, a2) �P (b1, b2) and (b1, b2) �P (a1, a2)
⇒ a1 ≤ b1 ≤ a1 and a2 ≤ b2 ≤ a2
⇒ (a1, a2) = (b1, b2)
⇒�P is anti-symmetric

If (a1, a2) �P (b1, b2) and (b1, b2) �P (c1, c2)
⇒ a1 ≤ b1 ≤ c1 and a2 ≤ b2 ≤ c2
⇒ a1 ≤ c1 and a2 ≤ c2
⇒ (a1, a2) �P (c1, c2)
⇒�P is transitive

Hence, �P is order.

Proof for lexical order :

For any (a1, a2) ∈ Z2, a1 < a1 is false, but a1 = a1 and a2 ≤ a2 hold
(a1, a2) �L (a1, a2)
⇒�L is reflexive

If (a1, a2) �L (b1, b2), and (b1, b2) �L (a1, a2)
⇒ a1 < b1 < a1 is false and it must be that a1 = b1
Since a2 ≤ b2 ≤ a2, (a1, a2) = (b1, b2)
⇒�L is anti-symmetric

If (a1, a2) �L (b1, b2) and (b1, b2) �L (c1, c2)
⇒ either a1 < b1 < c1 holds or a1 = b1 = c1 holds.
Since a2 ≤ b2 ≤ c2 holds anyway, we have (a1, a2) �L (c1, c2)
⇒�L is transitive

Hence �L is order.

(b) A total order in this case is when either (a1, a2) � (b1, b2) or (b1, b2) � (a1, a2).

First we look at pointwise order :

Counter-example: (1,2) and (2,1)
Neither (1, 2) �P (2, 1) nor (2, 1) �P (1, 2) holds.
⇒�P is not a total order.
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Secondly, let’s look at lexical order :

For any a, b ∈ Z2, we have 2 cases:

• a1 6= b1:
Either (a1, a2) �L (b1, b2) and (b1, b2) �L (a1, a2) must hold, as it is true
that either a1 < b1 or b1 < a1

• a1 = b1:
It is either that a2 ≤ b2, in which case (a1, a2) �L (b1, b2) holds;
Or b2 < a2, in which case (b1, b2) �L (a1, a2) holds.
Hence, �L is a total order

(c) a �P b
⇒ a1 ≤ b1 ∧ a2 ≤ b2
⇒ (a1 = b1 ∨ a1 < b1) ∧ a2 ≤ b2
⇒ (a1 = b1 ∧ a2 ≤ b2) ∨ (a1 < b1 ∧ a2 ≤ b2)
In the both cases above, we can conclude that a �L b.
This means that a �P b implies a �L b.

(d) With b = (4, 2), for the set {a ∈ Z2 : a �P b}, the elements must satisfy
(a1 ≤ 4) ∧ (a2 ≤ 2). For the set {a ∈ Z2 : a �L b}, the elements must satisfy
(a1 < 4) ∧ (a1 = 4 ∨ a2 ≤ 2).
Thus, for {a ∈ Z2 : a � b} where � is either �P or �L, the elements must
satisfy (a1 ≤ 4) ∧ a2 ≤ 2) ∨ (a1 < 4).
We have the visualisation:
(Note that the set is only comprised of elements in Z2.)

(e) There are many valid solutions. The relation just needs to fulfill the three
requirements (reflexivity, antisymmetry, transitivity). Reflexivity is probably
easy to achieve. Antisymmetry, however, may cause a surprise. Note that any
two different points a, b could be in the relation in one direction, that is a � b
or b � a, but not both. An order is not allowed to contain “loops”, so that from
a point you could move to a different “larger” point and then again “larger”
and come back to the original point. The third allowed possibility is that they
are not in relation in either way (two points can be incomparable).
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• A simple example is the equality of both coordinates, a1 = b1 ∧ a2 = b2.
Every point is comparable only to itself. This is a valid partial order (if
not a very useful one).

• Another example is a linear order within each horizontal line, and incom-
parability of points on different lines: a1 ≤ b1 ∧ a2 = b2. This illustrates
that in a partial order, not all points need to be comparable with each
other.

• A different kind of example comes from taking any already known order
relation (e.g. pointwise or lexical order) and reversing it. E.g. the reverse
of the pointwise order: a1 ≥ b1 ∧ a2 ≥ b2.

There are many other valid solutions.

3A6 (Manhattan) We define the Manhattan distance between points in Z2 as

d((a1, a2), (b1, b2)) = |a1 − b1|+ |a2 − b2|.

(You can think of a point as an intersection of streets in a city following a grid plan,
and the distance is measured along the streets, with one block counting as one unit
in either horizontal or vertical direction). We then define an equivalence relation R
in Z by saying that R(a, b) if and only if d((0, 0), a) = d((0, 0), b). What are the
equivalence classes? Visualize.

We usually think of square-shaped city blocks here. In reality the typical blocks
on Manhattan are not squares at all, but rectangles whose “width” is much bigger
than their “height”.

Solution. Relation R : R(a, b) if and only if d((0, 0), a) = d((0, 0), b)
This means that for each equivalence class, the points share the same Manhattan
distance from the origin. Let’s name Ck the set of those points that have distance
k.

Equivalence class C0 = {(0, 0)}:
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Equivalence class C1 = {(1, 0), (−1, 0), (0, 1), (0,−1)}:

Equivalence class C2 = {(2, 0), (0, 2), (−2, 0), (0,−2), (−1, 1), (−1,−1), (1, 1), (1,−1)}:

Equivalence class C3:
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and so on...
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