3B Relations, functions, cardinality

Some terminology: "Injection", "injective function" and "one-to-one function" are synonyms. ("Injection" is a noun, "injective" is an adjective.)
"Surjection", "surjective function" and "onto function" are synonyms. A surjection $f: A \rightarrow B$ is said to be "onto B " because it "covers" all of B.
"Bijection", "bijective function" and "one-to-one and onto function" are synonyms.

3B1 (Equivalences and orders) Let $\Omega=\{1,2,3\}$. We define two relations over subsets of Ω : let $E(S, T)$ be the relation $|S|=|T|$, and let $R(S, T)$ be the relation $|S| \leq|T|$. Recall that for finite sets, $|\ldots|$ means the number of elements.

Describe the two relations in words. Is E an equivalence relation? If yes, what are the equivalence classes? Is R an order relation? If yes, is it a total order?

Solution.

- Relation $E(S, T)$ holds when the sets S, T have the same number of elements (the same cardinality).
- Relation $R(S, T)$ holds when the number of elements for the set S is less than or equal to that of T.
- Let's take a closer look at E :

For any set $A, E(A, A)$ must hold, sincbe any set has the same cardinality as itself.
$\Rightarrow E$ is reflexive
For any set A, B, if $E(A, B)$ holds, it means A, B have the same cardinality, and thus $E(B, A)$ must also hold.
$\Rightarrow E$ is symmetric.
For any set A, B, C, if $E(A, B)$ and $E(B, C)$ hold, it means that A, B have the same cardinality, and B, C have the same cardinality. $\Rightarrow A, C$ have the same cardinality. $\Rightarrow E(A, C)$ holds.
$\Rightarrow E$ is transitive
\Rightarrow Thus, E is an equivalence relation.

We have $\Omega=\{1,2,3\}$ so we have the ewuivalence classes $C_{n}, n \in N$ where the numerical value of n indicates the cardinality of the sets in each class:
$C_{0}=\{\varnothing\}$
$C_{1}=\{\{1\},\{2\},\{3\}\}$
$C_{2}=\{\{1,2\},\{1,3\},\{2,3\}\}$
$C_{3}=\{\{1,2,3\}\}$

- Let's take a closer look at R :

For any set $A, R(A, A)$ must hold, since any set has the same cardinality as itself. $\Rightarrow R$ is reflexive
For any set A, B, if $R(A, B)$ and $R(B, A)$ both hold, it means that A, B have the same cardinality. However, this does not necessarily mean that they are the same set. For example, with $A=1,2$ and $B=2,3$, both $R(B, A), R(A, B)$ hold, yet $A \neq B$
$\Rightarrow R$ is not anti-symmetric
$\Rightarrow R$ is not an order

3B2 (Dual orders) If R is a relation on set A, its dual (or opposite, or converse) relation R^{d} is the relation defined by $R^{d}(x, y) \leftrightarrow R(y, x)$ for all $x, y \in A$ (we are viewing relations as predicates here). When using infix notation, a typical convention is to reverse the symbol, for example \leq^{d} is written \geq, and \subseteq^{d} is written \supseteq.
(a) Prove: If R is an order relation, then R^{d} is an order relation.
(b) Prove: If R is a total order, then R^{d} is a total order.
(c) If R is an order relation, what kind of relation is $R \wedge R^{d}$?
(d) What does the result from (c) say specifically for the relations \leq (on real numbers $) \subseteq($ on subsets of some set), and divisibility \mid (on positive integers)?

Solution.

(a) If R is an order relation, R is reflexive, anti-symmetric, and transitive.

- R is reflexive \Rightarrow for any $x \in A, R(x, x)$ holds $\Rightarrow R^{d}(x, y)$ holds $\Rightarrow R^{d}$ is reflexive
- R is anti-symmetric \Rightarrow for any $x, y \in A$, if $R(x, y)$ and $R(y, x)$ both hold, then $x=y$
Since we have $R^{d}(y, x) \leftrightarrow R(x, y)$, if both $R^{d}(x, y), R^{d}(y, x)$ hold, it must be that $x-y \Rightarrow R^{d}$ is anti-symmetric
- R is transitive \Rightarrow For any $x, y, z \in A$, if $R(x, y), R(y, z)$ hold, $R(x, z)$ holds as well. We have:
$R(x, y) \leftrightarrow R^{d}(y, x)$
$R(y, z) \leftrightarrow R^{d}(z, y)$
$R(x, z) \leftrightarrow R^{d}(z, x)$
\Rightarrow When $R^{d}(x, y), R^{d}(z, y)$ hold, $R^{d}(z, x)$ holds $\Rightarrow R^{d}$ is transitive

Hence, R^{d} is an order if R is an order
(b) If R is a total order, for any $x, y \in A$, either $R(x, y)$ or $R(y, x)$ holds. By the given definition for $R^{d}, R^{d}(y, x) \leftrightarrow R(x, y)$ and $R^{d}(x, y) \leftrightarrow R(y, x)$
\Rightarrow either $R^{d}(x, y)$ or $\left.R^{(} y, x\right)$ must be true for any $x, y \in A$
\mathbb{R}^{d} is a total order if R is a total order.
(c) $R \wedge R^{d}$ represents the set of pairs for which both $R(x, y), R^{d}(x, y)(x, y \in A)$ hold simultaneously. We have the definition of R^{d} as: $R^{d}(x, y) \leftrightarrow R(y, x)$
\Rightarrow In $R \wedge R^{d}$, both $R(y, x), R(x, y)$ hold. If R is an order relation, it means that R is anti-symmetric \Rightarrow meaning that for any $x, y \in A$, if both $R(y, x), R(x, y)$ hold, then $x=y$.
$\Rightarrow R \wedge R^{d}$ only consists of pairs (x, y) where $x=y$ in the set A.
$\Rightarrow R \wedge R^{d}$ is the identity relation.
(d) $\quad \leq$:

If R is the \leq relation on real numbers, with the result in part (c), the relation $R \wedge R^{d}$ being the identity relation means that if $x \leq y$ and also $y \leq x, x=y$.

- \subseteq :

Similarly, this means the 2 sets X, Y are the same set if $X \subseteq Y$ and $X \supseteq Y$ simultaneously.

- |:

Similarly, this also means the 2 positive integers x, y are the same number if $x \mid y$ and $y \mid x$ simultaneously.

3B3 (Finite domains) Let $A=\{1,2\}$ and $B=\{1,2,3,4\}$.
(a) How many different injections are there from A to B ? (Hint: You can list them, but you could also just count. What are the possibilities for the value of $f(1)$? If you choose that $f(1)$ has a particular value, how many possibilities are then for the value of $f(2)$?)
(b) How many different surjections are there from A to B ?
(c) How many different injections are there from B to A ?
(d) How many different surjections are there from B to A ?
(e) How many different bijections are there from A to A ?

Solution.

(a) Injection from A to B means that every element in B is the image of at most 1 element in A.
\Rightarrow No more than 1 element in A should be mapped to any element in B.
\Rightarrow There are $4 \times 3=12$ different injections.
(b) Surjections from A to B means that for every element in B, there exist at least 1 element in A that the element in B is the image of.
\Rightarrow There is no surjections from A to B.
(c) 0 injections from B to A.
(d) There are 4^{2} functions from B to A. There are $4^{2}-2=14$ surjections from B to A, where we get the number of surjections by deducting the number of cases where the function is not a surjection from the total number of function. One case is when all 4 values in B are mapped to the value 1 in A, while no values in B map to the value 2 in A. The second case is when all 4 values in B are mapped to the value 2 in A, while no values in B map to the value 1 in A.
(e) 2 bijections.

3B4 (Infinite domains) Give an example of a function $\mathbb{N} \rightarrow \mathbb{N}$ that is
(a) injective but not surjective,
(b) surjective but not injective,
(c) bijective (that is, injective and surjective), other than the identity function $f(x)=x$,
(d) neither injective nor surjective.

Hint: Very simple functions should suffice in all cases. You don't need to construct very complicated ones. Try, for example, simple arithmetic (e.g. adding or subtracting a constant, or multiplying, or a constant function, or a function defined by cases. But make sure that your function is a well-defined function from \mathbb{N} to \mathbb{N}, that is, for every $x \in \mathbb{N}$ you have $f(x) \in \mathbb{N}$.

Solution. Below are some examples:
(a) Some examples: $f(x)=2 x$, or $f(x)=x+1$.
(b) Some examples: $g(x)=\left\lfloor\frac{x}{2}\right\rfloor$ (where $\lfloor\ldots\rfloor$ is the floor function, or "rounding down"); or $g(0)=0$ and $g(x)=x-1$ for $x>0$.
(c) For example, $h(x)= \begin{cases}x-1, & \text { if } x \text { is odd } \\ x+1, & \text { if } x \text { is even }\end{cases}$ Note: on this course we have defined \mathbb{N} to include 0 .
(d) Some examples: $k(x)=x \bmod 2$, or a constant function like $f(x)=7$.

3B5 (Function composition) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
(a) Prove: If f and g are injections, then $g \circ f$ is an injection.
(b) Prove: If f and g are surjections, then $g \circ f$ is a surjection.
(c) Prove: If f and g are bijections, then $g \circ f$ is an bijection.

Hint: For injection, it is perhaps easiest to work with the contrapositive form: f is injective if $x \neq y \Rightarrow f(x) \neq f(y)$.

Part (c) shows that our definition of "having same cardinality", which is based on the existence of a bijection, is a transitive relation between sets, even for infinite sets: if A, B have the same cardinality, and B, C have the same cardinality, then so do A, C.

Solution.

(a) From lecture note: $\forall x, y \in A: f(x)=f(y) \rightarrow x=y$

Contrapositive: $\forall x, y \in A: x \neq y \rightarrow f(x) \neq f(y)$
If $x \neq y$, then $f(x) \neq f(y)$ (because f is an injection). Then because $f(x) \neq$ $f(y)$, also $g(f(x)) \neq g(f(y))$ (because g is an injection). In other words $(g \circ$ $f)(x) \neq(g \circ f)(y)$. This proves that $(g \circ f)$ is an injection.
(b) For every $c \in C$, we have to find an element $a \in A$ such that $g(f(a))=c$. First, given c, we can find an element $b \in B$ such that $g(b)=c$, because g is a surjection. Then we can find an element $a \in A$ such that $f(a)=b$, because a is a surjection. Putting these together, we note that $g(f(a))=g(b)=c$ as required.
(c) As bijection is both injection and surjection, based on (a) and (b), (c) follows.

3B6 (Cardinality of power sets) Prove, by explicitly constructing an injection, that if A is any set (finite or infinite), then $|A| \leq|P(A)|$, where $P(A)$ means the power set. Hint: There is a very simple injection.

For finite sets we know that if $|A|=n$, then $|P(A)|=2^{n}$, so this exercise proves, in a set-theoretic way, that $2^{n} \geq n$ for all $n \in \mathbb{N}$. Of course this inequality could be proved in other ways, for example by induction.

Solution. An example of an injection is $a \mapsto\{a\}$, in other words $f(a)=\{a\}$. This function f is an injection, since it is defined for all $a \in A$, and distinct elements in A are mapped to distinct sets. If $f(a)=f(b)$, then $\{a\}=\{b\}$, implying that $a=b$.

Because there is an injection from A to $P(A)$, we have $|A| \leq|P(A)|$.

3B7 (Cardinality of intervals) Recall that $[a, b]$ and $] a, b[$ denote closed and open intervals of real numbers. We say that two sets A and B are equipotent, or "have the same cardinality", if there exists a bijection between them.
(a) Prove, by constructing a bijection, that every nonempty closed interval $[a, b]$ (where $a<b$) is equipotent to the closed unit interval $[0,1]$. Hint: It is enough to construct a bijection between the two sets in one direction. Which direction is easier?
(b) Prove, by constructing a bijection, that every nonempty open interval $] a, b[$ (where $a<b$) is equipotent to the open unit interval $] 0,1[$.
(c) From the previous parts, conclude that all nonempty closed intervals have the same cardinality, and all nonempty open intervals have the same cardinality.
(d) Construct an injection from $] 0,1[$ to $[0,1]$.
(e) Construct an injection from $[0,1]$ to $] 0,1[$.

It is a general fact (but not quite trivial to prove) that if there are injections both ways $f: A \rightarrow B$ and $g: B \rightarrow A$, then there is also a bijection $h: A \rightarrow B$. This is known as the Schröder-Bernstein theorem. We will not prove this on the course (but look up the proof if you are interested). From (d) and (e), and applying the Schröder-Bernstein theorem, we can conclude that the closed interval $[0,1]$ and the open interval $] 0,1[$ are equipotent.

Solution.

(a) A simple bijection from $[0,1]$ to $[a, b]$ is $f(x)=a+(b-a) x$. Clearly, if $0 \leq x \leq 1$, then $a \leq f(x) \leq b$, so the function is well-defined (the values are in the codomain). Also, if $f(x)=f(y)$, then $a+(b-a) x=a+(b-a) y$, from which it follows (by algebra) that $x=y$; so f is an injection. Finally, for any $u \in[a, b]$, we can choose $x=\frac{u-a}{b-a} \in[0,1]$ such that $f(x)=u$, so f is a surjection.
(b) We can again use $f(x)=a+(b-a) x$. The same proofs work as in (a), by the straightforward changes to exclude the endpoints (both in the domain and in the codomain).
(c) Every bijection f has an inverse function f^{-1} which is also a bijection. Suppose we have two closed intervals $[a, b]$ and $[c, d]$. By (a), there exist bijections $f_{1}:[0,1] \rightarrow[a, b]$ and $f_{2}:[0,1] \rightarrow[c, d]$. Then $f_{2} \circ f_{1}^{-1}$ is a bijection from $[a, b]$ to $[c, d]$, so $[a, b]$ and $[c, d]$ have the same cardinality.
Between any two open intervals $] a, b[$ and $] c, d[$ we can similarly construct a bijection, using the bijections from (b).
(d) $f(x)=x$
(e) $f(x)=\frac{1}{4}+\frac{x}{2}$.

The challenge problem is worth an extra point.

3B8 (** CHALLENGE: Cardinality of powersets, part II) Prove that if A is a set (either finite or infinite), there is no bijection from A to its powerset $P(A)$.

Hint: It is enough to show that there is no surjection. Suppose that f is a function from A to $P(A)$. For each element $x \in A$, either $x \in f(x)$ or not. Now consider the set

$$
T=\{x \in A: x \notin f(x)\}
$$

Prove that T is not equal to $f(y)$ for any $y \in A$. That means that f is not a surjection to $P(A)$, because there is an element $T \in P(A)$ not covered by f.

Together with 3B6, this exercise shows that for any set A, the powerset $P(A)$ has different (bigger) cardinality than A. For example, because we can form power sets of power sets,

$$
|\mathbb{N}|<|P(\mathbb{N})|<|P(P(\mathbb{N}))|<\ldots
$$

In particular, there are infinitely many cardinalities that infinite sets can have, not just two ("same as \mathbb{N} " and "same as \mathbb{R} ").

Solution. Suppose that f is a function from A to $P(A)$. So, for every $x \in A$, there exists an image $f(x)$ which is a subset of A.

Following the hint in the problem statement we define

$$
T=\{x \in A: x \notin f(x)\} .
$$

That is, T consists of those elements x that are not elements of their own images (under f). For example, if $A=\mathbb{N}$ and $f(5)=\{3,6,9\}$, then $5 \in T$ because 5 is
not an element of its own image. But if $f(5)=\{5\}$, or if $f(5)=\{3,5,10,37\}$, then $5 \notin T$, by our definition of the set T.

Now we prove that T is not the image of any element $y \in A$. Suppose, in order to prove a contradiction, that there is an element y such that $f(y)=T$. Consider two cases.

Case 1: $y \in f(y)$. Then by definition $y \notin T$. But $T=f(y)$, so $y \notin f(y)$, a contradiction.

Case 2: $y \notin f(y)$. Then by definition $y \in T$. But $T=f(y)$, so $y \in f(y)$, again a contradiction.

Because both cases are impossible, we see that T does not equal $f(y)$ for any $y \in A$. So f is not a surjection (hence not a bijection).

We have proven that whatever function $f: A \rightarrow P(A)$ we consider, f is not a bijection. In other words, there does not exist a bijection from A to $P(A)$.

