
MS-A0402 Foundations of discrete mathematics
Department of mathematics and systems analysis
Aalto SCI

J Kohonen
Spring 2024
Exercise 4A

4A Enumerative combinatorics I

4A1 (Experimental design) A metallurgic laboratory is studying various additives
that could be mixed with iron to make steel, in various proportions. For each possible
mixture, the laboratory is going to perform a test (e.g. measure the tensile strength).
Each test takes one hour.

(a) Two additives A and B are considered, and we want to study all mixtures
where each additive has some integer percentage between 0 and 10 (end-
points included). So a mixture can be specified by some pair of integers
(a, b) ∈ {0, 1, . . . , 10}2. Some examples of mixtures to test are (0, 0), (5, 3),
(9, 9), (10, 0). How many tests are needed?

(b) From the previous experiment, we have found that mixtures with about 5%
of A and 8% of B look promising. We want more precision around this point,
so we now study all mixtures where the percentage of A is some number with
one decimal, within {4.0, 4.1, . . . , 5.9, 6.0}, and the percentage of B is some
number in {7.0, 7.1, . . . , 8.9, 9.0}. How many tests are needed now?

(c) Your boss has read about four other exciting additives C, D, E and F. He
instructs you to study all mixtures with the six additives, each having integer
percentages ranging from 0 to 10. “With six additives, it’s only about triple
of your first experiment”, he claims. How many tests are you being told to
conduct, and how much time will they take? Assume that the laboratory runs
24 hours a day, every day of the week.

Solution.

(a) Let A be the set of possible proportions of additive A, and B the set of possible
proportions of additive B. Each additive has 11 possible proportions, that is
|A| = |B| = 11. (Keep in mind the fencepost error). Using the multiplication
principle, we get:

|A×B| = |A| × |B| = 11 · 11 = 121

Thus 121 tests are needed.

(b) There are 21 different proportions of additives for both A and B. Using the
multiplication principle, we get:

|A×B| = |A| × |B| = 21 · 21 = 441

Thus 441 tests are needed.

1 / 13

MS-A0402 Foundations of discrete mathematics
Department of mathematics and systems analysis
Aalto SCI

J Kohonen
Spring 2024
Exercise 4A

A handy way to count numbers that are equally spaced, without listing
them one by one, is as follows. If the smallest number is x and the largest is y,
and the spacing (step) from one number to the next is s, then we are dividing
the distance y−x into s-size steps, so the number of steps is (y−x)/s. Keeping
in mind the fencepost error, the number of points is one more: [(y− x)/s] + 1.
(Try x = 200, y = 300, s = 25 for easy visualization.)

Here, for the first additive, we have x = 4.0, y = 6.0, s = 0.1, so the number
of possible values is [(6.0− 4.0)/0.1] + 1 = [2/0.1] + 1 = 20 + 1 = 21.

(c) There are 6 different additives with 11 different proportions as in part a).
Using the multiplication principle, we get:

|A×B×C ×D×E×F | = |A| × |B| × |C| × |D| × |E| × |F | = 116 = 1771561

This is equal to 1 771 561 hours, which is about 73 815 days, or 202 years.

4A2 (Files and bytes) A byte (in a modern computer) is a small integer between 0
and 255 (inclusive; thus 256 possible values). A file is a sequence (tuple) of bytes,
for example (72, 101, 108, 108, 111) is a possible file of five bytes.1 For every n ∈ N,
let Fn be the set of all possible n-byte files, and Mn the set of all possible files of at
most n bytes. (Note that F0 has a single element, namely the empty file (), which
you get if you create a file but store nothing in it.)

(a) Express the set Mn in terms of F0, . . . , Fn using the “big union” notation.2

(b) What are the cardinalities of F3 and M3? (Hint: In M3 do not forget the empty
file.) Of all files whose length is 3 or less, what percentage have exactly 3 bytes?

(c) What are the cardinalities of Fn and Mn? Simplify the latter into a short
expression (consisting of less than ten arithmetical operations, only using the
basic operations + − ×/ and power, no big sums using

∑
) so that it is easy

to calculate for any n. (Hint: Exercise 2B4.)

(d) Approximately how many files are there of length exactly 500 bytes? Give an
approximation in scientific notation (like 1.234 × 105), with four significant
digits (three decimals after the decimal point). Hint: Usual rules of exponents,
and the exact facts that 28 = 256 and 210 = 1024 = 1.024 × 103. After some
manipulations, a regular handheld calculator can do the rest.

1Practically, a byte can represent many things, for example English letters using the ASCII
code, but that is not relevant in this exercise.

2A big
⋃

symbol where a variable like i runs from a lower limit to an upper limit.

2 / 13

MS-A0402 Foundations of discrete mathematics
Department of mathematics and systems analysis
Aalto SCI

J Kohonen
Spring 2024
Exercise 4A

(e) (OPTIONAL — Not required for scoring the problem, and no extra points.)
A magical fairy tells you of https://sagecell.sagemath.org/, an online
calculator that does exact arithmetic on large integers (and many other things).
The symbol ^ denotes a power, for example 3^4 outputs 81. Using this, find the
exact integer result for (d), and verify that your first four digits were correct.

Solution.

(a)

Mn = F0 ∪ F1 ∪ ... ∪ Fn =
n⋃

i=0

Fi

(b) For F3, let each of the bytes be denoted by B1, B2, B3. Now using the mul-
tiplication principle:

|B1 ×B2 ×B3| = |B1| × |B2| × |B3| = 2563 = 16 777 216.

For M3, we have to include also all shorter files, so

|M3| = |F0|+ |F1|+ |F2|+ |F3| = 1 + 256 + 2562 + 2563 = 16 843 009.

The percentage of files that have exactly three bytes out of all the files of
length 3 or less is

F3

M3

=
16 777 216

16 843 009
≈ 99.6%.

(c) Let us denote the set of all possible bytes as B = {0, 1, . . . , 255}. It contains
|B| = 256 elements. Now Fn is the n-fold Cartesian product of B with itself,

Fn = B ×B × · · · ×B︸ ︷︷ ︸
n of them

= Bn,

so its cardinality is (by the rule of product)

|Fn| = 256× . . .× 256︸ ︷︷ ︸
n of them

= 256n.

For Mn we must also include all smaller files, just like before. Thus

|Mn| = |F0|+ |F1|+ |F2|+ ...+ |Fn|

= 1 + 256 + 2562 + . . .+ 256n =
n∑

i=0

256i.

3 / 13

https://sagecell.sagemath.org/

MS-A0402 Foundations of discrete mathematics
Department of mathematics and systems analysis
Aalto SCI

J Kohonen
Spring 2024
Exercise 4A

This is a finite geometric series3, that is, a sum whose terms grow by a constant
factor (here 256), or in other words, a sum of consecutive powers of some
number. The formula for the a finite geometric series is

n∑
i=0

ci =
cn+1 − 1

c− 1
,

which can be proved e.g. by induction (in exercise 2B4 it was done in cases
c = 2, c = 3 and c = 10, but the general proof is similar). Here we apply it
with c = 256, so

|Mn| =
n∑

i=0

256i =
256n+1 − 1

255
.

The formula consists of four arithmetic operations, less than ten, as required.
Let’s double-check that the formula works in some small cases:

M0 = (2561 − 1)/255 = 1 clearly OK
M1 = (2562 − 1)/255 = 257 clearly OK, equals 1 + 256

M3 = (2564 − 1)/255 = 16 843 009 OK, matches (b)

Whenever you have deduced a general formula, it is a good idea to check (even
if you are not explicitly told to) that it actually gives the values it should, in
some small cases. Although this does not guarantee that the formula is correct,
many simple mistakes are found this way.

(d)

|F500| = 256500 = (28)500 = 24000 = (210)400 = 1024400 = (1.024× 103)400

= 1.024400 × 101200 ≈ 13182.04× 101200 ≈ 1.318× 101204.

The only step where a calculator was needed was calculating 1.024400, a high
power of a number almost equal to one, and the result is in range for basically
any calculator.

Some numbers are big (a quote from Captain Obvious). Scientific notation is
handy, and you should know how to work with it, even when the numbers
don’t fit into your calculator. Also, if you don’t have a calculator at hand, you
can still “easily” see that |F500| is at least bigger than 1000400 = 101200. It is
good to remember 210 ≈ 1000 as an approximation.

3Possibly already familiar from high school math.

4 / 13

https://tvtropes.org/pmwiki/pmwiki.php/Main/CaptainObvious

MS-A0402 Foundations of discrete mathematics
Department of mathematics and systems analysis
Aalto SCI

J Kohonen
Spring 2024
Exercise 4A

4A3 (File compression) Continuing from the previous problem. A file encoding sche-
me is an injection f that maps each file x (in some specified set) into an encoded file
y = f(x) (possibly different from x). Typical uses are compression, encryption and
error correction. If we have an encoded file y and we know the encoding scheme, the
idea is that we could (by some method) find the original file x which had been enco-
ded as f(x) = y. In compression, the idea is that at least some files (perhaps those
that are likely to occur in practice) are encoded into shorter ones, saving storage
space.

(a) Why is it essential that a file encoding scheme is an injection?

(b) Consider the following (very simplistic) scheme for files in M254: If a file con-
tains n bytes, all equal to a, the encoding is just two bytes (n, a). Otherwise,
the encoding is n + 1 bytes, first the value 255 and then the original n bytes
in order. Prove that this is an injection.

(c) Suppose that every file currently stored on our computer system has exactly
254 bytes, and 30% of them have the format “all bytes are equal”. If we compress
all our files using the scheme from (b), what is the average length of an encoded
file?

(d) Of all files of at most n bytes, what fraction have length smaller than n? That
is, find the fraction |Mn−1| / |Mn|. First express it exactly (using the results
from Problem 2), aiming for a simple expression. Then give an approximate
value (one real number) when n is large.

(e) Professor Quentin U. Ackerman has devised an ingenious scheme that compres-
ses any file of exactly 1000 bytes into a compressed file of some length strictly
less than 1000 bytes. Also, he claims, there is a method of always recovering
the original file from the compressed file. The scheme is very complicated and
you have trouble understanding all its details. Is there a simple argument that
the scheme cannot work?

Solution.

(a) We need to be able to "go backwards"to find the original file that has been
encoded. If the encoding scheme was not an injection, that is if we had f(x1) =
f(x2) such that x1 6= x2 then it would be impossible to determine whether the
original file was x1 or x2.

(b) For injective functions it applies that: f(x1) = f(x2)⇒ x1 = x2

Proof by cases:

Case 1: comparing files with only one type of byte We know that if we have
(n,a) = (m,b) it must be so that n=m and a=b

5 / 13

MS-A0402 Foundations of discrete mathematics
Department of mathematics and systems analysis
Aalto SCI

J Kohonen
Spring 2024
Exercise 4A

Case 2: comparing files with different types of bytes The transformed version
of the files is just the files themselves with the byte 255 at the beginning added
to it. Thus if two transformed files are the same, their original file form must
also be the same.

Case 3: comparing files with one type of byte to different types of bytes We
still need to check if any of the transformed case 1) files can be equal to the
transformed case 2) files. We quickly notice this is not possible, since in case
1) the transformed file is of length 2. The only way to achieve this with case 2
is if the original file was of length 1. However, all files of length 1 fall into the
category of case 1) (files with bytes of only one kind in them). Thus it is not
possible to have a case 2) file of length 2.

Conclusion: None of the transformed files will be equal unless the original files
are the same. Thus the encoding scheme is an injection.

(c) After the compression, 70% of the files are of length 255 and 30% of the files
are of length 2. The average length of a file is now

0.7 · 255 + 0.3 · 2 ≈ 179.1.

(d) Using Problem 2:

Mn = (256n+1 − 1)/255

Mn−1 = (256n − 1)/255

Dividing and simplifying we get

Mn−1

Mn

=
256n − 1

256n+1 − 1
=

1− 1
256n

256− 1
256n

≈ 1

256
,

when n is large. The second equality was obtained by dividing by 256n on both
sides of the division line, and the final approximation comes from the 1/256n

being tiny.

(e) Yes, there is such an argument. The professor claims to have an injection from
the set of all 1000-byte files to the set of files that have 999 bytes or less, that
is, an injection from F1000 to M999.

But we know that

|F1000| = 2561000

|M999| =
256999+1 − 1

255
<

2561000

255
.

Clearly |M999| is smaller than |F1000|, in fact approximately by a factor of 255.

There cannot be an injection from a finite set to smaller finite set. Certainly
the professor may have devised a function that maps every file in F1000 to

6 / 13

MS-A0402 Foundations of discrete mathematics
Department of mathematics and systems analysis
Aalto SCI

J Kohonen
Spring 2024
Exercise 4A

something in M999. But it cannot be an injection. Some (in fact many) files
necessarily map to the same compressed files, and there is no way to recover
the original files. The professor’s scheme cannot work.

After this it may seem that file compression is impossible. Yes and no. It is
not possible to map all n-byte files injectively to smaller files. In practice there
are two ways out:

• Allow some files to become longer, like we did in (b)–(c). Then we can
have an injection. Hopefully we devise a scheme that makes smaller those
files that we have on our computer system in practice, at least on average.

• Allow the mapping to be non-injective. This is called lossy compression.
An example is compression of pixel images (e.g. digital photographs) into
JPG files. They can be compressed quite a lot, but the mapping is not
injective. The original exact files cannot be recovered from the compressed
ones.

7 / 13

MS-A0402 Foundations of discrete mathematics
Department of mathematics and systems analysis
Aalto SCI

J Kohonen
Spring 2024
Exercise 4A

4A4 (Binomial coefficient manipulation) Let a natural number n be given. We
want to compute the whole nth row in Pascal’s triangle, that is, the numbers
b0, b1, b2, . . . , bn, where bk =

(
n
k

)
. Of course we know that b0 = bn = 1.

(a) Prove that for every k ∈ {0, 1, 2, . . . , n−1}, if we know bk, we can calculate bk+1

exactly, using a small constant number of simple arithmetic operations (in fact,
the four operations +−×/) and the numbers n and k, without any factorials.
Hint: Study the ratio bk+1/bk and simplify. Can you perform the calculation
completely in integer arithmetic (so that none of your intermediate results is
a noninteger)?

(b) Apply your scheme on rows n = 3 and n = 6, beginning in each case from b0
and calculating successively the numbers up to bn. You should be able to do
this without a calculator. On each row, verify that you reached bn = 1 (good
for error-checking, if we have any doubt of our calculations). On each row, add
up the numbers and verify that you got 2n (here you can use a calculator).

Solution.

(a) We know that bk =
(
n
k

)
= n!

k!(n−k)!
, and thus bk+1 =

n!
(k+1)!(n−k−1)!

. Now

bk+1

bk
=

n!

(k + 1)!(n− k − 1)!
· k!(n− k)!

n!
=

k!(n− k)!

(k + 1)!(n− k − 1)!

=
k!(n− k)(n− k − 1)!

(k + 1)k!(n− k − 1)!
=

n− k

k + 1

(b) We know that bk+1

bk
= n−k

k+1
, so now we have bk+1 = bk × n−k

k+1
. Thus:

Row n = 3:

b0 = 1

b1 = 1× (3/1) = 3

b2 = 3× (2/2) = 3

b3 = 3× (1/3) = 1.

Check: 1+3+3+1=8 and 23 = 8.

8 / 13

MS-A0402 Foundations of discrete mathematics
Department of mathematics and systems analysis
Aalto SCI

J Kohonen
Spring 2024
Exercise 4A

Row n = 6:

b0 = 1

b1 = 1× (6/1) = 6

b2 = 6× (5/2) = 15

b3 = 15× (4/3) = 20

b4 = 20× (3/4) = 15

b5 = 15× (2/5) = 6

b6 = 6× (1/6) = 6.

Check: 1+6+15+20+15+6+1=64 and 26 = 64.

In every step, bk is an integer, and we can first multiply by the numerator
(which is an integer, so the result is integer), then divide by the denominator
(also an integer, and the result is the binomial coefficent, so it is an integer
always). No rational or real number arithmetic needed.

4A5 (Bounds and approximations) The falling product (also known by many other
names) is the product of k consecutive decreasing numbers beginning from n,

nk = n(n− 1)(n− 2) · · · (n− k + 1).

(a) Prove the following bounds on the falling product (when 1 ≤ k ≤ n):

(n− k + 1)k ≤ nk ≤ nk.

(Hint: A simple arithmetical proof is sufficient, no need to use e.g. induction.)

(b) In (a) we have bracketed (or sandwiched) the quantity nk between two bounds,
and we know for sure that the two inequalities are true. The next interesting
thing is how good (narrow) our bracketing is. Compute the two bounds, and
the ratio of the upper bound to the lower bound, when n = 100 and k = 3.
Do the same for n = 100, k = 10 and n = 100, k = 50.

(c) Using the bounds from (a), write lower and upper bounds for the binomial
coefficients

(
n
2

)
and

(
n
3

)
. The bounds must be in a simple form not involving

factorials.

(d) Given a population of n = 1 000 000 people, we would like to count all subsets
of three people. Calculate lower and upper bounds using the formula from (c).
(You can use a calculator.) Let us call the bounds L and U . Calculate the
relative difference (U − L)/L and express it as a percentage. Do you think U
is a good approximation for the exact value (which we did not calculate)?

9 / 13

MS-A0402 Foundations of discrete mathematics
Department of mathematics and systems analysis
Aalto SCI

J Kohonen
Spring 2024
Exercise 4A

Solution.

(a) First inequality:

(n− k + 1) = (n− (k − 1)) ≤ (n− i)∀i = 0, 1, ..., k − 1

Now

(n− k + 1)k ≤
k−1∏
i=0

(n− i) = nk

Second inequality:
n− i ≤ n,∀i = 0, 1, ..., k − 1

Now

nk =
k−1∏
i=0

(n− i) ≤ nk

(b) n = 100 and k = 3:
(n− k + 1)k = 983 = 941192

1003 = 1000000

Their ratio is 0.94, so the bounds are reasonably close to each other.

n = 100 and k = 10:

(n− k + 1)k = 9110 ≈ 3.894× 1019

10010 = 1.0× 1020

The ratio is 0.39.

Now the bounds are further apart, but they still give us a reasonable idea of
the magnitude of the number.

n = 100 and k = 50:

(n− k + 1)k = 5150 ≈ 2.391× 1085

10050 = 1.0× 10100

Their ratio is 2.391× 10−15.

The bounds are very far apart, and (with these simple methods) we know only
that the true value is somewhere between them. But still we get at least some
idea that the number must be pretty big. Even this precision might be enough
in some applications!

10 / 13

MS-A0402 Foundations of discrete mathematics
Department of mathematics and systems analysis
Aalto SCI

J Kohonen
Spring 2024
Exercise 4A

(c) (
n

k

)
=

n!

k!(n− k)!
=

n× (n− 1)× ...× (n− k + 1)

k × (k − 1)× ...× 1
=

nk

k!

k = 2:

2! = 2, so
(
n
2

)
= n2/2

We now have the bounds

(n− 2 + 1)2

2
≤ n2

2
≤ n2

2

⇒ n2 − 2n+ 1

2
≤
(
n

2

)
≤ n2

2

k = 3:

3! = 3 · 2 = 6, so
(
n
3

)
= n3

6

We now have the bounds

(n− 3 + 1)3

6
≤ n3

6
≤ n3

6

(n− 2)3

6
≤
(
n

3

)
≤ n3

6

(d) n = 1 000 000, k = 3

Lower bound:
(1000000− 2)3

6
≈ 1.667× 1017

Upper bound:
(1000000)3

6
≈ 1.667× 1017

The relative difference is 0.000006 = 0.006%. Thus U is a good approximation
of the exact value.

Of course here we could also directly compute the exact value, even all its
digits if we want. It is

1 000 000× 999 999× 999 998

3
= 166 666 166 667 000 000 ≈ 1.667× 1017.

The point is that often we do not need the exact value, but e.g. 4 significant
digits is quite enough. In such cases, approximations can be quite convenient. It
is also useful to know how good an approximation is. Bounds are one possible
way of knowing it even if we have not computed the exact value.

11 / 13

MS-A0402 Foundations of discrete mathematics
Department of mathematics and systems analysis
Aalto SCI

J Kohonen
Spring 2024
Exercise 4A

Even if we do compute an exact value (perhaps because we can, or perhaps
because we really need it), it is useful to have a sense of proportion to double-
check that the exact value is at least roughly correct. If it came out of a
long computation, quite often it is in fact wrong, perhaps by several orders
of magnitude. Then it is a good sanity check to compare to a rough and easy
estimate (such as U here).

4A6 (Nonattacking rooks) A standard chessboard is divided into 8 horizontal rows
and 8 vertical columns, for a total of 64 squares. We place rooks (a particular chess
piece) on some squares, with the condition that they are all nonattacking, meaning
that no two rooks may be on the same row, and no two on the same column. The
color of the rooks is irrelevant in this exercise.

(a) In how many different ways can you place two nonattacking, numbered rooks
(rook 1 and rook 2)? Solve this using the multiplication principle. First consider
how many possibilities you have for placing the first rook. Having placed it,
consider how many valid possibilities you have for the second rook (so it is not
on the same row nor on the same column).

(b) In how many different ways can you place two nonattacking, identical rooks?
Use the result from (a), and make a simple manipulation to account for the
fact that there is more than one way to reach the same final board position
(with rooks on some two squares).

(c) Now consider a different way of counting. To place two nonattacking rooks,
observe that they must be on two different rows, and two different columns.
So, begin by counting the ways of choosing a set of two rows, out of the 8.
Then count the ways of choosing a set of two columns, and multiply. Did you
get the same result as in (b), or is there something more you need to do?

(d) (OPTIONAL — Not required for scoring the problem, and no extra points.)
Count the ways of placing three identical nonattacking rooks, using a method
similar to (a)–(b), i.e. first place three numbered rooks in order, then adjust
the count to take into account that the same final result can be reached in
more than one way.

(e) (OPTIONAL — Not required for scoring the problem, and no extra points.)
Count the ways of placing three identical nonattacking rooks, using a method
similar to (c), i.e. first choose three rows and three columns. Observe that
the three rows intersect the three columns in 9 squares. Consider in how many
ways you can put the three rooks into these nine squares. Combine your results
to arrive at the final number, which should equal what you got in (d).

12 / 13

MS-A0402 Foundations of discrete mathematics
Department of mathematics and systems analysis
Aalto SCI

J Kohonen
Spring 2024
Exercise 4A

The points of this problem are: getting used to binomial coefficients; understan-
ding the relation between ordered choice and unordered choice; and the general idea
that there may be more than one method to calculate the same result, but all correct
methods must lead to the same result.

Solution.

(a) The first rook can be placed on 64 different squares. Regardless of which squa-
res we pick, the squares left that are not on the same row or column of r1 will
be 49 in total. Thus by the addition principle we get 64 · 49 = 3136

(b) Since in the case of identical rooks we have to take into account the situations
in which the rooks can be switched up, so we can simply divide the first part
by 2. Thus we get 3136/2 = 1568

(c) We can choose 2 out of 8 using the binomial coefficient.
(
8
2

)
= 28 for both the

columns and rows. When multiplied (28 · 28), we get 784. However, we need
to account for the fact that when choosing 2 rows and 2 columns, there are
4 squares that intersect. The two rooks can be arranged in 2 ways in those
4 squares. (This can be thought of as a 2x2 chess board). Thus we need to
multiply

(
8
2

)
·
(
8
2

)
· 2 = 784 · 2 = 1568

(d) The first rook can be placed in 64 ways. The next rook can be placed in 49
ways. The third rook can be placed in 36 ways. Thus we get 64·49·36 = 112896
Since the rooks are identical, we need to take into account the situations in
which the rooks can be switched up, so we can simply divide by 2 and then
divide by 3 (for the third rook). We thus get 64 · 49 · 36 · 1

2
· 1
3
= 18816

(e) Like in part c:
(
8
3

)
= 56 so 56 · 56 = 3136, but we need to again take into

account the overlaps of the 3 columns and 3 rows. We get 9 squares in which
they overlap (can be thought of as a 3x3 board). 3 identical rooks can be
placed in the squares in 6 ways. Thus we have 3136 · 6 = 18816

13 / 13

	Enumerative combinatorics I

