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4B Enumerative combinatorics II

4B1 (Higher derivatives) Recall that the (first) derivative of xn (with respect to x)
is nxn−1, and the (k + 1)th derivative is the derivative of the kth derivative.

(a) What are the second, 3rd, 4th, 5th and 6th derivatives of x5?

(b) Generally, if 1 ≤ k < n, what is a simple expression for the kth derivative of
xn, expressed using the falling product?

(c) What is a simple expression for the nth derivative of xn, expressed using the
factorial?

(d) What is the kth derivative of xn when k > n?

Solution.

(a) First: 5x4, Second: 20x3, Third: 60x2, Fourth: 120x, Fifth: 120, Sixth: 0

(b)
n(n− 1)...(n− k + 1)xn−k = nkxn−k

(c)
n(n− 1)...(n− n+ 1)xn−n = n!x0 = n!

(d) When k > n, the derivative is taken from a constant (see part c). The derivative
of a constant is always zero.

It may be useful to observe when k > n, the falling product nk is actually zero.
Indeed, already at k = n+ 1 we have

nn+1 = n(n− 1)(n− 2) . . . (2)(1)(0)︸ ︷︷ ︸
n+ 1 factors

= 0,

because the (n+1)th factor is zero. This is compatible with our “consecutive choice”
interpretation. Out of a set of n elements, there is no way (zero ways) to choose
n+ 1 different objects. For example, 45 = 4 · 3 · 2 · 1 · 0 = 0.

4B2 (Inclusion-exclusion) A DNA sequence is a string (tuple) of letters, each chosen
from the set {A,C,G, T}. For example, TAGGA is a possible sequence of length 5.

(a) How many DNA-sequences of length 5 exist that contain each of the letters
A,C,G at least once?

(b) (OPTIONAL, not required for scoring the problem, and no extra points.)
How many DNA-sequences of length 5 exist that contain each of the letters
A,C,G, T at least once?
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Solution.

(a) One way to solve this is to calculate the number of strings not containing A,
C and G at least once and subtract this from the total number of possible
strings.

The total number of strings is calculated using the multiplication principle:
45 = 1024.

The number of strings not containing A, C and G at least once can be calcu-
lated using the IE-principle. Denote the sets of strings NOT containing A, C or
G as SA, SC and SG respectively. Since we can pick from any of the 3 leftover
letters for each, all of their cardinalities are |SA| = |SG| = |SC | = 35 = 243.

For |SA∩SC |, we have two letter leftover to choose from. This applies to all the
other 2-element intersections, so |SA∩SC | = |SC ∩SG| = |SA∩SG| = 25 = 32.

Finally, for |SA ∩ SC ∩ SG| we only have one letter (namely T) left to choose
from, so |SA ∩ SC ∩ SG| = 15 = 1. (That one string is TTTTT.)

Now using the IE-principle, we have

|SA ∪ SC ∪ SG|
= |SA|+ |SG|+ |SC | − |SA ∩ SC | − |SC ∩ SG| − |SA ∩ SG|+ |SA ∩ SC ∩ SG|
= 3 · 243− 3 · 32 + 1

= 634.

And finally, subtracting this number from the total number of strings we get
1024− 634 = 390.

(b) As in (a) we use Sk to denote the set of strings that do not contain the letter k.
All of the single sets SA, SC , SG, ST have cardinality 243 as in (a), but there are
now four of them. All intersections of two and three sets have cardinalities 32
and 1 as in (a), but there are more of them: there are six pairwise intersections,
because from four letters you can choose

(
4
2

)
= 6 unordered pairs. And four

triple-intersections because from four sets you can choose
(
4
3

)
= 4 triples.

Furthermore, in the inclusion-exclusion equality, we have one term for the
four-way intersection SA∩SC ∩SG∩ST . Which happens to be empty, because
there is no way to create a string of five letters if all letters are forbidden. So
the cardinality of this intersection is zero. (This is not a general fact of 4-way
inclusion-exclusion; but here that set is empty.)
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So we have

|SA ∪ SC ∪ SG ∪ ST |
=|SA|+ |SG|+ |SC |+ |ST | (4 terms)
− |SA ∩ SC | − . . .− |SG ∩ ST | (6 terms)
+ |SA ∩ SC ∩ SG|+ . . .+ |SC ∩ SG ∩ ST | (4 terms)
− |SA ∩ SC ∩ SG ∩ ST | (1 term)

=4 · 243− 6 · 32 + 4 · 1− 1 · 0
=784.

That was the strings which are lacking at least one letter. The complement,
strings that contain all four letters, have the cardinality 45−784 = 1024−784 =
240.

For reference, here are the strings, listed in alphabetical order. Do you agree
that (1) there are 240 of them, (2) each of them contains all four letters,
(3) every such string has been listed, and (4) every such string has been listed
only once?

Verifying that there are no duplicates in the list could be very laborious if the
list was in arbitrary order — if we to compare every string against every other
string, it is

(
240
2

)
= 28680 comparisons. Now that they are in alphabetical

order, it would enough to check every pair of consecutive strings in the list.

AACGT AACTG AAGCT AAGTC AATCG AATGC ACAGT ACATG ACCGT ACCTG ACGAT ACGCT ACGGT ACGTA ACGTC ACGTG

ACGTT ACTAG ACTCG ACTGA ACTGC ACTGG ACTGT ACTTG AGACT AGATC AGCAT AGCCT AGCGT AGCTA AGCTC AGCTG

AGCTT AGGCT AGGTC AGTAC AGTCA AGTCC AGTCG AGTCT AGTGC AGTTC ATACG ATAGC ATCAG ATCCG ATCGA ATCGC

ATCGG ATCGT ATCTG ATGAC ATGCA ATGCC ATGCG ATGCT ATGGC ATGTC ATTCG ATTGC CAAGT CAATG CACGT CACTG

CAGAT CAGCT CAGGT CAGTA CAGTC CAGTG CAGTT CATAG CATCG CATGA CATGC CATGG CATGT CATTG CCAGT CCATG

CCGAT CCGTA CCTAG CCTGA CGAAT CGACT CGAGT CGATA CGATC CGATG CGATT CGCAT CGCTA CGGAT CGGTA CGTAA

CGTAC CGTAG CGTAT CGTCA CGTGA CGTTA CTAAG CTACG CTAGA CTAGC CTAGG CTAGT CTATG CTCAG CTCGA CTGAA

CTGAC CTGAG CTGAT CTGCA CTGGA CTGTA CTTAG CTTGA GAACT GAATC GACAT GACCT GACGT GACTA GACTC GACTG

GACTT GAGCT GAGTC GATAC GATCA GATCC GATCG GATCT GATGC GATTC GCAAT GCACT GCAGT GCATA GCATC GCATG

GCATT GCCAT GCCTA GCGAT GCGTA GCTAA GCTAC GCTAG GCTAT GCTCA GCTGA GCTTA GGACT GGATC GGCAT GGCTA

GGTAC GGTCA GTAAC GTACA GTACC GTACG GTACT GTAGC GTATC GTCAA GTCAC GTCAG GTCAT GTCCA GTCGA GTCTA

GTGAC GTGCA GTTAC GTTCA TAACG TAAGC TACAG TACCG TACGA TACGC TACGG TACGT TACTG TAGAC TAGCA TAGCC

TAGCG TAGCT TAGGC TAGTC TATCG TATGC TCAAG TCACG TCAGA TCAGC TCAGG TCAGT TCATG TCCAG TCCGA TCGAA

TCGAC TCGAG TCGAT TCGCA TCGGA TCGTA TCTAG TCTGA TGAAC TGACA TGACC TGACG TGACT TGAGC TGATC TGCAA

TGCAC TGCAG TGCAT TGCCA TGCGA TGCTA TGGAC TGGCA TGTAC TGTCA TTACG TTAGC TTCAG TTCGA TTGAC TTGCA

4B3 (Round table) Six guests ABCDEF are to be seated around a round table. The
host wants to list all possible arrangements (and then ponder which arrangement
is the best for good discussions). What matters is who sits as the left neighbor of
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whom, and who sits as the right neighbor of whom. If an arrangement is rotated
clockwise or counterclockwise, the host considers it the same arrangement (listed
only once).

Guests A and B cannot stand each other, so arrangements that seat them as
neighbors are not possible. Count the possible arrangements.

Hint: The number is almost a hundred, so it is probably best for you not to
list all arrangements. But you could list some “partial” arrangements (make some
choices concerning one or two guests), and then count the remaining choices by
arithmetic.

Solution.
One way of solving this is to make partial arrangements about who sits next

to A. A can sit with C and E, C and F, D and E... etc. We can choose 2 out of the
4 available guests (CDEF, not including B) in

(
4
2

)
= 6 ways.

Having chosen two guests to sit with A, the other 3 can be chosen to sit in
3 · 2 · 1 = 3! = 6 ways. Additionally, the two sitting with A can be placed in two
ways (one on the left side, one on the right side).

Collecting all choices,

• 6 ways to choose the two neighbors of A,

• 6 ways to arrange the remaining three guests,

• 2 ways to order the neighbors of A,

leading to 6 · 6 · 2 = 72 ways.

There are many ways to arrive at the same result. For example: Start from the
place where A is seated. "Without loss of generality", let’s say A is seated on the
south side of the table. (Any arrangement can be rotated so that this is true.) Then
choose a place for B. Because of the restriction, there are 3 possible places for B
(out of the six places, forbid the place where A already is, and A’s two neighbors).
The remaining four guests CDEF can be placed freely in the remaining four places.
Collecting all choices:

• 3 ways to place B,

• 4! = 24 ways to place CDEF,

for a total of 3 · 24 = 72.

4B4 (Back to the lab) We are back in the metallurgic laboratory (cf. 4A1). Now
we are considering mixtures of k substances (we think of iron as just one possible
substance). We measure the amount of each substance in tenths of the total mass,
and we only consider integer numbers of the tenths. For each substance, any number
from 0 to 10 is possible, but they must add up to ten: for example, if given three
substances, some of their possible mixtures are (5, 4, 1), (10, 0, 0) and (3, 3, 4).
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(a) We are considering two substances A and B. What are their possible mixtures,
and how many are they?

(b) We are considering three substances A, B and C. How many possible mixtures
are there? (Hint: Consecutive choice. If you have chosen the amount of A to
be x tenths, how many choices do you have for the amount of B?)

(c) We are considering k substances A1, A2, . . . , Ak. Find a general formula, in-
volving binomial coefficients, for the number of mixtures these substances.
(Hint: Stars and bars from lecture 7, or lecture notes §2.2.2)

(d) Apply your general formula to the cases k = 1, 2, 3, 4. Does the result for
k = 1 make sense? Do the results for 2 and 3 match what you calculated in
(a)–(b)?

Solution.

(a) The combinations are (0,10), (1,9), (2,8), (3,7), (4,6), (5,5) and five more the
"other way" ((6,4) etc.), so 11 in total.

Or: the amount of the first substance is one of the integers from 0 to 10, that is
11 choices. Having chosen the first amount as x, the other is fully determined
as 10− x, so that was all there was to choose.

(b) If we choose A = 10, we have 1 choice for B. If we choose A = 9, we have 2
choices for B. If we choose A = 8, we have 3 choices for B. ... If we choose A
= 0, we have 11 choices for B.
So we get 1 + 2 + 3 + ... + 10 + 11 = 66 possible choices and thus 66 possible
mixtures.

The sum of consecutive integers from 1 to 11 can be calculated by just perform-
ing the ten additions (some amount of work!), or one can recognize that such a
sum is a so-called triangular number (mentioned on lecture 6). Then it is easy:
The sum from 1 to 11 is the 11th triangular number T11 = 11 · (11+1)/2 = 66.

Note that we had to use the addition principle, because different initial choices
(amounts of A) led to different numbers of available choices later (for B). We
could not use the multiplication principle.

If the sum were longer, direct addition would be quite laborious and prone to
accidental errors. There is a famous story of Gauss, as a schoolboy, doing the
sum 1 + 2 + . . . + 100 quickly as (100 × 101)/2 = 5050, while his classmates
spent ages doing the direct additions. Moreover, Gauss’s answer was the only
correct one — easy to believe, because doing 99 additions without making a
single error is not easy.

(c) We have k different substances, and we want them to be added in some tenths
of total mass such that the total mass is 10. Using the lecture notes, we get(
k+10−1

10

)
=

(
k+9
10

)
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(d) • k = 1:
(
10
10

)
= 1. This makes sense because there is only one way we can

combine the substance with itself.

• k = 2:
(
11
10

)
= 11, matching (a).

• k = 3:
(
12
10

)
= 66, matching (b).

• k = 4:
(
13
10

)
= 286

4B5 (Discrete maximization) Consider the function f : {0, 1, 2, . . . , n} → R,

f(k) =

(
n

k

)
pkqn−k,

where n = 50, p = 0.2 and q = 0.8 are given constants. We want to find the integer k
where f(k) attains its maximum. If f were a continuously differentiable function
from real numbers, we would probably begin by finding where its derivative is zero.
But our f is defined only on integer values of k. So we will do something analogous
in our discrete situation.

(a) For an arbitrary k ∈ {0, 1, 2, . . . , n− 1}, express the quotient

Q(k) =
f(k + 1)

f(k)

in a simple form. Hint: In 4A4 you have already worked out the quotient(
n

k+1

)
/
(
n
k

)
. Now you just have some extra factors, and many of them should

cancel out. Observe that Q(k) > 1 means that f(k + 1) > f(k), and similarly
for “=” and “<”.

(b) Using your formula from (a), find when Q(k) > 1. You should be able to find
a value k∗ such that for all k < k∗ we have Q(k) > 1, and for all k ≥ k∗ we
have Q(k) < 1.

Hint: You can solve the inequality Q(k) > 1 algebraically, rearranging it so
that k is on one side and everything else is on the other side. Remember that
n, p, q are constants. If it helps, you can begin by studying some numerical
values of Q(k) in the interval 7 ≤ k ≤ 13, to get a feeling of how the function
behaves.)

(c) Can you now say that f(k∗) is the largest value that f takes? Why?

(d) Calculate the three values f(k∗ − 1), f(k∗), f(k∗ + 1), verifying that at least
locally f(k∗) is indeed a maximum, that is f(k∗ − 1) < f(k∗) > f(k∗ + 1).

In this exercise we have learned a method for finding the maximum of a function
whose domain is discrete. Finding k∗ is analogous to finding a zero of the derivative:
it is the point where f turns from increasing to decreasing.
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The same method can be applied generally, with other functions. An alternative
would be to study the differences f(k + 1) − f(k), but in combinatorics, quotients
often have nicer form.

For those who already know something about probabilities: The func-
tion f is the so-called probability mass function of a binomial distribution. Suppose
we have a biased coin that has probability p = 0.2 for “heads”, and probability
q = 0.8 for “tails” whenever we toss it. If we toss it n = 50 times, then f(k) is the
probability that we obtain exactly k “heads” (and n− k “tails”). In this exercise we
have found, by combinatorial calculations, the most probable number of heads (k∗)
and its probability (f(k∗)).

Solution.

(a)

Q(k) =
f(k + 1)

f(k)
=

(
n

k+1

)
· pk+1 · qn−k−1(

n
k

)
· pk · qn−k

We know from Problem 4A4 that
(

n
k+1

)
/
(
n
k

)
= n−k

k+1
. Now

Q(k) =
(n− k) · pk · p · qn−k−1

(k + 1) · pk · qn−k−1 · q
=

(n− k)p

(k + 1)q

(b) Solve the inequality Q(k) > 1 for k:

Q(k) > 1

⇐⇒ (n− k)p

(k + 1)q
> 1

⇐⇒ (n− k)p > (k + 1)q (mult. by pos. quantity)
⇐⇒ np− kp > kq + q

⇐⇒ k <
np− q

p+ q
=

50 · 0.2− 0.8

0.2 + 0.8

⇐⇒ k < 9.2.

So Q(k) > 1 for all k ≤ 9 (remember that k is an integer). For all k ≥ 10
we have Q(k) < 1. Note that equality Q(k) = 1 would require that k = 9.2,
which is not possible. So we choose k∗ = 10.

The double arrows ⇐⇒ between the inequalities are not decoration, or some-
thing that one can throw in without thought, to make a proof look “more
mathematical”, or to express that “this is the next step of something, although
I don’t know how it is related to the previous step.”

They express the claim that two inequalities are equivalent, that is, if one of
them is true, then the other is true. When posing such a claim, one should
know that the implication works both ways. Since we have a chain of them,
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we know that the first and the last inequalities are equivalent (true for the
same values of k, and false for the same values of k.)
Perhaps you have a custom of writing only one-directional implication arrows
between consecutive steps. That is all right, if you only need to claim the
implication in one direction. Be careful it is the direction that you want to
claim.

(c) Yes. When Q(k) > 1, we know that f(k + 1) > f(k) so the function is
increasing. When Q(k) < 1, we know that f(k + 1) < f(k) so the function is
decreasing.
We have chosen a k∗ = 10 so that:

• For all k < k∗ = 10 (that is k ≤ 9), we have f(k + 1) > f(k). In other
words

f(0) < f(1) < . . . < f(9) < f(10).

• For all k ≥ k∗ = 10 we have f(k + 1) < f(k). In other words

f(10) > f(11) > . . . > f(49) > f(50).

Together these two chains of inequalities show that f(k) < f(10) for every
k ̸= 10, so f(10) is indeed the largest of all values that f takes; a global
maximum over the whole domain {0, 1, . . . , 50}.

(d) f(9) =
(
50
9

)
· (0.2)9 · (0.8)41 ≈ 0.1364

f(10) =
(
50
10

)
· (0.2)10 · (0.8)40 ≈ 0.1398

f(11) =
(
50
11

)
· (0.2)11 · (0.8)39 ≈ 0.1271

Looking at these three values only, we see that f(9) < f(10) > f(11), so the
point k = 10 is at least a local maximum. That is, the neighboring values of
f are not bigger than f(10).

Part (d) is a good sanity check for (c), because a point cannot be a global
maximum without being a local maximum. If f(k∗) is the biggest of all values
of f , surely it must be the biggest of the three when you compare only with
the two neighbors.

However, (d) does not prove (c), because some function could increase and
decrease back and forth, many times, having many local maximums. In part
(c) we actually proved more: we proved that this function f does not do
that. It steadily increases on every step from f(0) to f(10), and then steadily
decreases on every step from f(10) to f(50).

Figure 1 shows a plot of f and Q near the maximum point. Notice the transit
from Q > 1 to Q < 1 without ever visiting Q = 1, unlike continuous functions
in calculus. (The circles are the function values — the connecting lines are
just for visualization.) The picture says nothing about the functions outside
of what is shown, so it is not a proof that f(10) is the global maximum.
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Figure 1: Functions f and Q (partial view)

4B6 (Twelve days of Christmas) In a popular Christmas song the protagonist re-
ceives increasing numbers of gifts every day. Here are the first five days. In the song
it continues in the same manner for twelve days.

On the first day of Christmas, my true love gave to me
A partridge in a pear tree.

On the second day of Christmas, my true love gave to me
Two turtle doves,
And a partridge in a pear tree.

On the third day of Christmas, my true love gave to me
Three French hens,
Two turtle doves,
And a partridge in a pear tree.

On the fourth day of Christmas, my true love gave to me
Four calling birds,
Three French hens,
Two turtle doves,
And a partridge in a pear tree.

On the fifth day of Christmas, my true love gave to me
Five golden rings,
Four calling birds,
Three French hens,
Two turtle doves,
And a partridge in a pear tree.

(a) How many gift items are given on days 1, 2, 3, 4 and 5? (Just add them up.
E.g. three French hens are three items. A partridge is one item. Don’t count
the pear tree: it is not a gift, the partridge is just sitting there.)

(b) Generally, how many gift items are given on the kth day, when k is any positive
integer? Assume that the number of gifts keeps increasing in the same manner.
Start by writing it as a big sum (using

∑
), but then give a general formula

using less than ten basic arithmetic operations (no big sum). Hint: Lecture 6.
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(c) Using the numbers from (a), calculate the running totals (or cumulative sums)
on days 1 to 5. That is, on each day, calculate how many items have been given
so far (including that day). Just the numbers, no general formula required
here. Note that each day a new partridge is given, and two new turtle doves
etc.

(d) Go to https://oeis.org/, enter your numbers from (c), and hit Search. From
the results, find how many items are given over the twelve days, in total. Search
for “Christmas” on the result page to see if it is mentioned.

(e) (OPTIONAL – Not required for scoring the problem, and no extra points.)
OEIS gives a simple general formula for the total number of items given during
the first n days. Try to prove, e.g. by induction, that the formula is correct.

Solution.

(a) Day 1: 1

Day 2: 2 + 1 = 3

Day 3: 3 + 2 + 1 = 3 + 3 = 6

Day 4: 4 + 3 + 2 + 1 = 4 + 6 = 10

Day 5: 5 + 4 + 3 + 2 + 1 = 5 + 10 = 15

(b)
k∑

i=1

i =
k(k + 1)

2

This is again a sum of consecutive integers from 1 to k, that is, the triangular
number Tk.

(c) Day 1: 1

Day 2: 1 + 3 = 4

Day 3: 6 + 4 = 10

Day 4: 10 + 10 = 20

Day 5: 15 + 20 = 35

(d) 364.

From the result page we see that this same sequence appears in many different
contexts. Among other things, it is described as “the number of gifts received
from the lyricist’s true love up to and including day n in the song The Twelve
Days of Christmas”.
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(e) Let G(n) be the number of gifts up to day n, that is

G(n) =
n∑

k=1

Tk =
n∑

k=1

k(k + 1)/2,

using our triangular number formula from (b).

The OEIS entry A000292 defines a function

a(n) = n(n+ 1)(n+ 2)/6. (∗)

We want to prove that G(n) = a(n) for all n ≥ 1. By direct calculation we
see that G(n) = a(n) for 1 ≤ n ≤ 3:

a(1) = (1 · 2 · 3)/6 = 1 = G(1)

a(2) = (2 · 3 · 4)/6 = 4 = G(2)

a(3) = (3 · 4 · 5)/6 = 10 = G(3)

This serves as the base case for induction. (Case n = 1 would be sufficient,
but it does not hurt to check some more cases directly.)

As the induction hypothesis we assume that n ≥ 1 and

G(n) = a(n).

For the induction step we claim that G(n+1) = a(n+1). It turns out easiest
to start from both sides of this claimed equality, and manipulate each one until
we reach the same form. On the LHS we have

G(n+ 1) = G(n) + Tn+1 (separating last term)

=
n(n+ 1)(n+ 2)

6
+

(n+ 1)(n+ 2)

2
(by induction hypothesis)

=
n3 + 3n2 + 2n

6
+

3n2 + 9n+ 3

6
(expanding products)

=
n3 + 6n2 + 11n+ 3

6
. (combining like powers)

On the RHS we have

a(n+ 1) =
(n+ 1)(n+ 2)(n+ 3)

6

=
n3 + 6n2 + 11n+ 3

6
. (expanding products)

Both expressions are the same, so we have proved G(n+ 1) = a(n+ 1).

Note that expanding a product into a longhand polynomial is usually easier
than the other direction, converting a polynomial into a factored form. So
after the row marked “combining like powers”, instead of trying to factor it
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(towards what we have on the RHS), it was easier to start anew from the RHS
quantity a(n+ 1) and expand it.

This is very typical in induction proofs. When trying to prove that some LHS
equals some RHS, it may be a good idea to start from both ends and try to
make them meet.
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