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6A Graphs / Number theory
6A1 (Metric) A distance function, or a metric, in a set S is a function d : (S×S) →
R such that for all x, y, z ∈ S:

(i) d(x, y) ≥ 0 (nonnegativity)

(ii) d(x, y) = 0 if and only if x = y

(iii) d(x, y) = d(y, x) (symmetry)

(iv) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

Now we study distances between vertices of a graph.

(a) Prove or disprove: If G = (V,E) is a connected graph, the following function ℓ
is a metric in V :

ℓ(x, y) = the length of the shortest path between x and y

(b) Prove or disprove: If G = (V,E) is a connected graph, the following function m
is a metric in V :

m(x, y) = ℓ(x, y) + 1

(Note: m(x, y) is the number of vertices in a shortest path between x and y.)

(c) The diameter of a connected graph is the largest distance that can be found
between any two vertices. What are the diameters of Kn (complete graph,
n ≥ 1), Cn (cycle, n ≥ 3) and Sn (star graph, n ≥ 2), when using ℓ as the
distance function?

(d) List the diameters of Cn for 3 ≤ n ≤ 9 and enter them to https://oeis.org/.
How many different sequences are found? Look at the first search result. Do
you think this is the diameter of Cn, looking at (i) its description and (ii) how
the sequence continues?

Solution.

(a) Yes, ℓ is a metric in V .
Proof: Items (i),(ii),(iii) follow directly from the definition of ℓ. For (iv): Given
a path p1 from x to y of length ℓ(x, y) and a path p2 from y to z of length
ℓ(y, z), there exists a path from x to z of length ℓ(x, y)+ ℓ(y, z), by first going
from x to y via p1, then from y to z via p2. Therefore ℓ(x, z) ≤ ℓ(x, y)+ℓ(y, z).

(b) No. Item (ii) is not satisfied: If x = y then m(x, y) = ℓ(x, y)+1 = 0+1 = 1 ̸= 0.
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(c) The diameter of Kn is 1, since there exists an edge between any two vertices
by definition of Kn.

Th diameter of Cn is ⌊n/2⌋. That is, n/2 if n is even, otherwise (n− 1)/2.
Proof: Clearly there exists vertices x, y in Cn such that ℓ(x, y) = ⌊n/2⌋: From
any x, the vertex y obtained by going through exactly ⌊n/2⌋ edges along the
cycle. It remains to show that ℓ(x, y) cannot be greater than ⌊n/2⌋. For any
x, y, given a path from x to y of length p ≤ n, there is another of length n−p,
by going in the other direction of the cycle. Suppose ℓ(x, y) > ⌊n/2⌋, then
there is another path of length n − ℓ(x, y) < n − ⌊n/2⌋ = ⌈n/2⌉ ≤ ℓ(x, y),
contradicting that ℓ(x, y) is the length of the shortest path.

The diameter of Sn is 2.
Proof: Call the central vertex c. For any vertices x, y ̸= c, there exists an edge
from x to c and one from c to y, and no edge between x, y, by definition of Sn.
Therefore ℓ(x, y) = 2. Otherwise, for any two vertices x, y where at least one
equals c, ℓ(x, y) ≤ 1.

(d) Write D(n) the diameter of Cn. From (c), we have

D(3) = 1, D(4) = D(5) = 2, D(6) = D(7) = 3, D(8) = D(9) = 4.

Entering to https://oeis.org/, 427 results are found. The first result is the
sequence of the number of primes ≤ n, denoted by π(n). This is not the
diameter of Cn, since from (c) we know that D(n) = ⌊n/2⌋ for n ≥ 3, i.e. each
n ∈ N appears exactly twice in the sequence, which is not the case for π(n).

6A2 (Disconnected graphs)

(a) Prove or disprove: In any graph, connected or disconnected, this function is a
metric:

c(x, y) =


0 if x = y

1 if x ̸= y and there is a path from x to y

2 otherwise

(b) Is ℓ (from problem 1) a well-defined metric in a disconnected graph?

Solution.

(a) Yes, c is a metric.
Proof: That Items (i),(ii),(iii) listed in Problem 6A1 are satisfied is direct from
the definition of c. We show that (iv) is also satisfied.
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Suppose there exists x, y, z such that (iv) does not hold. Since the range of c
is {0, 1, 2}, there are only two possibilities.
(1) d(x, z) = 1 and d(x, y) = d(y, z) = 0. But the latter implies x = y = z, so
that d(x, z) = 0, a contradiction. So this is not possible.
(2) d(x, z) = 2 and d(x, y), d(y, z) are either both 0, or one equals 1 and the
other 0. That d(x, y) = d(y, z) = 0 is not possible for the same reason as above.
Next, w.l.o.g. suppose d(x, y) = 1 and d(y, z) = 0. This implies there is a path
from x to y, and y = z, so that there is a path from x to z, contradicting that
d(x, z) = 2.
Since both cases yield contradiction, we conclude that for any x, y, z, the
triangle inequality holds for c.

(b) No, because for x, y that are disconnected, the shortest path ℓ(x, y) between
x and y is undefined.

6A3 (Family tree) Let Tn = (Vn, En) be the (ancestral) family tree of a fixed person
c, going back n generations (n ≥ 0). T0 has c as its only vertex. T1 contains also the
two parents of c, with edges from c to both. T2 adds the four grandparents and so
on.

(a) Find |Vn|, |En|, χ(Tn), and the diameter of Tn.

(b) Find the average distance from c to all people in the family tree,

an =
1

|Vn|
∑
x∈Vn

ℓ(c, x),

when n = 10. Give the result in decimal form with three decimals.

Solution.

(a) |Vn| = 1 + 21 + 22 + . . . + 2n = 2n+1−1
2−1

= 2n+1 − 1, where the second equality
used the geometric series equality.
|En| = 0 if n = 0, otherwise |En| = 21 + 22 + . . .+ 2n = 2n+1 − 2.
χ(Tn) = 2, by alternating color in each layer of Tn (color 1 for vertices x such
that ℓ(x, c) is even, otherwise color 2).

(b) In Tn, for any i ∈ {0, 1, . . . , n}, the number of vertices x ∈ Vn such that
ℓ(c, x) = i is 2i. Therefore

an =
1

2n+1 − 1

∑
i∈{0,...,n}

(2i · i).

For n = 10, we have a10 = 9.005.
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6A4 (Isomorphic or not) Consider the following three graphs. Find the degrees of
each of their vertices. Find which graphs (if any) are isomorphic, and construct an
isomorphism (function) between them. If two graphs are not isomorphic, explain
why it is impossible to construct an isomorphism between them.

Solution. Call the left, middle and right graphs L,M,R respectively.

For L: The degrees of vertices 1, 2, 3, 4, 5 are 2, 3, 2, 2, 3 respectively.
For M : The degrees of vertices 1, 2, 3, 4, 5 are 2, 3, 2, 2, 3 respectively.
For R: The degrees of vertices 1, 2, 3, 4, 5 are 2, 2, 3, 2, 3 respectively.

L and R are isomorphic. Write VL, VR the vertex set of L,R respectively. Let
f : VL → VR, f(3) = 2, f(2) = 3, and f(x) = x if x ̸= 2, 3. Then f is an isomorphism
from L to R. Bijectivity can be easily verified.

M is not isomorphic to L or R. Notice that in both L,R there exists a 3-cycle,
but this is not the case in M .

6A5 (List correctness) A graph is unicyclic if it contains exactly one cycle graph
(as a subgraph). Lecturer K. has constructed what he thinks is a complete listing of
all unlabeled connected unicyclic graphs of six vertices.

As his research assistant you have learned to suspect his listings. You check https:
//oeis.org/A001429, and you find that the correct count of such graphs is 13, while
K’s list contains 14 graphs. Something is wrong. (Of course it could be the OEIS
entry, but let’s assume it is correct.)

(a) Find one graph that should not be on the list at all.
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(b) After removing that graph, the count is now correct. Does this prove that the
list is correct?

(c) You suspect that the list has one graph twice (a duplicate). Find it.

(d) You also suspect that one graph is missing from the list. What is it?

Solution.

(a) The second graph (counting from left to right) in the second row should not
be on the list. Obviously it contains more than one cycle.

(b) No. For example, it could be that another graph in the list is also incorrect,
while a correct graph is missing.

(c) The third graph in the first row is same as the first graph in the second row.

(d) The graph with a 5-cycle is missing.

6A6 (Divisibility) Recall that for two integers a, b (not necessarily positive!) we say
that a divides b, or in short a | b, if there exists an integer m such that b = ma.

Prove or disprove each of the following statements. All variables are understood
to be integers. For those statements that are true, also give a small example with
concrete numbers (preferably positive). For the statements that are false, a small
counterexample can probably be found.

(a) If a | b and b | c, then a | c.

(b) If a | b, then b | a.

(c) If a | b and b | a, then a = b or a = −b.

(d) If a | b and a | c, then a | b+ c.1

(e) If a | b and a | b+ c, then a | c.

(f) If a | b, and c is any integer, then a | bc.

(g) If a | c and b | c, then ab | c.

(h) If a | c and b | c, then ab | c2.

(i) If a | c and b | d, then ab | cd.

(j) If a = bc > 0, then b ≤
√
a or c ≤

√
a (or both).

1You should read “|” as a relation symbol like “=” and “<”, so it binds more loosely than any
arithmetic operation. That is, a | b+ c means a | (b+ c).
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Solution.

(a) True. Example: 2 | 4 and 4 | 8, then 2 | 8.
Proof: If a | b and b | c, there exists k1, k2 ∈ Z such that k1a = b and k2b = c.
Then k1k2a = c, so a | c.

(b) False. Counterexample: 3 | 6, but 6 ∤ 3.

(c) True. Example: 3 | −3 and −3 | 3, then 3 = −(−3).
Proof: If a | b and b | a, there exists k1, k2 ∈ Z such that k1a = b and k2b = a.
Then a = k1k2a, and 1 = k1k2. The only possibilities are k1 = k2 = 1 or
k1 = k2 = −1, that is, a = b or a = −b.

(d) True. Example: 2 | 4 and 2 | 6, then 2 | 10.
Proof: If a | b and a | c, there exists k1, k2 ∈ Z such that k1a = b and k2a = c.
Then k1a+ k2a = (k1 + k2)a = b+ c, so a | b+ c.

(e) True. Example: 2 | 4 and 2 | 12, then 2 | 8.
Proof: If a | b and a | (b + c), there exists k1, k2 ∈ Z such that k1a = b and
k2a = b+ c. Then k2a− k1a = (k2 − k1)a = c, so a | c.

(f) True. Example: 2 | 4, then 2 | 4c for any integer c.
Proof: If a | b, there exists k ∈ Z such that ka = b. Then (kc)a = bc, where
kc ∈ Z because c ∈ Z. So a | bc.

(g) False. Counterexample: 4 | 12 and 6 | 12, but 24 ∤ 12.

(h) True. Example: 4 | 12 and 6 | 12, and 24 | 144.
Proof: If a | c and b | c, there exists k1, k2 ∈ Z such that k1a = c and k2b = c.
Then (k1a)(k2b) = (k1k2)ab = c2, so ab | c2.

(i) True. Example: 2 | 4 and 5 | 15, then 10 | 60.
Proof: If a | c and b | d, there exists k1, k2 ∈ Z such that k1a = c and k2b = d.
Then k1k2ab = cd, so ab | cd.

(j) True. Example: 16 = 2 · 8, then
√
16 = 4 ≥ 2.

Proof: Suppose not, b, c >
√
a, then bc > (

√
a)2 = a, contradicting with a = bc.

Therefore b, c >
√
a cannot be true, in other words b ≤

√
a or c ≤

√
a, or both.

6A7 (Simple Diophantus) Consider this equation in two variables.

5x− 2y = 1

By high-school methods you can easily find an infinite number of solutions (x, y) ∈
R2, indeed for any x ∈ R you could find a suitable y ∈ R. However, we are now
looking for integer solutions (x, y) ∈ Z2.
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(a) Find one solution (x, y) ∈ Z2. (Hint: Trial and error with small positive integers
should be enough.)

(b) From your one solution, construct another (x′, y′). (Hint: If x increases by
some amount c, how must y change so that the equality stays? Make it so that
the new values are again integers.)

(c) Construct an infinite set of integer solutions (x, y) to the equation. (You do
not need to prove that your construction contains all possible solutions, but
at least it should contain infinitely many.)

Equations like this, where only integer solutions are desired, are called Diophan-
tine equations, after Diophantus of Alexandria who lived in the 3rd century AD. His
book Arithmetica contains many such problems.

Solution.

(a) An example solution is (1, 2). It holds 5 · 1− 2 · 2 = 1.

(b) Suppose x is increased by 1, then y would need to increase by 5/2 to maintain
the equality, but 5/2 /∈ Z. Then, one can instead increase x by 2 and y by
10/2 = 5, where 2, 5 ∈ Z.
From (1, 2), this yields another solution of (x, y) being (3, 7).

(c) Continuing with the same reasoning as in (b), one can construct a new solution
by adding(/subtracting) (2, 5) to(/from) an existing one. This yields the set
of solutions

{(x, y) : x = 1 + 2k, y = 2 + 5k, k ∈ Z}.

Verifying, one has 5x− 2y = 5(1 + 2k)− 2(2 + 5k) = 1, as desired. The above
is an infinite set, because Z is.

6A8 (** CHALLENGE, worth an extra point: Variant of geometric series)
In discrete mathematics an often recurring task is computing sums.2 One example

is the arithmetico-geometric sum

sn =
n∑

k=1

kak,

where a ̸= 1 is a constant. Your task is to find a closed form expression3 for it. Here
are some hints to get started:

2Somewhat analogous to integrals in calculus — and sometimes quite as difficult.
3An expression containing a fixed, finite number of elementary arithmetic operations — in

particular, not using the big sum symbol
∑

or three dots.
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• Write out asn as a sum.

• Write out sn − asn as a sum, collecting like terms from sn and asn (terms
having the same power of a).

• Solve for sn, simplify, and recognize a part of your expression as something
you know already.

Once you have your general closed form expression for sn with any a ̸= 1, write a
specific form for sn when a = 2, and try to simplify it further. Then verify it against
explicit summation with n = 1, 2, 3, 4. Then calculate 3b again with your new shiny
formula.

Calculate also sn with a = 10 and n = 5 and verify against direct summation.

Finally, think why we had to assume a ̸= 1 for our general method. If a = 1, do
you know a simpler method?

Solution. We have

sn = a+ 2a2 + 3a3 + . . . (n− 1)an−1 + nan

asn = a2 + 2a3 + 3a4 + . . . (n− 1)an + nan+1

and subtracting the second equation from the first,

sn − asn = a+ (2− 1)a2 + (3− 2)a3 + . . .+ (n− (n− 1))an − nan+1

= a+ a2 + a3 + . . .+ an − nan+1

=
a(1− an)

1− a
− nan+1,

thus

sn =
a(1− an)

(1− a)2
− nan+1

1− a
.

With a = 2 this becomes

sn =
2(1− 2n)

(1− 2)2
− n2n+1

1− 2

= 2(1− 2n) + n2n+1

= 2 + (n− 1)2n+1.

With a = 2 and n = 1, 2, 3, 4 we get sn = 2, 10, 34, 98.
For 3b we now have (using a = 2 and n = 10)

an =
2 + 9 · 211

211 − 1
=

18434

2047
≈ 9.005.
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With a = 10 and n = 5 we get sn = 543210, which matches the explicit summa-
tion

1 · 10 + 2 · 102 + 3 · 103 + 4 · 104 + 5 · 105 = 10 + 200 + 3000 + 40000 + 500000.

Our general method contains division by 1 − a so it does not work with a = 1.
But with a = 1 our sum is simply the sum of a finite arithmetic progression

n∑
k=0

k = 1 + 2 + . . .+ k =
k(k + 1)

2
.

(seen on lectures / exercise 4B4 (b).)

Our initial trick, multiplying the sum with a and subtracting from the original
sum, may seem “out of the blue sky”. However, similar tricks are often used in
simplifying difficult sums — usually the hope is that some things cancel, and we
end up with a simpler or previously known sum.

This trick is (very loosely) analogous to “integration by parts” in calculus.

Well beyond the course requirements: For those who are not faint at heart,
and want extra challenges, try if you can pull off the same trick for the sum

n∑
k=0

k2ak,

or with some higher power of k. No, we are not providing the answer here. (You can
calculcate a few small sums directly and then try an OEIS lookup.)
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