6B Number theory

6B1 (Parity) Early on the course we defined even and odd integers, both by existential statements:

$$
\begin{aligned}
n \text { is even } & \Longleftrightarrow \exists k \in \mathbb{Z}: n=2 k \\
n \text { is odd } & \Longleftrightarrow \exists k \in \mathbb{Z}: n=2 k+1
\end{aligned}
$$

Straight from these definitions, it is not obvious that these two are negations of each other (recall that by de Morgan, $\neg \exists \ldots$ is equivalent to $\forall \neg \ldots$). In fact there are numbers for which both statements are false (e.g. 2.5) so it seems this is a peculiar property of integers.
(a) Prove that if n is an integer, it cannot be both even and odd.
(b) Prove by induction that if $n \in \mathbb{N}$, then it is either even or odd. (Hint: Take 0 and 1 as base cases.)
(c) Prove that if $n \in \mathbb{Z}$, then it is either even or odd.

Solution. a) Suppose n is both even and odd, then $n=2 x$ but also $n=2 y+1$.
As x and y are both integers, so should be their difference, but instead we get the following contradiction.
$2 x=2 y+1 \rightarrow 1=2(x-y) \rightarrow \frac{1}{2}=x-y$
b) For the base case $n=1=2 k+1, k=0$ is odd and $n=0=2 k, k=0$ is even. Our induction assumption is that n is either even or odd. Induction step has two cases:

Odd $n=2 k+1 \rightarrow n+1=2 k+2=2(k+1)$ so $n+1$ is even.
Even $n=2 k \rightarrow n+1=2 k+1$ so $n+1$ is odd. In both cases the induction step gives n that is either even or odd.
c) In b) we showed this for integers ≥ 0. For the negative integers consider even $-n=2 k \rightarrow n=-2 k$ and odd $-n=2 k+1 \rightarrow n=-2 k-1$. The same induction argument as in b) works; even becomes odd and odd becomes even.

Odd $n+1=-2 k-1=-2 k$ so $n+1$ is even.
Even $n+1=-2 k+1=-2 \ell-1$ for $\ell=k-1$ so $n+1$ is odd.

6B2 (Modulus operation) The modulus (or remainder) of $a \in \mathbb{Z}$, when dividing by $b \in \mathbb{Z}$, is the smallest element of the set

$$
S=\{a-k b: k \in \mathbb{Z} \wedge a-k b \geq 0\} .
$$

It is written $a \bmod b$, and by definition it is always a nonnegative integer. An intuitive explanation is that we look at all multiples of b (that is, numbers $k b$), and take the biggest of them that does not exceed a. Then take the difference $a-k b$, which is automatically nonnegative because of the way we defined it. Note that here mod is treated as an arithmetical operation, whose result is an integer.

In the following problems, a and b are integers.
(a) Find $123 \bmod 100$.
(b) Find (-123) mod 100.
(c) What is $a \bmod 2$ when a is even?
(d) What is $a \bmod 2$ when a is odd?
(e) What is $a \bmod 1$?
(f) What are the possible values of $a \bmod 3$?
(g) Prove or disprove: $a-(a \bmod b)$ is divisible by b. Give an example or a counterexample.
(h) Prove or disprove: $(a+b) \bmod c=(a \bmod c)+(b \bmod c)$. Give an example or a counterexample.

Solution.

a) $123 \bmod 100=23$
b) $-123 \bmod 100=77$
c) 0 , since $2 \mid a$ meaning there is $k \in Z$ such that $a=2 k$.
d) 1 , since $a=2 k+1$.
e) 0 , since 1 divides all integers.
f) $0,1,2$
g) Is divisable. $a-(a \bmod b)=a-(a-k b)=k b, k \in Z$. For an example $5-(5$ $\bmod 3)=5-2$ giving $3 \mid 3$.
h) Not true. For example $(3+3) \bmod 2=0 \neq 2=3 \bmod 2+3 \bmod 2$.

6B3 (Congruence) Two integers a, b are said to be congruent modulo n if $n \mid(b-a)$. It is written

$$
a \equiv b \quad(\bmod n)
$$

(sometimes without parentheses). Note that congruence is a relation between numbers a and b. Also there is nothing preventing from one or both being negative: $9 \equiv-1(\bmod 10)$.

If we have a big bunch of congruences, all with the same modulus n, we often write simply

$$
a \equiv b
$$

and perhaps clarify just once that "all of these are $\bmod n$ ".
Prove or disprove each of the following (all are $\bmod n$, and a, b, c, d are integers). For true statements give a simple example. For false statements give a simple counterexample.
(a) $a \equiv a$.
(b) $(a \equiv 0) \Longleftrightarrow(n \mid a)$.
(c) If $a \equiv b$ and $c \equiv d$, then $a+c \equiv b+d$.
(d) If $a \equiv b$ and $c \equiv d$, then $a c \equiv b d$.
(e) If $a \equiv b$, then $a^{2} \equiv b^{2}$.
(f) If $a^{2} \equiv b^{2}$, then $a \equiv b$.
(g) If $n=2$ and $a^{2} \equiv b^{2}$, then $a \equiv b$.
(h) If $a \equiv-1$, then $a^{2} \equiv 1$.
(i) If $a^{2} \equiv 1$, then $a \equiv 1$ or $a \equiv-1$. (Hint: Consider $n=8$.)
(j) If $a b \equiv 0$, then $a \equiv 0$ or $b \equiv 0$.

Some of these statements show that congruences are a bit similar to identities, but not in all respects. If in doubt, always recall what a congruence really says (divisibility of the difference of LHS and RHS).

Solution.

a) True since $a-a=0$ and $n \mid 0$.
b) True, $n|a \rightarrow n|(a-0)$ so by definition $a \equiv 0$. Other direction: $a \equiv 0$ gives $n|(a-0) \rightarrow n| a$.
c) True, write $a=b+k n$ and $c=d+\ell n$
$\rightarrow a+c=b+d+(k+\ell) n \equiv b+d$.
d) True, $a c=b d+b \ell n+d k n+k \ell n^{2} \equiv b d$.
e) True, as above but $a=c$ and $b=d$.
f) False, for example $a=4, b=8, n=16$ then $a^{2} \equiv b^{2} \equiv 0$ but $a \equiv 4$ and $b \equiv 8$.
g) True, since $1^{2}=1$ and $0^{2}=0$ are the only squares.
h) True, since $(-1+n k)^{2}=1-2 n k+n^{2} k^{2} \equiv 1$.
i) False, for example $3^{2} \equiv 1 \bmod 8$.
j) False, for example $2^{2} \equiv 0 \bmod 4$. This would only be true when n is prime.

6B4 (Powers)
(a) When is $2^{k} \equiv 1(\bmod 3)$, if $k \in \mathbb{N}$?
(b) When is $3^{k} \equiv 1(\bmod 10)$, if $k \in \mathbb{N}$?

Solution. a) When 2 has an even exponent $k=2 n .2^{2 n}=4^{n} \equiv 1.2^{2 n+1}=2 \cdot 4^{n} \equiv 2$.
b) When $k=4 n .3^{4 n}=81^{n} \equiv 1.3$ and 10 are coprime so other powers have a different result.

6B5 (Practical divisibility) When integers are written in the usual ten-based notation, some divisibility questions are easy even without performing a division. Note that if a is a nonnegative integer, then $(a \bmod 10)$ is its last digit, and $(a \bmod 100)$ are its last two digits.

Prove or disprove the following. For false statements give a counterexample. For true statements, give also an example of a where both sides of the equivalence are true, and a is bigger than 100 .
(a) $2 \mid a$ if and only if $2 \mid(a \bmod 10)$.
(b) $3 \mid a$ if and only if $3 \mid(a \bmod 10)$.
(c) $4 \mid a$ if and only if $4 \mid(a \bmod 10)$.
(d) $4 \mid a$ if and only if $4 \mid(a \bmod 100)$.
(e) $5 \mid a$ if and only if $5 \mid(a \bmod 10)$.

Solution. a) True. $a \bmod 10=a-10 k=a-2 \cdot 5 k, k \in Z$. So if $2 \mid(a \bmod 10)$ it follows that $2 \mid a$ and vice versa. An example: $102 \bmod 10 \equiv 2$ and $2 \mid 2$ as well as $2 \mid 102$.
b) False, for example $3 \mid 27$ but does not divide 7 .
c) False, for example $4 \mid 16$ but does not divide 6 .
d) True, $a-100 k=a-4 \cdot 25 k$. An example: $240 \bmod 100 \equiv 40$ and $4 \mid 40$ as well as $4 \mid 240$.
e) True, $a-10 k=a-5 \cdot 2 k$. An example: $515 \bmod 10 \equiv 5$ and $5 \mid 5$ as well as $5 \mid 515$.

6B6 (Last digits) Calculate the last two digits of 2024^{2024}.
Hint: Start by studying small powers of 2024 and try to argue how the sequence continues.

Solution.

Work in $\bmod 100$. The power in mod 100 can be written as $2024 \cdot \ldots \cdot 2024 \equiv$ $24 \cdot \ldots \cdot 24$. Computing the first products we get $24 \cdot 24 \equiv 76$ and $76 \cdot 24 \equiv 24$. We see that the result alternates between 24 for odd powers and 76 for even powers. 2024 being an even power means that $2024^{2024} \equiv 76$.

6B7 (Diophantine equations) Do the following Diophantine equations have solutions $x, y \in \mathbb{Z}$? If yes, find all solutions. If not, justify your answer.
(a) $20 x+10 y=65$
(b) $3 x+6 y=7$
(c) $20 x+16 y=500$

Solution.

a) $2(10 x+5 y)$ is an even number thus can't equal 65 .
b) $3(x+2 y)=7$. No solutions since 3 does not divide 7 .
c) $4(5 x+4 y)=500 \rightarrow 5 x+4 y=125 \rightarrow x=125-\frac{4}{5} y$. Then y must be a multiple of $5, y=5 k$ which gives $x=25-4 k$.

