

AAE-E2005 Thermochemical Energy Conversion

McKenna burner

Ari Kankkunen, DSc

McKenna burner

22 January 2024

McKenna flat flame burner

Standard flame
Widely used in the literature
Premixed fuel/oxidizer
Used for

- Flame speed measurement
- Temperature calibration
- CH calibration using LIF
- OH calibration using LIF
- Soot generation and studies using LII
- Other species CH4,OH, NO....

Francisco&Oliveira ,Therm Fluid Sci 2018

Glassman, Combustion 4th edition, 2008

Glassman, Combustion 4th edition, 2008

Shadow graph image of the flame front shown in Fig. 8, for (a) the flat flame (26 cm/s) and (b) the wrinkled flame (29 cm/s).

Region of interest for image analysis.

Francisco&Oliveira ,Therm Fluid Sci 2018

(a) Flame stand-off distance and (b) Peclet number as a function of laminar flame velocity, for premixed methane and air (Tgo = 298 K and P = 1 atm).

Francisco&Oliveira ,Therm Fluid Sci 2018

Burning velocity plotted against temperature.

Proceedings of the Combustion Institute, Volume 28, 2000/pp. 2467–2474 A LIF AND CARS INVESTIGATION OF UPSTREAM HEAT LOSS AND FLUEGAS RECIRCULATION AS NOX CONTROL STRATEGIES FOR LAMINAR, PREMIXED NATURAL-GAS/AIR FLAMES, A. V. MOKHOV1 and H. B. LEVINSKY

Temperature

15 mm above the burner plate

Prucker et. all , Rev. Sci. Instrum., 1994

Temperature

Flame temperature measured at 5 mm above the burner

Flame temperature measured at varying distances above the burner. ϕ =1.

Proceedings of the Combustion Institute, Volume 28, 2000/pp. 2467–2474 A LIF AND CARS INVESTIGATION OF UPSTREAM HEAT LOSS AND FLUEGAS RECIRCULATION AS NOx CONTROL STRATEGIES FOR LAMINAR, PREMIXED NATURAL-GAS/AIR FLAMES, A. V. MOKHOV1 and H. B. LEVINSKY

OH concentration by LIF (Laser Induced Fluorescence)

OH concentration by LIF

OH concentration by LIF

Methane/Air Φ =1

OH concentration

OH mole fraction in stoichiometric methane-air flame

NO concentration

NO mole fraction measured at 5 mm above the burner

NO profiles measured at 5 mm above the burner

Proceedings of the Combustion Institute, Volume 28, 2000/pp. 2467–2474 A LIF AND CARS INVESTIGATION OF UPSTREAM HEAT LOSS AND FLUEGAS RECIRCULATION AS NOx CONTROL STRATEGIES FOR LAMINAR, PREMIXED NATURAL-GAS/AIR FLAMES, A. V. MOKHOV1 and H. B. LEVINSKY

MWIR study on species

IR spectra from 1.5-5.5 μm of flat flame for various stoichiometric ratios

IR spectrum for methane-air flame

Filtered images of flat flame for various stoichiometric ratios

Characterizing Infrared Molecular Radiation in a Flat-Flame Burner and an Optical Spark-Ignition Engine, Lucca Henrion, 2020

References

Flatflame.com

Botha, J.P., and Spalding, D.B. 1954. The laminar flame speed of propane/air mixtures with heat extraction from the flame. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 225, 71.

Prucker, S., Meier, W., and Stricker, W., (1994). A Flat Flame Burner as Calibration Source for Combustion Research: Temperatures and Species Concentrations Of Premixed H2/Air Flames, Rev. Sci. Instrum., Vol 65, Num 9, pp 2908-2911.

Weigand, Peter, Lückerath, Rainer, and Meier, Wolfgang. Documentation of Flat Premixed Laminar CH4/Air Standard Flames: Temperatures and Species Concentrations, Institut für Verbrennungstechnik, Deutsches Zentrum für Luft- und Raumfahrt (DLR), DLR Report.

Francisco R W Jr and Oliveira A A M 2018 Simultaneous measurement of the adiabatic flame velocity and overall activation energy using a flat flame burner and a flame asymptotic model Exp. Therm. Fluid Sci. 90 174-185.

Nechipurenko & all. 2020, Experimental observation of diffusive-thermal oscillations of burner stabilized methane-air flames. Combustion and Flame 213 (2020) 202–210.

Control panel

Air

CH₄ or other fuels

 NH_3

N₂ Shroud gas

Water

McKenna burner demo

McKenna burner demo

McKenna Demo in the laboratory hall of Energy Technology

Sähkömiehentie 4 N (K4)