Blowing up a point in \mathbb{A}^{2}
"Resolving the singularities" of a curve C means finding a smooth projective curve X and a birational morphism

$$
f: X \longrightarrow C .
$$

In particular, the points on X correspond to DVRs of $k(c)$.

Rough ide a of the strategy:
Let $C \subseteq \mathbb{P}^{2}$ be a curve, $P \in C$ a singular point. Remove P from \mathbb{P}^{2} and replace it $w /$ a \mathbb{P}^{\prime}, w/ each point corresponding to a tangent direction at P. The new curve
 will have better singularities (ie. pts will have lower multiplicities).

First, we'll show how to blow up a point in \mathbb{A}^{2}, replacing it with an \mathbb{A}^{\prime}. For this, we need the following definition:

Def: If $f: X \rightarrow Y$ is a morphism of varieties, the graph of f is

$$
G(f):=\{(x, y) \in X \times y \mid y=f(x)\}
$$

This is in fact a closed subvariety of $X \times Y$ and the projection $G(f) \rightarrow X$ is an isomorphism.

Note: The Zariski topology on $X \times Y$ is inherited by the $\left(\mathbb{P}^{n_{1}} \times \ldots \times \mathbb{P}^{n_{r}} \times \mathbb{A}^{m}\right) \times\left(\mathbb{P}^{l_{1}} \times \ldots \times \mathbb{P}^{l_{s}} \times \mathbb{A}^{p}\right)$ it sits inside. This is not the product topology!

Since we can always move a singular point to the origin, we only need to know how to blow up \mathbb{A}^{2} at the origin:

Directions for blowing up \mathbb{A}^{2} at $(0,0)$:
(1.) Let $P=(0,0), U=\left\{(x, y) \in \mathbb{A}^{2} \mid x \neq 0\right\}$.

Define the morphism $f: U \rightarrow \mathbb{A}^{\prime}=k$ by $f(x, y)=y / x$.
(2.) Let $G \subseteq U \times \mathbb{A}^{\prime} \subseteq \mathbb{A}^{2} \times \mathbb{A}^{\prime}=\mathbb{A}^{3}$ be the graph of f. So $G=\left\{(x, y, z) \in \mathbb{A}^{3} \mid y=x z, x \neq 0\right\}$
(3.) Let $B=\left\{(x, y, z) \in \mathbb{A}^{3} \mid y=x z\right\}$, ie. The closure of G in \mathbb{A}^{3}. $x z-y$ is irreducible, so B is an (affine) variety.
(4.) Let $\Pi: B \longrightarrow \mathbb{A}^{2}$ be the projection $\Pi(x, y, z)=(x, y)$.

Then $\pi(B)=U \cup\{P\}$.
(5.) Let $L=\Pi^{-1}(P)=\{(0,0, z) \mid z \in k\}$. $\Pi^{-1}(u)=G$, so Π restricts to an isomorphism of $\pi^{-1}(U)$ onto U.
π is locally the blowup of A^{2}. Soon we will look at the projective case, where the equations are more complicated, but it will locally look like this.

Ex: Let $C=V\left(y^{2}-x^{2}(x+1)\right)$.
$\pi^{-1}(C)$ will be the union of a line, L (called the exceptional divisor) and then a curve C^{\prime} that is birational to C (called
 The strict transform of C). To get C^{\prime}, we take the closure of the preimage of $C-\{p\}$, ie. $\pi^{-1}(C-\{P\})$.

Since $\pi^{-1}(C-\{P\}) \subseteq G$, it is isomorphic to C^{\prime}.

To figure out what C^{\prime} is and which points lie over P, we project onto the $x z$-plane.

Let $\varphi: \mathbb{A}^{2} \longrightarrow B$ be the isomorphism $\varphi(x, z)=(x, x z, z)$.
(Projection onto $x z$-plane gives the inverse.) Then the map

$$
\psi=\pi \cdot \varphi: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2} \quad \text { is } \quad \psi(x, z)=(x, x z)
$$

and is birational!

Then the preimage of C is $\Psi^{-1}(C)=V\left((x z)^{2}-x^{2}(x+1)\right)$

$$
x^{2} z^{2}-x^{2}(x+1)=\overbrace{\text { Exc. divisor }}^{x^{2}}(\underbrace{z^{2}-x-1}_{c^{\prime}})
$$

So C is birational to the parabola $V\left(z^{2}-x-1\right)$, and the points lying over P are $\{(x, z) \mid(x, x z)=(0,0)\}$ i.e. $(0,1)$ and $(0,-1)$

More generally: Let $C \subseteq \mathbb{A}^{2}$ be an irreducible curve not equal to the y-axis. Let $C_{0}=C \cap U$, an open subvariety of C.

Let $C_{0}^{\prime}=\Psi^{-1}\left(C_{0}\right)$, and C^{\prime} be the closure of C_{0}^{\prime} in \mathbb{A}^{2}.
Let $f: C^{\prime} \longrightarrow C$ be the restriction of Ψ to C^{\prime}. Then f is a birational morphism, just as above.

Let $C=V(g), g$ irreducible, and $g=g_{r}+g_{r+1}+\ldots+g_{n}, g_{i}$ a form of $\operatorname{deg} i, r=m_{p}(c)$.

Claim: $C^{\prime}=V\left(g^{\prime}\right)$, where $g^{\prime}=g_{r}(1, z)+x g_{r+1}(1, z)+\ldots+x^{n-r} g_{n}(1, z)$.

Pf: $g(x, x z)=x^{r} g_{r}(1, z)+x^{r+1} g_{r+1}(1, z)+\ldots=x^{r} g^{\prime}$.
Since $g_{r}(1, z) \neq 0, x$ doesn't divide g^{\prime}.

If $g^{\prime}=a b$ then $g=x^{r} a(x, y / x) b(x, y / x)$ would be reducible. Thus, g^{\prime} is irreducible and $V\left(g^{\prime}\right) \supseteq C_{0}^{\prime}, V\left(g^{\prime}\right)=C^{\prime}$.

Now, using the same setup as above, we want to show That the preimage $\psi^{-1}(P)$ consists of a unique point for each tangent direction of C at P.

Since we are working only in U, which doesn't contain the y-axis, we can assume $V(x)$ is not tangent to C at P (possibly after a change of coordinates). We won't need to make this assumption in the projective case.

Then, after multiplying g by a constant, we can write

$$
g_{r}=\prod_{i=1}^{s}\left(y-\alpha_{i} x\right)^{r_{i}}
$$

where $y-a_{i} x$ are the tangents to C at P.

Claim: $f^{-1}(P)=\left\{P_{1}, \ldots, P_{s}\right\}$, where $P_{i}=\left(0, \alpha_{i}\right)$ and

$$
\begin{array}{r}
m_{p_{i}}\left(C^{\prime}\right) \leqslant I_{p_{i}}\left(C^{\prime}, E\right)=r_{i} \\
\hat{\uparrow} . \\
=V(x)
\end{array}
$$

Thus, if P is an ordinary multiple pt on C (ie. each $r_{i}=1$) then each P_{i} is a simple point on C^{\prime}, and $\operatorname{ord}_{p_{i}}^{C^{\prime}}(x)=1$.

Pf: $f^{-1}(P)=C^{\prime} \cap E=\{(0, \alpha) \mid \underbrace{\left.g_{r}(1, \alpha)=0\right\} \text {. } . ~ . ~ . ~}_{\text {since } x \text { divides }}$

$$
\begin{aligned}
& \text { And } m_{p_{i}}\left(c^{\prime}\right) \leq I_{p_{i}}\left(g^{\prime}, x\right) \\
& =I_{p_{i}}\left(f_{r}(1, z), x\right) \\
& =I_{p_{i}}\left(\prod_{j=1}^{s}\left(z-\alpha_{j}\right)^{r}, x\right)=I_{p_{i}}\left(\left(z-\alpha_{i}\right)^{r_{i}}, x\right)=r_{i} . \\
& \text { other factors } \\
& \text { don't pass through }
\end{aligned}
$$

Q: what happens to a singular point w/ only one tangent line, i.e. a tangent line w/ high multiplicity?

Ex: 1.) Let $C=V\left(y^{2}-x^{3}\right)$
Using the same strategy as above, we blow up
the origin using the map

$\psi: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ defined

$$
(x, z) \longmapsto(x, x z)
$$

The preimage of C is then cut out by

$$
(x z)^{2}-x^{3}=x^{2}\left(z^{2}-x\right)
$$

When resolving curve singularities, we usually want the strict transform to intersect

The exceptional divisor transversally, so we blow up again. However, our tangent line is now $x=0$, so we do an affine change of coords first to get
$z^{2}\left(x^{2}-z\right)$. The blowup gives

$$
\begin{gathered}
(x w)^{2}\left(x^{2}-x w\right)=x^{3} w^{2}(x-w) \\
\text { new } \uparrow \uparrow \begin{array}{c}
\text { strict strict } \\
\text { exc. } \\
\text { div. } \\
\text { trans. } \\
\text { of } \epsilon \text { of } C^{\prime}
\end{array}
\end{gathered}
$$

So C is binational to a \mathbb{P}^{\prime},
 which we already knew
2.) Now let $C=V\left(2 x^{4}-3 x^{2} y+y^{2}-2 y^{3}+y^{4}\right)$.

Let's resolve the singularity at the origin. (This kind of singularity is called
 a tacnode)

The preimage under the blowup becomes

$$
\begin{aligned}
& 2 x^{4}-3 x^{3} z+x^{2} z^{2}-2 x^{3} z^{3}+x^{4} z^{4} \\
= & x^{2}(\underbrace{2 x^{2}-3 x z+z^{2}}_{\begin{array}{c}
\text { tangent }+ \text { lines } \\
(x-z)(2 x-z)
\end{array}}-2 x z^{3}+x^{2} z^{4})
\end{aligned}
$$

A change of coordinates gives

$$
z^{2}\left(2 z^{2}-3 x z+x^{2}-2 x^{3} z+x^{4} z^{2}\right)
$$

Blowing up again yields

$$
\begin{aligned}
& x^{2} w^{2}\left(2 x^{2} w^{2}-3 x^{2} w+x^{2}-2 x^{4} w+x^{6} w^{2}\right) \\
& =x^{4} w^{2}\left(2 w^{2}-3 w+1-2 x^{2} w+x^{4} w^{2}\right)
\end{aligned}
$$

Blowing up \mathbb{P}^{2} at a point

Rough idea: Let $P=[0: 0: 1], u=\mathbb{P}^{2} \backslash P$.

Define $f: u \rightarrow \mathbb{P}^{\prime}$ by $f\left[x_{1}: x_{2}: x_{3}\right]=\left[x_{1}: x_{2}\right]$.

Let $G \subseteq U \times \mathbb{P}^{\prime} \subseteq \mathbb{P}^{2} \times \mathbb{P}^{\prime}$ be the graph of f. projection
from p
\downarrow

Let y_{1}, y_{2} be the homog. coords for $\mathbb{P}^{\prime}, x_{1}, x_{2}, x_{3}$ the homog. coors for \mathbb{P}^{2}. Then define:

$$
B=V\left(y_{1} x_{2}-y_{2} x_{1}\right) \subseteq \mathbb{P}^{2} \times \mathbb{P}^{\prime}
$$

Then $G \subseteq B$. In fact, $B \backslash G=\left\{\left([0: 0: 1],\left[x_{1}: x_{2}\right]\right) \mid\left[x_{1}: x_{2}\right] \in \mathbb{P}^{\prime}\right\}=E$ In particular, $B=\bar{G}$. exc. $d_{i i_{i j_{2}}}$

Let $\pi: B \longrightarrow \mathbb{P}^{2}$ be the projection onto the first factor.

This is called the blowup of \mathbb{P}^{2} at $[0: 0: 1]$, and is som. when restricted to $B \backslash E \rightarrow U$.

Locally, this is the same map as in the affine case.

Suppose we want to study an affine neighborhood of a point $Q=[1: \lambda] \in E:$

Let $\varphi_{3}: \mathbb{A}^{2} \rightarrow U_{3} \subseteq \mathbb{P}^{2}$ be the morphism $(x, y) \longmapsto[x: y: 1]$.

Let $\psi: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ be as above: $(x, z) \mapsto(x, x z)$.

Define $\varphi: \mathbb{A}^{2} \rightarrow \mathbb{P}^{2} \times \mathbb{P}^{\prime}$ by

$$
\varphi(x, z)=[x: x z: 1] \times[1: z] \in B
$$

Then $\varphi\left(\mathbb{A}^{2}\right)$ is a neighborhood of Q, so we can just work
 with $\Psi: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ instead of π.

