Blowing up a point in A2

"Resolving the singularities" of a surve C means finding a smooth projective curve X and a birational morphism

$$f: X \longrightarrow C$$

In particular, the points on X correspond to DVRs of k(C).

Rough idea of the strategy: let $C \subseteq \mathbb{P}^2$ be a curve, $P \in C$ a singular point. Remove P from \mathbb{P}^2 and replace it $W/a \mathbb{P}'$, W/ each point corresponding to a tangent direction at P. The new curve will have better singularities (i.e. pts will have lower multiplicities).

First, we'll show how to plow up a point in A^2 , replacing it with an A^1 . For this, we need the following definition:

Def: If $f: X \rightarrow Y$ is a morphism of varieties, the graph of f is $G(f):= \{(x,y) \in X \times Y | y = f(x)\}$ This is in fact a closed subvariety of $X \times Y$ and the projection $G(f) \rightarrow X$ is an isomorphism.

Since we can always move a singular point to the origin, we only need to know how to blow up \mathbb{A}^2 at the origin:

Directions for blowing up A^2 at (0,0):

1) let
$$P = (0, 0)$$
, $U = \{(x, y) \in A^2 \mid x \neq 0\}$
Define the morphism $f : U \longrightarrow A' = k$
by $f(x, y) = \frac{y}{x}$.

(2) let
$$G \subseteq U \times A' \subseteq A^2 \times A' = A^3$$
 be the
graph of f. so $G = \{(x, y, z) \in A^3 \mid y = xz, x \neq 0\}$

(3) let $B = \{(\pi, y, z) \in A^3 | y = \pi z \}$, i.e. The closure of G in A^3 . $\pi z - y$ is irreducible, so B is an (affine) variety.

(4) let
$$\Pi: B \longrightarrow A^2$$
 be the projection $\Pi(x, y, z) = (x, y)$.
Then $\Pi(B) = U \cup \{P\}$.

(5) Let
$$L = \pi^{-1}(P) = \{(v, v, z) \mid z \in k\}$$
. $\pi^{-1}(u) = G$, so π restricts to an isomorphism of $\pi^{-1}(u)$ onto U .

IT is locally the blownp of 1². Soon we will look at the projective case, where the equations are more complicated, but it will locally look like this.

Ex: let
$$C = V(y^2 - x^2(x+1))$$
.
 $\pi^{-1}(C)$ will be the union of
a line, L (called the exceptional
divisor) and then a curve C'
that is birational to C (called
the strict transform of C). To
 $get C'$, we take the closure of the preimage of $C - \{P\}$,
i.e. $\pi^{-1}(C - \{P\})$.
C'
(side view) Since $\pi^{-1}(C - \{P\}) \subseteq G$, it is
isomorphic to C'.
To figure out what C' is and which
points lie over P, we project onto the
 χ_2 -plane.

let $\Psi: \mathbb{A}^2 \longrightarrow \mathbb{B}$ be the isomorphism $\Psi(x, z) = (x, xz, z)$.

(Projection onto
$$xz$$
-plane gives the inverse.) Then the map
 $\Psi = \pi \cdot \Psi : \mathbb{A}^2 \longrightarrow \mathbb{A}^2$ is $\Psi(x,z) = (x, xz)$

and is birational!

Then the preimage of C is
$$\Psi^{-1}(C) = V((xz)^2 - x^2(x+1))$$

 $x^2 z^2 - x^2(x+1) = x^2(z^2 - x - 1)$.
Exc. divisor C'

So C is birational to the parabola $V(z^2-x-1)$, and the points lying over P are $\{(x,z)|(x,xz)=(0,0)\}$ i.e. (0,1) and (0,-1)

More generally: let $C \subseteq A^2$ be an irreducible curve not equal to the y-axis. Let $C_o = C \cap U$, an open subvariety of C.

Let $C'_{o} = \Psi^{-1}(C_{o})$, and C' be the closure of C'_{o} in A^{2} . Let $f: C' \longrightarrow C$ be the restriction of Ψ to C'_{o} . Then f is a birational morphism, just as above.

let
$$C = V(g)$$
, g irreducible, and $g = g_r + g_{r+1} + \dots + g_n$, gi
a form of deg i, $r = m_p(C)$.

Claim: C' = V(g'), where $g' = g_r(1,z) + x g_{r+1}(1,z) + ... + x^{n-r}g_n(1,z)$.

Pf:
$$g(x, x_{\vec{x}}) = x^{r} g_{r}(1, \vec{x}) + x^{r+1} g_{ni}(1, \vec{x}) + ... = x^{r} g'.$$

Since $g_{r}(1, \vec{x}) \neq 0$, x doesn't divide $g'.$

If
$$g' = ab$$
 then $g = x^r a(x, y'_x) b(x, y'_x)$ would be reducible.
Thus, g' is irreducible and $V(g') \supseteq C'_o$, $V(g') = C'_o$.

Now, using the same setup as above, we want to show that the preimage $\Psi^{-1}(P)$ consists of a unique point for each tangent direction of C at P.

Since we are working only in U, which doesn't contain the y-axis, we can assume V(x) is not tangent to C at P (possibly after a change of coordinates). We won't need to make this assumption in the projective case.

Then, after multiplying g by a constant, we can write $g_r = \prod_{i=1}^{s} (y - \alpha_i x)^{r_i}$

where y-a; x are the tangents to C at P.

Claim:
$$f^{-1}(P) = \{P_1, \dots, P_s\}$$
, where $P_i = (0, \alpha_i)$ and
 $m_{P_i}(C') \leq \prod_{P_i}(C', E) = r_i$.
 e_{xc} . divisor
 $= V(x)$

Thus, if P is an ordinary multiple pt on C (i.e. each $r_i = 1$) then each P; is a simple point on C', and $\operatorname{ord}_{P_i}^{C'}(x) = 1$.

Q: What happens to a singular point w/ only one tangent line, i.e. a tangent line w/ high multiplicity?

EX: 1.) let
$$C = V(y^2 - x^3)$$

Using the same strategy P
as above, we blow up
the origin using the map
 $\Psi: A^2 \rightarrow A^2$ defined
 $(x,z) \mapsto (x, xz)$

The preimage of C is then cut out by $(xz)^2 - x^3 = x^2(z^2 - x)$.

When resolving curve singularities, we usually want the strict transform to intersect

C

The exceptional divisor transversally, so we blow up
again. However, our tangent line is now
$$x=0$$
, so we
do an affine change of coords first to get
 $z^2(x^2-z)$. The blowup gives
 $(\pi w)^2(x^2-\pi w) = x^3 w^2(\pi - w)$
new for transform
div. transform
 $z\in exc.$ strict transform
 $z\in exc.$ stri

$$2x^{4} - 3x^{3}z + x^{2}z^{2} - 2x^{3}z^{3} + x^{4}z^{4}$$

$$= x^{2} \left(2x^{2} - 3xz + z^{2} - 2xz^{3} + x^{2}z^{4} \right)$$

$$+ angen + lines \\ (x - z)(z - z)$$

A change of coordinates gives $z^2 (2z^2 - 3xz + x^2 - 2x^3z + x^4z^2).$ Blowing up again yields

Blowing up P² at a point

Rough idea: let
$$P = [0:0:1]$$
, $U = P^2 \setminus P$.
Define $f: U \longrightarrow P'$ by $f[x_1:x_2:x_3] = [x_1:x_2]$.
let $G \subseteq U \times P' \subseteq P^2 \times P'$ be the graph $f_{none}^{projection} \int f_{none}^{projection} \int f$

let y_1, y_2 be the homog. coords for \mathbb{P}'_1 , x_1, x_2, x_3 the homog. coords for \mathbb{P}^2 . Then define:

$$\mathcal{B} = \bigvee (y_1 x_2 - y_2 x_1) \subseteq \mathbb{P}^2 \times \mathbb{P}^1$$

Then $G \subseteq B$. In fact, $B \setminus G = \{([0:0:1], [x_1:x_2]) \mid [x_1:x_2] \in \mathbb{P}^t\} = E$ In particular, $B = \overline{G}$.

Let $\pi: B \longrightarrow \mathbb{P}^2$ be the projection onto the first factor.

This is called the blowup of \mathbb{P}^2 at [0:0:1], and is isom. When restricted to $B \setminus E \to U$.

locally, this is the same map as in the affine case.

Suppose we want to study an affine neighborhood of a point $Q = [1:\lambda] \in E$:

Let $\mathcal{G}_3: \mathbb{A}^2 \to \mathcal{G}_3 \subseteq \mathbb{P}^2$ be the morphism $(\mathfrak{X}, \mathfrak{Y}) \longmapsto [\mathfrak{X}: \mathfrak{Y}: \mathfrak{I}].$

