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Notation and Conventions

• R and S denote rings.

• K denotes a field, which is assumed to be algebraically closed after Chapter 1.

• All rings are commutative with unity, denoted 1.

• It is not assumed that 1 6= 0 for general rings, but it is assumed that 1 6= 0 for
integral domains (and fields).

• All ring homomorphisms ϕ : R→ S satisfy ϕ(1) = 1.

• Z, Q, R, and C denote the sets of integers, rational numbers, real numbers,
and complex numbers, respectively.

• N = {0, 1, 2, 3, . . . } denotes the set of natural numbers.





Chapter 0

Polynomial Rings
LEARNING OBJECTIVES FOR CHAPTER 0

• Review the concepts of polynomials and polynomial rings.

• Review the notions of ideals and quotients, especially in the context of
polynomial rings.

• Become familiar with properties of polynomials over fields, such as the
existence and uniqueness of irreducible factorizations.

• Develop tools to determine if a given polynomial is irreducible.

Algebraic geometry studies solutions of polynomial equations by building a dic-
tionary between the geometry of the solution sets and the algebra of the defining
polynomial equations. In this preliminary chapter, we develop the algebraic notions
of polynomial rings that are prerequisite to the study of algebraic geometry. The
chapter culminates with a proof of the important fact that every polynomial over a
field factors uniquely into irreducible polynomials.

The reader is assumed to have taken a first course in ring theory and to be familiar
with the notions of rings, integral domains, and fields. However, knowledge beyond
the most fundamental definitions and results is not expected. Surely, this chapter
will read more quickly for those students with a more robust algebraic background,
while a student newer to abstract algebra may choose to devote a significant amount
of time to mastering the contents of these pages.

The purpose of this chapter is to establish the algebraic foundation on which the
rest of the book is built, focusing on the fundamental properties of polynomial rings
that will be most useful for later developments. As such, the choice has often been
made to forego generality for the sake of brevity; for example, we will never consider
noncommutative rings, so every ideal will be a two-sided ideal. Nearly all of the
examples in this chapter illustrate concepts in the specific setting of polynomial
rings, and the authors hope that the intuition developed in this setting might help the
interested student study these concepts more generally.
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2 CHAPTER 0. POLYNOMIAL RINGS

Section 0.1 Polynomials
Polynomials and their solutions are some of the
first objects we encounter in our mathematical
lives. For example, you may even remember the
first time you learned that the solutions in R2 of
the two-variable polynomial equation

x2 + y2 − 1 = 0

describe the unit circle. However, if our goal is
to study the unit circle, then there are many other polynomials that one might choose
to describe it; for example, the unit circle is also equal to the solutions of either

2x2 + 2y2 − 2 = 0 or x4 + 2x2y2 + y4 − 1 = 0.

This leads to a natural question: is there a best polynomial that describes the unit
circle? The answer proposed by algebraic geometry is, in some sense, the most
egalitarian: all of the polynomials that describe the unit circle are equally important,
and we should study them together as a set. What does it mean, then, to study a set
of polynomials?

As we will soon learn, the set of polynomials describing the unit circle is much
more than just a subset of polynomials, it has important algebraic structure that
reflects the geometry of the circle. To be able to describe this algebraic structure in
this example and beyond, we must first establish precise notation and terminology
regarding the set of polynomials and their algebraic structure. To begin our formal
discussion of polynomials, we start with the notion of a monomial.

0.1 DEFINITION Monomials

A monomial in the variables x1, . . . , xn is an expression of the form

xα := xα1
1 · · · x

αn
n ,

where α = (α1, . . . , αn) ∈ Nn is the exponent vector. Two monomials are
equal if and only if they have the same exponent vector.

When there are only a few variables,
they are often represented with dis-
tinct letters such as x, y, and z.

The variables x1, . . . , xn should be
viewed as formal symbols, and their
role is simply to serve as placeholders
for α1, . . . , αn. The data of a monomial
in x1, . . . , xn is equivalent to the data
of an exponent vector (α1, . . . , αn); however, placing each αi as the exponent of xi
will prove useful when multiplication of monomials is defined below. Variables that
appear with an exponent of 0 are typically omitted; for example,

x2y3z0 = x2y3 and x0y0z0 = 1.

As in the case of f (x, y) = x2 + y2 − 1, polynomials are built by taking linear
combinations of monomials. In the most general setting, the coefficients of these
linear combinations belong to an arbitrary ring R, as in the following definition.
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0.2 DEFINITION Polynomials over R

A polynomial in the variables x1, . . . , xn over R is an expression of the form

f = f (x1, . . . , xn) = ∑
α∈Nn

aαxα,

where aα ∈ R for each α ∈ Nn and aα = 0 for all but finitely many α. Two
polynomials

f = ∑
α

aαxα and g = ∑
α

bαxα

are equal if and only if aα = bα for all α ∈Nn.

Polynomials are typically written as
finite sums, omitting all summands
that have a coefficient of zero.

0.3 EXAMPLE Polynomials

The following are two examples of
polynomials in the variables x and y
over the ring of integers Z:

f = xy2 + 3xy + 2 and g = −xy + 4.

The polynomials f and g can also be viewed as having coefficients in Q, R, or any
other ring containing Z. Observe that we can create new polynomials from f and g
by adding them and multiplying them in the familiar way:

f + g = xy2 + 2xy + 6,

f g = −x2y3 − 3x2y2 + 4xy2 + 10xy + 8.

As the reader is encouraged to verify in Exercise 0.1.1, the operations of addition
and multiplication, formalized in the next definition, endow the set of polynomials
with the structure of a ring.

0.4 DEFINITION Polynomial rings

The polynomial ring R[x1, . . . , xn] is the set of all polynomials in variables
x1, . . . , xn over R. Polynomial addition and multiplication are defined by(

∑
α

aαxα
)
+
(
∑
α

bαxα
)
= ∑

α

(aα + bα)xα

and (
∑
α

aαxα
)(

∑
α

bαxα
)
= ∑

α

(
∑

α1+α2=α

aα1 bα2

)
xα.

The additive identity 0 ∈ R[x1, . . . , xn] is the polynomial for which aα = 0 for
all α, and the multiplicative identity 1 ∈ R[x1, . . . , xn] is the polynomial for which

aα =

{
1 if (α1, . . . , αn) = (0, . . . , 0)
0 if (α1, . . . , αn) 6= (0, . . . , 0).
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When working with polynomials rings, it can be useful to leverage their recursive
nature in order to be able to use proofs by induction on the number of variables. The
next result is somewhat self-evident, but we state it carefully as it will be used often.

0.5 PROPOSITION Recursive nature of polynomial rings

There is a canonical isomorphism of rings

R[x1, . . . , xn] = R[x1, . . . , xn−1][xn],

where the right-hand side is the ring of polynomials in one variable xn with
coefficients in the ring R[x1, . . . , xn−1].

The next example illustrates the main idea behind Proposition 0.5.

0.6 EXAMPLE Z[x, y] versus Z[x][y]

Consider the polynomial

f = x3y2 + xy2 − 2xy− x + 1 ∈ Z[x, y].

We can view f as an element of Z[x][y] by grouping all terms that have the same
exponent in y. In doing so, we write

f = (x3 + x)y2 + (−2x)y + (−x + 1) ∈ Z[x][y].

As a polynomial in y, the coefficients of f are x3 + x, −2x, and −x + 1, all of
which are elements of Z[x].

PROOF OF PROPOSITION 0.5 When two rings are isomorphic,
there will often be a multitude of
possible isomorphisms. The word
canonical means that there is one
natural choice among all possible
isomorphisms. The symbol∼= is used
to denote isomorphisms, while = is
used for canonical isomorphisms.

To prove the proposition, we describe
the canonical ring isomorphism, which,
as illustrated in Example 0.6, sim-
ply groups all terms of a polynomial
in R[x1, . . . , xn] for which xn appears
with the same exponent. To make this
more precise, consider the following
function:

ϕ : R[x1, . . . , xn]→ R[x1, . . . , xn−1][xn]

∑
α

aαxα1
1 · · · x

αn
n 7→ ∑

d≥0

(
∑

α∈Nn−1

aαxα1
1 · · · x

αn−1
n−1

)
xd

n.

The verification that ϕ is a ring isomorphism is Exercise 0.1.3.

The following result concerning polynomial rings over integral domains is a first
application of Proposition 0.5.
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0.7 PROPOSITION Polynomials over integral domains

If R is an integral domain, then R[x1, . . . , xn] is an integral domain.

PROOF We proceed by induction on the number of variables.
(Base case) Let f , g ∈ R[x1] be nonzero. We must prove that f g 6= 0. Write

f = adxd
1 + ad−1xd−1

1 · · ·+ a0 and g = bexe
1 + be−1xe−1

1 · · ·+ b0,

where ad 6= 0 and be 6= 0. By definition of multiplication in R[x1],

f g = (adbe)xd+e
1 + (adbe−1 + ad−1be)xd+e−1

1 + · · ·+ a0b0.

Since R is an integral domain, adbe 6= 0. Since f g has at least one nonzero coeffi-
cient, we conclude that f g 6= 0.

(Induction step) Assume S = R[x1, . . . , xn−1] is an integral domain; we must
show that R[x1, . . . , xn] is an integral domain. By Proposition 0.5,

R[x1, . . . , xn] = S[xn].

Since S is an integral domain, the argument used in the base case immediately im-
plies that S[xn], and thus R[x1, . . . , xn], is an integral domain.

The numbers d and e appearing in the proof of Proposition 0.7 are important
attributes of the polynomials f and g, called their degrees. The next definition gen-
eralizes the notion of degree to polynomials with any number of variables.

0.8 DEFINITION Monomial and polynomial degree

The degree of a monomial xα = xα1
1 · · · x

αn
n is

deg(xα) = α1 + · · ·+ αn ∈N.

The degree of a nonzero polynomial f = ∑ aαxα ∈ R[x1, . . . , xn] is

deg( f ) = max{deg(xα) | aα 6= 0}.

0.9 EXAMPLE Degree

The monomials x2yz, z4, x, and 1 have degrees 4, 4, 1, and 0, respectively, and

deg(x2yz + z4 + x + 1) = 4.

The reader may have noticed that the zero polynomial has not been assigned a
degree, which is intentional. One of the most useful properties of degree is additivity,
described in the next result, which fails for any choice of deg(0) ∈N.
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0.10 PROPOSITION Additivity of degree

If R is an integral domain and f , g ∈ R[x1, . . . , xn] are nonzero, then

deg( f g) = deg( f ) + deg(g).

PROOF Let f , g ∈ R[x1, . . . , xn] be nonzero polynomials of degree d and e,
respectively. Write

f = fd + fd−1 + · · ·+ f0 and g = ge + ge−1 + · · ·+ g0,

where fi comprises all terms in f of degree i, and similar for gj. By assumption,
fd 6= 0 and ge 6= 0. Some time reflecting should convince the reader that degree is
additive on monomials, so the highest degree monomials that could possibly appear
with nonzero coefficient in f g have degree d+ e, and any such monomial must arise
in the product fdge. Since R[x1, . . . , xn] is an integral domain, we see that fdge 6= 0,
from which we conclude that deg( f g) = d + e = deg( f ) + deg(g).

Exercises for Section 0.1
0.1.1 Prove that addition and multiplication of polynomials endows R[x1, . . . , xn]

the structure of a ring (commutative with unity).

0.1.2 Group the terms of the polynomial

f = xyz2 + xyz + z3 + x2z2 + yz2 + z + x + 1 ∈ R[x, y, z]

to view it as an element of R[x, y][z], R[x][y, z], and R[y, z][x].

0.1.3 Prove that the function

ϕ : R[x1, . . . , xn]→ R[x1, . . . , xn−1][xn]

defined in the proof of Proposition 0.5 is a ring isomorphism.

0.1.4 Prove that R is canonically isomorphic to a subring of R[x1, . . . , xn]. (The
polynomials that lie in R are called constant polynomials.)

0.1.5 Let a = (a1, . . . , an) ∈ Rn. Prove that there is a unique ring homomorphism

ϕa : R[x1, . . . , xn]→ R

such that ϕa(r) = r for all r ∈ R and ϕa(xi) = ai for all i. (This homomor-
phism is called evaluation at a and is usually written ϕa( f ) = f (a1, . . . , an).)

0.1.6 Show that Propositions 0.7 and 0.10 fail if R is not an integral domain.

0.1.7 Show that Proposition 0.10 cannot be extended to any choice of deg(0) ∈N.

0.1.8 Prove that deg( f + g) ≤ max{deg( f ), deg(g)}.
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Section 0.2 Irreducible polynomials
Algebraic geometry is primarily interested in polynomial rings K[x1, . . . , xn] with
coefficients in a field K. In order to study these polynomial rings, it is useful to have
a good understanding of the “atomic” elements—those polynomials that cannot be
factored in a nontrivial way—and how each polynomial decomposes into the atomic
ones. As motivation for these ideas, it is instructive to turn to the more familiar case
of the ring of integers Z, where the atomic elements are the prime numbers.

Recall that an integer p ∈ Z≥2 is prime if for all m, n ∈ Z,

(0.11) p = mn =⇒ m = ±1 or n = ±1.

In other words, a prime integer is one that cannot be factored in a nontrivial way. One
of the central results in number theory (and in all of mathematics, for that matter) is
the existence and uniqueness of prime factorization: every integer n ∈ Z≥2 can be
written as a product of prime numbers in a unique way, up to reordering the factors.

We would like to study these ideas more generally, especially in the context of
polynomial rings. To do so, we begin with the ring-theoretic definition of “atomic,”
including the notion of a unit, which generalizes the ±1 ∈ Z appearing in (0.11).

0.12 DEFINITION Units and irreducible elements

An element u ∈ R is called a unit if it has a multiplicative inverse. The set
of units in R is denoted R∗ ⊆ R. An element p ∈ R is called irreducible if
it is neither zero nor a unit, and

p = ab =⇒ a ∈ R∗ or b ∈ R∗.

An element is reducible if it is neither zero, a unit, nor irreducible.

The distinction between units and
nonunits is necessary because every
element factors if we allow units:

a = u(u−1a).

In other words, a nonzero element
is irreducible if it cannot be factored
into a product of two nonunits. In the
case of polynomial rings K[x1, . . . , xn],
the units are the nonzero constant poly-
nomials (Exercise 0.2.2):

K[x1, . . . , xn]
∗ = K∗ = K \ {0}.

It follows that a polynomial f ∈ K[x1, . . . , xn] is irreducible if and only if

(i) f is nonconstant, and
(ii) f cannot be written as a product of two nonconstant polynomials.

0.13 EXAMPLE Linear polynomials in K[x1, . . . , xn] are irreducible.

We say that a polynomial f ∈ K[x1, . . . , xn] is linear if deg( f ) = 1. If f is linear
and f = gh, then by additivity of degree,

1 = deg( f ) = deg(g) + deg(h).

It follows that either deg(g) = 0 or deg(h) = 0, implying that g or h is constant.
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0.14 EXAMPLE y− x2 is irreducible in K[x, y].

Suppose
y− x2 = gh

for some g, h ∈ K[x, y]. As an element of K[x][y], y− x2 has degree 1, implying
that (as polynomials in y) one of g or h must also have degree 1 and the other must
have degree 0. Without loss of generality, we can write

g = ay + b and h = c

where a, b, c ∈ K[x]. This implies that y− x2 = acy+ bc. By matching coefficients
of y, we see that ac = 1, which implies that h = c ∈ K∗. Thus, y− x2 is irreducible.

0.15 EXAMPLE x2 + 1 ∈ C[x] versus x2 + 1 ∈ R[x]

In C[x], we have a factorization

x2 + 1 = (x− i)(x + i),

which shows that x2 + 1 is reducible in C[x]. In R[x], on the other hand, it is not
possible to factor x2 + 1 into two linear factors (Exercise 0.2.3), implying that x2 + 1
is irreducible in R[x]. This example illustrates how the behavior of polynomial rings
heavily depends on the choice of coefficient field K.

Since prime factorization is such a fundamental property of the ring of integers,
it is useful to have a generalization of this property to the setting of integral domains.
The following definition captures the essence of unique prime factorization in Z.

0.16 DEFINITION Unique factorization domain

An integral domain R is called a factorization domain (FD) if

(i) for every nonzero, nonunit a ∈ R, there exist irreducible elements
p1, . . . , p` ∈ R such that a = p1 · · · p`.

It is called a unique factorization domain (UFD) if, in addition,

(ii) whenever p1 · · · p` = q1 · · · qm for some irreducible elements pi and
qj, then ` = m and, after possibly reordering, there exist units ui such
that pi = uiqi for all i.

Unique prime factorization in the ring of integers implies that Z is a UFD. One
of the fundamental properties of K[x1, . . . , xn] is that it is also a UFD, as we will
see over the course of this chapter.

There are many examples of rings
that are not UFDs. We direct the
reader to Exercise 0.3.15 for one
such example.

To prove that K[x1, . . . , xn] is a
UFD, we must prove that irreducible
factorizations exist and that they are
unique. In the current section, we con-
tent ourselves with proving existence of
irreducible factorizations.
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0.17 PROPOSITION K[x1, . . . , xn] is a FD

If f ∈ K[x1, . . . , xn] is a nonconstant polynomial, then there exist irreducible
polynomials p1, . . . , p` such that f = p1 · · · p`.

PROOF We proceed by induction on the degree of f .
(Base case) If deg( f ) = 1, then f is irreducible by Example 0.13. In particular,

f has an irreducible factorization (with ` = 1).
(Induction step) Assume that every polynomial of degree less than d can be

factored into irreducible polynomials, and suppose f ∈ K[x1, . . . , xn] has degree
d. If f is irreducible, then f has an irreducible factorization with ` = 1. If f is
not irreducible, then f = gh with deg(g) < d and deg(h) < d. By the induction
hypothesis, there are irreducible factorizations

g = p1 · · · p` and h = q1 · · · qk.

Thus, f admits an irreducible factorization

f = p1 · · · p` · q1 · · · qk.

0.18 EXAMPLE An irreducible factorization

It follows from Examples 0.13 and 0.15 that

x2 + 1 = (x− i)(x + i)

is an irreducible factorization of x2 + 1 ∈ C[x].

For inspiration on how one might prove uniqueness of irreducible factorizations,
we return to the familiar case of Z. The key to proving uniqueness of prime factor-
izations in the integers is Euclid’s Lemma, which says that p ∈ Z≥2 is prime if and
only if, for all m, n ∈ Z,

We use the standard notation a | b as
shorthand for “a divides b,” which
means that b = ca for some c.

p |mn =⇒ p |m or p |n.

This second characterization of prime
integers naturally generalizes to rings.

0.19 DEFINITION Prime element

An element p ∈ R is prime if it is neither zero nor a unit and, for all a, b ∈ R,

p | ab =⇒ p | a or p |b.

As we will see below, the question of whether irreducible factorizations are
unique can be reduced to proving the ring-theoretic analogue of Euclid’s Lemma.
More specifically, given an integral domain R, Euclid’s Lemma translates to a state-
ment equating prime elements in R with irreducible elements. The following result
verifies one of the implications: in integral domains, all primes are irreducible.
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0.20 PROPOSITION Prime implies irreducible

In an integral domain, every prime element is irreducible.

PROOF Let R be an integral domain and let p ∈ R be prime. Toward proving
that p is irreducible, suppose

(0.21) p = ab

for some a, b ∈ R; we must prove that a ∈ R∗ or b ∈ R∗. Notice that (0.21) implies,
in particular, that p | ab. By primeness of p, we have p | a or p | b. Without loss
of generality, assume p | a and write a = pc for some c ∈ R. Substituting this
expression into (0.21), we see that

p = pcb.

Since R is an integral domain and p 6= 0, we can cancel p from both sides to obtain
1 = cb, implying that b ∈ R∗.

Look ahead to Exercise 0.3.15 for
an example where the converse of
Proposition 0.20 fails.

The converse of Proposition 0.20 is
not true in general. In fact, the converse
is, in some sense, equivalent to unique-
ness of factorizations, which is the con-
tent of the next result.

0.22 PROPOSITION FDs versus UFDs

Let R be a factorization domain. Then R is a unique factorization domain if
and only if every irreducible element of R is prime.

PROOF We prove both implications.
(⇒) Suppose that R is a UFD and let p ∈ R be irreducible. Towards proving

that p is prime, suppose that p | ab for some a, b ∈ R, and choose c ∈ R such that
ab = pc. Since R is a FD, everything admits irreducible factorizations:

a = p1 · · · pk, b = q1 · · · q`, and c = r1 · · · rm.

Thus, we have two irreducible factorizations

p1 · · · pk · q1 · · · q` = p · r1 · · · rm.

Since R is a UFD, there exists a unit u such that p = upi or p = uqj for some i or
j. It follows that p | a or p |b.

(⇐) Suppose that every irreducible element of R is prime, and let

(0.23) p1 · · · p` = q1 · · · qm

be two irreducible (hence, prime) factorizations. Assume without loss of generality
that ` ≤ m. Since p1 is prime and p1 | q1 · · · qm, it follows from Exercise 0.2.7 that
p1 | qj for some j. After possibly reordering, assume j = 1 and write q1 = u1 p1
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for some u1 ∈ R. Since q1 is irreducible, u1 or p1 must be a unit, but p1 cannot be
a unit because it is irreducible. Thus, u1 is a unit. Canceling p1 from both sides of
(0.23), we obtain

p2 · · · p` = u1q2 · · · qm.

Since p2 - u1, we can repeat the above argument to see that, after possibly
reordering, there is a unit u2 ∈ R such that q2 = u2 p2 and

p3 · · · p` = u1u2q3 · · · qm.

Continuing this process for ` steps, we see that there are units u1, . . . , u` such
that qi = ui pi and

1 = u1 · · · u`q`+1 · · · qm.

Since each qj is irreducible, and thus not a unit, we conclude that ` = m, finishing
the proof.

Since we already know that K[x1, . . . , xn] is a FD, Proposition 0.22 provides a
strategy for proving that K[x1, . . . , xn] is a UFD: it suffices to show that every ir-
reducible polynomial is prime. In order to accomplish this, we need a more robust
algebraic foundation upon which we can work with these ideas. In order to build
this foundation, we first turn to a discussion of ideals and quotients (Section 0.3),
prime and maximal ideals (Section 0.4), and the special case of single-variable poly-
nomials (Section 0.5). We will then return to the question of unique factorization of
polynomials in Section 0.6.

Exercises for Section 0.2
0.2.1 Prove that the set of units R∗ ⊆ R is a group under multiplication.

0.2.2 Prove that K[x1, . . . , xn]∗ = K∗ = K \ {0}.

0.2.3 Using the fact that a2 + 1 6= 0 for any real number a ∈ R, prove that x2 + 1
does not factor into linear terms.

0.2.4 Let f ∈ K[x] be a polynomial of degree 2 or 3. Prove that f is irreducible if
and only if there does not exist an element a ∈ K such that f (a) = 0.

0.2.5 Show that the previous problem fails for polynomials of degree 4 by giving an
explicit example of a reducible polynomial in R[x] that has no zeros.

0.2.6 Using degree arguments, prove that x2 + y2 − 1 is irreducible in C[x, y].

0.2.7 Suppose p ∈ R is prime. If p | a1 · · · an, prove that p | ai for some i.

0.2.8 (a) Describe the units in Z[x].
(b) Give an example of a linear polynomial in Z[x] that is reducible.

0.2.9 Explain why every field is a UFD.
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Section 0.3 Ideals and quotients
One of the central constructions in ring theory is that of taking quotients by ideals. In
this section, we review the quotient construction, along with the most fundamental
result regarding quotients—the First Isomorphism Theorem. Ideals and quotient
rings are standard topics in a first course in ring theory, so the proofs in this section
are left to the exercises. However, we include a number of instructive examples to
illustrate how to work with ideals and quotients in the context of polynomial rings.

Our discussion of quotient rings begins with the notion of an ideal.

0.24 DEFINITION Ideals

An ideal of R is a nonempty subset I ⊆ R satisfying two properties:

(i) for all a, b ∈ I, a− b ∈ I, and

(ii) for all a ∈ I and r ∈ R, ra ∈ I.

In words, a nonempty subset of a ring is an ideal if (i) it is closed under subtrac-
tion and (ii) it absorbs multiplication. In many contexts, the easiest way to describe
an ideal is by specifying a generating set. This method of describing ideals is made
precise in the next definition.

0.25 DEFINITION Generating sets of ideals

If A ⊆ R is a subset, then the ideal generated by A is the set of all R-linear
combinations of elements of A:

〈A〉 =
{ n

∑
i=1

riai

∣∣∣∣ n ∈N, r1, . . . , rn ∈ R, a1, . . . , an ∈ A
}
⊆ R.

An ideal that can be generated by a single element is called principal.

The reader is encouraged to verify that the set 〈A〉 is, in fact, an ideal. Moreover,
it is the smallest ideal of R that contains the set A (Exercise 0.3.4).

By definition, a principal ideal 〈a〉 consists of all multiples of its generator:

〈a〉 = {ra | r ∈ R} = {b ∈ R | a |b}.

Principal ideals are especially nice, but not all ideals in polynomial rings are gen-
erated by a single polynomial. The next example illustrates one such nonprincipal
ideal (see Exercise 0.3.5).

0.26 EXAMPLE An ideal in R[x1, . . . , xn]

Let I ⊆ R[x1, . . . , xn] be the subset consisting of all polynomials whose constant
term is zero. The set of such polynomials is closed under subtraction and absorbs
multiplication, so I is an ideal. Moreover, a polynomial is in I if and only if you can
factor out at least one variable from each term. Regarding generators, this implies
that I = 〈x1, . . . , xn〉.
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Given an ideal I ⊆ R, define a relation on R by

r ∼ s⇐⇒ r− s ∈ I.

Using Condition (i) in Definition 0.24, it can be shown that ∼ is an equivalence
relation (Exercise 0.3.6). The equivalence class of an element r ∈ R under this
equivalence relation is called a coset, denoted

[r] = r + I = {s ∈ R | s ∼ r} ⊆ R.

We typically prefer the notation [r] when the ideal I is understood from context, but
use the notation r + I when it is useful to emphasize the role of I. Notice that

[r] = [s]⇐⇒ r− s ∈ I.

0.27 EXAMPLE Cosets

Consider the principal ideal I = 〈x〉 ⊆ R[x]. Notice that [x + 2] = [x2 + 2]
because

(x + 2)− (x2 + 2) = x− x2 ∈ 〈x〉.
More generally, [ f (x)] = [g(x)] if and only if f (0) = g(0) ∈ R. In other words,
the collection of cosets is in natural bijection with the ring R via the identification

[ f (x)] 7−→ f (0) ∈ R.

In the previous example, we saw that the collection of cosets is in bijection with
the coefficient ring R, and can therefore be given the structure of a ring. The next
definition describes how to endow the set of cosets with a ring structure for any ideal.

0.28 DEFINITION Quotient rings

Let I ⊆ R be an ideal.The quotient ring R/I is the set of cosets

R/I = {[r] | r ∈ R} .

Coset addition and multiplication are defined by

[r] + [s] = [r + s] and [r][s] = [rs].

In the quotient R/I, the additive
identity is 0 = [0] and the multi-
plicative identity is 1 = [1]. Since
[a] = 0 if and only if a ∈ I, the quo-
tienting process can be thought of as
“setting elements of I equal to zero.”

It is not obvious that addition and
multiplication in R/I are well-defined.
In particular, since different elements
can be chosen to represent the same
coset, it is necessary to verify that
the operations are independent of the
choice of coset representatives. This
verification follows from Conditions (i)
and (ii) in Definition 0.24; we leave the computation to the reader (Exercise 0.3.8).
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Notice that, for any ideal I ⊆ R, there is a ring homomorphism

π : R→ R/I
a 7→ [a].

This homomorphism is called the quotient homomorphism.

0.29 EXAMPLE Quotient ring computations

Consider the principal ideal 〈y − x2〉 ⊆ R[x, y]. By definition of addition and
multiplication in the quotient ring, we see that

[y]− [x]2 = [y− x2] = 0 ∈ R[x, y]
〈y− x2〉 .

In particular, this implies that [y] = [x]2. Taking this logic a step farther, we see, for
example, that

[y]2 = [x]4 and [x]2[y]3 = [x]8.

In general, for any polynomial f (x, y) ∈ R[x, y], observe that

[ f (x, y)] = f ([x], [y]) = f ([x], [x]2) = [ f (x, x2)].

In other words, when we form the quotient by the ideal 〈y− x2〉, we are able to treat
y− x2 as the zero element and replace every occurrence of y with x2. In particular,
every element of the quotient can be represented in the variable x alone. As we will
see in Example 0.32 below, the quotient ring in this example is isomorphic to R[x].

The most important application of the quotient construction is that it provides a
tool for turning homomorphisms into isomorphisms. The proof of the three points
in the following fundamental result are left to the reader (Exercise 0.3.9).

0.30 THEOREM First Isomorphism Theorem for rings

If ϕ : R→ S is a ring homomorphism, then

(i) im(ϕ) = {s ∈ S | s = ϕ(r) for some r ∈ R} is a subring of S,

(ii) ker(ϕ) = {r ∈ R | ϕ(r) = 0} is an ideal of R, and

(iii) the function

[ϕ] :
R

ker(ϕ)
→ im(ϕ)

[r] 7→ [ϕ(r)]

is a well-defined ring isomorphism.

We close this section with a few detailed examples that demonstrate applica-
tions of the first isomorphism theorem in the context of polynomial rings. For more
examples, we direct the reader to the exercises.
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0.31 EXAMPLE 〈x1, . . . , xn〉 ⊆ R[x1, . . . , xn]

Consider the ring homomorphism

ϕ : R[x1, . . . , xn]→ R
f (x1, . . . , xn) 7→ f (0, . . . , 0).

Notice that f (0, . . . , 0) is simply the constant term of f . Some time reflecting should
convince the reader that ϕ is surjective and the kernel of ϕ consists of all polynomials
with vanishing constant term. Thus, by Example 0.26,

ker(ϕ) = 〈x1, . . . , xn〉 ⊆ R[x1, . . . , xn],

and by the First Isomorphism Theorem, we conclude that [ϕ] is an isomorphism:

R[x1, . . . , xn]

〈x1, . . . , xn〉
∼= R.

Using similar arguments, this example can be generalized in a number of ways. See,
for example, Exercises 0.3.11 and 0.3.12.

0.32 EXAMPLE 〈y− x2〉 ⊆ R[x, y]

This example verifies that
R[x, y]
〈y− x2〉

∼= R[x].

Based on the computations in Example 0.29, this should make sense: we can replace
every occurrence of y with x2 and write every coset in terms of x alone. To make
this argument precise using the first isomorphism theorem, it suffices to construct a
surjective homomorphism ϕ : R[x, y]→ R[x] with kernel 〈y− x2〉.

Define

ϕ : R[x, y]→ R[x]

f (x, y) 7→ f (x, x2).

It is straightforward to convince oneself that ϕ is a surjective ring homomorphism.
Thus, it remains to prove that 〈y− x2〉 = ker(ϕ). We prove both inclusions.

(⊆) Suppose f (x, y) ∈ 〈y− x2〉. This means that there exists g(x, y) ∈ R[x, y]
such that

f (x, y) = (y− x2)g(x, y).

Evaluating ϕ at f (x, y), we see that

ϕ( f (x, y)) = (x2 − x2)g(x, x2) = 0,

so f (x, y) ∈ ker(ϕ).
(⊇) Suppose f (x, y) ∈ ker(ϕ). By the computations carried out in Example

0.29, we see that [ f (x, y)] = [ f (x, x2)] in the quotient ring R[x, y]/〈y− x2〉, which
means that

(0.33) f (x, y)− f (x, x2) ∈ 〈y− x2〉.
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Moreover, since f (x, y) ∈ ker(ϕ), we know that

(0.34) 0 = ϕ( f (x, y)) = f (x, x2) ∈ R[x] ⊆ R[x, y].

Applying (0.34) and (0.33), we conclude that

f (x, y) = f (x, y)− f (x, x2) ∈ 〈y− x2〉.

Exercise 0.3.13 provides a useful generalization of this result.

Exercises for Section 0.3
0.3.1 Let I ⊆ R be an ideal. Prove that I = R if and only if I contains a unit.

0.3.2 Prove that ideals are closed under addition.

0.3.3 Prove that the only ideals of a field K are {0} and K.

0.3.4 Let A ⊆ R be a subset. Prove the following.

(a) The set 〈A〉 is an ideal of R.
(b) If I ⊆ R is any ideal containing A, then 〈A〉 ⊆ I.

0.3.5 Prove that 〈x1, . . . , xn〉 ⊆ K[x1, . . . , xn] is not a principal ideal if n > 1.

0.3.6 Let I ⊆ R be an ideal and consider the relation on R given by

r ∼ s⇐⇒ r− s ∈ I.

(a) Prove that ∼ is reflexive: r ∼ r for all r ∈ R.
(b) Prove that ∼ is symmetric: r ∼ s if and only if s ∼ r.
(c) Prove that ∼ is transitive: if r ∼ s and s ∼ t, then r ∼ t.

Thus, ∼ is an equivalence relation.

0.3.7 Prove that r + I = {r + a | a ∈ I}, justifying the notation.

0.3.8 Let I ⊆ R be an ideal and let r1, r2, s ∈ R. Prove the following.

(a) If r1 ∼ r2, then r1 + s ∼ r2 + s.
(b) If r1 ∼ r2, then r1s ∼ r2s.

Thus, addition and multiplication in the quotient ring R/I are well-defined.

0.3.9 Prove the first isomorphism theorem for rings.

0.3.10 Let ϕ : R→ S be a ring homomorphism.

(a) If I ⊆ S is an ideal, prove that ϕ−1(I) ⊆ R is an ideal.
(b) If ϕ is surjective and I ⊆ R is an ideal, prove that ϕ(I) ⊆ S is an ideal.
(c) Give an example of a nonsurjective ring homomorphism ϕ : R→ S and

an ideal I ⊆ R such that ϕ(I) is not an ideal.
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0.3.11 Prove that
R[x1, . . . , xn]

〈xk+1, . . . , xn〉
∼= R[x1, . . . , xk].

0.3.12 Let a1, . . . , an be elements of R. Prove that

R[x1, . . . , xn]

〈x1 − a1, . . . , xn − an〉
∼= R.

0.3.13 Let f1, . . . , fk ∈ R[x1, . . . , xn] and g ∈ R[x1, . . . , xn−1]. Consider the ring
homomorphism

ϕ : R[x1, . . . , xn]→ R[x1, . . . , xn−1]

f (x1, . . . , xn−1, xn) 7→ f (x1, . . . , xn−1, g).

Use the First Isomorphism Theorem to prove that

R[x1, . . . , xn]

〈 f1, . . . , fk, xn − g〉
∼=

R[x1, . . . , xn−1]

〈ϕ( f1), . . . , ϕ( fk)〉
.

(Notice that Examples 0.31 and 0.32 and Exercise 0.3.11 and 0.3.12 all follow
from the k = 0 case of this result. It essentially says that quotienting by xn− g
is equivalent to replacing all occurances of xn with g.)

0.3.14 Prove that every element of the quotient ring

R[x, y]
〈x2 + y2 − 1〉

can be represented uniquely by a polynomial of the form f (x) + yg(x) where
f (x), g(x) ∈ R[x].

0.3.15 Consider the quotient ring

R =
K[x, y]
〈x2 − y3〉 .

(a) Prove that every element of R can be represented by a polynomial of the
form f (y) + xg(y) where f (y), g(y) ∈ K[y].

(b) Prove that R is an integral domain.
(c) Prove that [x], [y] ∈ R are irreducible.
(d) Prove that [x], [y] ∈ R are not prime.
(e) Find an element in R that has two distinct irreducible factorizations.
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Section 0.4 Prime and maximal ideals
Given an ideal I ⊆ R, how do the ring-theoretic properties of R/I translate to
properties of the ideal I? For example, if R/I is an integral domain or a field,
what does this tell us about I? In this section, we discuss these questions through
the introduction of two special types of ideals—prime and maximal ideals—both
of which are central in the study of ring theory. We provide several examples of
prime and maximal ideals in the context of polynomial rings, and we close with an
application of how these notions can be used to study irreducible factorizations.

0.35 DEFINITION Prime and maximal ideals

An ideal I ⊆ R is prime if I 6= R and, for all a, b ∈ R,

ab ∈ I =⇒ a ∈ I or b ∈ I.

An ideal I ⊆ R is maximal if I 6= R and there does not exist an ideal J ⊆ R
such that

I ( J ( R.

0.36 EXAMPLE Eponymous example of prime ideals

It follows from the definitions (Exercise 0.4.1) that a nonzero element p ∈ R is
prime if and only if 〈p〉 ⊆ R is a prime ideal. In particular, 〈2〉, 〈3〉, 〈5〉, and 〈7〉
are all examples of prime ideals in Z, but 〈1〉, 〈4〉, 〈6〉, and 〈8〉 are not.

0.37 EXAMPLE 〈x〉 ⊆ K[x] is maximal

To prove that 〈x〉 is maximal, suppose J ⊆ K[x] is an ideal and 〈x〉 ( J; we prove
that J = K[x].

Since 〈x〉 consists of all polynomials without a constant term, J must contain at
least one polynomial with a nonzero constant term:

f = a0 + a1x + a2x2 + · · ·+ anxn ∈ J and a0 6= 0.

Since 〈x〉 is a subset of J, all polynomials without a constant term are elements of J.
This implies that

g = a1x + a2x2 + · · ·+ anxn ∈ J.

Since ideals are closed under subtraction, a0 = f − g ∈ J. Since a0 is a unit in
K[x1, . . . , xn], this implies that J = K[x1, . . . , xn].

The next result is a useful characterization of prime and maximal ideals in terms
of the ring-theoretic properties of their quotients.
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0.38 PROPOSITION Quotients by prime and maximal ideals

Let I ⊆ R be an ideal.

(i) The ideal I is prime if and only if R/I is an integral domain.

(ii) The ideal I is maximal if and only if R/I is a field.

PROOF We prove the forward implication for each property, and we leave the
reverse implications to Exercises 0.4.4 and 0.4.5.

We prove the forward implication in (i) by contrapositive. Assume that R/I is
not an integral domain, so that there exist nonzero cosets [a], [b] ∈ R/I such that
[a][b] = 0. By definition of the quotient ring, this implies that a, b /∈ I but ab ∈ I.
In other words, I is not a prime ideal.

To prove the forward implication of (ii), suppose I is maximal and let [a] ∈ R/I
be a nonzero coset, meaning that a /∈ I. We must show that [a] has a multiplicative
inverse. Consider the ideal generated by I and a:

J = 〈I, a〉.

Since a /∈ I, I ( J. By maximality of I, this implies that J = R, so 1 ∈ J. By
definition of generating sets of ideals, we can write 1 as

1 = r1b1 + · · ·+ rnbn + sa

for some b1, . . . , bn ∈ I and r1, . . . , rn, s ∈ R. Since I is itself an ideal, this implies
that 1 = b + sa where b = r1b1 + · · ·+ rnbn ∈ I and s ∈ R. Therefore, in the
quotient ring R/I,

1 = [1] = [b + sa] = [b] + [s][a] = [s][a].

Thus, [a] has a multiplicative inverse.

Since every field is an integral domain, we obtain the following immediate con-
sequence of Proposition 0.38.

0.39 COROLLARY Maximal implies prime

Every maximal ideal is a prime ideal.

0.40 EXAMPLE 〈x2〉 ⊆ R[x] is not prime

Notice that

[x] ∈ R[x]
〈x2〉

is a nonzero element of the quotient ring, but [x][x] = [x2] = 0. Thus, [x] is a
zero divisor. Since the quotient ring R[x]/〈x2〉 contains a zero divisor, it is not
an integral domain. From Proposition 0.38, we conclude that 〈x2〉 is not a prime
ideal. In particular, this implies that 〈x2〉 is not maximal, which can also be verified
directly:

〈x2〉 ( 〈x〉 ( K[x].
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0.41 EXAMPLE 〈y− x2〉 ⊆ K[x, y] is prime but not maximal

By Example 0.32,
K[x, y]/〈y− x2〉 ∼= K[x].

Since K[x] is an integral domain, but not a field, we conclude that 〈y − x2〉 is a
prime ideal, but not a maximal ideal.

0.42 EXAMPLE 〈x1, . . . , xn〉 ⊆ K[x1, . . . , xn] is maximal

By Example 0.31,
K[x1, . . . , xn]/〈x1, . . . , xn〉 ∼= K.

Since K is a field, we conclude that 〈x1, . . . , xn〉 ⊆ K[x1, . . . , xn] is a maximal ideal.

0.43 EXAMPLE 〈x2 + 1〉 ⊆ R[x] versus 〈x2 + 1〉 ⊆ C[x]

Consider the quotient
R[x]
〈x2 + 1〉 .

Observe that [x] satisfies [x]2 = −[1] = −1. In other words, [x] is a square root
of −1. We know of another ring that has a square root of −1; namely, the field of
complex numbers C.

Consider the function

ϕ : R[x]→ C

f (x) 7→ f (i).

It can be shown (Exercise 0.4.6) that ϕ is a surjective ring homomorphism and that
ker(ϕ) = 〈x2 + 1〉. Thus, by the First Isomorphism Theorem, we conclude that the
quotient ring is isomorphic to the field of complex numbers:

R[x]
〈x2 + 1〉

∼= C.

Therefore, 〈x2 + 1〉 ⊆ R[x] is a maximal ideal.
Now, consider the quotient ring

C[x]
〈x2 + 1〉 .

In this case, neither of the elements [x− i] nor [x + i] is zero, but their product is:

[x− i][x + i] = [x2 + 1] = 0 ∈ C[x]
〈x2 + 1〉 .

Thus, the quotient ring over C contains zero-divisors—it is not an integral domain.
Therefore, 〈x2 − 1〉 ⊆ C[x] is neither prime nor maximal.

We close this section with an application that illustrates how the notions of prime
and maximal ideals can be used to help study questions concerning irreducible and
prime elements. We begin with a definition of a particularly nice type of ring.
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0.44 DEFINITION Principal ideal domain

An integral domain R is called a principal ideal domain (PID) if every ideal
in R is principal.

For example, the ring of integers Z is a PID, as the reader is encouraged to verify
in Exercise 0.4.7. As Exercise 0.3.5 shows, the polynomial ring K[x1, . . . , xn] is not
a PID for n > 1 because 〈x1, . . . , xn〉 is not a principal ideal. However, as we will
see in the next section, the single-variable polynomial ring K[x] is a PID.

The next result uses the notions of prime and maximal ideals to prove that every
PID is a UFD. In particular, along with Exercise 0.4.7, this provides a self-contained
proof of the uniqueness of prime factorization in Z.

0.45 PROPOSITION PIDs are UFDs

Every principal ideal domain is a unique factorization domain.

PROOF Suppose that R is a PID. We begin by proving that R is a FD. Suppose,
towards a contradiction, that there exists a nonzero, nonunit a ∈ R that does not
factor as a product of irreducible elements. This implies that a is not irreducible
so we can factor it as a = a1b1 where neither a1 nor b1 is a unit. If both a1 and
b1 factored as products of irreducible elements, then so would a. Therefore, without
loss of generality, assume a1 does not factor as a product of irreducible elements and
write a1 = a2b2 where neither a2 nor b2 is a unit. As before, we can assume, without
loss of generality, that a2 does not factor as a product of irreducible elements.

Continuing the above process, we recursively construct a sequence

(a = a0, a1, a2, a3, . . . )

where, for every i ≥ 0, ai = ai+1bi+1 for some nonunit bi+1. It follows from
Exercise 0.4.8 that the ideals 〈ai〉 fit into a chain of strict containment:

〈a0〉 ( 〈a1〉 ( 〈a2〉 ( 〈a3〉 ( . . .

The union of the above ideals is an ideal by Exercise 0.4.9. Since R is a PID, choose
c ∈ R such that

〈c〉 =
∞⋃

i=0

〈ai〉.

Then c must be in 〈an〉 for some n, which implies that 〈c〉 = 〈ak〉 for all k ≥ n.
This contradicts the strict containment 〈an〉 ( 〈an+1〉.

Now, to prove that R is a UFD, it suffices, by Proposition 0.22 to prove that
every irreducible element of R is prime. Let p ∈ R be irreducible. To prove that p
is prime, it suffices to prove that 〈p〉 is maximal. Towards this end, suppose I ⊆ R
is an ideal such that 〈p〉 ⊆ I ⊆ R. We must prove that either I = 〈p〉 or I = R.

Since R is a PID, I = 〈r〉 for some r ∈ R. Since p ∈ 〈p〉 ⊆ 〈r〉, it follows that
p = rs for some s ∈ R. By the irreducibility of p, either r or s is a unit. The reader
should take a moment to verify that r being a unit implies that I = R and s being a
unit implies that I = 〈p〉.
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Exercises for Section 0.4
0.4.1 Prove that a nonzero element p ∈ R is prime if and only if the principal ideal

〈p〉 ⊆ R is a prime ideal.

0.4.2 Prove that 〈y, y − x2〉 ⊆ K[x, y] is not prime, even though both generators
are prime elements.

0.4.3 Prove that the zero ideal 〈0〉 ⊆ R is prime if and only if R is an integral
domain.

0.4.4 Let I ⊆ R be an ideal such that R/I is an integral domain. Prove that I is a
prime ideal.

0.4.5 Let I ⊆ R be an ideal such that R/I is a field. Prove that I is a maximal ideal.

0.4.6 Prove that
R[x]
〈x2 + 1〉

∼= C.

0.4.7 Prove that Z is a PID. (Hint: If I ⊆ Z is an ideal, let n be the smallest
positive integer in I. Prove that I = 〈n〉.)

0.4.8 Let R be an integral domain. If a = bc and c /∈ R∗, prove that 〈a〉 ( 〈b〉.

0.4.9 Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be an ascending chain of ideals of a ring R. Prove
that

I =
∞⋃

k=1

Ik

is an ideal of R.

0.4.10 Let R be a PID. Prove that every nonzero prime ideal in R is maximal.
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Section 0.5 Single-variable polynomials
In this section, we consider the ring of single-variable polynomial rings with coef-
ficients in a field. We introduce a number of fundamental results, concluding with
the fact that K[x] is a UFD, which will serve as the starting place to prove that
K[x1, . . . , xn] is a UFD. The results in this section are direct consequences of the
polynomial division algorithm, which is the polynomial analogue of the long divi-
sion algorithm we learn in grade school.

0.46 THEOREM Polynomial division algorithm

For any f , g ∈ K[x] with g 6= 0, there exist unique polynomials q, r ∈ K[x]
such that

f = qg + r

with r = 0 or deg(r) < deg(g).

The polynomials q and r satisfying the conditions in the division algorithm are
called the quotient and remainder of f divided by g. Notice that the remainder is
zero if and only if g | f .

Before presenting a proof of the polynomial division algorithm, we work through
a detailed example that illustrates the step-by-step process for computing the quo-
tient and remainder. The reader is encourage to work out several additional examples
in Exercise 0.5.1.

0.47 EXAMPLE Polynomial long division

Consider polynomials f = x3 + x2 + 1 and g = x − 2 in Q[x]. We compute the
quotient and remainder of f divided by g.

Step 1: Subtract the unique multiple of g that cancels the leading term of f :

f − x2g = 3x2 + 1.

Step 2: Subtract another multiple of g to cancel the leading term of 3x2 + 1:

f − x2g− 3xg = −6x + 1.

Step 3: Subtract another multiple of g to cancel the leading term of −6x + 1:

f − x2g− 3xg + 6g = −11.

Final step: Since the polynomial −11 has degree strictly smaller than g, we stop
here. Rearranging terms, we see that

f = qg + r

where q = x2 + 3x− 6 and r = −11.
Notice that each step decreased the degree of the polynomial appearing in the

right-hand side, ensuring that the process would eventually terminate.
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PROOF OF THEOREM 0.46 We begin by proving that quotients and remainders
exist, then we prove that they are unique.

Fix a nonzero polynomial g. In order to show that quotients and remainders exist
for any f divided by this particular g, we proceed by induction on deg( f ) (in the
case where f = 0, set q = r = 0).

(Base case) Suppose deg( f ) = 0. If deg(g) > 0, set q = 0 and r = f . If
deg(g) = 0, then g is a nonzero constant. Since K is a field, g has a multiplicative
inverse. Set q = f g−1 and r = 0. The reader can directly verify that these choices
of q and r satisfy the conditions in the division algorithm.

(Induction step) Let f ∈ K[x] be a polynomial of degree d > 0. If deg(g) > d,
set q = 0 and r = f . If deg(g) ≤ d, set k = deg(g) and let ad and bk be the leading
coefficients of f and g, respectively. By construction, the polynomial

f̃ = f − adb−1
k xd−kg

is zero or deg( f̃ ) < d. If f̃ = 0, set q = adb−1
k xd−k and r = 0. Otherwise, by the

induction hypothesis, choose q̃ and r̃ such that r̃ = 0 or deg(r̃) < deg(g) and

f̃ = q̃g + r̃,

and set q = q̃ + adb−1
k xd−k and r = r̃. In each case, the reader can check that q and

r satisfy the conditions in the division algorithm, completing the induction step and
the proof of existence.

It remains to prove uniqueness. If q, r and q̃, r̃ both satisfy the conclusion of the
division algorithm, then

f = qg + r = q̃g + r̃ =⇒ g(q̃− q) = (r− r̃).

By assumption, either r − r̃ = 0 or deg(r − r̃) < deg(g). In the latter case,
additivity of degree implies that deg(q̃ − q) < 0, a contradiction. Therefore, it
must be the case that r = r̃. Since g 6= 0 and K[x] is an integral domain, it then
follows that q = q̃.

With the division algorithm in hand, we now prove a slew of important conse-
quences. The first two applications concern zeroes of single-variable polynomials.

0.48 COROLLARY Factor theorem

If f (x) ∈ K[x] and a ∈ K, then f (a) = 0 if and only if (x− a) | f (x).

PROOF Using the division algorithm, write

f (x) = (x− a)q + r

for some q, r ∈ K[x] such that r = 0 or deg(r) < deg(x− a) = 1. In either case,
the remainder must be a constant: r ∈ K. Evaluating at x = a, we see that

f (a) = (a− a)q(a) + r = r.

The result then follows from the observation that (x − a) | f (x) if and only if the
remainder of f (x) divided by x− a, which we just proved is f (a), is zero.
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0.49 EXAMPLE xn − 1 ∈ K[x]

Consider the polynomial f (x) = xn − 1 ∈ K[x]. Since f (1) = 1n − 1 = 0,
Corollary 0.48 implies that (x− 1) | (xn − 1). Indeed, by multiplying out the right-
hand side, one checks that

xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x + 1).

0.50 COROLLARY Finite zeroes theorem

If f (x) ∈ K[x] is a nonzero polynomial of degree d, then there are at most d
values a ∈ K such that f (a) = 0.

PROOF We proceed by induction on d.
(Base case) Suppose d = 0. Then f = b for some nonzero constant b ∈ K.

Thus, f (a) = b 6= 0 for all a ∈ K, so f does not have any zeroes.
(Induction step) Let f be a polynomial of degree d > 0. If f does not have

any zeroes, then we are done. If f has at least one zero a ∈ K, then Corollary 0.48
implies that

f = (x− a)g

for some g ∈ K[x]. By additivity of degree, deg(g) = d − 1, so the induction
hypothesis implies that g has at most d− 1 zeroes. Since every zero of f other than
a must also be a zero of g, we conclude that f has at most d zeroes.

It may be helpful for this example to
recall Euler’s formula:

eiθ = cos(θ) + i sin(θ).

0.51 EXAMPLE xn − 1 ∈ C[x]

By Corollary 0.50, the polynomial
xn − 1 ∈ C[x] has at most n zeroes.
For j = 1, . . . , n, consider the complex
number

aj = e
2πi
n j.

Since
(aj)

n = e2πij = 1j = 1,

we see that aj is a zero of xn − 1 for every j. Since {a1, . . . , an} is a set of n distinct
zeroes, we conclude that these must be all of the zeroes of xn − 1.

The following result is another important consequence of the division algorithm.

0.52 COROLLARY K[x] is a PID

The single-variable polynomial ring K[x] is a principal ideal domain.

PROOF Let I ⊆ K[x] be an ideal and define the set

S = {deg( f ) | f ∈ I and f 6= 0} ⊆N.
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If S = ∅, then I is the zero ideal 〈0〉, thus principal. If S 6= ∅, then, by the well-
ordering principle, S contains a least element, call it d. Let f ∈ I be a nonzero
element such that deg( f ) = d. To prove that I is principal, we show that I = 〈 f 〉.

Since f ∈ I, then we obtain the inclusion 〈 f 〉 ⊆ I for free. To prove the other
inclusion, suppose g ∈ I. Applying the division algorithm, we have

g = q f + r

with r = 0 or deg(r) < deg( f ) = d. Since f , g ∈ I, it follows that r ∈ I. If
r 6= 0, then deg(r) ∈ S and deg(r) < d, contradicting that d = min(S). Thus,
r = 0, from which we conclude that g ∈ 〈 f 〉.

We close this section with the important result that K[x] is a UFD, which is now
an immediate consequence of Proposition 0.45.

0.53 COROLLARY K[x] is a UFD

The single-variable polynomial ring K[x] is a unique factorization domain.

Exercises for Section 0.5
0.5.1 Compute the quotient and remainder for the following pairs in Q[x].

(a) f = 2x3 + 7x2 + 2x + 9, g = 2x + 3
(b) f = 3x3 − 2x2 + 5, g = x2 − 1
(c) f = x3 + 3x2 − 4x− 12, g = x2 + x− 6

0.5.2 Consider f = x3 − x2 + x− 1 ∈ Q[x].

(a) Use Corollary 0.48 to show that x− 1 divides f .
(b) Compute the quotient of f divided by x− 1.

0.5.3 Give an example to show that the polynomial division algorithm fails in Z[x].

0.5.4 Prove that Corollary 0.48 holds in R[x] for any ring R.

0.5.5 Prove that Corollary 0.50 holds in R[x] if and only if R is an integral domain.

0.5.6 Give an example of a ring R and a nonzero polynomial f ∈ R[x] with in-
finitely many zeroes.

0.5.7 Compute the unique irreducible factorization of xn − 1 ∈ C[x].
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Section 0.6 Unique factorization in polynomial rings
In this section, we conclude the proof that K[x1, . . . , xn] is a unique factorization
domain. By Propositions 0.17 and 0.22, all that remains to be proved is the following
analogue of Euclid’s Lemma.

0.54 PROPOSITION Euclid’s Lemma for polynomials

Every irreducible polynomial in K[x1, . . . , xn] is prime.

The proof of Proposition 0.54 involves an induction argument on the number of
variables, starting with the base case of K[x]. Because the proof is rather involved,
we start with a brief overview of the main ideas, then we develop each of those ideas
in turn, finally merging them into a formal proof at the end of this section.

To motivate the ideas in the section, recall that we can view the polynomial ring
K[x1, . . . , xn] as a polynomial ring in n− 1 variables:

K[x1, . . . , xn] = R[x1, . . . , xn−1],

where R = K[xn]. One of the important new ideas that we introduce in this section is
that of the fraction field, which associates a field Frac(R) to any integral domain R,
along with a canonical inclusion R ⊆ Frac(R). In particular, if K′ = Frac(K[xn]),
we obtain an inclusion

K[x1, . . . , xn] ⊆ K′[x1, . . . , xn−1].

Using this inclusion, we can begin to see an induction argument coming together.
In particular, if our induction hypothesis is that irreducible polynomials in n − 1
variables over any field are prime, then we can proceed to prove that irreducible
polynomials in n variables are prime using the following two steps (Lemmas 0.59
and 0.60, respectively):

1. Prove that every irreducible polynomial in K[x1, . . . , xn] remains irreducible
in K′[x1, . . . , xn−1] (hence prime, by the induction hypothesis).

2. Prove that every irreducible polynomial in K[x1, . . . , xn] that happens to be
prime in K′[x1, . . . , xn−1] is also prime in K[x1, . . . , xn].

Now that we have outlined the road ahead, we begin in earnest by developing
the notions of fraction fields, starting with the definition of fractions.

0.55 PROPOSITION/DEFINITION Fractions

Let R be an integral domain. A fraction of elements in R is an expression of
the form a/b where a, b ∈ R and b 6= 0. Equality of fractions is defined by

a
b
=

c
d
⇐⇒ ad = bc ∈ R.

Equality of fractions is an equivalence relation, and the set of equivalence
classes is denoted Frac(R).
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That equality of fractions is, in fact, an equivalence relation is verified in Exer-
cise 0.6.1. We now consider a few familiar examples of the fraction construction.

0.56 EXAMPLE Q = Frac(Z)

While the definition of equality of fractions might be confusing at first glance, it is
modeled on the familiar way that rational numbers are constructed from the integers.
In particular, as we learn in grade school, to check an equality of rational numbers,
such as

3
4
=

6
8

,

we cross multiply: 3 · 8 = 4 · 6 ∈ Z.

0.57 EXAMPLE Rational functions

As the polynomial rings K[x1, . . . , xn] play such a central role in our story, fractions
of polynomials have a special name: they are called rational functions. We denote
the set of rational functions using the following notation:

K(x1, . . . , xn) = Frac(K[x1, . . . , xn]).

Consider, for example, the following two elements of K(x, y):

2x2 + x− 2xy− y
x2 − y2 and

2x + 1
x + y

.

In fact, these rational functions are equal because, as the reader can verify,

(2x2 + x− 2xy− y)(x + y) = (2x + 1)(x2 − y2).

Another way to view this equality is by canceling like factors in the numerator and
denominator:

2x2 + x− 2xy− y
x2 − y2 =

(x− y)(2x + 1)
(x− y)(x + y)

=
2x + 1
x + y

.

The word function here is standard
but misleading; a rational function
should not necessarily be thought of
as a function, per se, with a domain,
a range, and a rule. Rather, it is sim-
ply a formal quotient of polynomials.

In fact, the set of all fractions is more
than just a set, it forms a field un-
der the familiar operations of addition
and multiplication of quotients. Since
the same fraction can be represented in
multiple ways, it needs to be verified
that the operations are well-defined,
meaning that they are independent of

the choice of representatives. In addition, one should verify that, with these op-
erations, the set of fractions satisfies the field axioms. We formalize the addition and
multiplication below, and leave the necessary verifications to Exercise 0.6.2.
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0.58 PROPOSITION/DEFINITION Fraction field

Let R be an integral domain. The operations of addition and multiplication
defined by

a
b
+

c
d
=

ad + bc
bd

and
a
b
· c

d
=

ac
bd

.

are well-defined on equivalence classes of fractions and endow Frac(R) with
the structure of a field, called the fraction field of R.

One of the most important properties of the fraction field is that it canonically
contains R as a subring (Exercise 0.6.3):

R = {a/1 | a ∈ R} ⊆ Frac(R).

In particular, K[xn] ⊆ K(xn), and thus, K[x1, . . . , xn] ⊆ K(xn)[x1, . . . , xn−1].
Moreover, given any element f ∈ K(xn)[x1, . . . , xn−1], we can always find a poly-
nomial r ∈ K[xn] such that r f ∈ K[x1, . . . , xn] (Exercise 0.6.5). Multiplying f
by such an r is called clearing the denominators in f , and is used frequently in the
proofs of this section.

We are now ready to prove the two lemmas required for Proposition 0.54.

0.59 LEMMA

If f is irreducible in K[x1, . . . , xn] and f /∈ K[xn], then f is irreducible as an
element of K(xn)[x1, . . . , xn−1].

PROOF We prove the contrapositive. Assume that f ∈ K[x1, . . . , xn] is reducible
in K(xn)[x1, . . . , xn−1]; our goal is to prove that f is reducible in K[x1, . . . , xn].
Since f is reducible in K(xn)[x1, . . . , xn−1], we can write f = gh where neither g
nor h is an element of K(xn). By clearing the denominators in both g and h, we can
write

r f = g0h0,

where r ∈ K[xn] and g0, h0 ∈ K[x1, . . . , xn] \ K[xn]. Since the single-variable
polynomial ring K[xn] is a UFD (Corollary 0.53), write r = p1 · · · p` where each
pi is irreducible, and thus prime. We have

p1 · · · p` f = g0h0.

Since p1 is prime in K[xn], it follows from Exercise 0.6.6 that pn is also prime in
K[xn][x1, . . . , xn−1] = K[x1, . . . , xn]. Therefore, by definition of primeness, p1 | g0
or p1 | h0. Without loss of generality, suppose p1 | g0 and write g0 = p1g1 and
h1 = h0 so that

p2 · · · p` f = g1h1.

Repeating the above procedure with p2, . . . , p`, we conclude that f = g`h`. Since
neither g0 nor h0 were elements of K[xn], it follows that neither g` nor h` are ele-
ments of K. Thus, f is reducible in K[x1, . . . , xn].
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0.60 LEMMA

If f ∈ K[x1, . . . , xn] is irreducible as an element of K[x1, . . . , xn] and prime
as an element of K(xn)[x1, . . . , xn−1], then f is prime in K[x1, . . . , xn].

PROOF Suppose that f ∈ K[x1, . . . , xn] is irreducible, and that f is prime in
K(xn)[x1, . . . , xn−1]. To prove that f is prime in K[x1, . . . , xn], suppose f | gh in
K[x1, . . . , xn]. Since f is prime in K(xn)[x1, . . . , xn−1], we know that f | g or f | h
in K(xn)[x1, . . . , xn−1]. Without loss of generality, assume f | g and write

a f = g

for some a ∈ K(xn)[x1, . . . , xn−1]. By clearing denominators in a, write

a0 f = rg ∈ K[x1, . . . , xn]

for some a0 ∈ K[x1, . . . , xn] and r ∈ K[xn]. As in the proof of Lemma 0.59, let
r = p1 · · · p` be a prime factorization of r, from which it follows that p1 must divide
a0 or f . Since f is irreducible in K[x1, . . . , xn], the only way p1 could divide f is if
they differed by a constant, which would imply that f ∈ K[xn]. This would mean
that f is a unit in K(xn)[x1, . . . , xn−1], which contradicts the assumption that f is
prime in K(xn)[x1, . . . , xn−1]. Thus, p1 must divide a0. Write a0 = a1 p1 so that

a1 f = p2 · · · p`g.

Repeating this procedure for p2, . . . , p`, we conclude that

a` f = g ∈ K[x1, . . . , xn].

Therefore, f | g in K[x1, . . . , xn] and it follows that f is prime.

Combining the previous two lemmas, we now prove Proposition 0.54.

PROOF OF PROPOSITION 0.54 Proceeding by induction on n, the base case
n = 1 is Corollary 0.53. To prove the induction step, suppose that, for some n ≥ 2
and for any field K, every irreducible polynomial in K[x1, . . . , xn−1] is prime. Let
K be a field and let f ∈ K[x1, . . . , xn] be irreducible; we must show that f is prime.

Since f is not a unit, it has positive degree in at least one variable; suppose
without loss of generality that it has positive degree in a variable other than xn.
Using that f is irreducible and not an element of K[xn], Lemma 0.59 implies that f
is irreducible as an element of K(xn)[x1, . . . , xn−1]. Because K(xn) is a field, the
induction hypothesis implies that f is prime in K(xn)[x1, . . . , xn−1]. Therefore, by
applying Lemma 0.60, we conclude that f is prime in K[x1, . . . , xn].

It can be proved, more generally, that
R[x1, . . . , xn] is a UFD whenever R
is a UFD. This level of generality is
not necessary for our purposes.

As an immediate consequence of
Propositions 0.17, 0.22, and 0.54, we
now conclude that K[x1, . . . , xn] is a
unique factorization domain. For ease
of reference, we close this section with
the precise statement of this result.
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0.61 THEOREM K[x1, . . . , xn] is a UFD

If f ∈ K[x1, . . . , xn] is nonconstant, then there exist irreducible polynomials
p1, . . . , p` ∈ K[x1, . . . , xn] such that

f = p1 · · · p`.

If f = q1 · · · qm is another irreducible factorization, then ` = m and, after
possibly reordering terms, qi is a constant multiple of pi for every i.

Exercises for Section 0.6
0.6.1 Prove that equality of fractions is an equivalence relation.

0.6.2 Let R be an integral domain and a/b, c/d, r/s ∈ Frac(R) with a/b = c/d.

(a) Prove that
a
b
+

r
s
=

c
d
+

r
s

and
a
b
· r

s
=

a
b
· r

s
.

(b) Prove that Frac(R) satisfies the field axioms.

0.6.3 Let R be an integral domain.

(a) Prove that the function

ϕ : R→ Frac(R)
a 7→ a/1

is an injective ring homomorphism.
(b) Let K be a field with R ⊆ K. Prove that Frac(R) ⊆ K.

0.6.4 Suppose that R is not an integral domain. Explain what might go wrong if we
try to construct the fraction field of R.

0.6.5 Let f ∈ K(xn)[x1, . . . , xn−1]. Prove that there is a polynomial r ∈ K[xn]
such that r f ∈ K[x1, . . . , xn].

0.6.6 Let a ∈ R and consider the surjective homomorphism

π : R[x1, . . . , xn]→ (R/〈a〉)[x1, . . . , xn].

(a) Prove that ker(π) = 〈a〉 ⊆ R[x1, . . . , xn] and conclude that

R[x1, . . . , xn]

〈a〉
∼= (R/〈a〉)[x1, . . . , xn].

(b) Prove that a is prime in R if and only if a is prime in R[x1, . . . , xn].
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Section 0.7 Irreducibility criteria
In order to have a large bank of concrete examples in algebraic geometry, it is useful
to have methods at our disposal for studying specific polynomials. For example, if
we have a particular polynomial in mind, such as

x2 + y2 + z2 − 1 ∈ R[x, y, z],

it might be helpful to be able to determine quickly whether or not this polynomial is
irreducible. In this final section of the chapter, we discuss two criteria for determin-
ing whether a given polynomial is irreducible. The first result follows quickly from
our prior developments and we leave its proof to Exercise 0.7.1.

0.62 PROPOSITION Characterization of irreducible polynomials

Let f ∈ K[x1, . . . , xn]. The following are equivalent.
1. f is irreducible;

2. f is prime;

3. 〈 f 〉 is a prime ideal;

4. K[x1, . . . , xn]/〈 f 〉 is an integral domain.

0.63 EXAMPLE y− x2 is irreducible in K[x, y], revisited

We have already proved directly that y− x2 is irreducible. In light of Proposition
0.62, this can be seen from the fact that K[x] is an integral domain and

K[x, y]
〈y− x2〉

∼= K[x].

It is not always helpful to apply Proposition 0.62 in practice, because the problem
of showing that an ideal is prime or that a quotient is an integral domain is typically
just as difficult as showing directly that a polynomial is irreducible—the proposition
translates the problem but does not necessarily simplify it.

The next test, called Eisenstein’s Criterion, while a bit more complicated to state,
is much more useful in practice, as will be illustrated in the subsequent examples.

0.64 PROPOSITION Eisenstein’s Criterion

Let R be an integral domain and f = anxn + · · · + a1x + a0 ∈ R[x] a
polynomial that satisfies the following conditions.

1. There does not exist a nonunit b ∈ R such that b | f .

2. There exists a prime element p ∈ R such that

• p | ai for i < n,
• p2 - a0.

Then f is irreducible.
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Unlike Proposition 0.62, Eisenstein’s Criterion is not an if-and-only-if statement.
In particular, Eisenstein’s Criterion can never be used to determine whether a single-
variable polynomial f ∈ K[x] is irreducible, simply because a field K does not
contain any prime elements. Before proving Eisenstein’s Criterion, we provide a few
example applications to demonstrate how to use it in the context of multi-variable
polynomials over fields. We include a number of further examples in the exercises.

0.65 EXAMPLE f = x2 + y2 − 1 is irreducible in R[x, y]

If we view f as an element of R[y] where R = R[x], then

f = a2y2 + a1y + a0

where a2 = 1, a1 = 0, and a0 = x2 − 1 = (x − 1)(x + 1). Notice that these
coefficients do not have any common nonconstant divisors in R[x], which verifies
the first condition in Eisenstein’s Criterion. Since

R[x]
〈x− 1〉

∼= R,

Working over R is not essential for
these two examples; the same argu-
ment works for any field for which
1 6= −1 (when char(K) 6= 2).

is an integral domain, p = x− 1 is
prime in R[x] and satisfies the sec-
ond condition of Eisenstein’s Criterion.
Therefore, we conclude that f is an ir-
reducible polynomial.

0.66 EXAMPLE f = x2 + y2 + z2 − 1 is irreducible in R[x, y, z]

As in the previous example, write

f = a2z2 + a1z + a0

where a2 = 1, a1 = 0 and a0 = x2 + y2 − 1. These coefficients do not have any
common nonconstant divisors in R[x, y], verifying the first condition in Eisentein’s
Criterion. Set p = x2 + y2 − 1, which is irreducible by the previous example, and
thus prime because R[x, y] is a UFD. The polynomial p satisfies the second condi-
tion of Eisenstein’s Criterion, from which we conclude that f is irreducible.

0.67 EXAMPLE f = x2y2 + yz2 + x3z2 ∈ K[x, y, z] is irreducible

Write
f = a3x3 + a2x2 + a1x + a0 ∈ R[x]

where R = K[y, z] and a3 = z2, a2 = y2, a1 = 0, and a0 = yz2. Notice that these
coefficients do not have any common nonconstant divisors in K[y, z], which verifies
the first condition in Eisenstein’s Criterion. Let p = y ∈ R. Since

R
〈p〉 =

K[y, z]
〈y〉

∼= K[z]

is an integral domain, we see that p = y is prime in R. Because p satisfies the
second condition of Eisenstein’s Criterion, we conclude that f is irreducible.
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PROOF OF PROPOSITION 0.64 Let f and p be as in the statement of the proposi-
tion, and suppose f = gh for some g, h ∈ R[x]. We must show that g or h is a unit
in R. By the first condition, f is not divisible by any nonunits in R, so it suffices to
prove that either g or h is an element of R.

Toward a contradiction, suppose g = b`x` + · · ·+ b0 and h = ckxk + · · ·+ c0
both have positive degree. Consider the ring homomorphism

ϕ : R[x]→ (R/〈p〉)[x]

∑
n≥0

αnxn 7→ ∑
n≥0

[αn]xn.

By our assumptions on f , it follows that

ϕ( f ) = [an]xn = ϕ(g)ϕ(h),

with [an] 6= 0. Since R/〈p〉 is an integral domain, ϕ(g) and ϕ(h) must each consist
of a single nonzero term (Exercise 0.7.2), and by additivity of degree, it follows that
ϕ(g) = [b`]x` and ϕ(h) = [ck]xk. In particular, this implies that p | b0 and p | c0,
so that p2 |b0c0 = a0, which contradicts the assumptions on p.

Exercises for Section 0.7
0.7.1 Prove Proposition 0.62 by citing relevant results from previous sections.

0.7.2 Suppose R is an integral domain and g, h ∈ R[x] such that gh = axn has a
single nonzero term. Prove that each of g and h have a single nonzero term.

0.7.3 Prove that wx− yz ∈ K[w, x, y, z] is irreducible.

0.7.4 Prove that xyz + x2z2 + yz3 + x ∈ K[x, y, z] is irreducible.

0.7.5 Assume char(K) 6= 2 and n ≥ 2. Prove that x2
1 + · · ·+ x2

n − 1 is irreducible
in K[x1, . . . , xn].

0.7.6 Assume n ≥ 3 and m ≥ 1. Prove that xm
1 + · · · + xm

n ∈ C[x1, . . . , xn] is
irreducible.
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Chapter 1

Varieties and Ideals
LEARNING OBJECTIVES FOR CHAPTER 1

• Acquaint ourselves with affine space An
K.

• Describe how to use the V- and I-operators to move between subsets of
K[x1, . . . , xn] and subsets of An

K.

• Become familiar with the notions of affine varieties in An
K and radical

ideals in K[x1, . . . , xn].

• State the Nullstellensatz and use it to describe the bijection between affine
varieties and radical ideals.

Algebraic geometry is, at its heart, a dictionary for translating between different
languages: the language of algebra and the language of geometry. As in any dual-
language dictionary, this involves translation in both directions. Given an algebraic
object, such as a polynomial, we produce a geometric object by determining the
vanishing set of the polynomial. Conversely, given a geometric object, we produce
an algebraic object by determining the set of all polynomials that vanish on the given
geometric set.

In this chapter, we begin our study of algebraic geometry in earnest by making
these two operations precise by way of the V- and I-operators. Crucially, we find
that these operators are not surjective. Not every geometric set is the vanishing set of
some collection of polynomials, for example; those geometric sets that are obtained
in this way are called affine varieties. Conversely, not every set of polynomials
is obtainable by starting from a geometric set and calculating the polynomials that
vanish on it; the study of algebraic sets obtained in this way will lead us to develop
the algebraic notion of a radical ideal.

The chapter culminates with the statement of a result that might properly be
termed the “Fundamental Theorem of Algebraic Geometry,” though it instead goes
by the German name Nullstellensatz. Under one key hypothesis—that the ground
field is algebraically closed—the Nullstellensatz asserts that when one restricts at-
tention to affine varieties on the geometric side and to radical ideals on the alge-
braic side, the V- and I-operators provide a true dictionary—a bijection, to put it
mathematically—between algebra and geometry.

37
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Section 1.1 The V-operator
In order to study the vanishing sets of polynomials, we must begin by specifying
where those polynomials and their solutions live. Choose a field K, referred to as the
ground field, and consider the polynomial ring K[x1, . . . , xn]. Elements of this ring,
in addition to being abstract polynomials, can also be used to define functions that
take elements of Kn as input and output elements of K. For example, the polynomial

f = 2xy + 4z2 ∈ R[x, y, z]

defines a function from R3 to R. If one inputs the element (1,−1, 3), then the
output of f is the single real number

f (1,−1, 3) = 2 · 1 · (−1) + 4 · 32 = 34.

The domain of a polynomial function is referred to as affine space.

1.1 DEFINITION Affine space

The n-dimensional affine space over K, denoted An
K, is the set of n-tuples of

elements of K:
An

K = {(a1, . . . , an) | ai ∈ K}.

While elements of Kn are typically
referred to as vectors, elements of
An

K are called “points” to highlight
their geometric significance.

As a set, An
K is the same as the vec-

tor space Kn. So why give it a new
name and a new notation? When we
write Kn, we are viewing this set as
an algebraic object with addition and
scalar multiplication operations—that
is, as a vector space. When we write An

K, on the other hand, we forget the alge-
braic structure on this set: we view its elements not as vectors that can be added to
one another, but rather as inputs to polynomial functions. In particular, the element
(0, . . . , 0) is very special in the vector space Kn, since it is the additive identity, but
it is essentially the same as any other element in the affine space An

K.

Often, when the ground field K is
understood from context, we simply
write An instead of An

K.

To distinguish between polynomi-
als and their evaluations, we use letters
at the end of the alphabet (x, y, and z) to
denote variables, and letters at the be-
ginning of the alphabet (a, b, and c) to

denote elements of K. So, for example, f = x2y denotes an element of the ring
K[x, y], whereas f (a, b) = a2b denotes the element of K obtained by evaluating f
at the point (a, b) ∈ A2. If f ∈ K[x1, . . . , xn] satisfies

f (a1, . . . , an) = 0

for some point (a1, . . . , an) ∈ An, we say that f vanishes at (a1, . . . , an).
Given a polynomial f ∈ K[x1, . . . , xn], the set of all points at which f vanishes

is a subset of An. For example, if

f = y− x2 ∈ R[x, y],
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then f vanishes at the point (0, 0), as well as
at the point (1, 1), the point (2, 4), the point
(−1, 1), and so on. The set of all points in A2

R

at which f = y− x2 vanishes forms the familiar
parabola. This is our first taste of algebraic ge-
ometry: an algebraic object (the element y− x2

of the ring R[x, y]) led us to a geometric object (the parabola).
More generally, one can study the set of points in An at which every element of

a (possibly infinite) set of polynomials vanishes.

1.2 DEFINITION Vanishing set

Let S ⊆ K[x1, . . . , xn] be a set of polynomials. The vanishing set of S is

V(S) = {(a1, . . . , an) ∈ An | f (a1, . . . , an) = 0 for all f ∈ S} ⊆ An.

It is common to say that points of V(S) are solutions of the polynomials in S .
When S = { f1, . . . , fr} is finite, we write V( f1, . . . , fr) instead of V({ f1, . . . , fr}).

1.3 EXAMPLE Curves in A2
R

Consider S = {y − x2} ⊆ K[x, y]. Then V(S) = {(a, a2) | a ∈ K} ⊆ A2.
When K = R, this is the parabola above. Similarly, V(x2 + y2 − 1) ⊆ A2

R and
V(y2 − x3 − x2) ⊆ A2

R are the planar curves depicted below.

1.4 EXAMPLE Surfaces in A3
R

The vanishing sets V(x2 + y2 + z2 − 1) ⊆ A3
R and V(x2 + y2 − z2) ⊆ A3

R are
the unit sphere and the cone, respectively, pictured in the following images.
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1.5 EXAMPLE The coordinate axes

If S = {xy} ⊆ K[x, y], then V(S) = {(a, b) ∈ A2 | ab = 0} ⊆ A2. Since K is a
field, ab = 0 if and only if either a = 0 or b = 0 (or both), so V(S) is the union of
the points where a = 0 and those where b = 0. When K = R, this is the union of
the x-axis and the y-axis in the real plane.

1.6 EXAMPLE Single points

Let S = {x, y} ⊆ K[x, y]. Then

V(S) = {(a, b) ∈ A2 | a = 0 and b = 0} = {(0, 0)} ⊆ A2.

That is, V(S) consists of a single point: the origin.
Similarly, if S = {x− i, y− (1 + i), z− 5} ⊆ C[x, y, z], then

V(S) = {(i, 1 + i, 5)} ⊆ A3
C,

which, again, is a single point.

1.7 EXAMPLE A curve in A3

The vanishing set of

S = {x2 + y2 − 1, x2 − y2 − z} ⊆ R[x, y, z]

consists of all points (a, b, c) ∈ A3
R where

a2 + b2 − 1 = 0 = a2 − b2 − c.

The images above have ground field
R. Over R, we have a geometric in-
tuition; for example, we have an idea
about what it means to be a “curve”
or “surface.” Algebraic geometry
aims to make this intuition precise
for general fields.

Given that we are now viewing
polynomials as functions An → K,
it is worth pointing out that there is a
subtle but important difference between
polynomials and polynomial functions.
In particular, it is a somewhat unset-
tling fact that different polynomials in
K[x1, . . . , xn] can give rise to the same
function An → K.

For example, let K = F2 = {0, 1}, the field with two elements; recall that
addition and multiplication in this field are both carried out modulo 2. Let

(1.8) f (x) = 1 + x + x2 and g(x) = 1.

As elements of F2[x], these polynomials are not equal, because they have different
coefficients on the monomial x as well as on the monomial x2. However, viewing
them as functions A1 → F2, we see that

f (0) = 1 + 0 + 02 = 1 = g(0) and f (1) = 1 + 1 + 12 = 1 = g(1).

Thus, since f and g give the same output for every input in their domain, they are
equal as functions, even though they are different as polynomials.
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To describe the difference between polynomials and their corresponding func-
tions more generally, let K[An] denote the set of polynomial functions An → K.
That is, an element of K[An] is a function of the form

(a1, . . . , an) 7→ f (a1, . . . , an)

for some f ∈ K[x1, . . . , xn]. Some time reflecting should convince the reader that
K[An] is a ring under addition and multiplication of functions to K, and taking a
polynomial to its corresponding function defines a surjective ring homomorphism
K[x1, . . . , xn] → K[An]. This homomorphism fails to be injective exactly when
different polynomials give rise to the same function. For example,

F2[x]→ F2[A
1]

is not an injection, because the different polynomials f , g ∈ F2[x] defined in (1.8)
give rise to the same polynomial function in F2[A

1].
The next result shows that the above phenomenon is unique to finite fields, so

we need not worry about it in what follows as long as we assume that K is infinite.

1.9 PROPOSITION Polynomials versus functions

The ring homomorphism K[x1, . . . , xn] → K[An] that takes polynomials to
their corresponding functions is an isomorphism if and only if K is infinite.

PROOF First, assume K = {a1, . . . , an} is finite, and consider the nonzero poly-
nomial

f =
n

∏
i=1

(x1 − ai) ∈ K[x1] ⊆ K[x1, . . . , xn].

Plugging in any value of K for x1 produces a factor of zero, so f defines the zero
function An → K. This implies that K[x1, . . . , xn] → K[An] is not an injection.
Therefore, if K[x1, . . . , xn]→ K[An] is an isomorphism, then K must be infinite.

Conversely, suppose K is infinite. By definition, K[x1, . . . , xn] → K[An] is
surjective. Thus, it remains to prove injectivity, or equivalently, that the kernel is the
zero polynomial. We accomplish this by induction on n.

(Base case) Suppose h ∈ K[x] defines the zero function A1 → K. Since K is
an infinite field, this implies that h has infinitely many zeros. By Corollary 0.50,
nonzero polynomials have finitely many zeros, so h must be the zero polynomial.

(Induction step) Suppose h ∈ K[x1, . . . , xn] defines the zero function, and write

h =
m

∑
i=0

hixi
n

where hi ∈ K[x1, . . . , xn−1]. For each (a1, . . . , an−1) ∈ An−1, the single-variable
polynomial h(a1, . . . , an−1, xn) ∈ K[xn] defines the zero function A1 → K. Thus,
by the argument in the base case, h(a1, . . . , an−1, xn) is the zero polynomial. In
particular, this implies that hi(a1, . . . , an−1) = 0 for all i. Since this is true for
every (a1, . . . , an−1) ∈ An−1, it follows that hi : An−1 → K is the zero function
for all i. By the induction hypothesis, hi ∈ K[x1, . . . , xn−1] is the zero polynomial
for every i, and it follows that h is the zero polynomial.
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Exercises for Section 1.1
1.1.1 Sketch the following vanishing sets:

(a) V(x2 − 1) ⊆ A1
R;

(b) V(x2 − y2) ⊆ A2
R;

(c) V(y− x2, y− x) ⊆ A2
R;

(d) V(x2 + y2 + z2 − 1, z) ⊆ A3
R;

(e) V(x2 + y2 − z2, x) ⊆ A3
R;

(f) V(x2 + y2 − z2, z) ⊆ A3
R;

(g) V(xy− y2, x2 − xy− x + y) ⊆ A2
R;

1.1.2 Express the following sets as V(S) for some S :

(a) {0, π,−1} ⊆ A1
R;

(b) the x-axis in A3
R;

(c) {(4,−1, 3)} ⊆ A3
R;

(d) {(−1, 0), (1, 0)} ⊆ A2
R;

(e) {(a, a, a) | a ∈ R} ⊆ A3
R;

(f) {(cos(a), sin(a), cos2(a)− sin2(a)) | a ∈ [0, 2π)} ⊆ A3
R.

1.1.3 Show that the origin {(0, 0)} ⊆ A2
K can be defined by a single equation if

K = R, but not if K = C.

1.1.4 Let f , g ∈ K[x1, . . . , xn]. Prove that

(a) V( f g) = V( f ) ∪ V(g);
(b) V( f , g) = V( f ) ∩ V(g).

1.1.5 Let
X = V(x2 − yz, xz− x) ⊆ A3.

(a) Prove that

X = V(x, y) ∪ V(x, z) ∪ V(x2 − y, z− 1).

(b) Use part (a) to sketch X in the case where K = R.

1.1.6 Prove that every finite set in An
K can be expressed as the vanishing set of a

collection of n polynomials. (Hint: Use induction on n.)
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Section 1.2 Affine varieties
Not every subset of An is the vanishing set of some collection of polynomials. For
example, let X ⊆ A1

R be the set of all nonzero real numbers:

X = {a ∈ R | a 6= 0} ( A1
R.

Let’s show that X cannot be realized as the vanishing of a set of polynomials. Sup-
pose, toward a contradiction, that X = V(S) for some set S ⊆ R[x]. Then S must
contain at least one nonzero element, since if S were either ∅ or {0}, its vanishing
set would be all of A1

R. Let f ∈ S be any nonzero element. Since X = V(S), we
have f (a) = 0 for all a ∈ R \ {0}. This means that f is a nonzero single-variable
polynomial with infinitely many zeros, contradicting Corollary 0.50.

In light of examples such as this, we give a name to those special subsets of
affine space that can be defined as the vanishing of a set of polynomials.

1.10 DEFINITION Affine variety

A subset X ⊆ An is called an affine variety if X = V(S) for some subset
S ⊆ K[x1, . . . , xn].

We have already met a number of affine varieties in the examples presented in
Section 1.1. Additionally, for each affine variety in Section 1.1, we specified a set of
polynomials that realized it as a vanishing set. Two more examples that are perhaps
more basic than any of the previous ones, but nevertheless crucial, are the empty set
and the entirety of affine space.

1.11 EXAMPLE The empty set and the entirety of affine space

The constant polynomial 1 ∈ K[x1, . . . , xn] does not vanish at any point, so

V(1) = ∅ ⊆ An

The zero polynomial 0 ∈ K[x1, . . . , xn] vanishes at every point, so

V(0) = An.

Thus, both ∅ and An are affine varieties.

It is quite easy, and not very enlightening, to come up with an endless list of
examples of affine varieties by simply writing down sets of polynomials and con-
sidering their vanishing sets. A more subtle task is to understand what makes affine
varieties special among subsets of affine space. In other words, what sorts of subsets
of affine space are not affine varieties? We have already seen one example: the set
R \ {0} is not an affine variety in A1

R. In fact, the only affine varieties in A1 are ∅,
finite collections of points, and all of A1 (Exercise 1.2.1).

In A2, on the other hand, an infinite proper subset can certainly be an affine
variety; the parabola in A2

R is an example. What a proper subset of Euclidean space
cannot have, however, if it is to be an affine variety, is a nonempty interior. The
following example illustrates this phenomenon.
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1.12 EXAMPLE A solid square is not an affine variety

Let X be the filled-in square in A2
R defined as

X = {(a, b) ∈ A2
R | − 1 ≤ a ≤ 1 and − 1 ≤ b ≤ 1}.

Suppose, toward a contradiction, that X = V(S) for some set S ⊆ R[x, y]. Let
f ∈ S . We will argue that f is the zero polynomial. Write

f =
m

∑
i=0

fiyi

where fi ∈ R[x] for each i. Since f ∈ S , it vanishes at all values of X. In other
words, for any value a ∈ [−1, 1], the single variable polynomial

f (a, y) =
m

∑
i=0

fi(a)yi ∈ R[y]

vanishes at all values b ∈ [−1, 1]. Since a nonzero single-variable polynomial can
only have finitely many zeros, it follows that f (a, y) must be the zero polynomial,
implying that fi(a) = 0 for all i. In other words, we have argued that the single-
variable polynomials fi ∈ R[x] vanish at all values a ∈ [−1, 1]. Again, using the
fact that nonzero single-variable polynomials have finitely many zeros, this implies
that fi is the zero polynomial for each i, so f is the zero polynomial. This argument
shows that the only polynomial that can be in S is the zero polynomial, from which
it follows that X = V(S) = A2

R, a contradiction.
Students with a background in topology are encouraged to prove, more gener-

ally, that if one gives An
R the Euclidean topology, then the only affine variety that

has a nonempty topological interior is the entirety of An
R (Exercise 1.2.8).

1.13 EXAMPLE The graph of ex in A2
R is not an affine variety

Let X be the graph of the exponential function on the real numbers:

(1.14) X = {(a, b) ∈ A2
R | b = ea} ⊆ A2

R.

A careful proof that X is not an affine variety is outlined in Exercise 1.2.7. It should
seem reasonable that X is not an affine variety: it is defined by the vanishing of
the expression y− ex, which is not a polynomial in x and y. One must be careful
with this sort of reasoning, however. The expression sin2(x) + cos2(x) + y is not
a polynomial, either, but the set

{(a, b) ∈ A2
R | sin2(a) + cos2(a) + b = 0} ⊆ A2

R

is the same as the set

{(a, b) ∈ A2
R | 1 + b = 0} = V(1 + y) ⊆ A2

R,

so it is an affine variety.
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It is certainly possible for the same affine variety to arise as V(S) for different
sets S . For example,

V(x, y) = V(x + y, x− y) = {(0, 0)} ⊆ A2,

as the reader can readily verify. In fact, the set S can be replaced by the entire ideal
〈S〉 ⊆ K[s0, . . . , xn] that is generated by S without affecting its vanishing set.

1.15 PROPOSITION Affine varieties are defined by ideals

If S ⊆ K[x1, . . . , xn] is a set of polynomials, then

V(S) = V(〈S〉).

PROOF Exercise 1.2.2.

To put the discussion of this section schematically, we view the V-operator as a
function

V : {subsets of K[x1, . . . , xn]} −→ {subsets of An}.

This function is not surjective, since not every subset of An is an affine variety, but
it becomes surjective, by definition, if we restrict the codomain to affine varieties:

V : {subsets of K[x1, . . . , xn]} −→ {affine varieties in An}.

The V-operator is also not injective, because different subsets of K[x1, . . . , xn] can
define the same affine variety. As a first pass toward making it bijective, Proposi-
tion 1.15 shows that we can restrict the domain to ideals and maintain a surjective
function:

V : {ideals of K[x1, . . . , xn]} −→ {affine varieties in An}.

In fact, this operator is still not injective (see Exercise 1.2.3). It will take a further
restriction on the domain and an assumption on the ground field K in order to finally
obtain a bijective version of the V-operator.

Exercises for Section 1.2
1.2.1 Prove that the only affine varieties in A1 are ∅, finite collections of points,

and all of A1.

1.2.2 Prove Proposition 1.15.

1.2.3 Give an example of different ideals I, J ∈ K[x] such that V(I) = V(J).

1.2.4 Prove that the set

X = {(a, a2, a3) | a ∈ K} ⊆ A3

is an affine variety by finding a set of polynomials S for which X = V(S).
(The variety X is called the affine twisted cubic curve.)
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1.2.5 Let K be an infinite field. A plane in A3
K is an affine variety P that can be

defined as the vanishing set of a nonconstant linear polynomial:

P = V(Ax + By + Cz + D),

where A, B, C, D ∈ K and A, B, C are not all zero. Prove the following.

(a) The affine twisted cubic of Exercise 1.2.4 is not contained in any plane.
(b) For any degree-two polynomials f1, f2, f3 ∈ K[x], the set

X = {( f1(a), f2(a), f3(a)) | a ∈ K} ⊆ A3

is contained in at least one plane. (Hint: Use linear algebra.)

1.2.6 Let K be an infinite field. Prove that the set

X = {(a, ab) | a, b ∈ K} ⊆ A2

is not an affine variety.

1.2.7 Prove that the vanishing set X of the expression y− ex inside A2
R is not an

affine variety using the following steps.

(a) Suppose, toward a contradiction, that X = V(S) for some S ⊆ R[x, y].
Explain why there exists a nonzero polynomial f ∈ R[x, y] such that
f (a, ea) = 0 for all a ∈ R.

(b) For any polynomial f as above, write

f (x, y) = p0(x) + p1(x)y + p2(x)y2 + · · ·+ pd(x)yd,

where pd 6= 0 ∈ R[x]. Show that

p0(a)
eda +

p1(a)
e(d−1)a

+
p2(a)

e(d−2)a
+ · · ·+ pd−1(a)

ea + pd(a) = 0

for all a ∈ R.
(c) Take the limit of the above expression as a→ ∞ to conclude that

lim
a→∞

pd(a) = 0.

By arguing that lim
a→∞

g(a) 6= 0 for any nonzero g ∈ R[x], deduce a
contradiction.

1.2.8 (For students with some knowledge of topology) View An
R = Rn as a topo-

logical space with the Euclidean topology. Let X ⊆ An
R be any affine variety

other than An
R itself. Prove that, as a topological subspace of An

R, the inte-
rior of X is empty. (The same result also holds, by a similar proof, with R

replaced by C.)
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Section 1.3 The I-operator
In Section 1.1, we learned how to associate, to any subset of K[x1, . . . , xn], a subset
of An via the V-operator. In this section, we reverse the procedure, describing an
operator that associates a subset of K[x1, . . . , xn] to any subset of An.

1.16 DEFINITION Vanishing ideal

Let X ⊆ An be a subset. The vanishing ideal of X is defined by

I(X) = { f ∈ K[x1, . . . , xn] | f (a1, . . . , an) = 0 for all (a1, . . . , an) ∈ X}.

In other words, the vanishing ideal of X is the set of all polynomials that vanish
on all of X. As the name suggests, the set I(X) is more than just a subset of the
polynomial ring K[x1, . . . , xn], it is an ideal (see Exercise 1.3.1).

1.17 EXAMPLE Polynomials vanishing at (0, 0)

Let X = {(0, 0)} ⊆ A2. A polynomial f ∈ K[x, y] vanishes at (0, 0) if and only
if the constant term of f is zero. As explained in Example 0.26, the set of all such
polynomials comprises the ideal 〈x, y〉. Thus, I(X) = 〈x, y〉.

1.18 EXAMPLE Vanishing ideals in one variable

Let X = {1, 3} ⊆ A1
R. By Corollary 0.48, a polynomial f ∈ R[x] vanishes at 1 if

and only if x− 1 divides f , and f vanishes at 3 if and only if x− 3 divides f . Since
x− 1 and x− 3 are irreducible, it follows from unique factorization in R[x] that

I(X) = { f ∈ R[x] | (x− 1)(x− 3) divides f } = 〈x2 − 4x + 3〉.
A similar procedure computes the vanishing ideal of any X ⊆ A1 (Exercise 1.3.3).

1.19 EXAMPLE Vanishing ideal of the parabola

Let K be an infinite field and let X be the affine variety defined by

X = V(y− x2) = {(a, a2) | a ∈ K} ⊆ A2.

Which polynomials vanish at every point of X? Certainly any polynomial of the
form (y − x2) f (x, y) vanishes at every point of X, so 〈y − x2〉 ⊆ I(X). Let’s
show that the reverse containment also holds.

Let f ∈ I(X). The arguments in Example 0.29 show that [ f (x, y)] = [ f (x, x2)]
in the quotient ring K[x, y]/〈y− x2〉. In particular, this means that

(1.20) f (x, y)− f (x, x2) ∈ 〈y− x2〉.
Using our assumption that f vanishes on X = {(a, a2) | a ∈ K}, we see that
f (a, a2) = 0 for every a ∈ K, which implies that f (x, x2) ∈ K[x] is a single-
variable polynomial with infinitely many zeros. This is only possible if f (x, x2) is
the zero polynomial. Substituting f (x, x2) = 0 into Equation (1.20), we see that
f ∈ 〈y− x2〉, implying that I(X) ⊆ 〈y− x2〉.

Having argued both inclusions, we conclude that I(X) = 〈y− x2〉.
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Even in the simple case of the parabola in Example 1.19, it was already some-
what involved to show that the vanishing ideal was 〈y− x2〉. Indeed, computing the
vanishing ideal of affine varieties in general is a nontrivial task that usually requires
ad hoc methods in each case (see Exercises 1.3.3–1.3.8 for more examples of such
computations). As we will see in Section 1.5, the Nullstellensatz greatly simplifies
the task of computing vanishing ideals, and it is partly for this reason that it deserves
the status of the “Fundamental Theorem of Algebraic Geometry.”

Now that we have introduced both the V- and I-operators, which pass between
subsets of K[x1, . . . , xn] and subsets of An, it is natural to wonder to what extent
these operators are inverse to each other. The next result provides a first answer,
showing that they are not generally inverse, but that they become inverse upon re-
stricting to vanishing ideals and affine varieties.

1.21 PROPOSITION Composing V- and I-operators

1. Let X ⊆ An. Then
V(I(X)) ⊇ X,

with equality if and only if X = V(S) for some S ⊆ K[x1, . . . , xn].

2. Let S ⊆ K[x1, . . . , xn]. Then

I(V(S)) ⊇ S ,

with equality if and only if S = I(X) for some X ⊆ An.

PROOF We prove Part 1 and leave Part 2 to Exercise 1.3.2.
Let a = (a1, . . . , an) ∈ X. To prove that a ∈ V(I(X)), consider any polyno-

mial f ∈ I(X). By definition of the vanishing ideal, we have that f (b) = 0 for all
b ∈ X. In particular, f (a) = 0. Thus, we have proved that, for every f ∈ I(X),
f (a) = 0. This implies that a ∈ V(I(X)).

If equality holds, then X is the vanishing set of S = I(X), proving one direction
of the if-and-only-if statement. To prove the converse, suppose that X = V(S) for
some set S ⊆ K[x1, . . . , xn]; we must prove that V(I(X)) ⊆ X. It is equivalent to
prove that a /∈ X implies a /∈ V(I(X)), so suppose the former. Since X = V(S)
and a /∈ X, there exists some f ∈ S such that f (a) 6= 0. Since f ∈ S and
X = V(S), f vanishes on all of X, implying that f ∈ I(X). Because f ∈ I(X)
and f (a) 6= 0, we conclude that a /∈ V(I(X)).

If X ⊆ An is an affine variety, Part 1
of the proposition says that there is
distinguished ideal for which X is
the vanishing set, namely I(X).

If X ⊆ An is a subset, then the set
V(I(X)) appearing in the first part of
Proposition 1.21 has another interpre-
tation: it is the smallest affine variety
containing X (Exercise 1.3.10). In this
sense, it is analogous to the ideal gen-

erated by a set S , which is the smallest ideal containing S ; we might even call
V(I(X)) the “affine variety generated by X” and denote it by VX . With this nota-
tion, the last part of Proposition 1.21 becomes analogous to Proposition 1.15:

I(X) = I(VX).
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Another important comment is that the containments in Proposition 1.21 can
certainly be strict. For example, if X is not an affine variety, then X 6= V(S) for
any S , so X 6= V(I(X)). Similarly, if S is not an ideal, then it cannot be the case
that S = I(V(S)), because the latter is an ideal. In fact, even when S is an ideal,
equality still need not hold, as illustrated in the next example.

1.22 EXAMPLE I(V(I)) 6= I

Let I = 〈x2〉 ⊆ K[x]. Then

V(I) = {a ∈ K | a2 = 0}.

Since K is a field, a2 = 0 if and only if a = 0. Thus, V(I) = {0}. The same
reasoning as in Example 1.18 shows that I({0}) = 〈x〉, so

I(V(I)) = I({0}) = 〈x〉.

The vanishing ideal I(V(I)) = 〈x〉 contains but is not equal to I = 〈x2〉; for
example, x ∈ 〈x〉 but x /∈ 〈x2〉. As a consequence of the second part of Proposition
1.21, we conclude that I is not the vanishing ideal of any X ⊆ A1.

At the end of the Section 1.2, we saw that the V-operator gives a surjection

V : {ideals in K[x1, . . . , xn]} −→ {affine varieties in An}.

It follows from Proposition 1.21 that the V-operator becomes a bijection (with in-
verse the I-operator) if we restrict the domain to the set of vanishing ideals—those
ideals that arise as vanishing ideals of some set. Our goal then, if we want to un-
derstand the dictionary between algebra and geometry, is to obtain a better under-
standing of the vanishing ideals in K[x1, . . . , xn]. Motivated by the observations in
Example 1.22, we take a first step in this direction in the next section, where we
introduce the algebraic notion of a radical ideal.

Exercises for Section 1.3
1.3.1 For any subset X ⊆ An, prove that I(X) ⊆ K[x1, . . . , xn] is an ideal.

1.3.2 Prove Proposition 1.21, Part 2.

1.3.3 Let X ⊆ A1.

(a) Suppose that X = {a1, . . . , ar} is finite. Use unique factorization in
K[x] to prove that

I(X) = 〈(x− a1)(x− a2) · · · (x− ar)〉 ⊆ K[x].

(b) Suppose that X is infinite. Prove that I(X) = 〈0〉.

1.3.4 Compute the vanishing ideal of V(x2 + 1) ⊆ A1

(a) over R, and
(b) over C.
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1.3.5 Let X = {(a1, . . . , an)} ∈ An be a single point. Prove that

I(X) = 〈x1 − a1, . . . , xn − an〉.

1.3.6 Let X = V(x2 + y2 − 1) ⊆ A2
R be the unit circle. This exercise proves that

I(X) = 〈x2 + y2 − 1〉.
(a) Prove that I(X) ⊇ 〈x2 + y2 − 1〉.
(b) Prove that I(X) ⊆ 〈x2 + y2 − 1〉, possibly using the following proof

outline. Suppose f ∈ I(X).
i. Prove that

f − g1 − yg2 ∈ 〈x2 + y2 − 1〉
for some g1, g2 ∈ R[x].

ii. Using that f ∈ I(X), prove that

g1(a)2 = (1− a2)g2(a)2

for all a ∈ [−1, 1], and conclude that g1(x)2 = (1− x2)g2(x)2.
iii. Use unique factorization to prove that g1 and g2 are both the zero

polynomial and conclude that f ∈ 〈x2 + y2 − 1〉.

1.3.7 Let X = V(x2
1 + · · ·+ x2

n − 1) ⊆ An
R be the unit n-sphere. Generalize the

previous exercise to prove that I(X) = 〈x2
1 + · · ·+ x2

n − 1〉.

1.3.8 Let K be an infinite field with 1 6= −1 and let X = V(x2 + y2 − 1) ⊆ A2
K.

(a) For any a ∈ K with a2 6= −1, prove that(
a2 − 1
a2 + 1

,
2a

a2 + 1

)
∈ X.

(b) Prove that there are infinitely many values a ∈ K such that (a, b) ∈ X
for some b ∈ K.

(c) Generalize the result of Exercise 1.3.6 to base field K.

1.3.9 Let K = F2, the finite field with two elements. Let

X = V(y− x2) ⊆ A2
F2

.

Prove that I(X) 6= 〈y− x2〉, in contrast to the analogous case over R studied
in Example 1.19. What is I(X)?

1.3.10 Let X ⊆ An be any subset.

(a) Prove that V(I(X)) is the smallest affine variety containing X, in the
following sense: if Y ⊆ An is any affine variety and X ⊆ Y, then
V(I(X)) ⊆ Y.

(b) Demonstrate part (a) by choosing any set X ⊆ A2
R that is not an affine

variety and calculating V(I(X)).
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Section 1.4 Radical ideals
In the previous section, we learned that not every ideal in K[x1, . . . , xn] arises as a
vanishing ideal of some subset in An. In particular, we noticed in Example 1.22
that the ideal 〈x2〉 ⊆ K[x] is not a vanishing ideal. How, then, can we recognize
whether a given ideal is I(X) for some X? We investigate one important property
of vanishing ideals in this section: vanishing ideals are radical.

1.23 DEFINITION Radical ideal

Let R be a ring. An ideal I ⊆ R is radical if, for all a ∈ R,

am ∈ I for some integer m > 0 =⇒ a ∈ I.

In other words, an ideal is radical if it is closed under taking roots: whenever a
power of an element is in the ideal, the element itself must be in the ideal. Notice
that the ideal 〈x2〉 ⊆ K[x] from Example 1.22 is not radical, because x2 ∈ 〈x2〉 but
x /∈ 〈x2〉. The next result says that the property of radical-ness is an attribute of all
vanishing ideals.

1.24 PROPOSITION Vanishing ideals are radical

For any set X ⊆ An, the vanishing ideal I(X) is a radical ideal.

In particular, Proposition 1.24 and the observation that 〈x2〉 is not a radical ideal
together imply that 〈x2〉 is not a vanishing ideal, as we observed in Example 1.22.

PROOF OF PROPOSITION 1.24 Let X ⊆ An be a subset and suppose there exists
a positive integer m such that f m ∈ I(X), or in other words, such that f m(a) = 0
for all a ∈ X. Then

0 = f m(a) =
(

f (a)
)m ∈ K.

Since K is a field, it has no zero divisors; in particular,
(

f (a)
)m

= 0 if and only if
f (a) = 0. Thus, f (a) = 0 for all a ∈ X, so f ∈ I(X).

Proposition 1.24 suggests, in particular, that radical ideals play a central role in
algebraic geometry. Consequently, we devote the rest of this section to collecting
some of the fundamental notions pertaining to radical ideals.

By definition, an ideal fails to be radical if it is not closed under taking roots.
You might suspect, then, that you could construct a radical ideal simply by adding
in the missing roots. The next definition makes this construction precise.

1.25 DEFINITION Radical of an ideal

Let I ⊆ R be an ideal. The radical of I is
√

I = {a ∈ R | am ∈ I for some m > 0}.

This process of “adding in the missing roots” indeed yields a radical ideal, as the
next result shows.
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1.26 PROPOSITION Radicals are radical

If I ⊆ R is an ideal, then
√

I is a radical ideal.

PROOF The proof that
√

I is an ideal is Exercise 1.4.2. To prove that
√

I is
radical, assume am ∈

√
I for some integer m > 0; we must prove that a ∈

√
I. By

the definition of
√

I, we have

an ∈
√

I =⇒ (an)m ∈ I for some integer m > 0.

In other words, a(nm) ∈ I, from which it follows that a ∈
√

I.

If I is a radical ideal, then it is already closed under taking roots, so
√

I = I.
Conversely, if

√
I = I, then Proposition 1.26 implies that I is a radical ideal. Thus,

we have proved the following useful characterization of radical ideals.

1.27 COROLLARY Characterization of radical ideals

The ideal I ⊆ R is radical if and only if I =
√

I.

We now provide several examples to help familiarize ourselves with radicals.

1.28 EXAMPLE

If R = K[x] and I = 〈x2〉, then we have already seen that I is not radical. If we
want to enlarge I by adding all possible roots of elements in I, what should we add?
Let’s show that √

I = 〈x〉.

To see this, first note that x ∈
√

I because x2 ∈ I. Since
√

I is an ideal, the fact
that x ∈

√
I then implies that 〈x〉 ⊆

√
I, proving one containment.

Conversely, suppose that f /∈ 〈x〉. This means that f has a nonzero constant
term. It follows that f m has a nonzero constant term for all integers m > 0, so
f m /∈ I. Hence, f /∈

√
I, which proves by contrapositive that

√
I ⊆ 〈x〉.

1.29 EXAMPLE

If R = Z and I = 〈12〉, then I is not radical because 62 ∈ I but 6 /∈ I. In fact,
√

I = 〈6〉.

To prove the containment
√

I ⊆ 〈6〉, let r ∈
√

I. Then rm = 12k for some
positive integer m and some integer k. Since 2 | rm, it follows from Euclid’s Lemma
that 2 | r. The same reasoning shows that 3 | r. Since r is divisible by both 2 and 3, it
is divisible by 6, which means that r ∈ 〈6〉, proving one containment.

Conversely, if r ∈ 〈6〉, then r = 6k for some integer k. Thus,

r2 = 36k2 = 12(3k2),

so r2 ∈ I. This implies that r ∈
√

I, verifying that 〈6〉 ⊆
√

I.
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Comparing the radical ideal 〈6〉 and the nonradical ideal 〈12〉 in the previous
example, we see that 6 is square-free—in other words, it is not divisible by the
square of a prime—but 12 is not square-free; it is divisible by 22. Arguments similar
to those in Exampe 1.29 show that 〈n〉 ⊆ Z is radical if and only if n is square-free.

In the context of algebraic geometry, it would be useful to be able to determine
when an ideal I ⊆ K[x1, . . . , xn] is radical. For general ideals, this can be quite
difficult. However, the situation is analogous to the case of the integers when I is a
principal ideal. To state the result precisely, let f ∈ K[x1, . . . , xn], and consider an
irreducible factorization:

f = p1 · · · pm.

Because of irreducibility, pi | pj if and only if they differ by a constant. By collecting
all of the terms that differ by a constant, we can write

(1.30) f = aqk1
1 · · · q

k`
`

where a ∈ K is a constant, each qi is irreducible, and qi - qj whenever i 6= j.
We say that (1.30) is a distinct irreducible factorization of f and that the qi are the
distinct irreducible factors of f . It follows from unique factorization that the distinct
irreducible factors are unique up to reordering and multiplying by constants.

The next result describes the radical of a principal ideal in terms of these factors.

1.31 PROPOSITION Radicals of principal ideals

If f ∈ K[x1, . . . , xn] has distinct irreducible factors q1, . . . , q`, then

(1.32)
√
〈 f 〉 = 〈q1 · · · q`〉.

In particular, 〈 f 〉 is radical if and only if f is not divisible by the square of a
nonconstant polynomial.

PROOF We prove both inclusions in the equality (1.32) and leave the deduction
of the if-and-only-if assertion to Exercise 1.4.3.

(⊆) Suppose g ∈
√
〈 f 〉. Then gm = h f for some m > 0 and h ∈ K[x1, . . . , xn].

In particular, qi | gm for every i. By uniqueness of distinct irreducible factors, each
qi must be one of the distinct irreducible factors of gm. Since the distinct irreducible
factors of gm are the same as those of g, then each qi must be one of the distinct
irreducible factors of g. It follows that q1 · · · q` | g, so g ∈ 〈q1 · · · q`〉.

(⊇) Suppose g ∈ 〈q1 · · · q`〉 and write g = hq1 · · · q` for some polynomial h.
Regarding the distinct irreducible factorization

f = aqk1
1 · · · q

k`
` ,

set m = max{k1, . . . , k`}. It follows that

gm = hmqm
1 · · · qm

` =
(
hmqm−k1

1 · · · qm−k`
` a−1) f ∈ 〈 f 〉,

which implies that g ∈
√
〈 f 〉.
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1.33 EXAMPLE 〈x2 + y2〉 ⊆ C[x, y] is radical

The irreducible factorization of x2 + y2 in C[x, y] is

x2 + y2 = (x− iy)(x + iy).

Since the irreducible factors are distinct, x2 + y2 is square free. Thus, the ideal
〈x2 + y2〉 ⊆ C[x, y] is radical.

1.34 EXAMPLE A radical ideal that is not a vanishing ideal

Over the real numbers, the polynomial x2 + y2 ∈ R[x, y] is irreducible. Thus, by
Proposition 1.31, the ideal 〈x2 + y2〉 is radical. However, since the origin is the only
point at which x2 + y2 vanishes, it follows that

I(V(〈x2 + y2〉)) = I({(0, 0)}) = 〈x, y〉 6= 〈x2 + y2〉.

Thus, Proposition 1.21 implies that 〈x2 + y2〉 is not a vanishing ideal. In particular,
the converse of Proposition 1.24 does not hold over R: radical ideals need not be
vanishing ideals.

In our study of rings, we have now had the opportunity to meet three special
types of ideals: maximal, prime, and radical. We already know that maximal ideals
are prime. The next result adds radical ideals to this hierarchy.

1.35 PROPOSITION Prime and maximal ideals are radical

Every prime ideal is a radical ideal.

PROOF Toward proving the contrapositive, assume that I is not a radical ideal.
Choose an element a /∈ I such that am ∈ I for some m > 1. If m0 is the smallest
integer greater than 1 such that am0 ∈ I, then neither a nor am0−1 are elements of I,
but their product am0 is an element of I. Thus, I is not prime.

Schematically, for any ring R, we have the following hierarchy of ideals:

{ideals} ⊇ {radical ideals} ⊇ {prime ideals} ⊇ {maximal ideals}.

While these inclusions are not strict for every ring, they are strict for multivariable
polynomial rings over fields (Exercise 1.4.4).

To conclude this section, we return to our overarching goal of obtaining a bijec-
tion between algebraic objects and geometric objects. Since V(I(X)) = X for all
affine varieties X ⊆ An (Proposition 1.21) and I(X) is radical (Proposition 1.24),
the V-operator remains a surjection upon restricting the domain:

(1.36) V : {radical ideals in K[x1, . . . , xn]} −→ {affine varieties in An}.

One might be so optimistic as to hope that (1.36) is our sought-after bijection be-
tween algebraic objects and geometric objects. Unfortunately, Example 1.34 pro-
vides a counterexample: 〈x2 + y2〉 and 〈x, y〉 are distinct radical ideals in R[x, y]
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with the same vanishing set {(0, 0)} ∈ A2
R. Nonetheless, if we make an additional

assumption on the ground field K—that it is algebraically closed—then (1.36) is,
indeed, the bijection we desire. This result is a consequence of the Nullstellensatz,
to which we turn in the next section.

Exercises for Section 1.4
1.4.1 Determine which of the following ideals are radical. For those that are not

radical, compute their radical.

(a) 〈4〉 ⊆ Z

(b) 〈6〉 ⊆ Z

(c) 〈18〉 ⊆ Z

(d) 〈x2 + y2 − 1〉 ⊆ R[x, y]
(e) 〈x2, y3〉 ⊆ R[x, y]
(f) 〈y− x2, y〉 ⊆ R[x, y]
(g) 〈x2 − y2〉 ⊆ R[x, y]

1.4.2 Let I ⊆ R be an ideal. Prove that
√

I ⊆ R is an ideal. (Hint: Use the
binomial theorem to prove that

√
I is closed under addition.)

1.4.3 Prove that a principal ideal 〈 f 〉 ⊆ K[x1, . . . , xn] is radical if and only if f is
not divisible by the square of a nonconstant polynomial.

1.4.4 (a) Give an example of an ideal I ⊆ K[x, y] that is not radical.
(b) Give an example of a radical ideal I ⊆ K[x, y] that is not prime.
(c) Give an example of a prime ideal I ⊆ K[x, y] that is not maximal.

1.4.5 Prove, by example, that an ideal 〈 f1, f2〉 need not be radical even if f1 and f2
are both square-free.

1.4.6 Prove that the set of all zero-divisors in a ring R is a radical ideal.

1.4.7 Let R be a ring and let I ⊆ R an ideal. Prove that
√

I = R if and only if
I = R.

1.4.8 Let R be a ring and let I, J ⊆ R be ideals. Prove that√
I ∩ J =

√
I ∩
√

J.

1.4.9 Let R be a ring and I ⊆ R an ideal. Prove that
√

I is the intersection of all
prime ideals in R that contain I.
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Section 1.5 The Nullstellensatz

“Nullstellensatz” is a German word
composed of “Nullstellen” (zeroes)
and “Satz” (theorem).

In this section, we state the theorem
that forms the foundation of much of al-
gebraic geometry: the Nullstellensatz.
This result allows us to set up a power-
ful correspondence between affine vari-
eties and radical ideals in polynomial rings, which is the backbone of our dictionary
between the worlds of geometry and algebra.

To state the theorem, we require a key assumption on the ground field.

1.37 DEFINITION Algebraically closed

A field K is said to be algebraically closed if any nonconstant polynomial in
K[x] has at least one zero in K.

For example, the fields Q and R are not algebraically closed because x2 + 1
does not have any rational or real zeroes. However, x2 + 1 does have zeroes in C,
namely i and−i. In fact, every nonconstant polynomial in C[x] has at least one zero,
which is the statement of the Fundamental Theorem of Algebra.

1.38 THEOREM Fundamental Theorem of Algebra

The field C is algebraically closed.

Although the Fundamental Theorem of Algebra is often taught at an early stage,
it is by no means obvious. There are many proofs, including arguments via Galois
Theory, complex analysis, and topology. None of these falls within the scope of
this book, and the fact that C is algebraically closed is not necessary for the logical
development of the material. The Fundamental Theorem of Algebra is introduced
here simply to emphasize that there is at least one familiar and concrete example of
an algebraically closed field, and we encourage the reader to accept it without proof.

As we observed in Section 1.1, much of algebraic geometry is more straight-
forward when the ground field is infinite, because one no longer needs to draw a
distinction between polynomials and the functions they define. One advantage of
working with algebraically closed fields is that they are automatically infinite.

1.39 PROPOSITION Algebraically closed fields are infinite

Let K be an algebraically closed field. Then K is infinite.

PROOF Exercise 1.5.1.

In particular, none of the finite fields Fp for any prime p ∈ Z are algebraically
closed. What fields are algebraically closed, then, besides C? There are perhaps
no other familiar examples of algebraically closed fields, but there is a procedure
by which one can construct, from any field K, an algebraic closure K, which is
the smallest algebraically closed field in which K is contained. The most familiar
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application of this construction says that R = C. Applying this procedure to any
field at all yields a host of new examples of algebraically closed fields, albeit not
particularly familiar ones: Q, Fp, and so on. Readers unfamiliar with this material
are encouraged, whenever K is assumed to be algebraically closed, to think of the
case K = C.

Having discussed what it means for a field to be algebraically closed, we can
now state the Nullstellensatz, the proof of which is deferred to Chapter 5.

1.40 THEOREM Nullstellensatz

Let K be an algebraically closed field. Then, for any ideal I ⊆ K[x1, . . . , xn],

I(V(I)) =
√

I.

The containment
√

I ⊆ I(V(I)) is true over any field, and can be proved di-
rectly from the definitions (Exercise 1.5.3). The other inclusion requires a good deal
of work, for which K being algebraically closed is essential.

The Nullstellensatz helps us answer the motivating question posed at the end of
Section 1.2: on what domain and codomain does the V-operator become a bijection?
Over algebraically closed fields, the answer is that V is a bijection between radical
ideals and affine varieties. This is the first key instance of the precise dictionary
between algebra and geometry.

1.41 COROLLARY Radical ideals and affine varieties

If K is algebraically closed, then

V : {radical ideals of K[x1, . . . , xn]} −→ {affine varieties in An}

is a bijection with inverse I .

PROOF Since a function is bijective if and only if it has an inverse, it suffices to
prove that I is the inverse of V . In other words, we must show that, for any affine
variety X ⊆ An,

(1.42) V(I(X)) = X

and, for any radical ideal I ⊆ K[x1, . . . , xn],

(1.43) I(V(I)) = I.

The equality (1.42) is the first part of Proposition 1.21, so it is true without any
assumptions on K. To prove (1.43), notice that

I(V(I)) =
√

I = I,

where the first equality is the Nullstellensatz and the second is the characterization
of radical ideals as those ideals that are equal to their radical (Corollary 1.27).
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In addition to providing a bijection between affine varieties and radical ideals,
the Nullstellensatz is also a useful tool for computing vanishing ideals. In particular,
it is often much easier to determine whether an ideal is radical than it is to determine
whether it is a vanishing ideal. The following examples illustrate this point.

1.44 EXAMPLE I(V(y− x2)) = 〈y− x2〉
Let K be algebraically closed and consider the affine variety

X = V(y− x2) ⊆ A2.

Since every algebraically closed field is infinite, we know from Example 1.19 that
I(X) = 〈y− x2〉. However, the argument in that example was somewhat involved
and special to the particular polynomial y− x2. For algebraically closed fields, there
is a much simpler argument that applies to all irreducible polynomials.

In particular, knowing that y − x2 ∈ K[x, y] is an irreducible polynomial, it
follows that 〈y− x2〉 ⊆ K[x, y] is a prime ideal (Proposition 0.62), and therefore
radical (Proposition 1.35). Thus, by the Nullstellensatz,

I(X) = I(V(y− x2)) =
√
〈y− x2〉 = 〈y− x2〉.

1.45 EXAMPLE I(V( f )) = 〈 f 〉 when f is square-free

Generalizing the previous example, we see that, whenever K is algebraically closed
and f ∈ K[x1, . . . , xn] is not divisible by the square of a nonzero polynomial, we
have

I(V( f )) =
√
〈 f 〉 = 〈 f 〉.

The first equality is the Nullstellensatz and the second follows from Proposition 1.31.
In particular, if f is irreducible, then the vanishing ideal of V( f ) is simply 〈 f 〉.

Notice that the conclusion of this example fails when K is not algebraically
closed. For instance, consider the irreducible polynomial x2 + 1 ∈ R[x]. Since
this polynomial does not have any zeros,

I(V(x2 + 1)) = I(∅) = K[x] 6= 〈x2 + 1〉.

The bijection between radical ideals and affine varieties merely scratches the
surface of the rich dictionary that we will continue to build between algebra and ge-
ometry. To draw an analogy with languages, the bijection in Corollary 1.41 should
be thought of as a translation of nouns between two languages; such a translation
might allow us to have very simple conversations, but if we want to take full advan-
tage of the richness of language, we should also translate the verbs, the adjectives,
the adverbs, and so on.

Over the course of the next three chapters, we will continue to build the dic-
tionary between algebra and geometry. As we do so, we will have the opportunity
to introduce a number of new algebraic notions that are useful along the way. In
Chapter 5, once we have developed a more robust algebraic foundation and a fuller
appreciation of the dictionary between algebra and geometry, we will return to give
the proof of the Nullstellensatz.
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ON OUR ASSUMPTIONS REGARDING THE GROUND FIELD K
The Nullstellensatz is the backbone of algebraic geometry, and as such, we as-
sume for the remainder of this book, unless otherwise stated, that K is an al-
gebraically closed field. Many of the definitions and results that we develop remain
valid over general fields. Others, however, require slight modifications, and some
are just outright wrong in the non-algebraically-closed case. To help the reader ap-
preciate our assumptions, we regularly turn to the setting of K = R to illustrate
nonexamples of results where being algebraically closed is essential.

Even though the central results of algebraic geometry do not hold over the field
of real numbers, as they are not algebraically closed, much of our geometric intuition
for affine varieties arises from viewing solutions of polynomials over R. Indeed,
every geometric image of a vanishing set in Section 1.1 depicts an affine variety
over R. As algebraic geometers, it is important to develop the skill of using our
knowledge and intuition over R as a source of insight, while at the same time not
being misled by phenomena that may occur in that special setting as a result of the
fact that R is not algebraically closed.

As we move forward, even though our ground field will always be assumed to
be algebraically closed, we will continue to discuss and depict examples of varieties
by looking at their solutions over R, and we will continue to use familiar words
from our years of experience working with these sets. For example, we refer to the
variety V(y− x2) ⊆ A2 as a parabola and V(x2 + y2 + z2 − 1) ⊆ A3 as the unit
sphere, even though, over general fields, these varieties may not closely resemble the
geometric picture in our mind that the words parabola and sphere connote. Since
R is a subset of the algebraically closed field C, the reader is welcome to assume
K = C throughout, in which case the images over R depicted in the examples are a
subset of the full solution set over C. The images do not give us the whole picture,
but they at least provide a glimpse into the nature of the variety.

Another important attribute of a field is its characteristic. Recall that the char-
acteristic of K, denoted Char(K), is the smallest positive integer n such that

1 + · · ·+ 1︸ ︷︷ ︸
n

= 0 ∈ K.

If no such n exists, as is the case for Q, R, and C, then we say that the field has
characteristic 0. All of the results in this book hold for a general algebraically
closed field. However, in many examples, we often want to avoid a finite list of
characteristics because they might exhibit unusual behavior with particular types of
polynomials. For example, when Char(K) 6= 2, the polynomial x2 + y2 − 1 is
irreducible, but if 1 + 1 = 0 ∈ K, then

x2 + y2 − 1 = (x + y + 1)2.

Rather than mentioning the exceptional characteristics, we often assume for sim-
plicity in specific examples that K = C, even though the examples usually extend to
algebraically closed fields with only finitely many exceptions on the characteristic.
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Exercises for Section 1.5
1.5.1 Prove that any algebraically closed field is infinite. (Hint: If K = {a1, . . . , ar}

is finite, can you construct a polynomial in K[x] with no zeroes in K?)

1.5.2 Let K be algebraically closed and let f ∈ K[x] be a polynomial of degree d.
Prove that there exist a0, a1, . . . , ad ∈ K, not necessarily distinct, such that

f = a0(x− a1) . . . (x− ad).

1.5.3 Let K be any field and I ⊆ K[x1, . . . , xn]. Prove that one inclusion of the
Nullstellensatz holds without assuming that K is algebraically closed:

√
I ⊆ I(V(I)).

1.5.4 Prove that the Nullstellensatz fails for any field that is not algebraically closed.

1.5.5 Let K be algebraically closed and let I ⊆ K[x1, . . . , xn] be an ideal. Assuming
the Nullstellensatz, prove that V(I) = ∅ if and only if I = K[x1, . . . , xn].
(This result is often called the Weak Nullstellensatz.)

1.5.6 Assuming the Nullstellensatz, calculate I(X) for the following varieties X:

(a) X = V(x2 − y3, x2 + y3) ⊆ A2
C;

(b) X = V(x) ∪ V(y− z) ⊆ A3
C

;

(c) X = V((x2y2 + yz2 + x3z2)(x2 + y2 + 1)) ⊆ A3
C

.

1.5.7 Let K be algebraically closed. For each a ∈ K, let

Xa := V(y− x2, y− a) ⊆ A2
K.

(a) For what values of a do we have I(Xa) = 〈y− x2, y− a〉? When this
is not the case, what is I(Xa)?

(b) Draw a picture, over the (not algebraically closed) field K = R, of the
affine varieties Xa for several representative values of K. Can you ex-
plain, geometrically, the difference between the values of a for which the
equality in part (a) holds and the values of t for which it does not hold?

1.5.8 Assume Char(K) = 2. Prove that x2 + y2 − 1 = (x + y + 1)2 ∈ K[x].
More generally, assume Char(K) = p and show that( m

∑
i=1

fi

)p
=

m

∑
i=1

f p
i .



Chapter 2

Irreducibility of Affine Varieties
LEARNING OBJECTIVES FOR CHAPTER 2

• Investigate inclusions, intersections, and unions of affine varieties.

• Prove that every affine variety can be written as the vanishing set of a finite
set of polynomials.

• Learn what it means for an affine variety to be irreducible and how affine
varieties decompose into irreducible affine varieties.

• Compute irreducible decompositions in a number of examples.

• Refine the dictionary between radical ideals and affine varieties.

When studying the integers, a key tool is the existence of prime factorizations.
There is an analogue when studying polynomials (factorization into irreducibles)
or when studying finite abelian groups (decomposition as a direct sum of cyclic
groups). These settings all demonstrate the way in which one can understand a class
of mathematical objects by specifying the atomic, indecomposable objects as well as
how a general object decomposes into its atomic pieces. In this chapter, we apply this
philosophy to affine varieties, introducing the notion of an irreducible affine variety
and describing how every affine variety decomposes uniquely as a finite union of
irreducible affine varieties—its irreducible components.

In order to get there, it is necessary to lay some preliminary groundwork. First,
since our goal is to prove that every affine variety can be written as a union of its irre-
ducible components, we need a general understanding of how affine varieties behave
with respect to set-theoretic notions like inclusions, intersections, and unions, which
we discuss in Section 2.1. Furthermore, just as an integer can be factored into primes
by a process of repeated factorization that eventually terminates, we need to be sure
that the analogous process for affine varieties cannot produce an infinitely nested
chain of smaller varieties. This condition translates to a purely algebraic property of
K[x1, . . . , xn]—it is a Noetherian ring—which is the topic of Section 2.2. Once the
groundwork has been laid, we introduce the notion of irreducibility in Section 2.3
and we prove that every affine variety uniquely decomposes as a finite union of irre-
ducible affine varieties in Section 2.4.

61
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Section 2.1 Inclusions, intersections, and unions
In this section, we discuss the ways in which the V- and I-operators interact with
set-theoretic notions, beginning with their behavior with respect to inclusions.

2.1 PROPOSITION V and I are inclusion-reversing

Let S , T ⊆ K[x1, . . . , xn] and X, Y ⊆ An be subsets.
1. If S ⊆ T , then V(S) ⊇ V(T ).
2. If X ⊆ Y, then I(X) ⊇ I(Y).

Furthermore, if X and Y are affine varieties, then

X ⊆ Y if and only if I(X) ⊇ I(Y).

In words, the first item says that a larger set of polynomials has fewer common
solutions than a smaller one, while the second item says that a larger set of points
in An has fewer polynomials that vanish on it than a smaller one. The reader is
encouraged to take a moment to convince themselves of these statements on an in-
tuitive level before attempting a formal proof.

PROOF OF PROPOSITION 2.1 Items 1 and 2 are left to Exercises 2.1.1 and 2.1.2,
respectively, where it is also shown that the converse of each of these statements can
fail. For the final if-and-only-if statement, the “only-if” direction is the statement of
Item 2, so it remains to prove the “if” direction. Assume, then, that I(X) ⊇ I(Y),
which implies by Item 1 that V(I(X)) ⊆ V(I(Y)). Using the assumption that X
and Y are affine varieties, we apply Proposition 1.21 to see that V(I(X)) = X and
V(I(Y)) = Y, from which we conclude that X ⊆ Y.

2.2 EXAMPLE A line on a hyperboloid

Consider the ideals

I = 〈x2 + y2− z2− 1〉 and J = 〈x− z, y− 1〉.

Then V(I) is the one-sheeted hyperboloid de-
picted to the right over R, and the variety V(J)
is the line contained on the hyperboloid, whose
points are of the form {(a, 1, a) | a ∈ K}. The
containment V(I) ⊇ V(J) follows from the
containment of ideals I ⊆ J, which is verified
by noting that the generator of I lies in J:

x2 + y2 − z2 − 1 = (x + z)(x− z) + (y + 1)(y− 1) ∈ J.

Having discussed inclusions, we now turn our attention to intersections and
unions. Is the intersection or union of a set of affine varieties itself an affine va-
riety? If so, and if we happen to know a set of defining equations for the original
collection of varieties, can we find defining equations for the intersection and union?
We explore these questions, beginning with a familiar example.
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2.3 EXAMPLE Intersection and union of coordinate axes

Consider the affine varieties V(x) ⊆ A2 and V(y) ⊆ A2, which are the y-axis and
the x-axis, respectively. The intersection of the two coordinate axes is simply the
origin, which we saw in Example 1.6 is defined by the vanishing of the set {x, y}.
Thus,

(2.4) V(x) ∩ V(y) = V(x, y).

Their union, on the other hand, is the affine variety of Example 1.5, which is defined
by the vanishing of the polynomial xy. Thus,

(2.5) V(x) ∪ V(y) = V(xy).

If we interpret Equations (2.4) and (2.5) in terms of ideals, then the ideal 〈xy〉
appearing in Equation (2.5) is the intersection of the ideals 〈x〉 and 〈y〉. The ideal
〈x, y〉 in Equation (2.4) is not quite the union of 〈x〉 and 〈y〉—since this union is
not an ideal—but is the ideal generated by the union (Exercise 2.1.3). In this way,
Example 2.3 illustrates the following general result.

2.6 PROPOSITION Intersections and unions of vanishing sets

For any ideals I, J ⊆ K[x1, . . . , xn],

V(I) ∩ V(J) = V(I ∪ J),

V(I) ∪ V(J) = V(I ∩ J).

PROOF We prove the second equality and leave the first to Exercise 2.1.4.
(⊆): Since I ∩ J ⊆ I, Proposition 2.1 implies that V(I) ⊆ V(I ∩ J). By the

same token, we have V(J) ⊆ V(I ∩ J). Taken together, we conclude that

V(I) ∪ V(J) ⊆ V(I ∩ J).

(⊇): Suppose a = (a1, . . . , an) /∈ V(I) ∪ V(J). Since a /∈ V(I), there exists
f ∈ I such that f (a) 6= 0. Similarly, there exists g ∈ J such that g(a) 6= 0. Because
ideals absorb multiplication, the product f g lies in I and J, so f g ∈ I ∩ J. Since

( f g)(a) = f (a)g(a) 6= 0,

we conclude that a /∈ V(I ∩ J), completing the proof.

Since every affine variety X is the vanishing set of some ideal (namely, the ideal
I(X)), Proposition 2.6 implies that the intersection and union of any two affine
varieties is, itself, an affine variety. Each of the equations in Proposition 2.6 has a
downside, however. In the first equation, the issue is that the union I ∪ J of ideals is
not, in general, an ideal (Exercise 2.1.5). In the second equation, although I ∩ J is
an ideal, it can be inconvenient to work with in practice; for example, if one knows
generators for I and J, it is not obvious how to deduce generators for I ∩ J.
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Both of these issues can be rectified by rephrasing Proposition 2.6 in terms of
the following pair of algebraic operations on ideals.

2.7 DEFINITION Sums and products of ideals

Let I and J be ideals in a ring R. The sum of I and J is the ideal

I + J = {r + s | r ∈ I, s ∈ J},

and the product of I and J is the ideal

I · J =
{

m

∑
i=1

risi

∣∣∣∣ ri ∈ I, si ∈ J

}
.

The definition of the sum of two ideals is what you might expect: it is the set
consisting of pairwise sums, which happens to be an ideal. The product, however,
requires an additional step: since the set of pairwise products is not closed under
addition, one needs to include all finite sums of pairwise products in order to obtain
an ideal. The verification that the sum and product of two ideals are, in fact, ideals
is left to Exercise 2.1.7, where a number of other useful properties are developed.

An important aspect of working with sums and products of ideals is that, if we
have generators for I and J, say I = 〈a1, . . . , ak〉 and J = 〈b1, . . . , b`〉, then we can
immediately write down generators for the sum and product ideals (Exercise 2.1.7):

I + J = 〈a1, . . . , ak, b1, . . . , b`〉,
I · J =

〈
aibj | i = 1, . . . , k and j = 1, . . . , `

〉
.

For example, in the ring K[x, y], we have

〈x〉+ 〈y〉 = 〈x, y〉,
〈x〉 · 〈y〉 = 〈xy〉.

Utilizing sums and products, we have the following modification of Proposition 2.6.

2.8 PROPOSITION Intersections and unions revisited

For any ideals I, J ⊆ K[x1, . . . , xn],

V(I) ∩ V(J) = V(I + J),

V(I) ∪ V(J) = V(I · J).

PROOF For the first equation, we need only observe that I + J is the ideal gener-
ated by I ∪ J (Exercise 2.1.7), and then the first equation of Proposition 2.8 follows
from the first equation of Proposition 2.6.

To prove the second equation, notice that I · J is contained in both I and J (Exer-
cise 2.1.7). Therefore, the proof that V(I) ∪ V(J) ⊆ V(I · J) carries over verbatim
from Proposition 2.6. Similarly, because f g ∈ I · J whenever f ∈ I and g ∈ J, the
proof that V(I) ∪ V(J) ⊇ V(I · J) also applies unchanged.
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2.9 EXAMPLE Intersection and union via ideals

Consider the affine varieties V(x, y) and V(x − y) in A2, which are the origin
and a line through the origin. This example computes their intersection and union
algebraically, verifying what one would expect.

Applying Proposition 2.8 and the description of the ideal sum in terms of gener-
ators, we have

V(x, y) ∩ V(x− y) = V(〈x, y〉+ 〈x− y〉) = V(x, y, x− y).

Note that 〈x, y, x − y〉 = 〈x, y〉, since x − y is already in the ideal that x and y
generate. Thus, the above can be expressed as

V(x, y) ∩ V(x− y) = V(x, y),

which captures the geometric observation that the intersection of these two affine
varieties is the origin.

As for their union, Proposition 2.8 implies that

V(x, y) ∪ V(x− y) = V(〈x, y〉 · 〈x− y〉) = V(x(x− y), y(x− y)).

An element (a, b) ∈ V(x(x− y), y(x− y)) must satisfy the equations

a(a− b) = 0 and b(a− b) = 0.

The first of these implies that either a = 0 or a = b. In case a = 0, the second
equation implies that b2 = 0 and hence b = 0, and in case a = b, the second
equation is automatically satisfied. In this way, one confirms that

V(x2 − xy, xy− y2) = {(a, b) ∈ A2 | a = b}.

In other words, we have verified algebraically that the union of the origin and the
line y = x is, as expected, just the line.

Thus far, we have considered only pairwise unions and intersections, but the
astute reader may realize that everything generalizes to unions and intersections of
finitely many affine varieties V(I1), . . . ,V(Ik). In fact, intersections can be pushed
even further, to collections of infinitely many affine varieties V(I1),V(I2),V(I3), . . .
or even collections of uncountably many affine varieties.

Notationally, in order to speak of arbitrary collections of ideals, we consider sets
{Iα}α∈A, where A is an arbitrary set (the indexing set) and Iα ⊆ K[x1, . . . , xn] is
an ideal for each α ∈ A. For example, if A = {1, 2, 3}, this would be a collec-
tion {I1, I2, I3}. If A = N, it would be a collection {I0, I1, I2, . . .} of countably-
infinitely many ideals. We could even have A = R, meaning the collection contains
not just ideals I0, I1, I2, . . . but also ideals I−1, I1/2, I√2, Iπ , and so on.

With this notation established, the general result is the following.
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2.10 PROPOSITION General intersections and unions

For any collection {Iα}α∈A of ideals Iα ⊆ K[x1, . . . , xn],

⋂
α∈A
V(Iα) = V

( ⋃
α∈A

Iα

)
.

For any finite collection {I1, . . . , Ik} of ideals Ii ⊆ K[x1, . . . , xn],

k⋃
i=1

V(Ii) = V
( k⋂

i=1

Ii

)
.

Proposition 2.10 can also be stated
in terms of ideal sums and products,
but a bit of care must be taken in
defining infinite sums of ideals.

PROOF The proof mimics the proof
of Proposition 2.6. The reason finite-
ness is required in the second equation
is that the product f g that appears in
the proof of Proposition 2.6 is replaced
here by a product of one fi from each
Ii, and infinite products of polynomials are not polynomials.

Finiteness is essential in order for the union of affine varieties to be an affine
variety. For example, Z ⊆ C = A1

C is an infinite union of its points, each of which
is an affine variety, but we know that Z ⊆ A1

C is not an affine variety, because it is
an infinite proper subset.

Proposition 2.10 implies that arbitrary intersections and finite unions of affine
varieties are affine varieties. Readers familiar with topology may recognize these
conditions: along with the property that ∅ and An are affine varieties, these form
the defining conditions on the closed sets of a topology, so their complements form
the open sets. This topology on An is called the Zariski topology, named in honor
of Oscar Zariski (1899–1986), who made foundational contributions to modern al-
gebraic geometry by placing the classical Italian approach, in which he was trained,
on a more rigorous algebraic footing.

Though familiarity with topology will not be assumed in this book, the termi-
nology of Zariski open and closed sets permeates throughout algebraic geometry, so
we present the definition here for future reference.

2.11 DEFINITION Zariski topology on An

A subset X ⊆ An is called Zariski-closed if X is an affine variety.
A subset U ⊆ An is called Zariski-open if An \U is an affine variety.

The adjective Zariski distinguishes
this topology from other natural
topologies on An

K, such as the Eu-
clidean topology for K = R or C.

The interested reader with a back-
ground in topology is directed to Exer-
cise 2.1.9 to explore some basic proper-
ties of the Zariski topology and how it
compares to the Euclidean topology.
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Exercises for Section 2.1
2.1.1 Let S , T ⊆ K[x1, . . . , xn] be subsets.

(a) Prove that S ⊆ T implies that V(S) ⊇ V(T ).
(b) Prove, by example, that the converse of (a) can fail.

2.1.2 Let X, Y ⊆ An be subsets.

(a) Prove that X ⊆ Y implies that I(X) ⊇ I(Y).
(b) Prove, by example, that the converse of (a) can fail.

2.1.3 This exercise concerns the ideals 〈x〉 ⊆ K[x, y] and 〈y〉 ⊆ K[x, y].

(a) Prove that 〈x〉 ∩ 〈y〉 = 〈xy〉.
(b) Prove that

〈
〈x〉 ∪ 〈y〉

〉
= 〈x, y〉.

2.1.4 Complete the proof of Proposition 2.6 by proving that

V(I) ∩ V(J) = V(I ∪ J)

for any ideals I, J ⊆ K[x1, . . . , xn].

2.1.5 Prove that a union of two ideals in a ring is an ideal if and only if one of the
ideals is contained in the other.

2.1.6 Let I and J be ideals of a ring R. Prove, by example, that {ab | a ∈ I, b ∈ J}
is not necessarily an ideal of R.

2.1.7 Let I and J be ideals of a ring R.

(a) Prove that I + J and I · J are both ideals.
(b) Suppose that I = 〈a1, . . . , ak〉 and J = 〈b1, . . . , b`〉. Prove that

I + J = 〈a1, . . . , ak, b1, . . . , b`〉

and
I · J =

〈{
aibj | i = 1, . . . , k, j = 1, . . . , `

}〉
.

(c) Prove that I + J is the ideal generated by I ∪ J.
(d) Prove that

I · J ⊆ I ∩ J.

2.1.8 Assume that K is infinite. Prove that any two nonempty Zariski-open sets
in An

K have nonempty intersection. (For students with some background in
topology, this says that the Zariski topology on An

K is not Hausdorff.)

2.1.9 (For students with some background in topology) Compare the Zariski topol-
ogy on An

R = Rn to the Euclidean topology (induced by the Euclidean met-
ric). Is one of these topologies coarser than the other?
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Section 2.2 Finite generation
The notion of a vanishing set V(S) makes sense whether S is finite or infinite, but
often an infinite set can be replaced by a finite one without affecting the correspond-
ing vanishing set. For example, the ideal 〈y − x2〉 ⊆ K[x, y] contains infinitely
many polynomials, but V(〈y− x2〉) is equal to V(y− x2), the vanishing set of just
a single polynomial.

A natural question, then, is whether any affine variety can be expressed as V(S)
for a finite set S . The answer to this question is yes, and the algebraic proof of this
fact is the goal of this section. We begin with a bit of algebraic terminology.

2.12 DEFINITION Finitely-generated ideals

An ideal I of a ring R is said to be finitely-generated if I = 〈r1, . . . , rk〉 for
finitely many elements r1, . . . , rk ∈ R.

The ideal 〈y− x2〉 ⊆ K[x, y], for example, is finitely-generated, as is the ideal
〈x, y〉 ⊆ K[x, y]. In fact, one must look to a ring that is rather less familiar to find
an example of an ideal that is not finitely-generated.

2.13 EXAMPLE An ideal that is not finitely-generated

Let R = K[x1, x2, x3, . . .] be a polynomial ring in infinitely many variables. Explic-
itly, monomials in this ring are expressions of the form

xα := xα1
1 xα2

2 xα3
3 · · · ,

where α = (α1, α2, α3, . . .) is an exponent vector satisfying

(i) αi ∈N for all i,

(ii) αi = 0 for all but finitely many i.
An element of R is defined to be a finite K-linear combination of monomials:

f = ∑
α

aαxα,

where the sum is over all exponent vectors α satisfying (i) and (ii), the coefficients
aα are elements of K, and aα = 0 for all but finitely many α.

In R, the ideal generated by all of the variables,

I = 〈x1, x2, x3, . . .〉,

is not finitely-generated, as the reader is encouraged to verify (Exercise 2.2.1).

Despite the previous example, many of the rings with which we are familiar have
the property that all of their ideals are finitely-generated. These rings are given a
special name, in honor of Emmy Noether (1882–1935). In addition to her pioneering
work in abstract algebra, Noether also guided the development of modern physics
by discovering the connection between symmetries and conservations laws.
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2.14 DEFINITION Noetherian ring

A ring is said to be Noetherian if all of its ideals are finitely-generated.

Our goal is to prove that K[x1, . . . , xn] is Noetherian. First, we begin with a few
examples that we already know to be Noetherian.

2.15 EXAMPLE Fields are Noetherian

If K is any field, then the only ideals of K are {0} and K. Both of these are finitely-
generated, because {0} = 〈0〉 and K = 〈1〉. Thus, K is Noetherian.

2.16 EXAMPLE PIDs are Noetherian

By definition, every ideal in a principal ideal domain is generated by a single el-
ement, and is thus finitely-generated. Therefore, the rings Z and K[x] are both
examples of Noetherian rings.

There is an alternative way to characterize what it means for a ring to be Noethe-
rian, using nested chains of ideals. Although this second characterization is not as
easy to state, it can be very useful in practice.

2.17 PROPOSITION The ascending chain condition

A ring R is Noetherian if and only if, given any ideals I1, I2, I3, . . . of R with

I1 ⊆ I2 ⊆ I3 ⊆ · · · ,

there exists a natural number k such that Id = Ik for all d ≥ k.

In other words, Proposition 2.17 says that Noetherian rings are characterized
by the ascending chain condition: every ascending chain of ideals must eventually
stabilize. It is not satisfied for the (non-Noetherian) ring R = K[x1, x2, x3, . . .]; for
example, the chain of ideals

〈x1〉 ( 〈x1, x2〉 ( 〈x1, x2, x3〉 ( · · ·

continues to grow at each step.

PROOF OF PROPOSITION 2.17 We prove both implications.
(⇒) Suppose R is Noetherian, and let

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

be an ascending chain of ideals of R. Consider the union of these nested ideals

I =
∞⋃

k=1

Ik,

which is an ideal of R by Exercise 0.4.9. Since R is Noetherian, I = 〈a1, . . . , ar〉
for some a1, . . . , ar ∈ R. Each ai is in the union of the Ik, so it must lie in at least
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one of them; say ai ∈ Iki
. Since the ideals are nested, it follows that ai ∈ Id for all

d ≥ ki. In particular, if we set k = max{k1, . . . , kr}, then {a1, . . . , ar} ⊆ Id for all
d ≥ k, implying that I = 〈a1, . . . , ar〉 ⊆ Id for all d ≥ k. However, since I is the
union of the Ik, we also have I ⊇ Id, from which we conclude that I = Id for all
d ≥ k, verifying the ascending chain condition.

(⇐) We prove this direction by proving the contrapositive. Suppose R is not
Noetherian, and choose an ideal I of R that is not finitely-generated. Choose any
element a1 ∈ I and define I1 = 〈a1〉. Then I1 ⊆ I, but since I is not finitely-
generated, the inclusion must be strict. Thus, choose an element a2 ∈ I \ I1 and
define I2 = 〈a1, a2〉. We now have

I1 ( I2 ( I;

the first inclusion is strict because a2 /∈ I1, and the second inclusion is strict because
I is not finitely-generated. We can continue this process indefinitely by choosing
an+1 ∈ I \ 〈a1, . . . , an〉 and defining In+1 = 〈a1, . . . , an+1〉. This process recur-
sively produces an ascending chain of ideals that never stabilizes, so the ascending
chain condition fails.

The word “basis” is a somewhat out-
dated artifact: in Hilbert’s time, a set
of ideal generators was referred to
as a basis. This terminology persists
today, to some extent—for example,
in the term “Gröbner basis”—but is
relatively uncommon.

Equipped with the ascending chain
characterization of the Noetherian prop-
erty, our next objective is to show that
the polynomial rings K[x1, . . . , xn] are
Noetherian. The proof uses induction,
adding one variable at a time. The in-
duction step follows from the follow-
ing key algebraic result that goes by
the name of Hilbert’s Basis Theorem,
in honor of David Hilbert (1862–1943), a prolific mathematician who was the first
to prove this result in 1890 as part of his work on invariant theory.

2.18 THEOREM Hilbert’s Basis Theorem

If R is a Noetherian ring, then R[x] is a Noetherian ring.

PROOF Suppose that R is a Noetherian ring and, toward a contradiction, suppose
that R[x] is not Noetherian. Let I ⊆ R[x] be an ideal that is not finitely-generated.
Define an infinite sequence of polynomials in R[x] by the following recursion:

1. Choose f1 ∈ I to be a nonzero polynomial of minimum degree.

2. Having chosen f1, . . . , f j ∈ I, choose f j+1 ∈ I \ 〈 f1, . . . , f j〉 to be a nonzero
polynomial of minimum degree.

It cannot be the case that deg( f j) > deg( f j+1) as this would contradict the
choice of f j having minimum degree in I \ 〈 f1, . . . , f j−1〉. Therefore, the degrees of
the polynomials in the sequence ( f1, f2, f3, . . . ) are nondecreasing.

For each j, let aj be the leading coefficient of f j and consider the following
ascending chain of ideals in R:

〈a1〉 ⊆ 〈a1, a2〉 ⊆ 〈a1, a2, a3〉 ⊆ · · · .
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Since R is Noetherian, this chain must eventually stabilize; suppose it stabilizes at
the kth step. Then ak+1 ∈ 〈a1, . . . , ak〉. Choose elements r1, . . . , rk ∈ R such that

ak+1 = r1a1 + · · ·+ rkak.

Using the fact that deg( fi) ≤ deg( fk+1) for all i < k + 1, define the polynomial

g = xdeg( fk+1)−deg( f1)r1 f1 + · · ·+ xdeg( fk+1)−deg( fk)rk fk ∈ R[x].

By design, g has the same leading coefficient as fk+1, which implies that

deg( fk+1 − g) < deg( fk+1).

Since fk+1 and g are both elements of I, it follows that fk+1− g ∈ I. However, since
g is an element of 〈 f1, . . . , fk〉 and fk+1 is not, it follows that fk+1 − g cannot be in
〈 f1, . . . , fk〉. Thus, fk+1 − g ∈ I \ 〈 f1, . . . , fk〉 and deg( fk+1 − g) < deg( fk+1),
contradicting the minimality of degree in the choice of fk+1.

This finally brings us to the following fundamental property of polynomial rings.

2.19 COROLLARY K[x1, . . . , xn] is Noetherian

For any field K, the polynomial ring K[x1, . . . , xn] is Noetherian.

PROOF The proof is by induction on n.
(Base case) As was noted in Example 2.15, any field K is Noetherian, proving

the base case n = 0.
(Induction step) Suppose K[x1, . . . , xn−1] is Noetherian. Using the canonical

isomorphism
K[x1, . . . , xn] = K[x1, . . . , xn−1][xn]

and applying Hilbert’s Basis Theorem for R = K[x1, . . . , xn−1], we conclude that
K[x1, . . . , xn] is Noetherian.

The geometric interpretation of the fact that K[x1, . . . , xn] is Noetherian is that
any affine variety can be defined by the vanishing of finitely many polynomials. In
fact, a somewhat stronger statement is true.

2.20 COROLLARY Affine varieties are finitely-generated

If S ⊆ K[x1, . . . , xn] is any subset, then there is a finite subset T ⊆ S such
that

V(S) = V(T ).

This result is stronger than simply
saying that V(S) can be defined by a
finite set of polynomials; it is also as-
serting that the finite set can be taken
to be a subset of S .

PROOF Let S ⊆ K[x1, . . . , xn]
be a (possibly infinite) set and let IS
be the ideal generated by S . By
Corollary 2.19, there exist elements
f1, . . . , fk ∈ K[x1, . . . , xn] such that

IS = 〈 f1, . . . , fk〉.
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The polynomials f1, . . . , fk may not themselves belong to the set S , but by definition
of IS , we can write each fi as

(2.21) fi =
`i

∑
j=1

gi,jhi,j

where gi,j ∈ K[x1, . . . , xn] and hi,j ∈ S . Define the finite subset

T = {hi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ `i} ⊆ S .

Equation (2.21) implies fi ∈ IT for all i, so IS = 〈 f1, . . . , fk〉 ⊆ IT . Conversely,
since T ⊆ S , we obtain the other inclusion IT ⊆ IS . Thus, IS = IT , and we
conclude that

V(S) = V(IS ) = V(IT ) = V(T ).

Exercises for Section 2.2
2.2.1 Prove that 〈x1, x2, x3, . . .〉 ⊆ K[x1, x2, x3, . . .] is not finitely-generated.

2.2.2 Because Z is a principal ideal domain (thus, Noetherian), Proposition 2.17
implies that any ascending chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · in Z must
terminate. Explain this phenomenon concretely: namely, if you express each
Ii = 〈ai〉 for some integer ai, what is the relationship between ai and ai+1?
Why must there exist a natural number k such that ak = ak+1 = ak+2 = · · · ?

2.2.3 Let R be a Noetherian ring and let I ⊆ R be an ideal. Prove that R/I is
Noetherian.

2.2.4 Prove that every Noetherian ring is a factorization domain.

2.2.5 (This exercise shows that a subring of a Noetherian ring need not be Noethe-
rian.) Consider the ring homomorphism

ϕ : K[x1, x2, x3, . . . ]→ K[y, z]

f (x1, x2, x3, . . . ) 7→ f (yz, yz2, yz3, . . . ).

Prove that ϕ is injective and conclude that K[y, z] has a non-Noetherian sub-
ring.

2.2.6 Let R be a Noetherian ring and let ϕ : R → R be a ring homomorphism.
Prove that ϕ is an isomorphism if and only if ϕ is surjective. (Hint: Consider
the ideals I1 = ker(ϕ), I2 = ker(ϕ ◦ ϕ), I3 = ker(ϕ ◦ ϕ ◦ ϕ), and so on.)

2.2.7 Suppose
An =

⋃
α∈A

Uα

where each Uα ⊆ An is Zariski open. Prove that there is a finite subset
B ⊆ A such that

An =
⋃

α∈B
Uα.

(This shows that the Zariski topology on An is compact.)
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Section 2.3 Irreducible affine varieties
We now come to the heart of this chapter and a central concept in algebraic geome-
try: the notion of irreducibility. To motivate the idea, consider the affine varieties

X1 = V(y− x2), X2 = V(y− 2), and X3 = V(x− 1, y− 3).

Over R, the affine variety X = X1 ∪X2 ∪X3 is
shown to the right. Imagine now that you were
given this image without being told that X was a
union of three affine varieties. You could proba-
bly still tell, visually, that X was equal to such a
union, and by studying the picture carefully you
might even be able to determine the varieties.
These varieties are the atomic pieces, or irreducible components, of X.

As this discussion suggests, the way we decompose affine varieties into their
constituent pieces is by breaking them up into a finite union of smaller affine vari-
eties. As such, the atomic ones are those that cannot be written as a union of two
smaller affine varieties. We make this notion precise in the next definition.

2.22 DEFINITION Reducible and irreducible affine variety

An affine variety X ⊆ An is reducible if X = X1 ∪ X2 for some affine va-
rieties X1, X2 ( X, and X is irreducible if it is neither empty nor reducible.

2.23 EXAMPLE

The affine variety X = V(x2 − y2) ⊆ A2 is reducible. To see this, notice that

X = V((x + y)(x− y)) = V(x + y) ∪ V(x− y),

where the second equality follows from Propo-
sition 2.8. Therefore, the two affine varieties

X1 = V(x + y) ( X

and
X2 = V(x− y) ( X

satisfy X = X1 ∪ X2. Visually, X1 and X2 are the two lines that constitute X in the
image to the right. In fact, as we will see in the next section, the two varieties X1
and X2 are the unique irreducible components of X.

2.24 EXAMPLE

By contrast, the parabola X = V(y − x2) ⊆ A2 is irreducible. This assertion
should be geometrically believable: unlike the affine variety of Example 2.23, the
parabola consists of just a single “piece.” While this intuition is not yet a proof, the
irreducibility of X will follow from Proposition 2.25 below.
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As the above examples illustrate, proving that an affine variety X is reducible is
straightforward: one must simply find a pair of affine varieties X1 ( X and X2 ( X
whose union is X. It is less clear how to prove that an affine variety is irreducible.
The following algebraic characterization of irreducibility provides a key tool.

2.25 PROPOSITION Irreducibility algebraically

An affine variety X ⊆ An is irreducible if and only if I(X) is a prime ideal.

PROOF We prove both implications by proving their contrapositives.
(⇐) Suppose that X is reducible and choose affine varieties X1, X2 ( X such

that
X = X1 ∪ X2.

Since X1 ( X, it follows from Proposition 2.1 that I(X1) ) I(X). Thus, there
exists f ∈ I(X1) with f /∈ I(X), and similarly, there exists g ∈ I(X2) with
g /∈ I(X). For any a ∈ X, we either have a ∈ X1 (and hence f (a) = 0) or a ∈ X2
(and hence g(a) = 0), proving that ( f g)(a) = f (a)g(a) = 0, so f g ∈ I(X). We
have thus argued the existence of a pair of elements f , g ∈ K[x1, . . . , xn] with

(2.26) f /∈ I(X), g /∈ I(X), and f g ∈ I(X),

which proves that I(X) is not prime.
(⇒) Suppose that I(X) is not prime and choose f , g ∈ K[x1, . . . , xn] satisfying

the conditions in (2.26). Define

X1 = V( f ) ∩ X and X2 = V(g) ∩ X.

Proposition 2.6 implies that X1 and X2 are both affine varieties, and both are con-
tained in X. Furthermore, the containments must be strict; if X = X1, for example,
then X = V( f ) ∩ X, which means that X ⊆ V( f ). If this were the case, then
f (a) = 0 for all a ∈ X, meaning that f ∈ I(X), contradicting our assumptions.

By construction, we have X1∪X2 ⊆ X, but the other containment also holds. To
see this, let a ∈ X. The fact that f g ∈ I(X) implies that f g(a) = f (a)g(a) = 0.
It follows that either f (a) = 0 or g(a) = 0, implying that either a ∈ V( f ) or
a ∈ V(g). Since a ∈ X by assumption, we conclude that either a ∈ V( f )∩X = X1
or a ∈ V(g) ∩ X = X2, so a ∈ X1 ∪ X2. We have thus found two affine varieties
X1, X2 ( X such that X = X1 ∪ X2, so X is reducible.

2.27 EXAMPLE The parabola is irreducible

Consider the affine variety X = V(y− x2) ⊆ A2, whose vanishing ideal we com-
puted in Example 1.19 to be I(X) = 〈y− x2〉. Since y− x2 is irreducible, I(X)
is prime (Proposition 0.62), which proves that X is irreducible.

It is often the case that an affine variety is described in terms of defining equa-
tions, or equivalently, an ideal I = 〈 f1, . . . , fk〉. However, this defining ideal may
not be equal to the vanishing ideal. This raises the question: given an ideal I, is
there a way to determine if V(I) is irreducible, without a priori knowledge of the
vanishing ideal? The Nullstellensatz provides the following useful answer.
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2.28 PROPOSITION Irreducibility of V(I)

If I ⊆ K[x1, . . . , xn] is a prime ideal, then V(I) is irreducible. In particular,
if f ∈ K[x1, . . . , xn] is an irreducible polynomial, then V( f ) is irreducible.

PROOF Suppose that I is a prime ideal. Then I is radical by Proposition 1.35.
Thus, by the Nullstellensatz,

I(V(I)) =
√

I = I.

Since I(V(I)) is prime, we conclude from Proposition 2.25 that V(I) is irreducible.
To prove the second assertion, assume that f is an irreducible polynomial. Then

〈 f 〉 is a prime ideal by Proposition 0.62. Therefore, the first statement in the propo-
sition implies that V( f ) = V(〈 f 〉) is irreducible.

We point out that Proposition 2.28 fails when K is not algebraically closed. For
example, x2 + 1 ∈ R[x] is irreducible but

V(x2 + 1) = ∅ ∈ A1
R

and, by definition, the empty set is not irreducible. For an example of an irreducible
polynomial (over R) that defines a nonempty reducible variety, see Exercise 2.3.6.

As we have previously mentioned, it is often useful to use our intuition over R to
glean information about varieties more generally. For example, it should be some-
what intuitively clear that the parabola is irreducible over R because it is comprised
of a single “piece,” and this intuition extends to more general fields: the variety
V(y− x2) is irreducible over any infinite field K. However, one should be careful
with this sort of reasoning over R, as the next example illustrates.

2.29 EXAMPLE The hyperbola is irreducible

Consider the hyperbola X = V(xy− 1) ⊆ A2,
which is pictured to the right over R. At a
glance, our geometric intuition tells us that X
consists of two “pieces,” one in the first quad-
rant and one in the third. It would be natural
to guess, then, that X is reducible. To the con-
trary, X is actually irreducible. Over an alge-
braically closed field, this follows from the fact
that xy− 1 is irreducible. However, X can also
be shown to be irreducible over any infinite field, including R (Exercises 2.3.7).

How, then, did our intuition fail us in this example? The answer is that the solu-
tions over R do not capture the entire picture. If we expand our view and consider
the zeros of xy− 1 over the algebraic closure of R, namely C, then we see that the
two “pieces” are actually connected to each other via complex solutions. For exam-
ple, we can get from the point (1, 1) in the upper piece to the point (−1,−1) in the
lower piece by walking along the set of complex solutions

{(eπit, e−πit) | t ∈ [0, 1]}.
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Motivated by this observation, we can at-
tempt to draw V(xy− 1) ⊆ A2

C. This is a bit
challenging because A2

C is 4-dimensional over
the real numbers: A2

C = C2 = R4. However,
by mapping down to R3, one can show (Ex-
ercise 2.3.8) that the complex solutions can be
identified with the surface to the right, where
we have included a depiction of the hyperbola
and the points connecting (1, 1) to (−1,−1).
Thus, we see that the complex picture is much
more consistent with what we might expect an
irreducible variety to look like intuitively: it is comprised of just a single “piece.”

This example illustrates that, while it is important in algebraic geometry to use
our geometric intuition over R, we may not see the whole picture when we do so,
and this intuition should only be trusted insofar as it can be justified algebraically.

A special type of irreducible affine variety is one that consists of a single point:
X = {a} ⊆ An. Since single points are minimal among varieties (with respect
to inclusion), then the inclusion-reversing nature of the V- and I-operators suggest
that their vanishing ideals should be maximal ideals, which, as we know, are special
types of prime ideals. This is true, and even more can be said.

2.30 PROPOSITION Single points and maximal ideals

Let I ⊆ K[x1, . . . , xn] be an ideal. The following are equivalent:
(i) I = I({a}) for some point a = (a1, . . . , an) ∈ An;

(ii) I = 〈x1 − a1, . . . , xn − an〉 for some a1, . . . , an ∈ K;

(iii) K[x1, . . . , xn]/I ∼= K;

(iv) I is a maximal ideal.

PROOF That (i) implies (ii) is Exercise 1.3.5. That (ii) implies (iii) is Exer-
cise 0.3.12. That (iii) implies (iv) follows from Proposition 0.38. Thus, it remains
to prove that (iv) implies (i). Toward proving the contrapositive, suppose that X is
not a single point; we must prove that I(X) is not maximal. There are two cases to
consider: X = ∅ or X has more than one point. If X = ∅, then

I(X) = K[x1, . . . , xn],

which is not a maximal ideal. If, on the other hand, X has more than one point, let
a ∈ X be any point and notice that

∅ ( {a} ( X

is a strict containment of affine varieties. Applying Proposition 2.1, we see that

K[x1, . . . , xn] ) I({a}) ) I(X),

is a strict containment of ideals, showing that I(X) is not maximal.
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Notice that the equivalence of (iii) and (iv) is a purely algebraic statement that
does not hold over non-algebraically-closed fields; for example, the ideal 〈x2 + 1〉
is maximal in R[x] even though

R[x]/〈x2 + 1〉 ∼= C 6∼= R.

This observation reflects that 〈x2 + 1〉 ⊆ R[x] is not a vanishing ideal.
We close this section on irreducibility by describing a refined dictionary between

ideals and varieties. As we have already seen, the Nullstellensatz implies that the
V-operator is a bijection between radical ideals in K[x1, . . . , xn] and affine varieties
in An, with inverse given by the I-operator (Corollary 1.41). We now introduce a
refinement of this bijection that adds prime and maximal ideals to the mix.

2.31 PROPOSITION Refined dictionary between ideals and varieties

The V- and I-operators are inverse, inclusion-reversing bijections that trans-
late between the following hierarchies of ideals and varieties:

{radical ideals in K[x1, . . . , xn]} ←→ {affine varieties in An}

⊆ ⊆

{prime ideals in K[x1, . . . , xn]} ←→ {irreducible varieties in An}

⊆ ⊆

{maximal ideals in K[x1, . . . , xn]} ←→ {points in An}.

PROOF If I is a radical ideal and X = V(I), then the Nullstellensatz implies
that I = I(X). Thus, that the bijection between radical ideals and affine varieties
is inclusion-reversing is the final statement in Proposition 2.1. To show that V and
I restrict to a bijection between prime ideals and irreducible varieties, it suffices to
observe that I = I(X) is prime if and only if X = V(I) is irreducible (Proposi-
tion 2.25). To show that V and I restrict to a bijection btetween maximal ideals
and single points, it suffices to observe that I = I(X) is maximal if and only if
X = V(I) is a single point (Proposition 2.30).

Exercises for Section 2.3
2.3.1 Prove that affine space is irreducible over any infinite field.

2.3.2 Prove that an affine variety over a finite field is irreducible if and only if it
consists of a single point.

2.3.3 Prove that V(xy) ⊆ A2 is reducible.

2.3.4 Let X be an irreducible affine variety, and suppose that

X =
r⋃

i=1

Xi,

where each Xi is an affine variety. Prove that X = Xi for some i.
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2.3.5 Prove that the affine variety V(x2 + y2) ⊆ A2 is irreducible over R but
reducible over C.

2.3.6 Consider the function f = (x2 + 1)(x2 − 1)2 + y2 ∈ R[x, y].

(a) Use Eisenstein’s criterion to prove that f is irreducible.
(b) Prove that V( f ) is reducible, consisting of two distinct points.

2.3.7 Let K be an infinite field. This exercise proves the irreducibility of

X = V(xy− 1) ⊆ A2.

(a) Use properties of I and V to prove that I(X) ⊇ 〈xy− 1〉.
(b) Prove that I(X) ⊆ 〈xy− 1〉, possibly using the following proof outline.

i. Let f ∈ I(X). Prove that

yk f − g ∈ 〈xy− 1〉

for some k ∈N and g ∈ K[x].
ii. Using that f ∈ I(X), prove that g is the zero polynomial.

iii. Using that yk f ∈ 〈xy− 1〉, prove that f ∈ 〈xy− 1〉.
(c) Prove that 〈xy− 1〉 is a prime ideal.

2.3.8 The surface pictured in Example 2.3.8 is the real affine variety

Y = V(uv− w2) ⊆ A3
R.

Let X = V(xy− 1) ⊆ A2
C.

(a) Prove that X = {(reiθ , 1
r e−iθ) | r ∈ R>0, 0 ≤ θ < 2π}.

(b) Prove that the function F : X → A3
R defined by taking (reiθ , 1

r e−iθ) to(
r2 − 1

2r
+

r2 + 1
2r

cos θ,
1− r2

2r
+

r2 + 1
2r

cos θ,
r2 + 1

2r
sin θ

)
is a bijection onto Y.
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Section 2.4 Irreducible decompositions
In the previous section, we were introduced to the notion of irreducibility for affine
varieties. In this section, we prove the fundamental fact that every affine variety is
the finite union of a unique set of irreducible affine varieties. This is one of the most
important consequences of the algebraic fact that K[x1, . . . , xn] is Noetherian.

If X is reducible, then we can write X as a union of affine varieties X1, X2 ( X,
which may themselves be reducible. By further decomposing X1 and X2, one can
split X into a union comprised of more and more affine varieties, stopping only when
the constituent pieces are irreducible. This process is analogous to the way in which
one gradually factors an integer into primes or factors a polynomial into irreducibles.
The following proposition says that, just like for prime factorizations of integers or
irreducible factorizations of polynomials, this process eventually terminates, and the
decomposition obtained in this way is unique.

2.32 PROPOSITION/DEFINITION Irreducible decomposition

Let X ⊆ An be a nonempty affine variety. Then there exist irreducible affine
varieties X1, . . . , Xr ⊆ X such that Xi 6⊆ Xj for any i 6= j and

(2.33) X =
r⋃

i=1

Xi.

Moreover, the affine varieties X1, . . . , Xr are unique up to reordering; we call
these the irreducible components of X, and refer to (2.33) as the irreducible
decomposition of X.

We should stress here that both the finiteness of the number of irreducible com-
ponents and the fact that Xi 6⊆ Xj for all i 6= j are crucial features in order for
the irreducible decomposition to be unique. To see why, consider the parabola
X = V(y − x2) ⊆ A2. Because X is already irreducible, its irreducible decom-
position has just a single component. On the other hand, if we did not insist on the
finiteness of the number of Xi, then expressing X as the union of all of its points,

X =
⋃

p∈X
{p},

would be a different irreducible decomposition. If we did not insist that Xi 6⊆ Xj for
all i 6= j, then we could obtain a different irreducible decomposition as, for example,

X = {(0, 0)} ∪ X.

PROOF OF PROPOSITION 2.32 We must prove existence and uniqueness.
(Existence) Suppose, toward a contradiction, that X ⊆ An is a nonempty affine

variety that does not have a finite irreducible decomposition. In particular, this im-
plies that X is not irreducible, so write

X = X1 ∪ X′1
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where X1, X′1 ( X. If both X1 and X′1 have finite irreducible decompositions, then
the union of these would be a finite irreducible decomposition of X, which goes
against our supposition. Thus, it must be the case that either X1 or X′1 does not have
a finite irreducible decomposition. Without loss of generality, suppose X1 does not
have a finite irreducible decomposition, and write

X1 = X2 ∪ X′2
where X2, X′2 ( X. Again, since X1 does not have a finite irreducible decompo-
sition, then at least one of X2 or X′2 does have a finite irreducible decomposition.
Suppose that X2 does not have a finite irreducible decomposition, and write

X2 = X3 ∪ X′3
where X3, X′3 ( X. Continuing in this way, we construct an infinite chain of nested
affine varieties in An:

X ) X1 ) X2 ) X3 ) · · · .

By Proposition 2.1, this yields an infinite chain of nested ideals in K[x1, . . . , xn]:

I(X) ( I(X1) ( I(X2) ( I(X3) ( · · · ,

which contradicts that K[x1, . . . , xn] is Noetherian (Corollary 2.19). The contradic-
tion implies that every affine variety X ⊆ An must have at least one finite irre-
ducible decomposition.

(Uniqueness) Let

X =
r⋃

i=1

Xi =
s⋃

j=1

Yj

be two irreducible decompositions of X. We must prove that r = s and that, after
possibly reordering, we have Xi = Yi for each i. Without loss of generality, assume
that r ≥ s.

Since X1 ⊆ X, we have

X1 = X1 ∩ X = X1 ∩
( s⋃

j=1

Yj

)
=

s⋃
j=1

(X1 ∩Yj).

Using that X1 is irreducible, it follows (Exercise 2.3.4) that X1 = X1 ∩Yj for some
j. Reordering Y1, . . . , Ys, assume that X1 = X1 ∩Y1, which implies that X1 ⊆ Y1.

By the same token, since Y1 ⊆ X, we have

Y1 = Y1 ∩ X = Y1 ∩
( r⋃

i=1

Xi

)
=

s⋃
i=1

(Y1 ∩ Xi),

so Y1 = Y1 ∩ Xi for some i, and Y1 ⊆ Xi. It follows that X1 ⊆ Y1 ⊆ Xi. Since, by
the definition of an irreducible decomposition, X1 6⊆ Xi for any i 6= 1, it must be
the case that i = 1, and the containment X1 ⊆ Y1 ⊆ X1 implies X1 = Y1.

Repeating this argument with X2 in place of X1 shows that X2 = Yj for some j.
Since X2 6= X1, it cannot be the case that j = 1. Thus, after reordering Y2, . . . , Ys,
we may assume that X2 = Y2. We can continue in this way, showing that Xi = Yi
for each i ∈ {1, . . . , r}. In particular, this proves that r ≤ s. Since we assumed that
r ≥ s, we conclude that r = s and Xi = Yi for all i.
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2.34 EXAMPLE Irreducible components of an intersection

Consider the affine variety

X = V(2x2 + 2y2 − z2 − 1, x2 + y2 − 1) ⊆ A3.

Notice that X = Y1 ∩Y2 where

Y1 = V(2x2 + 2y2 − z2 − 1)

and
Y2 = V(x2 + y2 − 1).

To gain some intuition for the variety X, let us
consider the picture for K = R. In that case, Y1
is a one-sheeted hyperboloid and Y2 is a circular
cylinder, depicted to the right. From this image,
we can see that their intersection, X, consists of
two circles. One might naturally guess that these two circles are the irreducible
components of X, so let us take this intuition and verify it algebraically.

If (a, b, c) ∈ X, then the coordinates satisfy

2a2 + 2b2 − c2 = 1 and a2 + b2 = 1.

Subtracting twice the second equation from the first, we see that these equations are
satisfied if and only if

c2 = 1 and a2 + b2 = 1.

Since c2 = 1 if and only if c = ±1, we can then see that

X = {(a, b, 1) | a2 + b2 = 1} ∪ {(a, b,−1) | a2 + b2 = 1}.
= V(x2 + y2 − 1, z− 1)︸ ︷︷ ︸

X1

∪V(x2 + y2 − 1, z + 1)︸ ︷︷ ︸
X2

Over the real numbers, X1 and X2 are precisely the circles depicted above.
To prove that X1 and X2 are, in fact, the irreducible components of X, it remains

to prove that they are each irreducible. While this fact can be proved over R, it is
much simpler to prove over an algebraically closed field, like C. In particular, over
C, it suffices (by Proposition 2.28) to observe that

〈x2 + y2 − 1, z± 1〉 ⊆ C[x, y, z]

is a prime ideal, which the reader is encouraged to verify (see Exercises 2.4.2).

In general, it is not easy to determine the irreducible components of a variety,
especially if the variety is described by many polynomials in a lot of variables, mak-
ing it impossible to draw a picture and use our geometric intuition. However, in
the special case that the variety is defined by a single polynomial f , the irreducible
decomposition of V( f ) is closely related to the irreducible factorization of f .
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2.35 PROPOSITION Irreducible decomposition of V( f )

If f ∈ K[x1, . . . , xn] has distinct irreducible factors q1, . . . , qm, then the
irreducible decomposition of V( f ) is

V( f ) = V(q1) ∪ · · · ∪ V(qm).

PROOF From the Nullstellensatz, it follows that

V( f ) = V
(√
〈 f 〉
)

.

Applying Proposition 1.31, we see that
√
〈 f 〉 = 〈q1 · · · qm〉, so

V( f ) = V(q1 · · · qm).

Since q1 · · · qm vanishes at a point if and only if one of the qi vanishes at that point,
we have

(2.36) V( f ) = V(q1) ∪ · · · ∪ V(qm).

Since each qi is irreducible, Proposition 2.28 implies that each V(qi) is irreducible.
To finish the proof, we must verify that V(qi) 6⊆ V(qj) for any i 6= j. By

definition of distinct irreducible factors, we know that qi - qj for any i 6= j. This
implies that 〈qi〉 6⊇ 〈qj〉 for any i 6= j. Since each qi is irreducible, then 〈qi〉 is a
prime ideal, and the Nullstellensatz implies that

I(V(qi)) = I(V(〈qi〉)) =
√
〈qi〉 = 〈qi〉.

Thus, since I(V(qi)) 6⊇ I(V(qj)) for any i 6= j, the final statement in Proposi-
tion 2.1 implies that V(qi) 6⊆ V(qj) for any i 6= j.

For an introductory treatment of al-
gebraic geometry that focuses on the
more computational and algorithmic
aspects of the theory, see the book of
Cox, Little, and O’Shea [].

Not every ideal in K[x1, . . . , xn]
is generated by a single polynomial,
and one might naturally wonder how
to compute an irreducible decomposi-
tion of V(I) for nonprincipal ideals I.
While this is a difficult task to do by
hand, it is accomplishable with the aid
of a computer. In particular, given a set of generators I = 〈 f1, . . . , fk〉, there are
effective algorithms utilizing Gröbner bases for computing the irreducible decom-
position of V(I). We will not describe these computational tools, focusing instead
on the more theoretical aspects of the dictionary between algebra in geometry.

Exercises for Section 2.4
2.4.1 Let K be an infinite field of characteristic not equal to 2. Prove that the irre-

ducible decomposition of V(x2 − y2) ⊆ A2 is

V(x2 − y2) = V(x + y) ∪ V(x− y).

What changes if the characteristic is equal to 2?
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2.4.2 Prove that
C[x, y, z]

〈x2 + y2 − 1, z− 1〉
∼=

C[x, y]
〈x2 + y2 − 1〉 .

Conclude that 〈x2 + y2 − 1, z− 1〉 is prime.

2.4.3 Let K be any field and consider a nonconstant polynomial f ∈ K[x]. Describe
the irreducible decomposition of V( f ) ⊆ An in terms of the irreducible fac-
torization of f . Which irreducible factors of f are relevant and which are
not?

2.4.4 What are the irreducible components of

V(x2 + y2 + z2 − 2z, x2 + y2 − z2) ⊆ A3
R?

(Hint: Graph the surfaces to see how they intersect.)

2.4.5 Calculate the irreducible decomposition of

V(x2 + y2 + z2 − 2z, x2 + y2 − z2) ⊆ A3
C.

(Hint: There are three components. How does the complex picture differ
from the real picture in the previous exercise?)

2.4.6 Calculate the irreducible decomposition of

V(xy + z, x2 − x + y2 + yz) ⊆ A3
C.

(Hint: There are two components.)
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Chapter 3

Coordinate Rings
LEARNING OBJECTIVES FOR CHAPTER 3

• Become acquainted with the coordinate ring K[X] of an affine variety X,
both in terms of polynomial functions and as a quotient ring.

• Become familiar with K-algebras, and identify finitely-generated K-
algebras with quotients of polynomial rings.

• Determine whether a ring is reduced, and using quotients, whether an ideal
is radical.

• Characterize coordinate rings algebraically as those rings that are finitely-
generated reduced K-algebras.

• Explore, in specific examples, how to find an affine variety X whose coor-
dinate ring is a given finitely-generated reduced K-algebra A.

The work we did in Chapter 1 gives us one key method for moving back and
forth between the worlds of algebra and geometry, using the V- and I-operators as
inverse bijections between affine varieties in An and radical ideals in K[x1, . . . , xn].
But on the algebraic side, ideals play a special role that we have not yet invoked:
they are precisely the subsets of K[x1, . . . , xn] by which one can take a quotient to
produce a ring. If X ⊆ An is an affine variety, then, how should we interpret the
quotient of K[x1, . . . , xn] by I(X) in terms of the affine variety X?

The answer, as we will see in this chapter, is that this quotient is naturally iso-
morphic to the coordinate ring of X, a ring whose elements are polynomial functions
from X to the ground field K. Once we define these objects precisely in Section 3.1,
we will have a new way to pass from the world of geometry to the world of algebra:

{affine varieties} → {rings}
X 7→ K[X].

As always, then, we ask whether this association is a two-way dictionary. It is not,
at the outset, because not every ring is K[X] for some X. Our search for an algebraic
characterization of the rings that arise as coordinate rings will lead us to define the
notion of a K-algebra—a special class of rings into which polynomial rings and their
quotients fall—and to study their key algebraic properties. The culminating result
of the chapter is that precisely when a ring is a finitely-generated reduced K-algebra
is it the coordinate ring of some affine variety.

85
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Section 3.1 Polynomial functions on affine varieties
We learned in Section 1.1 that each abstract polynomial f ∈ K[x1, . . . , xn] can be
used to define a function An → K, obtained by mapping (a1, . . . , an) ∈ An to
f (a1, . . . , an) ∈ K. If X ⊆ An is an affine variety, then we can restrict the domain
of such a polynomial function to X, yielding a new function

f |X : X → K
(a1, . . . , an) 7→ f (a1, . . . , an).

A function F : X → K that arises in this way is referred to as a polynomial function.

3.1 DEFINITION Polynomial function

Let X ⊆ An be an affine variety. A polynomial function on X is a function
F : X → K such that F = f |X for some f ∈ K[x1, . . . , xn].

3.2 EXAMPLE Polynomial functions on the parabola

Let X = V(y− x2) ⊆ A2. The function

F : X → K
(a, b) 7→ a + b

is a polynomial function, since

F = f |X where f = x + y ∈ K[x, y].

Note that f = x + y is not the only polynomial that gives rise to F. For example,
since a2 = b for all (a, b) ∈ X, it follows that F = g|X where g = x + x2 and
F = h|X where h = x + 2y− x2.

3.3 EXAMPLE Coordinate functions

Let X ⊆ An be an affine variety. Then, for each i ∈ {1, . . . , n}, the ith coordinate
function on X is the function

Ci : X → K
(a1, . . . , an) 7→ ai.

The coordinate functions are polynomial because Ci is the restriction of the function
associated to the polynomial xi ∈ K[x1, . . . , xn].

3.4 EXAMPLE The empty function

If X = ∅ ⊆ An, then there is only one function F : ∅ → K, the empty function.
Moreover, upon restricting the domain to the empty set, every function An → K
gives rise to the empty function. In particular, this implies that the empty function is
the unique polynomial function on the affine variety ∅ ⊆ An.
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It should be clear from this discussion that one can concoct polynomial functions
on X ⊆ An simply by choosing any polynomial f ∈ K[x1, . . . , xn], considering the
corresponding function on An, and then restricting its domain to X. Why, then,
do we define polynomial functions on X in what appears to be the opposite way:
starting from F and then searching for an f that restricts to it?

The primary reason we take this approach is that, for a given polynomial function
F : X → K, there may be many polynomials f ∈ K[x1, . . . , xn] such that F = f |X ,
and we do not wish to view these as different polynomial functions on X. This is
already apparent in Example 3.2, where the distinct polynomials f , g, h ∈ K[x, y]
all define the same function F : X → K. It is not the polynomials f ∈ K[x1, . . . , xn]
that are important here; rather, it is the function F : X → K that we intend to study.

Starting from F has its drawbacks, however, because depending on how the def-
inition of F is presented, it may not be immediately clear whether it is the restriction
of a polynomial. The next example illustrates this phenomenon, and serves as a
caution against making quick judgments about polynomiality.

3.5 EXAMPLE A nonobviously polynomial function

Let X = V(xy− 1) ⊆ A2. Since a 6= 0 for any (a, b) ∈ X, we can consider the
function defined by

F : X → K

(a, b) 7→ 1
a

.

The output 1
a is not a polynomial in a and b, which may lead one to guess that F

is not a polynomial function. However, the fact that ab− 1 = 0 for all (a, b) ∈ X
means that 1

a = b, and therefore, F = f |X where f = y ∈ K[x, y].
More generally, any function F : X → K of the form

F(a, b) =
f (a, b)
ajbk

with f ∈ K[x, y] and j, k ∈N is a polynomial function on X (Exercise 3.1.3).

The set of polynomial functions on X can be endowed with the structure of a
ring by adding and multiplying functions in the usual way:

(F + G)(a1, . . . , an) = F(a1, . . . , an) + G(a1, . . . , an),
(F · G)(a1, . . . , an) = F(a1, . . . , an) · G(a1, . . . , an).

Thus, starting with an affine variety X, we can produce a ring associated to it. This
ring is central to the study of algebraic geometry.

3.6 DEFINITION Coordinate ring

Let X ⊆ An be an affine variety. The coordinate ring of X, denoted K[X],
is the ring of all polynomial functions on X.
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The additive identity 0 ∈ K[X] is the constant function that takes the value
0 ∈ K for all a ∈ X, and the multiplicative identity is the constant function that
takes the value 1 ∈ K for all a ∈ X. These functions arise from the polynomials
0, 1 ∈ K[x1, . . . , xn], respectively: 0 = 0|X and 1 = 1|X .

Given an affine variety X, can we compute K[X]? In other words, can we iden-
tify K[X] with a more familiar ring? The next result provides a step in this direction
by presenting the coordinate ring as a quotient.

3.7 PROPOSITION The coordinate ring as a quotient

If X ⊆ An is an affine variety, then there is a canonical ring isomorphism

K[X] = K[x1, . . . , xn]/I(X).

PROOF By the First Isomorphism Theorem, it suffices to find a canonical surjec-
tive homomorphism ϕ : K[x1, . . . , xn] → K[X] whose kernel is I(X). Define ϕ
by

ϕ( f ) = f |X .

Noting that ( f + g)|X = f |X + g|X and ( f · g)|X = f |X · g|X , we see that ϕ is
a ring homomorphism. By definition, every polynomial function on X arises from
some polynomial f ∈ K[x1, . . . , xn], so ϕ is surjective. Finally, f ∈ ker ϕ if and
only if f |X = 0, which is the same as saying that f ∈ I(X). This shows that
ker ϕ = I(X).

3.8 EXAMPLE Coordinate ring of affine space

Proposition 1.9 says that K[An] = K[x1, . . . , xn] if and only if K is infinite.

3.9 EXAMPLE Coordinate ring of the parabola

In Example 3.2, where X = V(y− x2) ⊆ A2, we saw that the three polynomials

f = x + y, g = x + x2, and h = x− x2 + 2y

all give rise to the same polynomial function F : X → K. This reflects the fact that
[ f ] = [g] = [h] in the quotient ring

K[X] =
K[x, y]
I(X)

=
K[x, y]
〈y− x2〉 ,

which we can readily check:

f − g = y− x2 ∈ 〈y− x2〉 and g− h = 2x2 − 2y ∈ 〈y− x2〉.

For an affine variety X ⊆ An, Definition 3.6 and Proposition 3.7 provide two
different characterizations of the coordinate ring K[X]. It is important to keep both
interpretations in mind: elements of the coordinate ring should be simultaneously
viewed as functions F : X → K and as equivalence classes of polynomials in
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K[x1, . . . , xn]. The canonical isomorphism of Proposition 3.7 identifies the polyno-
mial function f |X with the equivalence class [ f ] for any f ∈ K[x1, . . . , xn].

As advertised in the introduction to this chapter, we have now introduced a new
way of passing from geometry to algebra, by associating to an affine variety X its
coordinate ring K[X]. In keeping with our philosophy that the passage from geome-
try to algebra should be a two-way dictionary, we now ask whether the passage from
an affine variety to its coordinate ring can be reversed. More precisely, given a ring
R, does there exist an affine variety X such that R = K[X]? The answer, we will
find, is affirmative if R is a reduced finitely-generated K-algebra, and the next three
sections are devoted to defining and studying these terms.

Exercises for Section 3.1
3.1.1 Describe the ring of polynomial functions on the empty set. What is 0? 1?

3.1.2 Let X = V(x2 + y2 − 2z2) ⊆ A3. List three distinct elements of K[x, y, z]
that restrict to the same polynomial function in K[X], and list two elements of
K[x, y, z] that restrict to different polynomial functions in K[X].

3.1.3 Let X = V(xy− 1) ⊆ A2. Prove that any function F : X → K of the form

F(a, b) =
f (a, b)
ajbk

with f ∈ K[x, y] and j, k ∈N is a polynomial function.

3.1.4 Let X ⊆ An be an affine variety.

(a) Explain why K[X] is an integral domain if and only if X is irreducible.
(b) As an illustration of part (a), let X = V(x2 − xy) ⊆ A2. Prove that X

is not irreducible by finding two affine varieties X1 ( X and X2 ( X
such that X = X1 ∪X2. Then, verify that K[X] is not an integral domain
by finding two nonzero functions in K[X] whose product is zero.

3.1.5 Let X = {p} ⊆ An be a single point. Prove that the function ϕ : K[X]→ K
defined by ϕ(F) = F(p) is a ring isomorphism.

3.1.6 Let p1, . . . , pm ∈ An be points in An, and let X = {p1, . . . , pm}. Prove that
the function

ϕ : K[X]→
m︷ ︸︸ ︷

K⊕ · · · ⊕ K
ϕ(F) = (F(p1), . . . , F(pm))

is a ring isomorphism. Recall that addition and multiplication on direct sum
are defined component-wise:

(r1, . . . , rm) + (s1, . . . , sm) = (r1 + s1, . . . , rm + sm)

(r1, . . . , rm) · (s1, . . . , sm) = (r1 · s1, . . . , rm · sm).

3.1.7 (a) Give an example of an infinite affine variety X ⊆ A3 such that the three
coordinate functions are all the same polynomial function.

(b) Prove that the solution to part (a) is unique.
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Section 3.2 K-algebras
What types of rings arise as K[X] for some affine variety X? The first answer to this
question is given by considering the special role played by the ground field K.

To motivate our discussion, consider the case X = A1, for which

K[A1] = K[x].

As we have discussed at length, K[x] is a ring. However, it is more than just an
ordinary ring; it also has the structure of a vector space over K, since along with
being able to add and multiply polynomials, we can also multiply polynomials by
scalars in K (and the two operations of addition and scalar multiplication satisfy the
usual vector space axioms). Unlike the vector spaces one typically studies in a first
linear algebra course, K[x] is infinite-dimensional, with a basis given by

B = {1, x, x2, x3, . . . }.

Nonetheless, just like the more familiar finite-dimensional vector spaces, every ele-
ment of K[x] can be written uniquely as a linear combination of elements in B.

More generally, every coordinate ring has this same enhanced structure—it is
simultaneously a ring and a vector space over K—and this structure naturally sets
coordinate rings apart from more general rings. In this section, we develop the
algebraic foundations of K-algebras, which formalize this structure.

3.10 DEFINITION K-algebra

A K-algebra is a ring A together with a scalar multiplication function

K× A→ A
(r, a) 7→ r · a

that is related to the ring structure by the following axioms:
1. r · (a + b) = r · a + r · b for all r ∈ K and all a, b ∈ A;

2. (r + s) · a = r · a + s · a for all r, s ∈ K and all a ∈ A;

3. (rs) · a = r · (s · a) for all r, s ∈ K and all a ∈ A;

4. 1 · a = a for all a ∈ A, where 1 is the unity in K;

5. r · (ab) = (r · a)b = a(r · b) for all r ∈ K and all a, b ∈ A.

To help parse the axioms in the Def-
inition 3.10, the products within K
and A have been written by concate-
nating the elements, reserving the
symbol “·” for scalar multiplication.

The first four axioms stipulate that
A forms a vector space over K and the
fifth specifies how scalar multiplication
interacts with multiplication in A. It
follows from the axioms, and is true of
vector spaces in general, that 0 · a = 0
and (−1) · a = −a (Exercise 3.2.1).
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3.11 EXAMPLE Polynomial rings

The prototypical example of a K-algebra, especially from the perspective of alge-
braic geometry, is the polynomial ring K[x1, . . . , xn]. Indeed, along with being able
to add and multiply polynomials, we can also multiply a polynomial by a scalar in
K, and the axioms in Definition 3.10 are straightforward to verify.

3.12 EXAMPLE Coordinate rings

Let X be an affine variety. The coordinate ring K[X] forms a K-algebra. For any
F ∈ K[X] and r ∈ K, we define r · F ∈ K[X] to be the function given by

(r · F)(a1, . . . , an) = r · F(a1, . . . , an),

where the multiplication on the right-hand side is the usual multiplication in K.
To check that r · F is in fact an element of K[X], notice that F = f |X for some
f ∈ K[x1, . . . , xn], and it follows that r · F = (r · f )|X . Since r · f ∈ K[x1, . . . , xn],
we see that r · F ∈ K[X]. The axioms in Definition 3.10 are again readily verified.

3.13 EXAMPLE Extension rings of K

If A is any ring that contains K as a subring, then A is naturally a K-algebra where
scalar multiplication is the usual ring multiplication in A. In fact, given our assump-
tions (rings are commutative with unity), every nontrivial K-algebra arises in this
way. More precisely, given any K-algebra A 6= {0}, there is a canonical inclusion
K → A, and viewing K as a subring of A under this inclusion, scalar multiplication
is identified with the usual multiplication in A (Exercise 3.2.5). In particular, every
nontrivial K-algebra canonically contains a copy of K.

3.14 EXAMPLE Nonexamples of K-algebras

By Example 3.13, any nonzero ring that does not contain K is not a K-algebra. For
example, since Z does not contain a field, it is not a K-algebra for any field K.

Our development of K-algebras is not complete until we specify the appropriate
morphisms between them. Given that a K-algebra is an enhanced ring, with an ad-
ditional scalar multiplication operation, a K-algebra homomorphism is an enhanced
ring homomorphism that preserves scalar multiplication.

3.15 DEFINITION Homomorphism of K-algebras

Let A and B be K-algebras. A K-algebra homomorphism ϕ : A → B is a
ring homomorphism for which

ϕ(r · a) = r · ϕ(a)

for all r ∈ K and a ∈ A. We say that ϕ is an isomorphism of K-algebras and
write A ∼= B if ϕ has an inverse that is also a K-algebra homomorphism.



92 CHAPTER 3. COORDINATE RINGS

Being an isomorphism appears to be stronger than being a bijection—not only
should an inverse function exist, but it must also be a K-algebra homomorphism.
However, as is conveniently the case for groups, rings, and fields, if ϕ is a bijective
homomorphism, then its inverse is automatically a homomorphism (Exercise 3.2.2).

3.16 EXAMPLE K-algebra homomorphisms from polynomial rings

Consider the evaluation function

ϕ : R[x, y]→ R

f (x, y) 7→ f (2, 3).

Some time reflecting should convince the reader that ϕ is an R-algebra homomor-
phism. In addition, knowing that ϕ is an R-algebra homomorphism, we can also
see that it is completely determined by the image of x and y. For example, once we
know that ϕ(x) = 2 and ϕ(y) = 3, then using that ϕ is a ring homomorphism that
preserves scalar multiplication, we obtain

ϕ(5x2y + 2y + xy) = 5(2)2(3) + 2(3) + (2)(3) = 72.

More generally, for any K-algebra A and subset {a1, . . . , an} ⊆ A, there is a unique
K-algebra homomorphism

ϕ : K[x1, . . . , xn]→ A

satisfying ϕ(xi) = ai for all i (Exercise 3.2.3). This shows that a K-algebra homo-
morphism K[x1, . . . , xn]→ A is equivalent to a choice of a1, . . . , an ∈ A.

Just like for groups and rings, there is a First Isomorphism Theorem for K-
algebras, which is a fundamental tool for proving that two K-algebras are isomor-
phic. In order to state it, we must first define K-algebra quotients and subalgebras.

Since a K-algebra A is a ring, we already know that we can form the quotient
ring A/I for any ideal I ⊆ A. The next result shows that the quotient ring A/I
naturally inherits a K-algebra structure from A.

3.17 PROPOSITION Quotient K-algebras

Let A be a K-algebra. If I ⊆ A is an ideal, then the quotient ring A/I is a
K-algebra, in which scalar multiplication is defined by

(3.1) r · [a] = [r · a].

PROOF We must check that the scalar multiplication given by (3.1) is well-
defined. Toward this end, the key point is that ideals are automatically closed under
scalar multiplication: if a ∈ I and r ∈ K, then

r · a = r · (1a) = (r · 1)a,

where 1 is the unity in A. Since r · 1 ∈ A and a ∈ I, the absorbing property of
ideals implies that (r · 1)a ∈ I. Thus, r · a ∈ I, verifying that I is closed under
scalar multiplication.
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From here, to see that scalar multiplication is well-defined, suppose [a] = [b].
Then a − b ∈ I, and using the fact that I absorbs scalar multiplication, we have
r · a− r · b = r · (a− b) ∈ I, which tells us that [r · a] = [r · b].

Since I is an ideal, we already know that A/I is a ring, so all that remains to
be checked is the five axioms of Definition 3.10. These all follow readily from the
validity of the corresponding axioms for A.

We now provide the final ingredient required for the First Isomorphism Theorem.

3.18 DEFINITION Subalgebra

Let A be a K-algebra. A subalgebra B ⊆ A is a subring for which r · b ∈ B
for all r ∈ K and b ∈ B.

In other words, a subset of a K-algebra is a subalgebra if it is both a subring and
closed under scalar multiplication, thereby forming a K-algebra in its own right. A
natural example of a subalgebra is the K-algebra K[x] as a subalgebra of K[x, y].

3.19 THEOREM First Isomorphism Theorem for K-algebras

If ϕ : A→ B is a K-algebra homomorphism, then
(i) im(ϕ) is a subalgebra of B,

(ii) ker(ϕ) is an ideal of A, and

(iii) the function

[ϕ] :
A

ker(ϕ)
→ im(ϕ)

[a] 7→ ϕ(a)

is a well-defined isomorphism of K-algebras.

PROOF Exercise 3.2.7.

3.20 EXAMPLE C as a quotient R-algebra

Consider C as an R-algebra, where scalar multiplication is the usual multiplication,
and let ϕ be the function

ϕ : R[x]→ C

ϕ( f ) = f (i).

One can check (Exercise 3.2.8) that ϕ is a surjective R-algebra homomorphism with
kernel 〈x2 + 1〉. Thus, we obtain an R-algebra isomorphism

C ∼= R[x]/〈x2 + 1〉.
As vector spaces over R, the set of complex numbers C has a basis {1, i} and the
quotient R[x]/〈x2 + 1〉 has basis {1, [x]}. The isomorphism [ϕ] identifies 1 with 1
and [x] with i, which is motivated by the fact that [x]2 = i2 = −1 ∈ R.
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Returning to our motivating example of coordinate rings, we now use our knowl-
edge of K-algebras to strengthen Proposition 3.7 to the setting of K-algebras. Let
X ⊆ An be an affine variety and consider the ring homomorphism

K[x1, . . . , xn]→ K[X]

f 7→ f |X .

Since (r · f )|X = r · ( f |X), this is a K-algebra homomorphism. Exactly as in the
proof of Proposition 3.7, it is surjective with kernel I(X). Thus, we obtain the
following result from the First Isomorphism Theorem.

3.21 PROPOSITION The coordinate ring as a quotient K-algebra

If X ⊆ An is an affine variety, then there is a canonical K-algebra isomor-
phism

K[X] = K[x1, . . . , xn]/I(X).

Exercises for Section 3.2
3.2.1 Let A be a K-algebra. Prove that 0 · a = 0 and (−1) · a = −a for all a ∈ A.

3.2.2 Let ϕ : A → B be a homomorphism of K-algebras. Suppose that ϕ is a
bijection, so that ϕ has an inverse function ϕ−1 : B → A. Prove that this
inverse function is a homomorphism of K-algebras.

3.2.3 Let A be a K-algebra and {a1, . . . , an} ⊆ A a subset. Prove that there is
a unique K-algebra homomorphism ϕ : K[x1, . . . , xn] → A that satisfies
ϕ(xi) = ai.

3.2.4 Give an example of a ring homomorphism ϕ : C→ C that is not a C-algebra
homomorphism.

3.2.5 Let A 6= {0} be a K-algebra. Prove that the function ϕ : K → A defined by
ϕ(r) = r · 1 is an injective ring homomorphism. Viewing K as a subring of A
via this homomorphism, prove that scalar multiplication is identified with the
usual multiplication in A.

3.2.6 Let A and B be rings containing K, endowed with the K-algebra structure of
Example 3.13. Prove that any K-algebra homomorphism ϕ : A→ B must be
the identity on K.

3.2.7 Prove the First Isomorphism Theorem for K-algebras.

3.2.8 Fill in the details of the proof in Example 3.20 that C ∼= R[x]/〈x2 + 1〉 as
R-algebras.
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Section 3.3 Generators of K-algebras
Our ongoing task, recall, is to determine precisely which rings arise as coordinate
rings. The previous section shows that, for a ring R to be a coordinate ring, it must
be a K-algebra, and Proposition 3.21 refines this statement: R must be a quotient of
a polynomial ring. But it may not be immediately obvious whether a given ring is
isomorphic to such a quotient; we saw in Example 3.20, for instance, that C is iso-
morphic as an R-algebra to a quotient of R[x], despite not being initially presented
as such.

The goal of this section is to characterize exactly which K-algebras arise as quo-
tients of polynomial rings. One of the key ingredients in order to do this is the notion
of K-algebra generators.

3.22 DEFINITION Polynomial combination, generators

Let A be a K-algebra and let S ⊆ A be a subset. A polynomial combination
of S is an element of A of the form

f (a1, . . . , an)

for some polynomial f ∈ K[x1, . . . , xn] and a1, . . . , an ∈ S . The set of all
polynomial combinations of S is called the subalgebra of A generated by S ,
and it is denoted K[S ].

If S = {a1, . . . , an} is a finite set,
we omit the set brackets and write
K[S ] = K[a1, . . . , an].

The reader is encouraged to check
that K[S ] is, indeed a subalgebra of A,
and it is the smallest subalgebra that
contains S (Exercise 3.3.1). An alter-
native way to think of K[S ] is that it
consists of all elements in A that can be obtained from elements of S using the
operations of addition, multiplication, and scalar multiplication by elements of K.

3.23 EXAMPLE Subalgebras of K[x, y]

Consider the K-algebra A = K[x, y]. If we set a = x, then we see that the subalge-
bra generated by a is the collection of all polynomials in x:

K[a] = K[x] ⊆ K[x, y].

On the other hand, if b = x + y, then K[b] is the collection of all polynomials of the
form

k

∑
i=0

ri(x + y)i

where k ∈ N and ri ∈ K for all i. Taking the generators a and b together, we see
that K[a, b] contains both x = a and y = b− a, from which we conclude that K[a, b]
is the set of all polynomials in x and y:

K[a, b] = K[x, y].



96 CHAPTER 3. COORDINATE RINGS

3.24 EXAMPLE Generators for K[x, y]/〈xy− 1〉
Consider the K-algebra

A =
K[x, y]
〈xy− 1〉 .

Any element of A is of the form [ f (x, y)] for some f (x, y) ∈ K[x, y]. By definition
of coset arithmetic, we have

[ f (x, y)] = f ([x], [y]).

Thus, any element of A can be written as a polynomial expression in a = [x] and
b = [y]. This implies that A is generated as an algebra by a and b:

A = K[a, b].

While the notation K[a, b] in Example 3.24 is reminiscent of that for a polyno-
mial ring, A is not the same thing as the ring of polynomials in variables a and b. In
particular, there is a relation between the generators:

ab = 1.

Here and throughout, we use letters at the end of the alphabet, such as x and y, to
denote variables in polynomial rings. By definition, these variables do not have any
relations among themselves, meaning that two polynomials are equal if and only if
they have the same coefficients. On the other hand, we use letters at the beginning
of the alphabet, such as a and b, to denote generators of K-algebras, which may
satisfy relations; in other words, it’s possible for f (a, b) = g(a, b) even if f and g
are different polynomials.

In the previous two examples, the entire K-algebra could be generated by finitely
many elements. We capture this by saying that they are finitely-generated K-algebras.

3.25 DEFINITION Finitely-generated

Let A be a K-algebra. We say that A is finitely-generated if there exist
a1, . . . , an ∈ A such that A = K[a1, . . . , an].

For example, the polynomial ring K[x1 . . . , xn] is a finitely-generated K-algebra,
simply by taking ai = xi for all i = 1, . . . , n. More generally, the quotient ring
K[x1, . . . , xn]/I is finitely-generated for any ideal I, as we can take ai = [xi] for all
i = 1, . . . , n, generalizing Example 3.24. In fact, up to isomorphism, these are the
only examples of finitely-generated K-algebras, as we now verify.

3.26 PROPOSITION Characterization of finitely-generated K-algebras

Let A be a K-algebra. Then A is finitely-generated if and only if there is an
isomorphism of K-algebras

A ∼= K[x1, . . . , xn]/I

for some n ≥ 0 and some ideal I ⊆ K[x1, . . . , xn].
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PROOF Suppose that A is finitely-generated. By definition, this means that there
exist a1, . . . , an ∈ A such that A = K[a1, . . . , an]. Define a function

ϕ : K[x1, . . . , xn]→ A
f (x1, . . . , xn) 7→ f (a1, . . . , an).

It is straightforward to check that ϕ is a K-algebra homomorphism, and the fact
that A = K[a1, . . . , an] is equivalent to the statement that ϕ is surjective. Letting
I = ker(ϕ), the First Isomorphism Theorem implies that

A ∼= K[x1, . . . , xn]/I.

Conversely, suppose that there exists an isomorphism

ψ : K[x1, . . . , xn]/I → A,

and let ai = ψ([xi]) for i = 1, . . . , n. We aim to show that A = K[a1, . . . , an].
Suppose a ∈ A; we must show that a is a polynomial expression in a1, . . . , an.
Since ψ is surjective, there exists [ f ] ∈ K[x1, . . . , xn]/I such that ψ([ f ]) = a.
Then

a = ψ([ f (x1, . . . , xn)]) = ψ( f ([x1], . . . , [xn])) = f (ψ([x1]), . . . , ψ([xn])),

where the second equality follows from arithmetic of cosets and the third from the
assumption that ψ is a K-algebra homomorphism. Since ai = ψ([xi]), we see
that a is a polynomial expression in a1, . . . , an, and we conclude that A is finitely-
generated.

An isomorphism of the form in Proposition 3.26 is often referred to as a pre-
sentation of the K-algebra A. The images of x1, . . . , xn are the generators of the
presentation and the polynomials in I are the relations of the presentation.

For a few examples of algebras that
are not finitely-generated, have a
look at Exercises 3.3.7 - 3.3.9.

By Proposition 3.21, coordinate
rings of affine varieties are canonically
isomorphic to quotients of polynomial
rings. Thus, we obtain the next result
as a consequence of Proposition 3.26.

3.27 COROLLARY K[X] is finitely-generated

Let X ⊆ An be an affine variety. Then the coordinate ring K[X] is a finitely-
generated K-algebra.

More explicitly, the proof of Proposition 3.26 shows that K[X] can be generated
as a K-algebra by the elements [x1], . . . , [xn] in the canonical isomorphism

K[x1, . . . , xn]/I(X) = K[X]

of Proposition 3.21. These images are the n coordinate functions

Ci : X → K
(a1, . . . , an) 7→ ai.

Thus, K[X] is the K-algebra generated by the coordinate functions; this is the reason
we call it the “coordinate ring” of X.
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Exercises for Section 3.3
3.3.1 Let A be a K-algebra and S ⊆ A be a subset.

(a) Prove that K[S ] is a subalgebra of A.
(b) Prove that K[S ] is contained in every subalgebra of A that contains S .

3.3.2 Give two different examples of three elements that generate K[x, y, z].

3.3.3 Consider the K-algebra

A = K[x, y, z]/〈y− x2, z〉.

Find an element a ∈ A such that A = K[a].

3.3.4 Consider the K-algebra

A = K[x, y]/〈xy− 1〉.

Prove that A 6= K[a] for any a ∈ A.

3.3.5 Suppose that A and B be K-algebras such that A = K[a1, . . . , an] for some
a1, . . . , an ∈ A. Prove that, if ϕ, ψ : A → B are K-algebra homomorphisms
such that ϕ(ai) = ψ(ai) for all i = 1, . . . , n, then ϕ(a) = ψ(a) for all a ∈ A.

3.3.6 Consider R as a Q-algebra.

(a) The subalgebra Q[
√

2] ⊆ R is finitely-generated, so Proposition 3.26
implies that Q[

√
2] ∼= Q[x1, . . . , xn]/I for some n and I. Find an ex-

plicit n and I for which this is the case.
(b) Repeat part (a) for the subalgebra Q[ 3

√
2] ⊆ R.

(c) Repeat part (a) for the subalgebra Q[π] ⊆ R.

3.3.7 Prove that K[x1, x2, x3, . . .] is not a finitely-generated K-algebra. (The ring
K[x1, x2, x3, . . .] was defined in Example 2.13.)

3.3.8 Prove that any finitely-generated Q-algebra is countable and conclude that R

is not a finitely-generated Q-algebra.

3.3.9 This exercise shows that a subalgebra of a finitely-generated algebra need not
be finitely-generated. Consider the subalgebra

A = K[x, xy, xy2, xy3, xy4, . . .] ⊆ K[x, y].

Prove that A is not a finitely-generated K-algebra.
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Section 3.4 Nilpotents and reduced rings
We learned in Corollary 3.27 that the coordinate ring K[X] of an affine variety X
is a finitely-generated K-algebra. This follows from the interpretation of K[X] as a
quotient:

K[X] = K[x1, . . . , xn]/I(X).

However, there is still one important aspect of this quotient that we have not yet
taken into account: K[X] is not just a quotient by an arbitrary ideal, it is a quotient
by a radical ideal. What, then, does the fact that I(X) is radical imply about the
algebraic properties of the coordinate ring K[X]? The answer, as it turns out, can be
phrased in terms the following definition.

3.28 DEFINITION Nilpotents and reduced rings

Let R be a ring. An element a ∈ R is nilpotent if there exists a natural
number m ≥ 1 such that am = 0. We say that R is reduced if it has no
nonzero nilpotent elements.

3.29 EXAMPLE Reduced rings

Any integral domain is necessarily reduced, since a nonzero nilpotent element would
be a zero divisor. Not all reduced rings are integral domains, however. For example,
the quotient ring

K[x, y]
〈xy〉

is not an integral domain, because [x] and [y] are zero divisors, but it is reduced. To
see that this ring is reduced, suppose that [ f ]m = 0; we must prove that [ f ] = 0.
Since

[ f m] = [ f ]m = 0 ∈ K[x, y]
〈xy〉 ,

we know that xy divides f m, implying that x and y both divide f m. Since x and
y are irreducible in K[x, y], and thus prime, it follows that x and y both divide f .
Therefore, xy divides f , and [ f ] = 0. Thus, the ring does not contain any nonzero
nilpotents, so it is reduced.

That every integral domain is reduced, but not vice versa, is a manifestation of
the fact that every prime ideal is radical, but not vice versa (see Proposition 3.31).

3.30 EXAMPLE A nonreduced ring

The quotient ring
K[x]
〈x2〉

is not reduced, because it has a nonzero nilpotent:

[x] 6= 0 satisfies [x]2 = 0.
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The next result is a quotient characterization of radical ideals, analogous to the
quotient characterizations of prime and maximal ideals.

3.31 PROPOSITION Quotients by radical ideals

An ideal I ⊆ R is radical if and only if R/I is reduced.

PROOF Exercise 3.4.2.

We can now give a complete algebraic characterization of the type of rings that
arise as coordinate rings of affine varieties over K; they are finitely-generated K-
algebras that are reduced as rings.

3.32 PROPOSITION Characterization of coordinate rings

If X ⊆ An is an affine variety, then the coordinate ring K[X] is a finitely-
generated reduced K-algebra. Conversely, if A is a finitely-generated re-
duced K-algebra, then A ∼= K[X] for some affine variety X ⊆ An.

PROOF Suppose X is an affine variety. By Proposition 3.21,

K[X] = K[x1, . . . , xn]/I(X).

Thus, K[X] is finitely-generated by Proposition 3.26 and reduced by Proposition 3.31
and the fact that I(X) is a radical ideal.

Conversely, suppose that A is a finitely-generated reduced K-algebra. By Propo-
sition 3.26, we can write

A ∼= K[x1, . . . , xn]/I

for some n and I, and by Proposition 3.31, we know that I is a radical ideal. Define
X = V(I) ⊆ An. By the Nullstellensatz,

I(X) = I(V(I)) =
√

I = I.

It then follows from Proposition 3.21 that A ∼= K[X].

To make Proposition 3.32 effective, we should be able to produce, given a finitely-
generated reduced K-algebra A, an affine variety X for which K[X] ∼= A. In the
next example, we illustrate how to carry out this procedure in practice.

3.33 EXAMPLE Determining X from K[X]

Let A be the subalgebra

A = K[u2, uv, v2] ⊆ K[u, v].

Then A is manifestly finitely-generated, as it is generated by the three elements u2,
uv, and v2, and it is reduced, because it is a subalgebra of the reduced K-algebra
K[u, v]. Thus, there should exist an affine variety X such that K[X] ∼= A.

To find X, let’s give the three generators names,

x = u2, y = uv, and z = v2.
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Notice that these three generators satisfy the relation

xz− y2 = (u2)(v2)− (uv)2 = 0.

Consider the affine variety defined by this relation:

X = V(xz− y2) ⊆ A3.

In the rest of this example, we prove that K[X] ∼= A.
First, we observe that the polynomial xz− y2 is irreducible (using, for example,

Eisenstein’s criterion), so the ideal 〈xz− y2〉 is prime and hence radical. It follows
from the Nullstellensatz that

I(X) = I(V(xz− y2)) =
√
〈xz− y2〉 = 〈xz− y2〉,

so

K[X] ∼=
K[x, y, z]
〈xz− y2〉 .

What remains to be shown is that

(3.34)
K[x, y, z]
〈xz− y2〉

∼= A.

To see this, define a K-algebra homomorphism ϕ : K[x, y, z]→ A by

ϕ( f ) = f (u2, uv, v2).

Since the three generators u2, uv, v2 of A are all in the image of ϕ, it follows that ϕ is
surjective. Therefore, the sought-after isomorphism in (3.34) follows from the First
Isomorphism Theorem for K-algebras if we can prove that ker(ϕ) = 〈xz− y2〉.

Since
ϕ(xz− y2) = (u2)(v2)− (uv)2 = 0,

every element of 〈xz− y2〉 is sent to 0 by ϕ, so ker(ϕ) ⊇ 〈xz− y2〉. To prove the
other inclusion, suppose f ∈ ker(ϕ) and consider the coset

[ f ] ∈ K[x, y, z]
〈xz− y2〉 .

By repeated use of the equation [y2] = [xz], we see that

[ f ] = [g(x, z) + yh(x, z)]

for some polynomials g, h ∈ K[x, z]. In other words,

f = g(x, z) + y · h(x, z) + `(x, y)(xz− y2)

for some ` ∈ K[x, z]. Applying ϕ, we obtain

0 = ϕ( f ) = g(u2, v2) + uv · h(u2, v2) ∈ K[u, v].

Since the term g(u2, v2) is a polynomial with only even powers of both u and v and
the term uv · h(u2, v2) is a polynomial with only odd powers of u and v, there can
be no cancellation between these two terms. Therefore, we must have g = h = 0,
implying that f ∈ 〈xz− y2〉. Thus, ker(ϕ) ⊆ 〈xz− y2〉, finishing the argument.
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The following diagram depicts the developments of this chapter. In particular, in
the category of rings, we have pinned down exactly which rings arise as coordinate
rings over K: they must be K-algebras that are both finitely-generated and reduced.

K-Algebras Reduced
Rings

Finitely-
Generated
K-Algebras

Coordinate Rings

Rings

Now that we have an algebraic language in which we can characterize and dis-
cuss coordinate rings, our goal in the next chapter is to investigate what the coor-
dinate ring K[X] tells us about the affine variety X. As we will see, coordinate
rings know essentially everything about their corresponding affine variety, which is
a powerful tool, allowing us to bring all the tools of ring theory to bear on the study
of affine varieties.

Exercises for Section 3.4
3.4.1 Prove that any subring of a reduced ring is reduced.

3.4.2 Prove Proposition 3.31.

3.4.3 Recall that the direct sum of rings R and S is the ring

R⊕ S = {(r, s) | r ∈ R, s ∈ S},

with addition and multiplication defined componentwise:

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2),
(r1, s1)(r2, s2) = (r1r2, s1s2).

(a) Prove that, if R and S are reduced, then R⊕ S is reduced.
(b) Prove that the K-algebra A = K[x]/〈x2〉 is isomorphic to K ⊕ K as a

K-vector space but not as a ring.

3.4.4 Let R be a reduced ring. Prove that R[x] is reduced, and conclude, by induc-
tion, that R[x1, . . . , xn] is reduced for any n.

3.4.5 Let A = K[u2, u3] ⊆ K[u].

(a) Explain how you know that A is finitely-generated and reduced.
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(b) Find an affine variety X such that K[X] ∼= A, and prove your answer.

3.4.6 Let A = K[u + w, v + w] ⊆ K[u, v, w]. Find an affine variety X such that
K[X] ∼= A, and prove your answer.

3.4.7 Let A be the K-vector space with basis

{xi | i ≥ 0} ∪ {xiy | i ≥ 0}.

Define a (commutative) product on the elements of this basis by

xi · xj = xi+j

xi · xjy = xi+jy

xiy · xjy = xi+j+3,

and extend this product to all elements of A by linearity in K. One can prove
that A is a finitely-generated reduced K-algebra, and hence there should exist
an affine variety X such that K[X] ∼= A. Find such an X, and prove your
answer.

3.4.8 Let a1, . . . , am ∈ K[x1, . . . , xn] and consider the subalgebra

A = K[a1, . . . , am] ⊆ K[x1, . . . , xn].

Let I ⊆ K[y1, . . . , ym] be the ideal of relations of a1, . . . , am:

f ∈ I ⇐⇒ f (a1, . . . , am) = 0 ∈ K[x1, . . . , xn].

Define X = V(I) ⊆ Am. Prove that K[X] ∼= A.

3.4.9 Give an explicit example of a ring that belongs in each region of the Venn
diagram presented at the end of this section.
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Chapter 4

Polynomial Maps
LEARNING OBJECTIVES FOR CHAPTER 4

• Become familiar with the notion of polynomial maps between affine vari-
eties and the notion of isomorphism.

• Learn about pullback homomorphisms and compute pullbacks in concrete
examples.

• Use the bijectivity of pulling back to prove that affine varieties are isomor-
phic if and only if their coordinate rings are isomorphic.

• Become familiar with the equivalence between algebra and geometry as
an intrinsic (as opposed to extrinsic) statement.

The previous chapter provides us with an association

{affine varieties} → {finitely-generated reduced K-algebras}
X 7→ K[X]

and confirms that it is surjective. But is it injective—that is, if K[X] = K[Y], is it
necessarily the case that X = Y?

This question is more subtle than it might first appear. To answer it, one must
decide whether two K-algebras are “the same”; is K[x] the same as K[y], for ex-
ample? The literal answer is no, but the reader would be forgiven for finding this
answer unsatisfying, given how conditioned we are to viewing isomorphic rings as
identical. To capture this intuition that isomorphism is “sameness,” we might instead
ask whether, if K[X] ∼= K[Y], it is necessarily the case that X ∼= Y?

We do not yet have a notion, however, of what it means for two affine varieties
to be “isomorphic,” or even how a “morphism” between affine varieties should be
defined. This is something one should do whenever a new type of mathematical
object—groups, rings, topological spaces, et cetera—is introduced: ask which maps
between those objects preserve their relevant structure. In the context of groups,
the relevant maps are group homomorphisms, while for rings they are ring homo-
morphisms, and for topological spaces they are continuous maps. Because algebraic
geometry is concerned with polynomials, it comes as no surprise that the relevant
maps between affine varieties are polynomial maps, which we define in this chapter.

Equipped with the definition of polynomial maps, we can make sense of what
it means to say that affine varieties X and Y are isomorphic, and we can prove that
X ∼= Y if and only if K[X] ∼= K[Y]. This is the goal of the chapter and the heart of
our dictionary: the equivalence of algebra and geometry.
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Section 4.1 Polynomial maps between affine varieties
In the previous chapter, we were introduced to the coordinate ring K[X] of an affine
variety X ⊆ Am, whose elements are polynomial functions F : X → K. Identifying
K with A1, we can view such functions as a special case of maps between affine
varieties (between X and A1), and our first goal is to extend the definition to allow
for maps from any affine variety to any other.

There is a deliberate distinction in
terminology between the words func-
tion and map. A function takes val-
ues in the ground field whereas a
map takes values in an affine variety.

Let X ⊆ Am be an affine variety.
Since every element of the coordinate
ring K[X] is a function X → K, we
see that n elements F1, . . . , Fn ∈ K[X]
give rise to a map X → An defined by
a ∈ X 7→ (F1(a), . . . , Fn(a)) ∈ An.
If Y ⊆ An is an affine variety and the

image of the map X → An happens to lie in Y, then we obtain a map X → Y.
Maps that arise from polynomial functions in this way are called polynomial maps.

4.1 DEFINITION Polynomial map between affine varieties

Let X ⊆ Am and Y ⊆ An be affine varieties. A map F : X → Y is said
to be a polynomial map if there exist F1, . . . , Fn ∈ K[X] such that, for every
a ∈ X,

F(a) = (F1(a), . . . , Fn(a)).

In particular, a polynomial function on X is the same thing as a polynomial map
F : X → A1. In our first example, we consider a polynomial map whose target is
the affine space A3.

4.2 EXAMPLE Polynomial maps to affine space

Consider the parabola X = V(x2 − x2
1) ⊆ A2. (We have named the variables x1

and x2, rather than x and y, in preparation for the next example.) Then

F : X → A3

(a1, a2) 7→ (a1 − a2
1, a1 + a2, a2

1 − a2
2)

is a polynomial map, since its three component functions

F1(a1, a2) = a1 − a2
1, F2(a1, a2) = a1 + a2, and F3(a1, a2) = a2

1 − a2
2

arise from the polynomials

f1 = x1 − x2
1, f2 = x1 + x2, and f3 = x2

1 − x2
2,

respectively, and are thus elements of K[X]. Notice that the polynomials

g1 = x1 − x2, g2 = x1 + x2
1, and g3 = x2 − x2

2

give rise to the same polynomial map F : X → A3, because [ fi] = [gi] ∈ K[X].
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If X ⊆ Am is an affine variety, it is straightforward to produce polynomial
maps F : X → An whose codomain is an affine space. In particular, any choice of
polynomials f1, . . . , fn ∈ K[x1, . . . , xm] defines the coordinate functions F1, . . . , Fn
of such a map, by setting

Fi = [ fi] ∈
K[x1, . . . , xm]

I(X)
= K[X],

and another choice g1, . . . , gn of polynomials produces the same polynomial map if
and only if fi − gi ∈ I(X) for every i.

On the other hand, if Y ( An is an affine variety other than affine space itself,
then not every choice of F1, . . . , Fn ∈ K[X] gives a map F : X → Y. In particular,
in order to ensure that the image of every point of X is a point in Y, we must require
that for every a ∈ X, the point

(F1(a), . . . , Fn(a)) ∈ An

actually lies in Y, meaning that it is a solution of the defining polynomials of Y.
More concretely, if Y = V(S) where S ⊆ K[x1, . . . , xn], then we must check that,
for every a ∈ X and every g ∈ S ,

g(F1(a), . . . , Fn(a)) = 0.

4.3 EXAMPLE A polynomial map to an affine variety

As above, let X = V(x2 − x2
1) ⊆ A2, but now

let Y = V(y1y2 − y3) ⊆ A3. Over the real
numbers, Y is the one-sheeted hyperboloid de-
picted to the right, and the function

F : X → Y

(a1, a2) 7→ (a1 − a2
1, a1 + a2, a2

1 − a2
2)

of Example 4.2 is a polynomial map from X to
Y, whose image is illustrated as the curve on the
hyperboloid. We have already checked that the
three component functions of F are polynomial,
but we now must also confirm that the image
actually lies in Y. This is equivalent to the claim that F(a1, a2) satisfies the defining
equation y1y2 − y3 of Y, or in other words that

F1(a1, a2)F2(a1, a2)− F3(a1, a2) = 0

whenever (a1, a2) ∈ X. To check this, we simply substitute in the expressions for
F1, F2, F3 and rearrange:

(a1 − a2
2)(a1 + a2)− (a2

1 − a2
2) = (a1 + a2)(a2 − a2

1) = (a1 + a2) · 0 = 0,

where the second equality follows from (a1, a2) ∈ X, implying that a2 − a2
1 = 0.
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To distinguish between coordinates
on X and on Y, we often use sub-
scripts, as in the above example:
x1, x2, . . . for X and y1, y2, . . . for Y.

From the algebraic context, the
reader is already familiar with the no-
tion that some homomorphisms are iso-
morphisms, and that isomorphic ob-
jects share all of their relevant proper-
ties; isomorphic groups, for example,

share all group-theoretic properties. Similarly, isomorphisms of affine varieties al-
low us to talk about what it means for affine varieties to be essentially the same.

4.4 DEFINITION Isomorphism of affine varietes

Let X ⊆ Am and Y ⊆ An be affine varieties. A polynomial map F : X → Y
is said to be an isomorphism if it has an inverse function F−1 : Y → X that
is also a polynomial map. If such an isomorphism exists, we say that X and
Y are isomorphic and write X ∼= Y.

4.5 EXAMPLE The parabola is isomorphic to A1

Let X = V(x2 − x2
1) ⊆ A2. Notice that the

two maps F and G defined by

F : X → A1 G : A1 → X

(a1, a2) 7→ a1 b 7→ (b, b2)

are both polynomial maps. Furthermore, it is
straightforward to check that F ◦ G is the identity on A1 and, using the fact that
a2 = a2

1 for every (a1, a2) ∈ X, it can also be checked that G ◦ F is the identity on
X. Thus, X ∼= A1. In the figure above, we have depicted the isomorphisms between
the affine line and the parabola over R, where F is the downward map and G is the
upward map.

4.6 EXAMPLE Isomorphic projections

Generalizing the previous example, suppose that X = V(xm − g) ⊆ Am where
g ∈ K[x1, . . . , xm−1]. Consider the two maps

F : X → Am−1

(a1, . . . , am) 7→ (a1, . . . , am−1)

and

G : Am−1 → X
(b1, . . . , bm−1) 7→ (b1, . . . , bm−1, g(b1, . . . , bm−1)).

Both F and G are polynomial maps, and using the fact that am = g(a1, . . . , am−1)
for every (a1, . . . , am) ∈ X, it follows that they are inverse to each other. Thus, we
conclude that X ∼= Am−1. See Exercise 4.1.4 for a further generalization of this
example.
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4.7 EXAMPLE Translations are isomorphisms

Given c = (c1, . . . , cm) ∈ Am, consider the translation map

Tc : Am → Am

(a1, . . . , am) 7→ (a1 + c1, . . . , am + cm).

Then for any affine variety X ⊆ Am, the translation Tc(X) is also an affine variety;
to see this, notice that a polynomial f (x1, . . . , xm) vanishes on Tc(X) if and only if
f (x1 + c1, . . . , xm + cm) vanishes on X, so

Tc(X) = V
({

f ∈ K[x1, . . . , xn] | f (x1 + c1, . . . , xm + cm) ∈ I(X)
})

.

The map Tc : X → Tc(X) is manifestly polynomial, and in fact, it is an isomor-
phism. To prove this, it suffices to notice that it has a polynomial inverse defined by
translating back by the point (−c1, . . . ,−cm) ∈ Am.

Exercise 4.1.6 generalizes this example to compositions of translations with in-
vertible linear maps; such compositions are called affine linear transformations.

Geometry and algebra differ here:
in algebra, if a homomorphism (of
groups, rings, algebras, et cetera)
has an inverse function, then that in-
verse function is automatically a ho-
momorphism. See Exercise 3.2.2.

In order for a map of affine varieties
to be an isomorphism, it must be bijec-
tive, because this is necessary for an in-
verse function to exist. However, not
every bijective polynomial map of affine
varieties is an isomorphism, because an
inverse function, even if it exists, need
not be a polynomial map. The next example illustrates this phenomenon.

4.8 EXAMPLE Bijective polynomial maps need not be isomorphisms

Consider X = V(x2 − y3) ⊆ A2. Then

F : A1 → X

a 7→ (a3, a2)

is the polynomial map depicted to the right.
(Note that for every a ∈ A1, the point
(a3, a2) ∈ A2 indeed satisfies the equation x2 − y3 = 0.) Moreover, the reader
can verify that an inverse to F is given by

G : X → A1

(b, c) 7→
{

b/c if c 6= 0
0 if c = 0.

However, G is not a polynomial map. That G involves a quotient of its inputs cer-
tainly hints at its non-polynomiality, but, as we saw in Example 3.5, more care is
required to be sure that G is not polynomial. In the next section, we develop the
necessary tools to prove that X 6∼= A1, from which it follows that G cannot be a
polynomial map. The “kink” in X is a visual clue that X 6∼= A1.
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To prove that X ∼= Y, the task that needs to be accomplished is somewhat
straightforward: we must find an isomorphism between them. But proving that
X 6∼= Y is quite a bit more subtle. How can we rigorously prove the nonexistence of
any isomorphism? In the context of algebra, we have quite a few tools for doing so:
proving that two rings are not isomorphic involves finding a ring-theoretic property
(like being an integral domain or a UFD) that one has but the other does not.

Therefore, if we want to be able to detect when affine varieties are not isomor-
phic, our goal should be to prove that X ∼= Y implies K[X] ∼= K[Y]. Once we
have accomplished this, then an algebraic proof that K[X] 6∼= K[Y] would imply that
X 6∼= Y, allowing us to import the methods of algebra to detect when affine varieties
are not isomorphic. Thus, our goal is to develop a procedure for converting isomor-
phisms of affine varieties to isomorphisms of their corresponding coordinate rings.
This procedure is the pullback and is the topic of the next section.

Exercises for Section 4.1
4.1.1 Let X = V(y2 − z2 + xy− z, z2 − x3y2) ⊆ A3. Prove that F(a) = (1, a, a)

defines a polynomial map F : A1 → X. Is F an isomorphism?

4.1.2 Let X = V(x2 + y2 − 1) ⊆ A2 and let Y = V(u2 + v2 − 2) ⊆ A2. Prove
that F(a, b) = (a + b, a− b) defines a polynomial map F : X → Y. Is F an
isomorphism?

4.1.3 Let X = V(y2 − x3 − x2) ⊆ A2. Prove that F(a) = (a2 − 1, a3 − a)
defines a polynomial map F : A1 → X. Is F an isomorphism? (Hint: Draw
a picture.)

4.1.4 Let X = V( f1, . . . , fk, xm− g) ⊆ Am where g ∈ K[x1, . . . , xm−1]. For each
i = 1, . . . , k, define

f̃i = fi(x1, . . . , xm−1, g) ∈ K[x1, . . . , xm−1],

and set Y = V( f̃1, . . . , f̃k) ⊆ Am−1. Prove that X ∼= Y.

(This shows that if one of the defining equations of an affine variety is linear in
one of the variables, then it can be replaced with an isomorphic affine variety
defined by fewer equations in fewer variables.)

4.1.5 This exercise shows that the image of a polynomial map may or may not be
an affine variety.

(a) Prove that the image of the polynomial map

F : A1 → A3

a 7→ (a, a2, a3)

is an affine variety.
(b) Prove that the image of the polynomial map

G : A2 → A2

(a, b) 7→ (a, ab)
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is not an affine variety.

4.1.6 Let M be an invertible m × m matrix with coefficients in K and c ∈ Am.
Identifying Am with the vector space Km and M with a linear transformation
ϕM : Km → Km, define the function

F : Am → Am

a 7→ ϕM(a) + c.

Prove the following.

(a) If X ⊆ Am is an affine variety, then F(X) ⊆ Am is an affine variety.
(b) If X ⊆ Am is an affine variety, then X ∼= F(X).

4.1.7 Let X = V(`1, . . . , `k) ⊆ An where each `i is a linear polynomial:

`i = ai1x1 + · · ·+ ainxn + bi ∈ K[x1, . . . , xn].

Let M = (aij) be the k× n matrix of linear coefficients. Assuming that X is
nonempty, prove that

X ∼= An−rk(M).

(Hint: Use the Rank-Nullity Theorem.)
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Section 4.2 Pullback homomorphisms

A collection of mathematical ob-
jects together with their structure-
preserving maps is, loosely speaking,
the definition of a category.

Polynomial maps are the structure-
preserving maps between varieties in
the same way that homomorphisms (of
groups, rings, or K-algebras) are the
structure-preserving maps between al-
gebraic objects. And just as one can
move from geometry to algebra by sending X to K[X], there is a passage from
geometry to algebra given by sending a polynomial map between affine varieties to
a corresponding K-algebra homomorphism between coordinate rings. This passage
is accomplished utilizing the notion of the pullback homomorphism.

4.9 DEFINITION Pullback homomorphism

Let X ⊆ Am and Y ⊆ An be affine varieties, and let F : X → Y be a
polynomial map. The pullback homomorphism induced by F is

F∗ : K[Y]→ K[X]

F∗(G) = G ◦ F.

Notice that pulling back changes the
direction of the map:

F : X → Y ⇒ F∗ : K[Y]→ K[X].

In order for the definition of
the pullback homomorphism to make
sense, one must verify that, for every
G ∈ K[Y], the composition G ◦ F is an
element of K[X]. Since G : Y → K
and F : X → Y, the definition of com-

positions implies that G ◦ F is, indeed, a function from X to K; schematically:

X F−→ Y G−→ K =⇒ X
G◦F
−−−→ K.

The fact that G ◦ F is, moreover, a polynomial function follows from the fact that
compositions of polynomial functions are polynomial functions (Exercise 4.2.4).

4.10 EXAMPLE Pullback homomorphism

Let X = V(x2 − x2
1) ⊆ A2 and let Y = V(y1y2 − y3) ⊆ A3. Consider the

polynomial map F : X → Y of Example 4.3:

F(a1, a2) = (a1 − a2
1, a1 + a2, a2

1 − a2
2).

Consider the function G ∈ K[Y] defined by G(b1, b2, b3) = b2
1− b2b3. Pulling back

by F, we obtain the polynomial function F∗(G) ∈ K[X] defined by

(F∗G)(a1, a2) = (G ◦ F)(a1, a2) = (a1 − a2
1)

2 − (a1 + a2)(a2
1 − a2

2).

Similarly, pulling back H ∈ K[Y] defined by H(b1, b2, b3) = b1 + b2 − b3, we
obtain the polynomial function F∗(H) ∈ K[X] defined by

(F∗H)(a1, a2) = (H ◦ F)(a1, a2) = (a1 − a2
1) + (a1 + a2)− (a2

1 − a2
2).
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As seen in the previous example, once we have chosen polynomial expressions
for F = (F1, . . . , Fn) and G, then we obtain a polynomial expression for F∗(G)
simply by composing the polynomial expressions for F and G. To expand on this
observation, suppose that X ⊆ Am and Y ⊆ An. Then

K[X] =
K[x1, . . . , xm]

I(X)
and K[Y] =

K[y1, . . . , yn]

I(Y) .

If we choose polynomials f1, . . . , fn ∈ K[x1, . . . , xm] and g ∈ K[y1, . . . , ym] such
that Fi = [ fi] and G = [g], then for every a ∈ X and b = (b1, . . . , bn) ∈ Y,

F(a) = ( f1(a), . . . , fn(a)) and G(b1, . . . , bn) = g(b1, . . . , bn).

This implies that

F∗(G)(a) = G(F(a)) = g( f1(a), . . . , fn(a)).

Thus, F∗(G) = [g( f1, . . . , fn)], where g( f1, . . . , fn) ∈ K[x1, . . . , xm] is the poly-
nomial obtained from g by replacing yi with fi(x1, . . . , xm).

4.11 EXAMPLE Pullback homomorphism, revisited

In the same setting as Example 4.10, the component functions of F arise from the
polynomials

f1(x1, x2) = x1 − x2
1, f2(x1, x2) = x1 + x2, and f3(x1, x2) = x2

1 − x2
2.

The polynomial function G ∈ K[Y] arises from the polynomial

g = y2
1 − y2y3.

As can be seen by visual inspection, the pullback function F∗(G) arises from the
polynomial

g( f1, f2, f3) = (x1 − x2
1)

2 − (x1 + x2)(x2
1 − x2

2).

As the name suggests, the pullback homomorphism is more than just a function;
it is a homomorphism of K-algebras, as we now justify.

4.12 PROPOSITION F∗ is a homomorphism

If X ⊆ Am and Y ⊆ An are affine varieties and F : X → Y is a polynomial
map, then

F∗ : K[Y]→ K[X]

is a homomorphism of K-algebras.

Students of linear algebra may rec-
ognize the pullback as a polynomial
generalization of the dual of a linear
map; see Exercise 4.2.10.

PROOF To show that F∗ is a
K-algebra homomorphism, we must
check that it preserves addition, multi-
plication, and scalar multiplication. We
prove the first of these and leave the
other two to Exercise 4.2.6.



114 CHAPTER 4. POLYNOMIAL MAPS

To see that F∗ respects addition, let G1, G2 ∈ K[Y] be two polynomial functions.
Evaluating F∗(G1 + G2) at any value a ∈ X, we obtain(

F∗(G1 + G2)
)
(a) =

(
(G1 + G2) ◦ F

)
(a) (definition of pullback)

= (G1 + G2)(F(a)) (definition of composition)
= G1(F(a)) + G2(F(a)) (definition of + in K[Y])
= (G1 ◦ F)(a) + (G2 ◦ F)(a) (definition of composition)

=
(
(G1 ◦ F) + (G2 ◦ F)

)
(a) (definition of + in K[X])

= (F∗G1 + F∗G2)(a). (definition of pullback)

Thus, F∗(G1 + G2) = F∗G1 + F∗G2, verifying that F∗ preserves addition.

Recall that our motivation for introducing the pullback homomorphism was to
equip ourselves with algebraic tools for determining whether or not two affine va-
rieties are isomorphic. Since the definition of “isomorphism” (in any category) re-
quires checking that the composition of two morphisms is the identity, a preliminary
result toward this objective is to prove that pullbacks behave well with respect to
compositions and the identity function.

4.13 PROPOSITION Pullbacks preserve compositions and the identity

Let X ⊆ A`, Y ⊆ Am, and Z ⊆ An be affine varieties.
1. If F : X → Y and G : Y → Z are polynomial maps, then

(G ◦ F)∗ = F∗ ◦ G∗.

2. The pullback of the identity function is the identity function:

(idX)
∗ = idK[X].

In the language of category theory,
these properties of the pullback go by
the name “functoriality.”

PROOF To prove the first statement,
suppose that H ∈ K[Z]. Using asso-
ciativity of compositions, we then com-
pute

(G ◦ F)∗(H) = H ◦ (G ◦ F) = (H ◦ G) ◦ F = F∗(H ◦ G) = F∗(G∗(H)),

which shows that (G ◦ F)∗ = F∗ ◦ G∗. For the second statement, let H ∈ K[X].
Then

(idX)
∗(H) = H ◦ idX = H,

so (idX)
∗ is indeed the identity function on K[X].

Our task of using coordinate rings to detect whether affine varieties are isomor-
phic now has its first resolution.
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4.14 COROLLARY Pullbacks of isomorphisms are isomorphisms

Let X ⊆ Am and Y ⊆ An be affine varieties. If F : X → Y is an isomor-
phism, then F∗ : K[Y]→ K[X] is an isomorphism.

PROOF Let F : X → Y be an isomorphism with inverse F−1 : Y → X. To prove
that F∗ is an isomorphism, it suffices to prove that F∗ and (F−1)∗ are inverse to each
other. We verify this using Proposition 4.13:

F∗ ◦ (F−1)∗ = (F−1 ◦ F)∗ = (idX)
∗ = idK[X]

and
(F−1)∗ ◦ F∗ = (F ◦ F−1)∗ = (idY)

∗ = idK[Y].

The converse of Corollary 4.14 is also true, but it requires some additional work
to prove, and we defer this discussion until the next section. In the meantime, let us
take a look at a few example applications of this result.

4.15 EXAMPLE V(xy) 6∼= A1

Consider the affine variety X = V(xy) ⊆ A2. Let us prove that X is not isomorphic
to A1. Intuitively, this should be somewhat clear from the depiction of the two
varieties below. In particular, X consists of two affine lines meeting at a point,
which certainly looks quite different than a single affine line.

6∼=

To make this intuition precise, notice that X = V(x)∪V(y) is a reducible affine
variety. Thus, I(X) is not a prime ideal, implying that

K[X] =
K[x, y]
I(X)

is not an integral domain. Since K[A1] = K[z] is a single-variable polynomial ring,
it is an integral domain. Thus, given that the property of being an integral domain is
preserved under isomorphism, we see that K[X] 6∼= K[A1], and we conclude from
the contrapositive of Corollary 4.14 that X 6∼= A1.

The previous example quickly generalizes: if one affine variety is irreducible
and another is not, then they cannot be isomorphic, because one of their coordinate
rings is an integral domain and the other is not. The next example, on the other
hand, illustrates an example of proving that two irreducible affine varieties are not
isomorphic, which can be trickier. This example also concludes the discussion that
we began in Example 4.8, that bijective polynomial maps between affine varieties
are not necessarily isomorphisms.
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4.16 EXAMPLE V(x2 − y3) 6∼= A1

As in Example 4.8, let X = V(x2− y3) ⊆ A2. In order to show that the polynomial
bijection F : A1 → X defined by f (a) = (a3, a2) does not have a polynomial
inverse, we prove that X 6∼= A1. To do so, we analyze the coordinate rings. Since
x2 − y3 is irreducible, the vanishing ideal of X is

I(X) = 〈x2 − y3〉.

Thus,

K[X] =
K[x, y]
〈x2 − y3〉 .

In order to prove that X 6∼= A1, it suffices to find one ring-theoretic property of
the single-variable polynomial ring K[A1] = K[z] that is not satisfied by K[X].
An example of such a property is that K[X] is not a UFD. Indeed, it can be shown
(Exercise 0.3.15) that [x] and [y] are distinct irreducible elements of K[X], so the
equality

[x]2 = [y]3

expresses the same element in two inequivalent ways as a product of irreducibles.

In this section, we have discussed a way to associate a K-algebra homomorphism
to every polynomial map. In particular, we now have an association from the cate-
gory of affine varieties to the category of K-algebras that is defined on objects and
morphisms by

X 7−→ K[X]

(F : X → Y) 7−→ (F∗ : K[Y]→ K[X]).

Along with the conditions in Proposition 4.13, such an association is called a func-
tor between these categories. In the next section, we show that the association of
morphisms is invertible: every K-algebra homomorphism between coordinate rings
arises from a unique polynomial map between the corresponding affine varieties.
This is a key step in proving the converse to Corollary 4.14.

Exercises for Section 4.2
4.2.1 Let F : A2 → A2 be the polynomial map defined by

F(a1, a2) = (a2
1 + 2a1a2, a1 − a2).

Calculate F∗(G), where G ∈ K[A2] is the function defined by

G(b1, b2) = b1 − b2
2.

4.2.2 Let Y = V(y3 − y3
1) ⊆ A3, and let F : A1 → Y be the polynomial map

defined by
F(a) = (a, a2, a3).

Calculate F∗([g]) ∈ K[A1], where g = y1y2 + y2
3 ∈ K[y1, y2, y3].
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4.2.3 Let X, Y ⊆ An be affine varieties with X ⊆ Y, and let F : X → Y be the
inclusion. Describe F∗ : K[Y]→ K[X].

4.2.4 Let X and Y be affine varieties, and let F : X → Y be a function. Prove the
following: if F is a polynomial map, then G ◦ F ∈ K[X] for any G ∈ K[Y].

4.2.5 Let X and Y be affine varieties, and let F : X → Y be a function. Prove the
following: if F ◦ G ∈ K[X] for all G ∈ K[Y], then F is a polynomial map.
(This is the converse of the previous problem.)

4.2.6 Let X ⊆ Am and Y ⊆ An be affine varieties and F : X → Y a polynomial
map. Prove that F∗ : K[Y] → K[X] preserves ring multiplication and scalar
multiplication.

4.2.7 For each of the following pairs of affine varieties X and Y, decide whether
X ∼= Y and prove your answer.

(a) X = A1 and Y = A2;
(b) X = V(x1, x2) ⊆ A2 and Y = V(y1 − y2, y2

1 − y2) ⊆ A2;

(c) X = V(x3 − x2
1 + x1x2) ⊆ A3 and Y = A2;

(d) X = V(x1x2) ⊆ A2 and Y = V(y2
1 − y2

2) ⊆ A2;

4.2.8 Prove that V(xy− 1) ⊆ A2 is not isomorphic to A1.

4.2.9 Let X ⊆ Am and Y ⊆ An be affine varieties, and let F : X → Y be a
polynomial map.

(a) Prove that if F is surjective, then F∗ is injective.
(b) Based on part (a), we might hope that if F is injective, then F∗ is surjec-

tive. Prove that this is false by showing that the polynomial map

F : V(xy− 1)→ A1

F(a, b) = a

is injective but F∗ is not surjective.

4.2.10 (For students with some knowledge of linear algebra) Let V and W be K-
vector spaces, and let F : V →W be a linear map. Choose bases for V and W
in order to fix isomorphisms V ∼= Km and W ∼= Kn; via these isomorphisms,
we can identify V and W with affine spaces Am

K and An
K, and hence as affine

varieties. Denoting by V∨ and W∨ the dual vector spaces, explain why

V∨ ⊆ K[V] and W∨ ⊆ K[W],

and verify that F∗|W∨ coincides with the dual map F∨ : W∨ → V∨.
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Section 4.3 Pulling back is a bijection
If X ⊆ Am and Y ⊆ An are affine varieties, then the association that takes a
polynomial map to its pullback provides a function between two sets of morphisms:

{polynomial maps X → Y} → {K-algebra homomorphisms K[Y]→ K[X]}
F 7→ F∗.

The main result of this section is that this function is a bijection.

4.17 PROPOSITION Pulling back is a bijection

Let X ⊆ Am and Y ⊆ An be affine varieties. The correspondence F 7→ F∗

is a bijection between the set of polynomial maps X → Y and the set of
K-algebra homomorphisms K[Y]→ K[X].

In the language of category theory,
the bijection of Proposition 4.17 says
that the functor taking X to K[X]
and F to F∗ is fully faithful.

To prove Proposition 4.17, it suf-
fices to produce an inverse to the pro-
cedure that takes F to F∗. That is,
given any K-algebra homomorphism
ϕ : K[Y] → K[X], it suffices to show
that there is a unique polynomial map

F : X → Y such that F∗ = ϕ. The proof of this statement can be notationally hard
to follow, so we begin with a concrete example.

4.18 EXAMPLE Inverting the pullback

Consider the affine varieties of Example 4.3:

X = V(x2 − x2
1) ⊆ A2 and Y = V(y1y2 − y3) ⊆ A3.

Using that x2 − x2
1 and y1y2 − y3 are both irreducible, we compute

K[X] =
K[x1, x2]

〈x2 − x2
1〉

and K[Y] =
K[y1, y2, y3]

〈y1y2 − y3〉
.

Let us consider a K-algebra homomorphism ϕ : K[Y] → K[X]. Such a homo-
morphism is determined by sending each generator [yi] to [ fi] for some polynomial
fi ∈ K[x1, x2]; for example, consider the homomorphism

ϕ : K[Y]→ K[X]

ϕ([y1]) = [x1 + x2]

ϕ([y2]) = [x1]

ϕ([y3]) = [x1x2 + x2].

The image of any element [g] ∈ K[Y] is determined by the fact that ϕ is a K-algebra
homomorphism; for example,

ϕ([y2
1 + y2 − y2y3]) = [(x1 + x2)

2 + x1 − x1(x1x2 + x2)],
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and more generally, for any g ∈ K[y1, y2, y3],

ϕ([g]) = [g(x1 + x2, x1, x1x2 + x2)].

Not any choice of the three polynomials f1, f2, f3 would have given a well-defined
K-algebra homomorphism; it must be the case that [0] = [y1y2 − y3] is sent to
[0] ∈ K[X], or in other words that f1 f2 − f3 lies in 〈x2 − x2

1〉. This is indeed the
case for our particular choice of f1, f2, f3:

(4.1) (x1 + x2)x1 − (x1x2 + x2) = x2
1 − x2 ∈ 〈x2 − x2

1〉.

Having described ϕ, can we find a polynomial map F : X → Y for which
F∗ = ϕ? Such a map sends elements of X ⊆ A2 to elements of Y ⊆ A3, so it is
defined by three polynomials in two variables. Can you think of any candidates for
three such polynomials? There is a natural choice: the three polynomials f1, f2, f3
that were used to define ϕ. In other words, consider the function

F : X → Y
F(a1, a2) = (a1 + a2, a1, a1a2 + a2).

While F is manifestly a polynomial map, we should confirm that it indeed sends
elements of X to elements of Y, or in other words that F(a1, a2) satisfies the defining
equation of Y. Explicitly, we verify that

(4.2) (a1 + a2)a1 − (a1a2 + a2) = a2
1 − a2 = 0,

where the last equality is because (a1, a2) ∈ X = V(x2 − x2
1). Note the similarity

in equations (4.1) and (4.2): what was needed in order to verify that ϕ was well-
defined was precisely what was needed in order to verify that F mapped X to Y.

Finally, to confirm that F∗ = ϕ, it suffices to check that these two homomor-
phisms agree on the generators [y1], [y2], [y3] of K[Y]. Viewing [yi] as a function
Y → K, it is simply the coordinate function

[yi] : Y → K
[yi](b1, b2, b3) = bi.

Thus, by definition of the pullback,

F∗([y1])(a1, a2) = ([y1] ◦ F)(a1, a2) = [y1](a1 + a2, a1, a1a2 + a2) = a1 + a2.

In other words,
F∗([y1]) = [x1 + x2],

implying that F∗([y1]) = ϕ([y1]). Similarly, F∗ agrees with ϕ on the other two gen-
erators, so we have successfully constructed a polynomial map F for which F∗ = ϕ.
Moreover, the construction essentially illustrates the uniqueness of F: the require-
ment that F∗([yi]) = ϕ([yi]) determines the ith component function of F, and these
component functions uniquely determine F.

Generalizing the ideas of this example, we are ready to prove Proposition 4.17.
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PROOF OF PROPOSITION 4.17 Let X ⊆ Am and Y ⊆ An be affine varieties
with

K[X] =
K[x1, . . . , xm]

I(X)
and K[Y] =

K[y1, . . . , yn]

I(Y) .

In order to prove the proposition, we show that, for every K-algebra homomorphism
ϕ : K[Y]→ K[X], there exists a unique polynomial map F : X → Y with F∗ = ϕ.

(Existence) Suppose ϕ : K[Y] → K[X] is a K-algebra homomorphism. Fol-
lowing the procedure in the example, let Fi = ϕ([yi]) ∈ K[X], and consider the
polynomial map

F = (F1, . . . , Fn) : X → An.

As in the example, we must verify that the image of F lies in Y and therefore gives
rise to a polynomial map F : X → Y. To prove this, suppose that a ∈ X; we must
show that

(F1(a), . . . , Fn(a)) ∈ Y.

Since Y = V(I(Y)), it suffices to check that, for all h ∈ I(Y),

h(F1(a), . . . , Fn(a)) = 0.

Let h ∈ I(Y). Then [h] = 0 ∈ K[Y], so ϕ([h]) = 0 ∈ K[X], since ϕ is a
homomorphism. But this implies that

ϕ([h(y1, . . . , yn)]) = h(ϕ([y1]), . . . , ϕ([yn])) = h(F1, . . . , Fn)

is the zero function on X, implying that h(F1(a), . . . , Fn(a)) = 0. Thus, F is indeed
a polynomial map from X to Y.

It remains to show that F∗ = ϕ. As in the example, for every i = 1, . . . , n,

F∗([yi]) = [yi] ◦ (F1, . . . , Fn) = Fi = ϕ([yi]).

Thus, F∗ and ϕ agree on the generators [yi], implying that F∗ = ϕ.
(Uniqueness) Suppose F, G : X → Y are polynomial maps with F∗ = G∗. We

must show that F = G. By definition,

F = (F1, . . . , Fn) and G = (G1, . . . , Gn)

where Fi, Gi ∈ K[X] are polynomial functions on X. Evaluating F∗ and G∗ on [yi],
we have

F∗([yi]) = [yi] ◦ (F1, . . . , Fn) = Fi ∈ K[X],

and, similarly, G∗([yi]) = Gi ∈ K[X]. Since F∗ = G∗, it follows that

Fi = F∗([yi]) = G∗([yi]) = Gi

for all i = 1, . . . , n, so F = G.

The payoff for the work undertaken to prove Proposition 4.17 is that we can
now precisely detect whether two affine varieties are isomorphic by studying their
coordinate rings.
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4.19 COROLLARY Coordinate rings detect isomorphism

Let X ⊆ Am and Y ⊆ An be affine varieties. Then

X ∼= Y ⇐⇒ K[X] ∼= K[Y].

PROOF The forward implication is the content of Corollary 4.14. To prove the
other direction, suppose that ϕ : K[Y]→ K[X] is an isomorphism with inverse ϕ−1.
By Theorem 4.17, there exist polynomial maps F : X → Y and G : Y → X such
that F∗ = ϕ and G∗ = ϕ−1. We claim that F and G are inverse to one another.
Indeed, by Proposition 4.13,

(F ◦ G)∗ = G∗ ◦ F∗ = ϕ−1 ◦ ϕ = idK[Y] = (idY)
∗.

Since F ◦G and idY have the same pullback, the bijectivity of Theorem 4.17 implies
that F ◦ G = idY. Similarly, G ◦ F = idX . Since F and G are inverse polynomial
maps, we conclude that F : X → Y is an isomorphism and F∗ = ϕ.

Exercises for Section 4.3
4.3.1 Suppose that m ≤ n and consider the natural injection

ϕ : K[x1, . . . , xm]→ K[x1, . . . , xn].

Describe the corresponding polynomial map F : An → Am.

4.3.2 Suppose that m ≤ n and consider the surjection

ϕ : K[x1, . . . , xn]→ K[x1, . . . , xm]

f (x1, . . . , xn) 7→ f (x1, . . . , xm, 0, . . . , 0).

Describe the corresponding polynomial map F : Am → An.

4.3.3 Consider the homomorphism of K-algebras

ϕ : K[x, y]→ K[t]

defined by
ϕ( f ) = f (t + 1, t2 + t).

For which affine varieties X and Y and which polynomial map F : X → Y do
we have ϕ = F∗?

4.3.4 Let X = V(x2 + y2 + z2 − 1) ⊆ A3
R, for which

K[X] =
K[x, y, z]

〈x2 + y2 + z2 − 1〉 .

Consider the homomorphism of K-algebras

ϕ : K[u, v]→ K[X]

ϕ( f ) = [ f (x + y + z, xyz)].

For which polynomial map F : X → A2 do we have ϕ = F∗?
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4.3.5 Let f1, f2, f3 ∈ K[w] and let X = V(x + y− z) ⊆ A3.

(a) Under what conditions on f1, f2, and f3 does

F : A1 → X
F(a) = ( f1(a), f2(a), f3(a))

give a well-defined polynomial map to X? Give an explicit example of
f1, f2, f3 ∈ K[w] for which this is the case, and an explicit example for
which it is not the case.

(b) Under what conditions on f1, f2, and f3 does there exist a well-defined
K-algebra homomorphism

ϕ :
K[x, y, z]
〈x + y− z〉 → K[w]

defined on the generators by

ϕ([x]) = f1(w)

ϕ([y]) = f2(w)

ϕ([z]) = f3(w)?

Give an explicit example of f1, f2, f3 ∈ K[w] for which this is the case,
and an explicit example for which it is not the case.

(c) Using parts (a) and (b), explicitly describe the bijection between the set
of polynomial maps A1 → X and the set of K-algebra homomorphisms
K[X]→ K[A1].

4.3.6 Let X ⊆ Am be an affine variety, and let Y ⊆ An be a single point. There
is only one possible polynomial map X → Y, so by Theorem 4.17, there is
only one possible K-algebra homomorphism K[Y] → K[X]. What is K[Y],
and what is the one K-algebra homomorphism K[Y]→ K[X]?

4.3.7 Suppose that X ⊆ Am is an irreducible affine variety and that Y ⊆ An

consists of two distinct points. Prove that there are exactly two polynomial
maps F : X → Y. Describe the two maps explicitly.

4.3.8 If X ⊆ An is any affine variety, then the set of polynomial maps X → A1

is precisely K[X], so Theorem 4.17 implies there is a bijection between K[X]
and the set of K-algebra homomorphism K[A1] → K[X]. Describe this bi-
jection explicitly.
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Section 4.4 The equivalence of algebra & geometry
Combining the results of this chapter and the previous one, we now prove that the
passage from X to K[X] truly is a dictionary between affine varieties and finitely-
generated reduced K-algebras, where we view objects on both sides as “the same”
if they are isomorphic. In the terminology of isomorphism classes—the equivalence
classes under the equivalence relation of being isomorphic (which is an equivalence
relation in the setting of K-algebras, of affine varieties, or more generally, in any
category)—the results we have proven lead to the following theorem.

4.20 THEOREM Equivalence of algebra & geometry

The association X 7→ K[X] induces a bijection{ isomorphism classes of
affine varieties

}
−→

{ isomorphism classes of
finitely-generated reduced K-algebras

}
.

PROOF Recalling that each coordinate ring is a finitely-generated reduced K-
algebra (Proposition 3.32), we can view the association X → K[X] as a function

{affine varieties} −→
{ isomorphism classes of

finitely-generated reduced K-algebras

}
.

In category-theoretic language, the
bijection of Theorem 4.20 reflects
an equivalence of categories be-
tween affine varieties and finitely-
generated reduced K-algebras.

To see that this function is well-defined
on isomorphism classes of affine va-
rieties, we notice that K[X] ∼= K[Y]
whenever X ∼= Y—this is one direc-
tion of Corollary 4.19. To see that this
function is injective on isomorphism
classes, we notice that X ∼= Y when-
ever K[X] ∼= K[Y]—this is the other direction of Corollary 4.19. Finally, to justify
surjectivity, notice that every finitely-generated reduced K-algebra is the coordinate
ring of some affine variety (Proposition 3.32).

Put more loosely, Theorem 4.20 asserts that all of the geometric information
about the affine variety X is encoded in the K-algebra K[X]. But perhaps we should
be a bit more careful: the particular affine space An in which X lives is “geometric
information” about X, and yet this information cannot be recovered from the iso-
morphism class of K[X]. For instance, the coordinate rings of V(y − x2) ⊆ A2

and V(y− x2, z) ⊆ A3 are members of the same isomorphism class despite arising
from affine varieties in different ambient affine spaces.

The reason the ambient affine space of X cannot be recovered from the iso-
morphism class of K[X] is that isomorphic affine varieties can live in different
affine spaces. Such a property of affine varieties—or indeed, of any mathematical
objects—that is not preserved under isomorphism can be thought of as a “coinciden-
tal” property, one that depends on some extraneous choice. By contrast, a property
preserved by isomorphisms is one that pertains to the object’s “essence.” To make
these ideas precise, it is useful to have the following definition.
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4.21 DEFINITION Intrinsic/extrinsic property

Let C be a class of mathematical objects with a notion of isomorphism. A
property P is said to be intrinsic if, whenever two objects are isomorphic,
one of them has property P if and only if the other has property P . A prop-
erty that is not intrinsic is said to be extrinsic.

More precisely, C is a category, and
P is a subset of the objects of C.

The property of being inside A2,
for instance, is an extrinsic property
on the class of affine varieties, since
V(y − x2) ⊆ A2 has it but the iso-
morphic variety V(y − x2, z) ⊆ A3 does not. Here are some further examples
of intrinsic and extrinsic properties, both in the context of algebra and geometry.

4.22 EXAMPLE Intrinsic properties of rings

Being reduced is an intrinsic property of rings. To prove this, let ϕ : R→ S be a ring
isomorphism; we must show that R is reduced if and only if S is reduced. Assume
that R is not reduced. Then there exists a ∈ R such that a 6= 0 and am = 0 for some
m ≥ 1. Using standard properties of ring isomorphisms, we see that ϕ(a) 6= 0 and

ϕ(a)m = ϕ(am) = ϕ(0) = 0.
Thus, ϕ(a) is a nonzero nilpotent, showing that S is not reduced. The same proof
applied to ϕ−1 : S→ R shows that, if S is not reduced, then R is not reduced.

Similar arguments show that being an integral domain, a UFD, a PID, or a field
are all intrinsic properties of rings (Exercise 4.4.1).

4.23 EXAMPLE Number of generators is extrinsic

Every finitely-generated K-algebra is isomorphic to a quotient K[x1, . . . , xn]/I, but
the number n of generators is extrinsic. For example, the K-algebras

K[x, y]
〈y− x2〉 and

K[x, y, z]
〈y− x2, z〉

are isomorphic, even though the first has two generators and the second has three.
On the other hand, the minimal number of generators is an intrinsic property.

4.24 EXAMPLE Irreducibility is intrinsic

The property of being an irreducible affine variety is intrinsic. This can be proved
directly using the definition of polynomial maps and irreducibility (Exercise 4.4.2),
but we can also prove it using our dictionary between geometry and algebra. To do
so, suppose X ⊆ Am and Y ⊆ An are affine varieties and X ∼= Y. Then

X is irreducible ⇐⇒ I(X) is radical (Proposition 2.25)
⇐⇒ K[X] is an integral domain (Propositions 3.21 and 0.38).

By assumption, X ∼= Y, and therefore K[X] ∼= K[Y] (Corollary 4.19). Since being
an integral domain is an intrinsic property of K-algebras, we conclude that X is irre-
ducible if and only if Y is irreducible. Thus, irreducibility is an intrinsic property.
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An intrinsic property P of mathematical objects of class C can be viewed as a
subset of the set of isomorphism classes, consisting of those isomorphism classes in
which one (and hence every) representative has propertyP . In particular, an intrinsic
property of affine varieties—such as irreducibility—can be viewed as a subset of the
set of isomorphism classes of affine varieties. Via the bijection of Theorem 4.20,
this can be identified with a subset of the set of isomorphism classes of finitely-
generated reduced K-algebras, which can then be viewed as an intrinsic property of
finitely-generated reduced K-algebras. Which algebraic property is it? In the case of
irreducibility, the answer is that irreducibility of affine varieties corresponds to the
property of a finitely-generated reduced K-algebra being an integral domain.

More generally, we can now ask a very broad question: given an intrinsic ge-
ometric property or construction applicable to affine varieties, what is its manifes-
tation in the category of K-algebras? Or, conversely, given an intrinsic algebraic
property or construction applicable to K-algebras, what is its manifestation in the
category of affine varieties? Both algebra and geometry are illuminated by these
questions, and specific examples of such phenomena form the backbone of the alge-
braic geometry to come.

Exercises for Section 4.4
4.4.1 Prove that the following are intrinsic properties of rings:

(a) Being an integral domain;
(b) Being a field;
(c) Being a principal ideal domain;
(d) Being a unique factorization domain.

4.4.2 Let X ⊆ Am and Y ⊆ An be affine varieties, and let F : X → Y be an
isomorphism.

(a) Prove that, if a subset X1 ⊆ X is an affine variety, then F(X1) ⊆ Y is
an affine variety.

(b) Prove directly from Definition 2.22 that irreducibility is intrinsic.

4.4.3 Prove that the number of irreducible components of an affine variety is an
intrinsic property.

4.4.4 Prove that being a finite set is an intrinsic property of affine varieties. Describe
the corresponding intrinsic property of finitely-generated reduced K-algebras.

4.4.5 We say that two morphisms F1 : A1 → B1 and F2 : A2 → B2 are isomorphic
if there exist isomorphisms G1 : A1 → A2 and G2 : B1 → B2 such that

F1 = G−1
2 ◦ F2 ◦ G1.

(a) Prove that isomorphism is an equivalence relation on the set of mor-
phisms.

(b) Prove that there is a bijection between isomorphism classes of poly-
nomial maps between affine varieties and isomorphism classes of K-
algebra homomorphisms between finitely-generated reduced K-algebras.



126 CHAPTER 4. POLYNOMIAL MAPS

4.4.6 (a) Let Y ⊆ An be an affine variety and let X ⊆ Y be a subset. We say
that X is dense in Y if there does not exist an affine variety Z ⊆ An

such that X ⊆ Z ( Y. Prove that X is dense in Y if and only if the only
polynomial function G ∈ K[Y] that vanishes on X is the zero function.

(b) Let X ⊆ Am and Y ⊆ An be affine varieties. We say that a polynomial
map F : X → Y is dominant if F(X) is dense in Y. Prove that a
polynomial map is dominant if and only if its pullback is injective.

4.4.7 Let X ⊆ Am and Y ⊆ An be affine varieties. We say that a polynomial map
F : X → Y is a closed embedding if there exists an affine variety Z ⊆ Y
such that F(X) = Z and the induced map F : X → Z is an isomorphism.
Prove that a polynomial map is a closed embedding if and only if its pullback
is surjective.



Chapter 5

Proof of the Nullstellensatz
LEARNING OBJECTIVES FOR CHAPTER 5

• Generalize the notion of vector spaces (over fields) to modules (over
rings).

• Extend the notion of algebras over fields to algebras over rings.

• Explore the difference between finitely-generated algebras and finitely-
generated modules.

• Determine, via the concept of integrality, when a finitely-generated alge-
bra is in fact a finitely-generated module.

• Investigate the general structure of finitely-generated K-algebras via
Noether normalization.

• Use Noether normalization to prove the Nullstellensatz.

Now that we have collected, in the form of the equivalence of algebra and geom-
etry, some evidence of the power of the Nullstellensatz, the time has come to prove
it. The journey to a proof of the Nullstellensatz necessitates a rather long inter-
lude into purely algebraic material, including a tour of R-modules and R-algebras,
culminating with the Noether Normalization Theorem in Section 5.4.

In addition to being a key step in the proof of the Nullstellensatz, the Noether
Normalization Theorem is a powerful result of independent interest about the struc-
ture of finitely-generated K-algebras. It says that, while such an algebra certainly
need not be finitely-generated as a K-vector space (for example, the polynomial
ring K[x1, . . . , xn] is not), it can always be expressed as a finitely-generated “vector
space” over a subalgebra that is isomorphic to a polynomial ring. We put the word
“vector space” in quotes here because these scalars do not form a field, and hence, in
order to make sense of Noether Normalization, we must generalize the definition of
a vector space to allow scalars from a general ring. These generalized vector spaces,
which we introduce in Section 5.1, are referred to as modules.

While the basic definition of a module is no different from that of a vector space,
the theory in this setting leads to a number of new ideas, the most important of which
is the notion of integrality and its relationship to finite generation. The first four
sections of this chapter are devoted to the development of the theory of R-modules
and R-algebras, culminating in Section 5.4 with a proof of Noether Normalization.
In Section 5.5, we receive the payoff for this work: the proof of the Nullstellensatz,
and thus, a complete justification of the equivalence of algebra and geometry.

127
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Section 5.1 Modules
To motivate the concept of modules, we begin with a discussion of the algebraic
structure of a few familiar coordinate rings. Consider

K[x, y] and K[x, y]/〈x2 + y2 − 1〉,

which are the coordinate rings of the affine plane and the unit circle, respectively.
The affine plane certainly does not feel like it should be isomorphic to the unit circle,
suggesting that there must be some algebraic property that we can use to distinguish
between these K-algebras. Our aim is to describe such a property using ideas from
linear algebra.

To start, consider these coordinate rings as vector spaces. Notice that every
element of K[x, y] can be written uniquely as a K-linear combination of elements

B = {xiyj | i, j ∈N},

which tells us that K[x, y] is an infinite-dimensional vector space over K with basis
B. If we consider the ring K[x, y]/〈x2 + y2 − 1〉, on the other hand, then we can
repeatedly use the relation [y2] = [1− x2] to write every element uniquely as

[ f (x) + g(x)y]

for some f , g ∈ K[x]. In other words, K[x, y]/〈x2 + y2 − 1〉 is also an infinite-
dimensional vector space over K, but it has a basis given by the smaller set

B′ = {[xiyj] | i ∈N, j ∈ {0, 1}}.

Even though B′ can be viewed as a proper subset of B, both B and B′ are countably
infinite, which implies that these two vector spaces are, in fact, isomorphic. Since
the two coordinate rings are isomorphic as vector spaces, we see that the theory of
vector spaces alone is not enough to distinguish between them.

However, if we allow ourselves to enlarge our “scalars,” replacing K with the
ring R = K[x], then we notice that every element of K[x, y] can be written uniquely
as an R-linear combination of elements of the infinite set

S = {1, y, y2, y3, . . . },

whereas, for the ring K[x, y]/〈x2 + y2 − 1〉, in order to write every element as an
R-linear combination, we only require the two-element set

S ′ = {[1], [y]}.

In other words, if we pretend for a moment that R = K[x] is a field (it’s not!), then
we have observed that K[x, y] is an infinite-dimensional “vector space” over R while
K[x, y]/〈x2 + y2 − 1〉 is finite-dimensional. Thus, we have succeeded in finding a
distinguishing property between these two coordinate rings.

To make this hypothetical argument a reality, we require an extension of the
notion of vector spaces to the setting where the scalars are allowed to be taken to be
a ring but not necessarily a field, a setting that is captured by the important algebraic
concept of modules. We begin our discussion of modules in this section with the
definition and some basic notions. As always, R denotes a ring, and all rings are
assumed to be commutative with unity.
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5.1 DEFINITION R-module

An R-module is an abelian group M (with operation denoted +) together
with a scalar multiplication function

R×M→ M
(r, a) 7→ r · a

satisfying the following axioms:
1. r · (a + b) = r · a + r · b for all r ∈ R and all a, b ∈ M;

2. (r + s) · a = r · a + s · a for all r, s ∈ R and all a, b ∈ M;

3. (rs) · a = r · (s · a) for all r, s ∈ R and all a ∈ M;

4. 1 · a = a for all a ∈ M, where 1 ∈ R is the multiplicative identity.

When R = K is a field, Definition 5.1 is nothing more than the definition of
a vector space over K. Many, but not all, of the notions of vector spaces naturally
generalize to the module setting. Let us begin our discussion of modules with several
examples that will be helpful to keep in mind.

5.2 EXAMPLE Rn is an R-module

The standard example of a vector space is Kn, and this generalizes to the R-module
setting. More specifically, consider the Cartesian product

Rn = {(a1, . . . , an) | ai ∈ R for each i}.

The set Rn is naturally an R-module, with addition and scalar multiplication defined
exactly as in the vector space setting:

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn),
r · (a1, . . . , an) = (ra1, . . . , ran).

5.3 EXAMPLE Polynomial rings are modules

The polynomial ring R[x1, . . . , xn] is an R-module, with addition and scalar multi-
plication defined in the usual way:(

∑
α

bαxα
)
+
(
∑
α

cαxα
)
= ∑

α

(bα + cα)xα and r ·
(
∑
α

bαxα
)
= ∑

α

(rbα)xα.

The module axioms are a straightforward consequence of the ring axioms.

5.4 EXAMPLE Extension rings

Generalizing the previous example, if R ⊆ S is a subring, then S can be viewed as
an R-module, where for r ∈ R and s ∈ S, we define r · s by the ring multiplication
inside S. The module axioms, again, are a consequence of the ring axioms.

As a special case that arose in the discussion at the beginning of this section, we
can consider M = K[x, y] as a module over the subring R = K[x]. That is, elements
in K[x, y] can be added as usual and any element in K[x, y] can be multiplied by a
“scalar” in K[x].
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5.5 EXAMPLE Abelian groups are Z-modules

Let M be any abelian group. Then M can be viewed as a Z-module, where for
n ∈ Z and a ∈ M the scalar multiplication is defined by

n · a =



a + · · ·+ a︸ ︷︷ ︸
n times

if n > 0

0 if n = 0

(−a) + · · ·+ (−a)︸ ︷︷ ︸
−n times

if n < 0.

Conversely, every Z-module is an
abelian group by forgetting scalar
multiplication. Thus, Z-modules
and abelian groups are really two
different names for the same thing.

In fact, one can check from the module
axioms that this is the only way to de-
fine scalar multiplication that makes M
into a Z-module; see Exercise 5.1.10.
It follows that every abelian group
is a Z-module in a canonical way.

Of course, our discussion of R-modules is not complete without introducing the
relevant notion of morphisms between them. Given that a module is an abelian group
with the additional structure of scalar multiplication, it is natural to define a module
homomorphism as a group homomorphism that preserves scalar multiplication.

5.6 DEFINITION Homomorphisms of R-modules

Let M and N be R-modules. An R-module homomorphism ϕ : M → N is
a group homomorphism for which

ϕ(r · a) = r · ϕ(a)

for all r ∈ R and a ∈ M. We say that ϕ is an isomorphism of R-modules and
write M ∼= N if ϕ has an inverse that is also an R-module homomorphism.

In other words, an R-module homomorphism satisfies

ϕ(r · a) = r · ϕ(a) and ϕ(a + b) = ϕ(a) + ϕ(b)

for all a, b ∈ M and r ∈ R. In particular, if R = K is a field, so that M and N are
K-vector spaces, then a K-module homomorphism is precisely the same thing as a
linear map of vectors spaces over K.

Another important module-theoretic notion is that of a submodule.

5.7 DEFINITION Submodule

Let M be an R-module. A submodule N ⊆ M is a subgroup for which
r · a ∈ N for all r ∈ R and a ∈ N.
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It can be checked (using that R has unity) that a subset N ⊆ M is a submodule
if and only if it is closed under the two operations:

a + b ∈ N and r · a ∈ N

for all a, b ∈ N and r ∈ R. Thus, the notion of submodules naturally generalizes the
notion of linear subspaces from the study of vector spaces (see Exercise 5.1.6).

Given an R-module M and a submodule N ⊆ M, we can form the group quo-
tient M/N, and this group quotient naturally inherits the structure of an R-module,
with scalar multiplication defined by

r · [a] = [r · a].

The reader is encouraged to check that scalar multiplication is well-defined and that
the quotient M/N satisfies the R-module axioms (Exercise 5.1.7). Just like for
groups, rings, and K-algebras, there is a version of the First Isomorphism Theorem
for R-modules; this is the content of Exercise 5.1.8.

In the definition of an R-module, we started with an additive abelian group.
However, in many cases relevant to us, such as the setting of polynomial rings and
their quotients, the additive abelian group will also have a multiplicative structure
that endows it with the structure of a ring. In this case, we call the resulting structure
an R-algebra, made precise in the following definition.

5.8 DEFINITION R-algebra

An R-algebra is a ring A together with a scalar multiplication function

R× A→ A
(r, a) 7→ r · a

satisfying the four axioms of an R-module as well as

r · (ab) = (r · a)b = a(r · b)

for all r ∈ R and all a, b ∈ A.

The reader should notice that the definition of an R-algebra is not new—after
replacing R with K, it is identical to the definition of a K-algebra from Section 3.2.
In fact, most of the concepts we discussed concerning K-algebras—such as ho-
momorphisms, subalgebras, ideals, quotients, the First Isomorphism Theorem, and
generators—carry over verbatim to the R-algebra setting, and we do not restate them
here. As was the case for K-algebras, the prototypical R-algebra is the polynomial
ring R[x1, . . . , xn].

In contrast to the setting of K-algebras, however, we gain some flexibility in our
perspective now that we do not require our scalars to form a field. For example,
even if our motivation is to study polynomials over a field, we now have the ability
to view one of the variables as a “scalar” and write

K[x1, . . . , xn] = R[x1, . . . , xn−1] where R = K[xn].
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This opens up the possibility of proving assertions concerning K-algebras by using
induction arguments in the more general R-algebra setting. It is essentially for this
reason that the setting of R-algebras is the correct level of algebraic generality that
we require for our development of algebraic geometry.

Given an R-algebra, there is a unique underlying R-module obtained by forget-
ting the multiplicative structure. On the other hand, if you start with an R-module,
then there are typically many ways to put a multiplicative structure on it to endow it
with the structure of an R-algebra. We illustrate this in the next example.

5.9 EXAMPLE Different R-algebras with the same underlying R-module

Consider the R-module M = R2. A natural way to make M into an R-algebra is to
define multiplication componentwise:

(a, b) · (c, d) = (ac, bd).

However, this is not the only way that we can make M into an R-algebra; another
way is given by defining multiplication as follows:

(a, b) · (c, d) = (ac, ad + bc).

While this second multiplication might feel a bit strange at first glance, the resulting
R-algebra is actually isomorphic to the familiar quotient R[x]/〈x2〉, as the reader is
encouraged to verify in Exercise 5.1.9.

In the next section, we turn to a discussion of module generators, which allows
us to generalize the important notion of finite-dimensionality from linear algebra to
the module setting.

Exercises for Section 5.1
5.1.1 Let M = K[x, y]. Find at least three different rings R for which M is an

R-module.

5.1.2 Give an example of a ring R, an R-module M, and a subgroup N ⊆ M that is
not an R-module.

5.1.3 Prove that R is an R[x]-module under the scalar multiplication defined by

(r0 + r1x + r2x2 + · · ·+ rnxn) · a = r0a.

5.1.4 Let R be a ring and M an R-module. Use the module axioms to prove that

0 · a = 0 for all a ∈ M

and
r · 0 = 0 for all r ∈ R.

5.1.5 Prove that an R-module homomorphism is an isomorphism if and only if it is
bijective.
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5.1.6 Let M be an R-module and N ⊆ M a subset. Prove that N is a submodule if
and only if

a + b ∈ N and r · a ∈ N for all a, b ∈ N and r ∈ R.

5.1.7 Let M be an R-module, N ⊆ M a submodule, and M/N the group quotient.

(a) Suppose that [a1] = [a2] ∈ M/N. Prove that

[r · a1] = [r · a2]

Conclude that scalar multiplication is well-defined in M/N.
(b) Prove that M/N satisfies the R-module axioms.

5.1.8 Let ϕ : M→ N be a homomorphism of R-modules.

(a) Prove that ker(ϕ) is a submodule of M.
(b) Prove that im(ϕ) is a submodule of N.
(c) Prove that the function

[ϕ] : M/ ker(ϕ)→ im(ϕ)

[a] 7→ ϕ(a)

is a well-defined isomorphism of R-modules.

5.1.9 Let A be the R-algebra defined by endowing R2 with the multiplication

(a, b) · (c, d) = (ac, ad + bc).

Prove that A ∼= R[x]/〈x2〉.

5.1.10 Let M be an abelian group. Prove that the only definition of scalar multipli-
cation that makes M into a Z-module is the one given in Example 5.5.
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Section 5.2 Module generators
As we learned in the previous section, a module is an algebraic structure that gener-
alizes vector spaces to the setting where the scalars form a ring but not necessarily
a field. In this section, we generalize the important vector space concept of finite-
dimensionality to the module setting. The key notions we require for this general-
ization are those of linear combinations and generators.

5.10 DEFINITION Linear combination, generators

Let M be an R-module and let S ⊆ M be a subset. A linear combination of
S is an element of M of the form

r1a1 + · · ·+ rnan

for some n ∈ N, ri ∈ R, and ai ∈ S . The set of all linear combinations of
S is called the submodule of M generated by S , and it is denoted RS .

It is a worthwhile exercise to verify that RS is, in fact, a submodule of M, and
that it is the smallest submodule of M that contains the set S (Exercise 5.2.1). Let
us consider a few examples.

5.11 EXAMPLE Submodules of R[x]

Consider R[x] as an R-module. Then the submodule generated by {x2, x3} is

R{x2, x3} = {ax2 + bx3 | a, b ∈ R} ⊆ R[x].

In other words, it consists of polynomials whose only potentially nonzero coeffi-
cients occur in the x2 and x3 terms. Similarly,

R{1, x2, x4, x6, . . . } =
{ n

∑
i=0

aix2i | n ∈N, ai ∈ R
}
⊆ R[x]

consists of polynomials whose nonzero coefficients occur with even powers of x.

5.12 EXAMPLE Submodules of Z

Consider Z as a Z-module. Then the submodule generated by {4, 6} is

Z{4, 6} = {a · 4 + b · 6 | a, b ∈ Z}.

Noting that 2 = (−1) · 4 + 1 · 6 ∈ Z{4, 6}, it is not too hard to see that every
even integer can be obtained as a linear combination of 4 and 6, which proves that
2Z ⊆ Z{4, 6}. On the other hand, every linear combination of 4 and 6 is even, so
Z{4, 6} ⊆ 2Z. Taken together, we have proved that

Z{4, 6} = 2Z.

If instead, we consider the submodule generated by 2 and 3, we see that

1 = (−1) · 2 + 1 · 3 ∈ Z{2, 3},

which implies that Z{2, 3} = Z.
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5.13 EXAMPLE The coordinate ring of the unit circle as a K[x]-module

Consider the coordinate ring of the unit circle X = V(x2 + y2 − 1) ⊆ A2:

K[X] =
K[x, y]

〈x2 + y2 − 1〉 .

We can view K[X] as a K[x]-module in a natural way by defining

f · [g] = [ f g]

for any f ∈ K[x] and [g] ∈ K[X]. By repeated use of the equation [y2] = [1− x2],
every element of K[X] can be written in the form

[ f1(x) + f2(x)y] = f1(x) · [1] + f2(x) · [y],

which shows that K[X] = K[x]{[1], [y]}.

We are especially interested in whether a module can be generated by a finite set,
generalizing the concept of finite-dimensionality from the study of vector spaces.

5.14 DEFINITION Finitely-generated module

We say that M is a finitely-generated R-module if there exist a1, . . . , an ∈ M
such that

M = R{a1, . . . , an}.

Example 5.13 shows that the coordinate ring of the unit circle is a finitely-
generated K[x]-module, generated by [1] and [y]. The next example illustrates a
familiar module that is not finitely-generated.

5.15 EXAMPLE R[x] is not a finitely-generated R-module

Consider the polynomial ring R[x]. To prove that R[x] is not finitely-generated, sup-
pose f1, . . . , fn ∈ R[x] is any finite set of polynomials and consider the submodule

R{ f1, . . . , fn} ⊆ R[x].

We must prove that this submodule is not all of R[x]. To do so, let d be the maximum
degree of the polynomials f1, . . . , fn. Then any linear combination of these polyno-
mials must have degree bounded above by d. In particular, xd+1 /∈ R{ f1, . . . , fn}.

Further differences between modules
and vector spaces are discussed in
Exercise 5.2.7.

In many ways, modules behave like
vector spaces, but it is important to note
their key differences. The reader might
recall a standard result in linear algebra
that says that every finitely-generated
vector space over K is isomorphic to Kn for some n. In the module setting, this
is not the case; for example, given a nontrivial finite group M, we may view it as
a Z-module (Example 5.5), and it is finitely-generated because it is generated by
all of its elements. However, it is not the case that M ∼= Zn for any n because
1 < |M| < ∞, but Zn is either infinite (if n > 0) or has a single element (if n = 0).
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In practice, most of the modules in this book will arise naturally with a multi-
plicative operation, giving them the structure of an algebra. Given an R-algebra, we
can talk about its module properties, which pertain to just addition and scalar multi-
plication (in other words, linear algebra), or we can talk about its algebra properties,
which also include the multiplication operation (in other words, polynomial alge-
bra). We contrast these two perspectives in the next example.

5.16 EXAMPLE Submodule versus subalgebra generated by a set

In Example 5.11, we saw that the submodule of R[x] generated by x2 and x3 is

R{x2, x3} = {ax2 + bx3 | a, b ∈ R}.

To contrast this with the algebra setting, let’s consider the subalgebra generated
by these same two elements. As defined in Section 3.3, the subalgebra R[x2, x3]
consists of all polynomial combinations of x2 and x3, so, in addition to containing
the linear combinations as above, it contains additional elements, such as

(x2)2 = x4, x2 · x3 = x5 and (x3)2 = x6.

In fact, one can show (Exercise 5.2.2) that R[x2, x3] consists of all polynomials in
R[x] in which the linear coefficient is zero:

R[x2, x3] = R{1, x2, x3, x4, . . . }.

Thus, we see that the subalgebra generated by x2 and x3 is much larger than the
submodule; it is not even finitely-generated as a module.

If A is an R-algebra and S ⊆ A is a subset, then

RS ⊆ R[S ],

simply because every linear combination is a special type of polynomial combina-
tion. It follows that, if A is finitely-generated as a module, then it must be finitely-
generated as an algebra. On the other hand, given a finitely-generated algebra, it
is usually not the case that it is finitely-generated as a module; the polynomial ring
R[x1, . . . , xn], for example, is finitely-generated as an algebra by x1, . . . , xn, but not
finitely-generated as a module. Thus, being finitely-generated in the module sense
is much more restrictive than being finitely-generated in the algebra sense.

In light of this, it is useful to ask whether a given finitely-generated algebra is
finitely-generated as a module. For example, if we consider R as a Z-module and
choose a real number a ∈ R, then the subalgebra Z[a] is finitely-generated as a
Z-algebra. We ask: Is it finitely-generated as a module? In the next two examples,
we investigate this question for two different values of a.

5.17 EXAMPLE Z[
√

2] is a finitely-generated Z-module

Consider the real numbers R as a Z-algebra, and let us investigate the finitely-
generated subalgebra

Z[
√

2] ⊆ R.
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Elements of Z[
√

2] are those real numbers that can be obtained as a polynomial
combination f (

√
2) for some f ∈ Z[x]. Consider, for example, the polynomial

f = 3 + 5x + 4x2 − x3.

Then, by definition, f (
√

2) ∈ Z[
√

2]. Simplifying, we see that

f (
√

2) = 3 + 5
√

2 + 4(
√

2)2 − (
√

2)3

= 3 + 5
√

2 + 4 · 2− 2
√

2

= 11 + 3
√

2.

Thus, the polynomial combination f (
√

2) is the same as evaluating the linear poly-
nomial 11 + 3x at

√
2. Generalizing this same trick to any polynomial, it can be

shown that Z[
√

2] is a finitely-generated Z-module (Exercise 5.2.4):

Z[
√

2] = Z{1,
√

2}.

5.18 EXAMPLE Z[1/2] is not a finitely-generated Z-module

Consider again the real numbers R as a Z-algebra and let us investigate the finitely-
generated subalgebra

Z[1/2] ⊆ R.

This subalgebra consists of polynomial combinations of 1/2, so taking, for example,
f = 3 + 5x + 4x2 − x3, we see that

f (1/2) = 3 + 5(1/2) + 4(1/4)− (1/8) = 75/8 ∈ Z[1/2].

Notice that, for a polynomial f of degree d, the largest power of 2 that will appear
in a denominator of one of the terms in f (1/2) is 2d. This implies that, upon com-
bining the terms and writing the rational number f (1/2) as a reduced fraction, the
denominator will not be divisible by 2d+1. We now use this observation to prove
that Z[1/2] is not finitely-generated as a Z-module.

Suppose, toward a contradiction, that Z[1/2] = Z{a1, . . . , an}. Since each
ai is an element of Z[1/2], we know that ai = fi(1/2) for some polynomial fi
in Z[x]. Let d be the maximum degree of the fi. Then, upon writing each ai as
a reduced fraction, none of the denominators is divisible by 2d+1. Since taking Z-
linear combinations will never introduce additional powers of 2 in the denominators,
after reducing, this proves that

1
2d+1 /∈ Z{a1, . . . , an}.

However, since 1/2d+1 = f (1/2) for f = xd+1 ∈ Z[x], it follows that

1
2d+1 ∈ Z[1/2],

proving that
Z{a1, . . . , an} 6= Z[1/2],

a contradiction.
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Let us pause to ponder the previous two examples. In both examples, we con-
sidered a Z-algebra generated by a single real number. We might expect these two
algebras to be very similar, but one of them turned out to be a finitely-generated mod-
ule while the other did not. What, then, is the distinction between the numbers

√
2

and 1/2 that led to this very different behavior? In the next section, we answer this
question by giving a general criterion for determining whether a finitely-generated
algebra is actually finitely-generated as a module.

Exercises for Section 5.2
5.2.1 Let M be an R-module and S ⊆ M a subset. Prove the following.

(a) The set RS is a submodule of M.
(b) If N ⊆ M is any submodule containing S , then RS ⊆ N.

5.2.2 Prove that
R[x2, x3] = R{1, x2, x3, x4, . . . , }.

5.2.3 Consider Z as a Z-module and let a, b ∈ Z. Prove that

Z{a, b} = gcd(a, b)Z.

5.2.4 Prove that Z[
√

2] = Z{1,
√

2}.

5.2.5 Prove that Z[π] is not finitely-generated as a Z-module.

5.2.6 Let R ⊆ S ⊆ T be rings. Prove that if S is a finitely-generated R-module and
T is a finitely-generated S-module, then T is a finitely-generated R-module.

5.2.7 Recall from Example 5.12 that Z is generated as a Z-module by the set {2, 3}.
(a) Prove that {2, 3} is a minimal generating set, in the sense that no proper

subset of {2, 3} generates Z as a Z-module.
(b) Prove that, although every element of Z can be expressed as r1 · 2+ r2 · 3

for some r1, r2 ∈ Z, this expression is not unique.
(c) Prove that {1} also generates Z as a Z-module, and that it is a minimal

generating set.

(This exercise highlights two differences between R-modules and vector spaces.
First, if V is a vector space, then a minimal generating set for V is necessarily
a basis, meaning a set in terms of which every element of V can be expressed
uniquely. By parts (a) and (b), this is not the case for R-modules. Second, if
V is a vector space, then every minimal generating set has the same size. Parts
(a) and (c) show that this is not the case for R-modules.)
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Section 5.3 Integrality
Consider a ring inclusion R ⊆ S, and let us view S as an R-module. We ask the
question: Under what conditions is S a finitely-generated R-module? At the end of
the last section, we studied two examples of this setup:

1. R = Z and S = Z[
√

2], and

2. R = Z and S = Z[1/2].

In the first case, we observed that Z[
√

2] is, in fact, a finitely-generated Z-module,
whereas in the second case, we argued that Z[1/2] is not. Looking back at those
examples, one major difference we see between

√
2 and 1/2 is that taking powers

of
√

2 eventually brings us to an element of Z, while taking powers of 1/2 never
brings us back to Z. Indeed, the fact that (

√
2)2 = 2 is what allowed us to reduce

all polynomial expressions in
√

2 to linear polynomials.
The goal of this section is to formalize the above observation for general rings.

The key new concept for this discussion is the notion of integrality. For the following
definition, recall that a polynomial is monic if its leading coefficient is one; that is, a
monic polynomial in R[x] has the form

xn + an−1xn−1 + · · ·+ a1x + a0

for some a0, . . . , an−1 ∈ R.

5.19 DEFINITION Algebraic and integral elements

Let R ⊆ S be rings, and let a ∈ S. We say that a is algebraic over R if there
exists a polynomial f ∈ R[x] such that f (a) = 0 ∈ S. If, moreover, there
exists a monic polynomial f ∈ R[x] such that f (a) = 0, then we say that a
is integral over R.

If R is a field, then an element is algebraic if and only if it is integral, since we
can simply divide any polynomial by its leading term to obtain a monic polynomial.
In more general rings, where division may not make sense, being integral is stronger
than being algebraic.

Let us consider several examples in the setting where R = Z and S = R.

5.20 EXAMPLE
√

2 is integral over Z

Since a =
√

2 is a root of the monic polynomial

x2 − 2 ∈ Z[x],

we see that
√

2 is integral over Z.

5.21 EXAMPLE π is not algebraic over Z

At some point in your mathematical journey, you may have learned that π is a tran-
scendental number, which implies that it does not satisfy any polynomial equations
over Z. Thus, π is not algebraic over Z.
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5.22 EXAMPLE 1/2 is algebraic but not integral over Z

The element a = 1/2 is algebraic over Z, since it is a root of the polynomial

g(x) = 2x− 1 ∈ Z[x],

but it is not integral. This is not immediately obvious; although g is not monic, one
might still hope that a monic polynomial with 1/2 as a root exists. But if

h(x) = xn + an−1xn−1 + · · ·+ a1x + a0 ∈ Z[x]

were such a polynomial, then multiplying both sides of the equation h(1/2) = 0 by
2n−1 would yield

1
2
+ an−1 + an−2 · 2 + an−3 · 22 + · · ·+ a1 · 2n−2 + a0 · 2n−1 = 0.

More generally, a rational number
a ∈ Q is integral over Z if and only
if a ∈ Z (Exercise 5.3.2).

Moving everything but the first term to
the right-hand side, we have expressed
1/2 as sum of integers, which is impos-
sible, proving that 1/2 is not integral.

It may happen that every element of S is algebraic, or even integral, over R.
When this occurs, we use the following terminology.

5.23 DEFINITION Algebraic and integral extensions

Let R ⊆ S be rings. We say that S is algebraic over R (respectively, integral
over R) if every element of S is algebraic (respectively, integral) over R.

5.24 EXAMPLE Z[
√

2] is integral over Z

In order to prove that Z[
√

2] is integral over Z, we must show that every element of
Z[
√

2] is integral over Z. To do this, first recall (Example 5.17) that

Z[
√

2] = {r + s
√

2 | r, s ∈ Z}.

Thus, given an element of Z[
√

2] we can write it as r + s
√

2 for some r, s ∈ Z.
Squaring, we obtain the equation

(r + s
√

2)2 = (r2 + 2s2) + (2rs)
√

2.

Rearranging and squaring again yields the equation(
(r + s

√
2)2 − (r2 + 2s2)

)2
= (2rs)2 · 2.

This last equation implies that r + s
√

2 is a root of the monic polynomial

f (x) =
(

x2 − (r2 + 2s2)
)2 − (2rs)2 · 2 ∈ Z[x].

Thus, every element of Z[
√

2] is integral over Z.
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5.25 EXAMPLE R is not algebraic over Z

Since the real numbers contain transcendental numbers, such as π, we conclude that
R is not algebraic over Z.

5.26 EXAMPLE Q is algebraic but not integral over Z

The ring Q is algebraic over the subring Z because any element a = p/q ∈ Q is a
root of a polynomial

f (x) = qx− p ∈ Z[x].

However, Q is not integral over Z, by Example 5.22.

We are now ready to return to our goal of determining when a finitely-generated
R-algebra is finitely-generated as an R-module, which is closely related to the ques-
tion of integrality. In particular, the next result tells us that a finitely-generated
R-algebra is finitely-generated as an R-module if and only if it is integral over R.
Moreover, in order to check integrality, it suffices to check that the algebra genera-
tors are integral over R.

5.27 THEOREM Finite generation and integrality

Let R ⊆ S be rings with S = R[a1, . . . , an]. The following are equivalent:
(i) S is a finitely-generated R-module;

(ii) S is integral over R;

(iii) ai is integral over R for each i = 1, . . . , n.

Before we begin the proof, we mention that the arguments involve certain manip-
ulations of matrices whose entries come from the ring R, and the reader is unlikely
to have previously worked with matrices in this generality. All such manipulations
(matrix-vector products, for example, or determinants of matrices) are defined by
the same formulas that define them in the more familiar setting where the entries
come from R or some other field. These definitions make sense with entries in any
ring because they involve only sums and products of element. We assume the reader
has some familiarity with matrix computations.

PROOF OF THEOREM 5.27 We prove (i)⇒ (ii)⇒ (iii)⇒ (i).

(i)⇒ (ii): Suppose that S is a finitely-generated R-module, which means that there
exist v1, . . . , vm ∈ S such that S = R{v1, . . . , vm}. We must prove that an arbitrary
element b ∈ S is integral over R. To do so, first multiply b by each of the module
generators and express the product as a linear combination of these generators:

bvi = ci1v1 + ci2v2 + · · ·+ cimvm,

where cij ∈ R for i, j = 1, . . . , m. Moving all the terms of each of these equations
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to the left-hand side, we have a system of equations

(b− c11)v1 + (−c12)v2 + · · ·+ (−c1m)vm = 0
(−c21)v1 + (b− c22)v2 + · · ·+ (−c2m)vm = 0

...
(−cm1)v1 + (−c12)v2 + · · ·+ (b− cmm)vm = 0.

Such a system is more conveniently expressed in matrix-vector form: if C is the
matrix whose (i, j) entry is cij, then we have

(5.1) (bI − C) ·

 v1
...

vm

 =

 0
...
0

 ,

where I is the m×m identity matrix.
At this point, we appeal to Cramer’s Rule, a result about matrices that the reader

may have seen when studying linear algebra. We state it here and direct the reader
to Exercise 5.3.6 for a proof that assumes a few basic properties of determinants.

5.28 LEMMA Cramer’s Rule

Let A be an m×m matrix with entries in a ring S. Let~v, ~w ∈ Sm, which we
view as column vectors, and suppose that

A~v = ~w.

Then, for all i = 1, . . . , m, we have

det(A) · vi = det(Ai),

where Ai is the matrix obtained from A by replacing the ith column by ~w.

Equipped with this tool, we apply it to the matrix-vector equation (5.1) to obtain

(5.2) det(bI − C) · vi = 0

for all i; notice, here, that the right-hand side is zero because it is the determinant
of a matrix with a column of zeroes. Recalling that vi are generators for S as an
R-module, we can express the element 1 ∈ S as a linear combination of v1, . . . , vm:

1 = d1v1 + · · ·+ dmvm.

Multiplying both sides by det(bI − C) and applying (5.2) yields

det(bI − C) = 0.

This implies that b is a root of the polynomial

f (x) = det(xI − C) ∈ R[x].
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Notice that the leading term of f (x) = det(xI − C) as a polynomial in x is the
product of the diagonal entries:

f (x) =
m

∏
i=1

(x− cii) + lower-order terms.

From this, we see that f (x) is monic, proving that b is integral over R.
(ii)⇒ (iii): If S is integral over R, then every element of S is integral over R, so in
particular, each ai is integral.
(iii)⇒ (i): Suppose that each ai is integral over R, so there exist monic polynomials
f1, . . . , fn ∈ R[x] such that fi(ai) = 0 for each i. Let di > 0 denote the degree of
fi. Our aim is to prove that S is generated as an R-module by the finite set

T =
{

ak1
1 · · · a

kn
n | 0 ≤ ki < di

}
.

The first step in proving that S = RT is to prove that, for every i = 1, . . . , n,

(5.3) R[ai] = R{aki
i | 0 ≤ ki < di}.

This step follows from an induction argument, using the relation fi(ai) = 0 to
reduce the degree of polynomial expressions in ai (Exercise 5.3.7), similarly to the
argument used for Z[

√
2]. Once (5.3) is established, it then follows that, for any

`i ≥ 0, we can write a`i
i ∈ R[ai] as an R-linear combination of {aki

i | 0 ≤ ki < di}.
Multiplying these linear combinations together, and expanding, we then see that, for
any `1, . . . , `n ≥ 0, the element

(5.4) a`1
1 · · · a

`n
n ∈ S

can be written as an R-linear combination of elements in T . Since every element
of S = R[a1, . . . , an] can be written as an R-linear combination of expressions of
the form (5.4), we conclude that every element of S can be written as an R-linear
combination of elements in T , proving that S = RT , as desired.

In general, for a ring extension R ⊆ S, the ring S need not be finitely-generated,
either as an R-module or as an R-algebra, nor does it need to be integral. How-
ever, Theorem 5.27 tells us that those extensions that are both finitely-generated as
R-algebras and are integral over R are exactly the same as those that are finitely-
generated as R-modules, which we illustrate in the following diagram.

Integral
Extensions

of R

Finitely-
Generated
R-Algebras

Finitely-generated R-modules

Rings containing R
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Exercises for Section 5.3

5.3.1 Is the element
√

2
2 ∈ R algebraic over Z? Is it integral over Z?

5.3.2 Prove that a ∈ Q is integral over Z if and only if a ∈ Z.

5.3.3 Prove that C is integral (or equivalently, algebraic) over R. (Hint: Mimic
Example 5.24.)

5.3.4 For each of the following rings, let a = [x] be the coset of x. Determine
whether each ring is integral over the subring R[a]?

(a) R[x, y]
(b) R[x, y]/〈y2 − x2〉
(c) R[x, y]/〈xy〉
(d) R[x, y, z]/〈y2 − x3, z3 − x4〉

5.3.5 Since, by Example 5.26, Q is not integral over Z, it follows from Theo-
rem 5.27 that Q is not a finitely-generated Z-module. Verify this directly
by showing that, for any a1, . . . , an ∈ Q, there is a strict containment

Z{a1, . . . , an} = {r1a1 + · · ·+ rnan | r1, . . . , rn ∈ Z} ( Q.

5.3.6 This exercise proves Cramer’s rule, assuming some basic familiarity with ma-
trix multiplication and determinants. Let A be an m×m matrix with entries
in a ring S and let ~v, ~w ∈ Rm be vectors such that A~v = ~w.

(a) Let Ii denote the matrix obtained from the m× m identity matrix I by
replacing the ith column by ~v. Prove that

AIi = Ai,

where Ai is the obtained from A by replacing the ith column by ~w.
(b) Use your favorite method for computing determinants to prove that

det(Ii) = vi,

then use the multiplicativity of determinants to conclude that

det(A) · vi = det(Ai).

5.3.7 Let R ⊆ S be rings and let a ∈ S. Suppose that there is a degree d monic
polynomial f ∈ R[x] such that f (a) = 0. Prove that

R[a] = R{1, a, a2, . . . , ad−1}.

Where does your proof fail if a is algebraic, but not integral, over R?

5.3.8 Let R ⊆ S be rings. Prove that the set {s ∈ S | s is integral over R} is a
subring of S containing R. (This is called the integral closure of R in S.)

(Hint: Use Theorem 5.27.)

5.3.9 Let R = Z. Describe examples of rings S that lie in every region of the Venn
diagram from this section.
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Section 5.4 Noether normalization
In the last three sections, we developed a number of module-theoretic notions, and
we now bring those developments to bear on the particular type of algebraic objects
that are of interest in algebraic geometry: finitely-generated K-algebras.

The Noether Normalization Theorem is a structural result about all finitely-
generated K-algebras. To motivate the statement, recall that the prototype of a
finitely-generated K-algebra is the polynomial ring

K[x1, . . . , xd].

Not every finitely-generated K-algebra is isomorphic to a polynomial ring, and the
Noether Normalization Theorem seeks to answer the question: How closely can
we “approximate” finitely-generated K-algebras with polynomial rings? As we will
see, the answer is that, given a finitely-generated K-algebra A, we can always find a
subalgebra B ⊆ A such that

1. B ∼= K[x1, . . . , xd] for some d, and

2. A is a finitely-generated B-module or, equivalently, A is integral over B.
In other words, the Noether Normalization Theorem ensures that every finitely-
generated K-algebra is finitely-generated as a module (the smallest kind of ring
extension) over a polynomial ring (the simplest type of K-algebra).

Before stating and proving the Noether Normalization Theorem, we pause to
introduce the notion of algebraic independence, which generalizes linear indepen-
dence to the setting of polynomial algebra and will help us discuss a criterion for
when a subalgebra is isomorphic to a polynomial ring.

5.29 DEFINITION Algebraically (in)dependent

Let A be an R-algebra. We say that S ⊆ A is algebraically dependent over
R if there exists a1, . . . , ad ∈ S and a nonzero polynomial f ∈ R[x1, . . . , xd]
such that

f (a1, . . . , ad) = 0.

If no such a1, . . . , ad and f exist, we say that S is algebraically independent.

Algebraically independent elements generate subalgebras that are isomorphic to
polynomial rings, as described in the next result, which is an application of the First
Isomorphism Theorem (Exercise 5.4.1).

5.30 PROPOSITION Algebraically independent generators

Let A be an R-algebra and let a1, . . . , ad ∈ A. Then {a1, . . . , ad} is alge-
braically independent over R if and only if the evaluation map

ϕ : R[x1, . . . , xd]→ R[a1, . . . , ad] ⊆ A
f (x1, . . . , xd) 7→ f (a1, . . . , ad)

is an R-algebra isomorphism.
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In other words, Proposition 5.30 asserts that, given an R-algebra A, finding a
subalgebra B that is isomorphic to a polynomial ring is equivalent to finding a subset
of algebraically independent elements. This idea connects our motivation to the
following statement of the Noether Normalization Theorem, valid for any field K.

5.31 THEOREM Noether Normalization Theorem

If A is a finitely-generated K-algebra, then there exists an algebraically inde-
pendent subset {a1, . . . , ad} ⊆ A such that A is integral over K[a1, . . . , ad].

In particular, although it may not be possible to find algebraically independent
elements a1, . . . , ad that generate all of A (since A may not be isomorphic to a
polynomial ring), the fact that A is integral over K[a1, . . . , ad], and thus a finitely-
generated K[a1, . . . , ad]-module, says that these elements generate a polynomial ring
that is “as close as possible to A.”

The Noether Normalization Theorem motivates the following definition.

5.32 DEFINITION Noether basis

Let A be a finitely-generated K-algebra. A subset {a1, . . . , ad} ⊆ A is a
Noether basis of A over K if

(i) a1, . . . , ad are algebraically independent, and

(ii) A is integral over K[a1, . . . , ad].

In this language, the Noether Normalization Theorem asserts that every finitely-
generated K-algebra contains a Noether basis. Note that, by Theorem 5.27, the
second condition in Definition 5.32 is equivalent to A being a finitely-generated
module over the subring K[a1, . . . , ad].

5.33 EXAMPLE A Noether basis for K[x, y]/〈x2 + y2 − 1〉
Consider the K-algebra

A =
K[x, y]

〈x2 + y2 − 1〉 .

Notice that A is generated by [x] and [y], but these two elements are not alge-
braically independent because

[x]2 + [y]2 − 1 = [x2 + y2 − 1] = 0.

Let a = [x] ∈ A. We prove that {a} is a Noether basis of A.
First, we observe that a is algebraically independent over K. To prove this, we

must show that f (a) 6= 0 for any nonzero single-variable polynomial f . Notice that,
for any such f , we have f (x) /∈ 〈x2 + y2 − 1〉. Therefore,

f (a) = [ f (x)] 6= 0 ∈ K[x, y]
〈x2 + y2 − 1〉 ,

as claimed.
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Next, notice that K[a] 6= A, because we have no way of writing [y] as a polyno-
mial expression in a = [x]. However, we have already seen in Example 5.13 that A
is generated by [1] and [y] as a K[a]-module:

A = K[a]{[1], [y]}.

This proves that A is a finitely-generated K[a]-module, and thus it is integral over
K[a]. Given that a is algebraically independent over K and A is integral over K[a],
we conclude that {a} is a Noether basis.

This example readily generalizes to the coordinate ring of the unit n-sphere

A =
K[x1, . . . , xn]

〈x2
1 + · · ·+ x2

n − 1〉

to show that a1 = [x1], . . . , an−1 = [xn−1] is a Noether basis (Exercise 5.4.2).

5.34 EXAMPLE A Noether basis for K[x, y]/〈xy− 1〉
Consider the K-algebra

A =
K[x, y]
〈xy− 1〉 .

As in Example 5.33, A is generated by [x] and [y], but these are not algebraically
independent, so they do not form a Noether basis. One might naturally guess, then,
that either of the single elements [x] or [y] would form a Noether basis. However,
this is not the case. For example, while [x] is certainly algebraically independent
over K, it can be checked that A is not integral over K[x] (Exercise 5.4.3).

Even though neither [x] nor [y] alone form a Noether basis for A, the Noether
Normalization Theorem guarantees that a Noether basis must exist. In this case, a
Noether basis is given by the element a = [x + y]. A proof of this assertion is
outlined in Exercise 5.4.4.

Now that we have seen a few examples, let us turn toward a proof, which uses a
clever induction argument that crucially relies on Theorem 5.27.

PROOF OF THEOREM 5.31 Any finitely-generated K-algebra can, by definition,
be expressed as A = K[b1, . . . , bn] for some b1, . . . , bn ∈ A, and we prove the
theorem by induction on the number n of generators.

Base Case: If n = 0, then A = K and the empty set is a Noether basis.
Induction Step: Suppose that Noether bases exist for all K-algebras with fewer

than n generators, and let A = K[b1, . . . , bn]. If b1, . . . , bn are algebraically inde-
pendent over K, then {b1, . . . , bn} is a Noether basis and we are done. Assume,
then, that b1, . . . , bn are not algebraically independent over K, meaning that there
exists a nonzero polynomial f ∈ K[x1, . . . xn] such that

f (b1, . . . , bn) = 0.

We will manipulate the polynomial f to make it monic in b1. Let N be a posi-
tive integer greater than the maximum exponent appearing on any variable in any



148 CHAPTER 5. PROOF OF THE NULLSTELLENSATZ

monomial of f , and define new elements

b̃2 = b2 − bN
1

b̃3 = b3 − bN2

1

b̃4 = b4 − bN3

1(5.5)
...

b̃n = bn − bNn−1

1 ,

so that

0 = f (b1, . . . , bn) = f
(
b1, b̃2 + bN

1 , b̃3 + bN2

1 , . . . , b̃n + bNn−1

1
)
.

In terms of b1, b̃2, . . . , b̃n, a monomial c · ba1
1 · · · b

an
n becomes

(5.6) c · ba1
1
(

b̃2 + bN
1
)a2
(

b̃3 + bN2

1
)a3 · · ·

(
b̃n + bNn−1

1
)an .

Collecting terms with the same power of b1, we can rearrange (5.6) to

c · ba1+a2 N+a3 N2+···+an Nn−1

1 + lower-degree terms in b1.

Because N is larger than a1, . . . , an, the number a1 + a2N + a3N2 + · · ·+ anNn−1

uniquely determines the numbers a1, . . . , an. (This statement is the “uniqueness of
base-N expansions”; for example, if N = 10, it is the statement that the digits of
a number are uniquely determined by the number itself—see Exercise 5.4.7.) In
particular, if

xa1
1 · · · x

an
n and xa′1

1 · · · x
a′n
n

are two different monomials of f , then we cannot have

a1 + a2N + a3N2 + · · ·+ anNn−1 = a′1 + a′2N + a′3N2 + · · ·+ a′nNn−1.

It follows that every monomial of f , after evaluating at

(b1, . . . , bn) =
(
b1, b̃2 + bN

1 , b̃3 + bN2

1 , . . . , b̃n + bNn−1

1
)
,

has a different highest power of b1. Let c · xa1
1 · · · x

an
n be the unique nonzero term in

f whose highest power of b1 is the largest. Then

c−1 · f (x, b̃2 + xN , b̃3 + xN2
, . . . , b̃n + xNn−1

) ∈ K[b̃2, . . . , b̃n][x]

is a monic polynomial that vanishes when we set x = b1, which means that b1 is
integral over K[b̃2, . . . , b̃n]. It follows from Theorem 5.27 that K[b̃2, . . . , b̃n][b1] is
integral over K[b̃2, . . . , b̃n]. But since we can freely convert between polynomial
expressions in b1, b2, . . . , bn and b1, b̃2, . . . , b̃n, we have

K[b̃2, . . . , b̃n][b1] = K[b1, b̃2, . . . , b̃n] = K[b1, b2, . . . , bn] = A.
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Thus, we have proven that A is integral over K[b̃2, . . . , b̃n]. By the induction hy-
pothesis, there exists a Noether basis {a1, . . . , ad} ⊆ K[b̃2, . . . , b̃n]. It follows that
each of the following rings is integral over the one that precedes it:

K[a1, . . . , ad] ⊆ K[b̃2, . . . , b̃n] ⊆ A.

By Theorem 5.27, this means that each is finitely-generated as a module over the
one that precedes it. By Exercise 5.2.6, we conclude that A is finitely-generated as a
module, and thus integral, over K[a1, . . . , ad]. Therefore, {a1, . . . , ad} is a Noether
basis of A, concluding the induction argument.

The Noether Normalization Theorem is the culmination of the last four sections
of algebraic developments, and the payoffs for all of this hard work will be plentiful.
Most immediately, as we will see in the next section, Noether normalization can
be used to prove the Nullstellensatz, and therefore, the equivalence of algebra and
geometry. However, the payoff does not end there; Noether normalization is also
closely connected to the notion of dimension, a concept we will introduce in the next
chapter. As we’ll see, if X is an irreducible affine variety, the number of elements in
any Noether basis is the dimension of X.

Exercises for Section 5.4
5.4.1 Prove Proposition 5.30.

5.4.2 Consider the K-algebra

A =
K[x1, . . . , xn]

〈x2
1 + · · ·+ x2

n − 1〉
.

and let ai = [xi] for all i = 1, . . . , n− 1.

(a) Prove that a1, . . . , an−1 are algebraically independent.
(b) Prove that A is integral over K[a1, . . . , an−1].

5.4.3 Let A = K[x, y]/〈xy− 1〉 and let a = [x].

(a) Prove that a is algebraically independent over K.
(b) Prove that A is not integral over K[a].

5.4.4 Let A = K[x, y]/〈xy− 1〉 and let a = [x + y].

(a) Prove that a is algebraically independent over K.
(b) Prove that A is integral over K[a].

5.4.5 Let A be a K-algebra. Prove that every Noether basis of A is a maximal alge-
braically independent set. (To say that a1, . . . , an is a maximal algebraically
independent set over K is to say that a1, . . . , ad, ad+1 is algebraically depen-
dent over K for all ad+1 ∈ L.)

5.4.6 Show by example that the converse of Exercise 5.4.5 is false: that is, if A
is a finitely-generated K-algebra and a1, . . . , ad is a maximal algebraically
independent set, it need not be the case that A is integral over K[a1, . . . , ad].
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5.4.7 Let N be a positive integer and set [N] = {0, 1, . . . , N − 1}. For k ≥ 0,
consider the function

ψn : [N]k+1 →N

(a0, . . . , ak) 7→ a0 + a1N + a2N2 + · · ·+ ak Nk

(a) If N = 10, how would you describe the number ψk(a0, . . . , ak)?
(b) Prove that ψk is injective for all k ≥ 0. (In other words, the number

a0 + a1N + a2N2 + · · ·+ ak Nk uniquely determines a0, . . . , ak.)
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Section 5.5 Proof of the Nullstellensatz
We have now built up the necessary algebraic tools to discuss a proof of the Nullstel-
lensatz and thus a complete justification of the equivalence of algebra and geometry
that was developed in Chapters 1 – 4. We begin with two useful lemmas that will
allow us to prove a seemingly weaker version of the Nullstellensatz. Then, we prove
that—surprisingly—this weak version in fact implies the full Nullstellensatz itself.

5.35 LEMMA Algebraic over algebraically closed fields

Let K ⊆ L be fields such that L is algebraic over K. If K is algebraically
closed, then L = K.

The name “algebraically closed” re-
flects the fact that any attempt to ad-
join an element to K that is algebraic
over K produces only elements that
are already there, so K is “closed un-
der adjoining algebraic elements.”

PROOF Suppose, toward a contradic-
tion, that a ∈ L \ K. Then, since a is
algebraic over K, there exists a poly-
nomial f ∈ K[x] such that f (a) = 0.
There may be many such polynomials,
but let f be one of minimum possi-
ble degree. Because K is algebraically
closed, there exists b ∈ K such that
f (b) = 0, so Corollary 0.48 tells us that we can factor f (x) as

f (x) = (x− b)g(x)

for some g ∈ K[x] with deg(g) < deg( f ). Evaluating both sides at x = a yields

0 = (a− b)g(a).

We have assumed that a /∈ K and b ∈ K, so a 6= b. Hence, the above is only
possible if g(a) = 0, which contradicts the assumption that f is a minimum-degree
polynomial in K[x] that vanishes at a.

The next result is the primary consequence of the Noether Normalization The-
orem that we require in this section. It was first proved by Zariski, though by a
different method than what we present here; it is valid for all fields K.

5.36 LEMMA Zariski’s Lemma

Let K ⊆ L be fields. If L is a finitely-generated K-algebra, then L is algebraic
over K.

PROOF Let K ⊆ L be fields such that L is a finitely-generated K-algebra. By
the Noether Normalization Theorem, there exist elements a1, . . . , ad ∈ L that are
algebraically independent over K such that L is integral, and thus algebraic, over
K[a1, . . . , ad]. To show that L is algebraic over K, it suffices to prove that d = 0.

Toward a contradiction, suppose that d > 0. Then, since L is a field, there exists
a−1

1 ∈ L. Because L is integral over K[a1, . . . , ad], the element a−1
1 is a solution to

a monic polynomial with coefficients in K[a1, . . . , ad]:

(a−1
1 )m + c1(a−1

1 )m−1 + · · ·+ cm−1(a−1
1 ) + cm = 0,
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where c1, . . . , cm ∈ K[a1, . . . , ad]. Multiply both sides by am
1 to obtain

1 + c1a1 + · · ·+ cm−1am−1
1 + cmam

1 = 0.

This is a polynomial equation relating a1, . . . , ad, contradicting the algebraic inde-
pendence of these elements. The contradiction implies that d = 0, as desired.

The following result, which we will prove from the previous two lemmas, is
commonly referred to as the “Weak Nullstellensatz.” This name is a bit of a mis-
nomer because, as we will see below and in Exercise 5.5.1, the weak Nullstellensatz
is logically equivalent to the Nullstellensatz.

5.37 PROPOSITION Weak Nullstellensatz

Let K be algebraically closed. For any proper ideal I ( K[x1, . . . , xn], we
have V(I) 6= ∅.

PROOF Suppose that K is algebraically closed, and let I ( K[x1, . . . , xn] be a
proper ideal. By Exercise 5.5.3 below, there exists a maximal ideal J of K[x1, . . . , xn]
containing I. Since I ⊆ J implies V(J) ⊆ V(I), it suffices to prove that V(J) 6= ∅.

Since J is maximal, the quotient ring

L = K[x1, . . . , xn]/J

is a field. Moreover, L is a finitely-generated K-algebra (generated by [x1], . . . , [xn])
and hence Zariski’s Lemma implies that L is algebraic over K. But K is algebraically
closed, so Lemma 5.35 implies that L = K.

As L = K, there is a K-algebra isomorphism ϕ : L → K. Define ai = ϕ([xi]).
Using that ϕ is a K-algebra homomorphism, we see that

ϕ([xi − ai]) = ϕ([xi])− ϕ([ai]) = ai − ai = 0.

Since ϕ is injective, this implies that that [xi − ai] = 0 for all i. In other words,

〈x1 − a1, . . . , xn − an〉 ⊆ J.

Since 〈x1 − a1, . . . , xn − an〉 is a maximal ideal and J is a proper ideal, this implies
that J = 〈x1 − a1, . . . , xn − an〉. It follows that

V(J) = {(a1, . . . , an)} 6= ∅,

as required.

The weak Nullstellensatz is a rather blunt tool; given a proper ideal I, it only
ensures that V(I) is nonempty. The full Nullstellensatz, on the other hand, is very
precise—it tells us exactly which polynomials vanish on V(I). We now prove that
the full Nullstellensatz is actually implied by the weak Nullstellensatz.

5.38 THEOREM Nullstellensatz recalled

Let K be an algebraically closed field. Then, for any ideal J ⊆ K[x1, . . . , xn],
we have

I(V(J)) =
√

J.
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PROOF The inclusion
I(V(J)) ⊇

√
J

holds over any field and follows directly from the definitions; see Exercise 1.5.3. We
must prove, then, that I(V(J)) ⊆

√
J. Since K[x1, . . . , xn] is Noetherian, we write

J = 〈 f1, . . . , fm〉.
Let g ∈ I(V(J)). Introduce a new variable xn+1 and consider the ideal

J′ = 〈 f1, . . . , fm, h〉 ⊆ K[x1, . . . , xn, xn+1],

where
h(x1, . . . , xn+1) = 1− xn+1g(x1, . . . , xn).

The trick of adding an extra variable
is a clever device for bringing the
Weak Nullstellensatz to bear on the
strong Nullstellensatz.

We claim that V(J′) = ∅ ⊆ An+1. To
see this, suppose toward a contradiction
that a = (a1, . . . , an, an+1) ∈ V(J′).
Then fi(a) = 0 for all i, but since fi
only involves the variables x1, . . . , xn,
this is equivalent to the statement that
fi(a1, . . . , an) = 0 for all i. That is, (a1, . . . , an) ∈ V(J). Since g ∈ I(V(J)), it
follows that g(a1, . . . , an) = 0, and hence

h(a) = 1− an+1g(a1, . . . , an) = 1 6= 0.

Since h ∈ J′, this contradicts the fact that a ∈ V(J′).
We have thus shown that V(J′) = ∅, so the Weak Nullstellensatz implies that

J′ = K[x1, . . . , xn+1]. In particular, the constant polynomial 1 can be expressed in
terms of the generators of J′:

(5.7) 1 = q1 f1 + · · ·+ qm fm + r(1− xn+1g),

where q1, . . . , qm, r ∈ K[x1, . . . , xn+1]. We would like to isolate g in this equation,
but doing so necessitates division by xn+1. To make sense of this, consider the
larger ring K(xn+1)[x1, . . . , xn], where we allow rational functions in xn+1 (we
were introduced to this ring in Section 0.6). The equation (5.7) still holds in this
larger ring, and now we can divide both sides by a sufficiently high power of xn+1
so that no positive powers of xn+1 appear:

(5.8) x−k
n+1 = q̃1 f1 + · · ·+ q̃m fm + r̃(x−1

n+1 − g),

where q̃1, . . . , q̃m, r̃ ∈ K[x1, . . . , xn, x−1
n+1] ⊆ K(xn+1)[x1, . . . , xn].

Now that we have an equation in the polynomial ring K[x1, . . . , xn, x−1
n+1], we

can make the substitution x−1
n+1 = g ∈ K[x1, . . . , xn], which yields the equation

gk = q̂1 f1 + · · ·+ q̂m fm,

where q̂i ∈ K[x1, . . . , xn] is obtained from q̃i by setting x−1
n+1 = g. This last equa-

tion shows that gk ∈ J, so g ∈
√

J, and the proof is complete.
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The last step of this proof, where we set x−1
n+1 = g, often strikes readers as

suspicious on a first pass; why can we simply choose a value for x−1
n+1? We stress

that the reason this is valid is that x−1
n+1 is simply a variable like any other in the ring

K[x1, . . . , xn, x−1
n+1]. As an illustration of the procedure, let us carry it out explicitly

in a small example.

5.39 EXAMPLE An illustration of the proof of the Nullstellensatz

Let J = 〈x2, y〉 ⊆ K[x, y], and let g = x + y. Denoting the variable xn+1 by z in
this case, equation (5.7) reads

1 = q1(x, y, z) · x2 + q2(x, y, z) · y + r(x, y, z) ·
(
1− z(x + y)

)
,

and it is straightforward to check that this equation holds for the following choice of
q1, q2, and r:

1 = z2 · x2 +
(
z2(2x + y)

)
· y +

(
1 + z(x + y)

)
·
(
1− z(x + y)

)
.

Dividing both sides by z2 eliminates all positive powers of z, yielding the equation

z−2 = 1 · x2 + (2x + y) · y +
(
z−1 + (x + y)

)
·
(
z−1 − (x + y)

)
in K[x, y, z−1]. Setting z−1 = g = x + y results in the equation

(x + y)2 = 1 · x2 + (2x + y) · y,

which is manifestly true in K[x, y] and illustrates that g2 ∈ J.

Exercises for Section 5.5
5.5.1 Prove that the Nullstellensatz implies the Weak Nullstellensatz.

5.5.2 Give an example to show that the Weak Nullstellensatz can fail if K is not
algebraically closed. In the notation of Proposition 5.37, what are I, J, and
L in your example? Discuss why your example is consistent with Zariski’s
Lemma even though it is inconsistent with the Weak Nullstellensatz.

5.5.3 Let J ⊆ K[x1, . . . , xn] be an ideal with J 6= K[x1, . . . , xn]. Prove that there
exists a maximal ideal containing J. (Hint: Use that K[x1, . . . , xn], being
Noetherian, satisfies the ascending chain condition.)

5.5.4 Let K be an algebraically closed field, and let I ( K[x1, . . . , xn] be a proper
ideal. By Exercise 5.5.3, there exists a maximal ideal J ⊆ K[x1, . . . , xn] con-
taining I. On the other hand, recall from Proposition 2.31 that the Nullstellen-
satz yields a bijection between maximal ideals of K[x1, . . . , xn] and points of
An.

(a) Interpret the statements “I is a proper ideal” and “J is a maximal ideal
containing I” in terms of V(I) and/or V(J).
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(b) Using this interpretation in terms of varieties, find a maximal ideal con-
taining I = 〈y2 − x3 − x2〉 ⊆ K[x, y].

5.5.5 Let J = 〈x2 + y2 − 1, y− 1〉 ⊆ K[x, y] and let g = x ∈ K[x, y].

(a) Calculate V(J) ⊆ A2, and confirm (without citing the Nullstellensatz)
that g ∈ I(V(J)) but g /∈ J.

(b) Let f1 = x2 + y2 − 1 and f2 = y − 1 be the generators of J, and
let J′ = 〈 f1, f2, 1 − zx〉, as in the proof of the Nullstellensatz. Find
q1, q2, r ∈ K[x, y, z] such that equation (5.7) holds.

(c) Set z = 1/g in the equation from part (b) and clear denominators to
deduce an equation that exhibits g ∈

√
J.

(d) You have just verified that the ideal J = 〈x2 + y2 − 1, y − 1〉 is not
radical. On the other hand,

J = 〈x2 + y2 − 1〉+ 〈y− 1〉,

which implies that

V(J) = V(x2 + y2 − 1) ∩ V(y− 1).

Draw a picture of V(x2 + y2 − 1) and V(y− 1) over the real numbers.
Do you have a guess about what geometric feature of these varieties is
responsible for 〈x2 + y2 − 1〉+ 〈y− 1〉 not being radical?

5.5.6 Prove that a field K is algebraically closed if and only if every maximal ideal
J ⊆ K[x1, . . . , xn] has the form

J = 〈x1 − a1, . . . , xn − an〉

for some a1, . . . , an ∈ K.



156 CHAPTER 5. PROOF OF THE NULLSTELLENSATZ



Chapter 6

Dimension of Affine Varieties
LEARNING OBJECTIVES FOR CHAPTER 6

• Explore the notion of dimension and how it relates to algebraic indepen-
dence in coordinate rings.

• Become acquainted with function fields of affine varieties and compute
them in several examples.

• Learn to measure field extensions using transcendence bases.

• Define and study dimension of affine varieties.

• Prove the Fundamental Theorem of Dimension Theory as an application
of Noether normalization.

Given a set of polynomial equations, arguably the most fundamental geometric
question one could ask about its solution set is how “big” it is. This is the question
on which we aim to shed light in this chapter by introducing the important concept
of dimension of affine varieties.

Intuitively, dimension measures the freedom to be able to move within a set. So
how do we measure the freedom to move within an affine variety? As we will see, the
key to answering this question lies within the coordinate ring. One of the motivating
ideas of this chapter is that the dimension of an affine variety is the maximum number
of algebraically independent elements in its coordinate ring.

This motivating idea might remind the reader of their knowledge of dimension
from linear algebra, where the dimension of a (finite-dimensional) vector space can
be defined as the maximum number of linearly independent elements. Indeed, there
are many analogies between the ideas developed in this chapter and the ideas con-
cerning dimension in linear algebra. In particular, the definition and properties of
transcendence bases, introduced in Section 6.3, will closely parallel ideas concern-
ing bases of vector space. In order to obtain a robust theory of transcendence bases,
one requires working with fields, instead of rings, which is why Section 6.2 is de-
voted to the notion of function fields of irreducible affine varieties.

Once the groundwork regarding function fields and transcendence bases has been
laid, Section 6.5 defines and describes some basic properties of dimension. For
example, we see that dim(An) = n and, if X ⊆ Y, then dim(X) ≤ dim(Y). The
ideas of this chapter then culminate in Section 6.6 with what we call the Fundamental
Theorem of Dimension Theory. This result, which is central in algebraic geometry,
essentially says that each polynomial equation in a set decreases the dimension of
the solution set by at most one.

157
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Section 6.1 Motivating ideas
Dimension is a notion with which we are all intimately familiar; for example, at a
young age, most of us probably came to grips with the understanding that we live in
a three-dimensional world. The way in which we understand those three dimensions
is that we have three basic directions in which we can move: forward-backward, left-
right, and up-down. Of course, there are more than just these three basic directions,
but every other direction is a combination of just these three.

For many of us, linear algebra is the first
mathematical subject in which we learn a pre-
cise definition of dimension, and it naturally
captures the notions of “basic” and “combina-
tion” alluded to in the previous paragraph. Re-
call that a vector space V over a field K is said
to have dimension n if it has a basis of size n.
Importantly, one must check that any two bases
of V have the same size in order to make sure
that this definition is well-defined. One way to
view basis vectors is as the basic directions of movement inside V. In the image
above, we have depicted the three standard basis vectors in R3: any direction of
movement in R3 can be uniquely expressed as a linear combination of these.

Note the important role the field K
plays in vector space dimension: the
usual plane is two-dimensional as
an R-vector space but only one-
dimensional as a C-vector space.

The idea that dimension measures
our freedom to move within a set is
the intuition that will guide our defini-
tion of dimension in algebraic geome-
try. We further motivate our develop-
ment with the following familiar non-
linear example.

6.1 EXAMPLE Dimension of the sphere

Consider the sphere X = V(x2 + y2 + z2 − 1) ⊆ A3. Over the real numbers,
this is simply the familiar unit sphere, and we can even imagine the unit sphere as a
model for the surface of the Earth.

We naturally view the surface of our planet
as having two dimensions because, at any lo-
cation, we have two basic directions in which
we can move; when we are not at one of the
poles, we call these directions north-south and
east-west. But how do we make our real-world
intuition of these two dimensions of freedom al-
gebraically precise?

One way to argue is the following: if we choose two of the coordinates of a point
in X, say x = a and y = b, for some a, b ∈ K, then the defining equation for X tells
us that the third coordinate is constrained by these choices: we must have

z2 = 1− a2 − b2.

In particular, there are at most two possible solutions for the third coordinate.
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In other words, in order to describe a point on X, we have two variables of
freedom—we can choose the x- and y-coordinates without constraint—whereupon
the third coordinate is then determined up to finitely-many values. This reflects the
algebraic fact that the subset {[x], [y]} ⊆ K[X] is algebraically independent over
K—fixing the value of one does not constrain the another—whereas {[x], [y], [z]}
is algebraically dependent over K, because

[x]2 + [y]2 + [z]2 − 1 = [x2 + y2 + z2 − 1] = 0 ∈ K[X].

The previous example suggests that our “freedom to move” within X is measured
by algebraically independent functions: anytime we have algebraically independent
coordinate functions in K[X], then we can choose the values of those coordinates
freely, without constraint. Since dimension should measure our maximum freedom
of movement, we arrive at the following motivating idea.

6.2 KEY IDEA Dimension of an affine variety

The dimension of an affine variety X should be the maximum number of
elements in K[X] that are algebraically independent over K.

In fact, one could take this key idea as the definition of dimension; the reason
we do not is because it is not particularly easy to work with. For starters, it is
not even clear from this description whether or not dimension is finite: given an
affine variety X, how do we know that it is not possible to find larger and larger
sets of algebraically independent functions in K[X]? In order to argue that this
cannot happen, we need to lay some groundwork first. Developing this groundwork
carefully will require some work on our part, undertaken in Sections 6.2 – 6.4, before
we finally present a more robust definition of dimension in Section 6.5 and show that
it is equivalent to the description above (see Corollary 6.34).

In the meantime, we can keep Key Idea 6.2 in the back of our minds as motiva-
tion and turn to a discussion of our aspirations for dimension. What are the essential
properties that we should expect in a notion of dimension for affine varieties? We
begin by listing those properties, which we call the axioms for dimension.

6.3 DEFINITION Axioms for dimension of affine varieties

We say that a function

D :
{ isomorphism classes of

nonempty affine varieties

}
−→N

is a dimension function if it satisfies the following properties:

1. D(X) = 0 if X consists of a single point;

2. D(X1 ∪ · · · ∪ Xn) = max{D(X1), . . . , D(Xn)};
3. If X ⊆ An is irreducible and f ∈ K[x1, . . . , xn] is such that X ∩ V( f ) is

neither empty nor all of X, then D(X ∩ V( f )) = D(X)− 1.
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Let us briefly interpret these axioms. First of all, since two isomorphic affine
varieties share the same essential properties, we should expect their dimensions to
be the same. This is the reason that we should view dimension as a function from
the set of isomorphism classes of affine varieties.

The empty variety was omitted from
the domain of D. By convention, we
define dim(∅) = −1.

It should be somewhat clear from
our intuition why we require Axiom 1:
there is not a lot of freedom to move
within a single point, so we should ex-
pect the dimension of a point to be zero.

Regarding Axiom 2, consider as an example the union of a line X1 and a plane
X2 in A3. If the line is contained in the plane, then their union is simply equal
to the plane, so dim(X1 ∪ X2) = dim(X2), the maximum of the two individual
dimensions. If the line is not contained in the plane, however, then our intuition for
“freedom to move” breaks down: the number of directions in which you can move
within X1 ∪ X2 depends on the point at which you stand. To resolve this ambiguity,
we simply declare that the larger dimension trumps the smaller. More generally,
we will find that dimension is only readily definable for irreducible varieties, and
we will define the dimension of reducible variety as the maximum dimension of its
irreducible components.

Finally, for Axiom 3, let us parse the statement further by writing X as the van-
ishing V( f1, . . . , fm). Then

X ∩ V( f ) = V( f1, . . . , fm, f ).

In other words, Axiom 3 is essentially saying that if we impose one additional equa-
tion in our vanishing set, then the dimension should go down by exactly one. It is
hard to overstate how important this property of dimension is in algebraic geome-
try, which is why, in this text, we dub this property the Fundamental Theorem of
Dimension Theory.

In the vector space setting, Axiom 3
is a consequence of the Rank-Nullity
Theorem (see Exercise 6.1.5)

We note that the assumptions in the
hypothesis of Axiom 3 are all neces-
sary. We assume that X is irreducible
because, if not, then it could consist
of two irreducible components of the

same dimension and intersecting with V( f ) might just pick out one of these com-
ponents. For example, in A2, the variety X = V(xy) is the union of the two axes
and intersecting with V(x) simply picks out the y-axis. We assume that X ∩ V( f )
is neither empty nor all of X to avoid the situations where the dimension leaps all
the way down to −1 or stays at dim(X), both of which violate the conclusion of
Axiom 3.

One might naturally ask why we do not include more axioms for dimension.
For example, it might be natural for us to assume that An has dimension n and,
more generally, that the dimension of an affine variety defined by linear equations
is equal to its dimensions as a vector space. The reason we do not assume more is
because the short list of axioms listed in Definition 6.3 already uniquely determines
the dimension of all affine varieties, as stated in the next result.
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6.4 PROPOSITION There exists at most one dimension function

If D1 and D2 are both dimension functions, then D1(X) = D2(X) for all
affine varieties X.

PROOF A proof is outlined in Exercise 6.1.8

In light of Proposition 6.4, the path ahead is clear: our goal is to define a function

dim :
{ isomorphism classes of

nonempty affine varieties

}
−→N.

and to prove that it satisfies Axioms 1 – 3 of Definition 6.3. The next two sec-
tions are devoted to developing the algebraic tools we require in order to define
dimension, including a robust understanding of algebraic (in)dependence. Once we
have given a rigorous definition of dimension in Section 6.5, Axioms 1 and 2 will
be rather straightforward to prove; in fact, they can already be proved using Key
Idea 6.2 (see Exercises 6.1.1, 6.1.3, and 6.1.4). Proving Axiom 3, on the other hand,
is quite involved, with a key step coming from the Noether Normalization Theo-
rem. A slightly strengthened form of Axiom 3 will be proved in Section 6.6 as the
Fundamental Theorem of Dimension Theory.

Exercises for Section 6.1
6.1.1 Assuming Key Idea 6.2, prove that the dimension of a single point is zero.

6.1.2 Assuming Key Idea 6.2, prove that dim(An) ≥ n.

6.1.3 Let X, Y ⊆ An be affine varieties with X ⊆ Y. Assume that, using Key
Idea 6.2, dim(X) = d1 and dim(Y) = d2.

(a) Let f1, . . . , fm ∈ K[x1, . . . , xn] be polynomials such that

f1|X , . . . , fm|X ∈ K[X]

are algebraically independent over K. Prove that

f1|Y, . . . , fm|Y ∈ K[Y]

are algebraically independent over K.
(b) Prove that d1 ≤ d2.

6.1.4 Let X1, . . . , Xm ⊆ An be affine varieties and assume that, using Key Idea 6.2,
dim(Xi) = di. Let X = X1 ∪ · · · ∪ Xm.

(a) Let f1, . . . , f` ∈ K[x1, . . . , xn] be polynomials such that

f1|X , . . . , f`|X ∈ K[X]

are algebraically independent over K. Prove that

f1|Xi , . . . , f`|Xi ∈ K[Xi]

are algebraically independent over K for some i.
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(b) Prove that

dim(X1 ∪ · · · ∪ Xm) = max{d1, . . . , dm}.

(Hint: One inequality uses (a) and the other uses the previous exercise.)

6.1.5 Let `1, . . . , `m be linear homogeneous polynomials in n variables and consider
the linear subspace V ⊆ Kn defined by their vanishing:

V = V(`1, . . . , `m) ⊆ An = Kn.

(a) Interpret V as the kernel of a specific matrix M, and use the Rank-
Nullity Theorem to write the dimension of V in terms of n and rk(M).

(b) Let ` be another homogeneous linear equation and consider the subspace

W = V ∩ V(`)

Interpret W as the kernel of a specific matrix M′. How are M and M′

related?
(c) Using the relationship between M and M′, describe how the dimensions

of V and W related? How does this compare to Axiom 3 in Defini-
tion 6.3?

(Hint: For (c), there are two possible cases to consider, what are they?)

6.1.6 Let D be a dimension function. Prove that D(An) = n.

6.1.7 Let X ⊆ An be an irreducible affine variety that is not a single point. Prove
that there exists f ∈ K[x1, . . . , xn] such that

∅ ( X ∩ V( f ) ( X.

(This exercise is useful for the next one.)

6.1.8 Let D1 and D2 be dimension functions.

(a) Prove that D1(X) = 0 if and only if X is a finite union of points. Con-
clude that D1(X) = D2(X) whenever D1(X) = 0.

(b) Assume that m ≥ 1 and that D1(X) = D2(X) when D1(X) < m.
Prove that D1(X) = D2(X) for all X with D1(X) = m.

(c) Combine the above arguments into an inductive proof of Proposition 6.4.

6.1.9 This exercise proves that a dimension function does not necessarily exist when
K is not algebraically closed. Let K = R and, toward a contradiction, assume
that a dimension function D exists.

(a) Prove that D(A2) = 2 and D({(0, 0)}) = 0.
(b) Prove that {(0, 0)} = V( f ) ∩A2 for some f .
(c) Argue that parts (a) and (b) contradict Axiom (iii).
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Section 6.2 Function fields
As we learned in the last section, the dimension of an affine variety should be a
measure of the maximum number of algebraically independent elements in its co-
ordinate ring. However, working with algebraic (in)dependence in K-algebras can
be rather difficult, and it is much easier to work with these notions in the context of
field extensions of K. Therefore, in this section, we study a way of passing from an
irreducible affine variety X to a corresponding field K(X), its function field.

6.5 DEFINITION Function field

Let X be an irreducible affine variety. The function field of X, denoted K(X)
is the fraction field of its coordinate ring:

K(X) = Frac(K[X]).

The elements of K(X) are called rational functions on X.

Fraction fields were defined in Section 0.6, where we learned that elements of
K(X) are ratios of the form f /g with f , g ∈ K[X] and g 6= 0. Two fractions f1/g1
and f2/g2 are equal if and only if f1g2 = f2g1 ∈ K[X], and the operations of
addition and multiplication are defined in the usual way:

f1

g1
+

f2

g2
=

f1g2 + f2g1

g1g2
and

f1

g1
· f2

g2
=

f1 f2

g1g2
.

Since fraction fields are only defined for integral domains (Exercise 0.6.4), function
fields are only defined for irreducible affine varieties. Let us turn to a few examples.

6.6 EXAMPLE Function field of affine space

Since the coordinate ring of An is K[x1, . . . , xn], the function field is the field of
rational functions

K(An) = K(x1, . . . , xn),

which we already encountered in Section 0.6.

6.7 EXAMPLE Function field of V(x2 − y3)

Let X = V(x2 − y3) ⊆ A2. Computing the coordinate ring, we have

K[X] = K[x, y]/〈x2 − y3〉 =⇒ K(X) = Frac(K[x, y]/〈x2 − y3〉).

This looks like a rather complicated field; however, we can identify it with a more
familiar one. Consider the K-algebra homomorphism

ϕ : K[X]→ K[t]

[ f (x, y)] 7→ f (t3, t2).

This is the pullback of the polynomial map defined in Example 4.8. Notice that ϕ
is not an isomorphism, because the polynomial t is not in the image. If we pass to
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function fields, then we can extend ϕ to a field homomorphism

ϕ : K(X)→ K(t)

[ f (x, y)]
[g(x, y)]

7→ f (t3, t2)

g(t3, t2)
.

Now that we are allowed to divide, we see that t actually lies in the image of ϕ:

t =
ϕ([x])
ϕ([y])

= ϕ
( [x]
[y]

)
.

This allows us to invert ϕ:

ϕ−1
( f (t)

g(t)

)
=

f ([x]/[y])
g([x]/[y])

=
[ydeg( f )+deg(g) f (x/y)]
[ydeg( f )+deg(g)g(x/y)]

,

where the second equality simply serves to clear denominators in f and g so that the
image is explicitly expressed as an element of K(X). It follows that K(X) ∼= K(t).
We encourage the reader to check the details of this argument in Exercise 6.2.3.

What we can conclude from this example is that, even though X and A1 are not
isomorphic, their fraction fields are, because they are both isomorphic to K(t). Thus,
even though the coordinate ring knows everything about the isomorphism class of
an affine variety, some of that information is lost upon passing to the function field.

When two affine varieties have iso-
morphic function fields, we say that
the varieties are birationally equiva-
lent. This is an important notion in
algebraic geometry, but it does not
play a central role in this text.

In the previous two examples, both
of the function fields we considered
were isomorphic to a field of rational
functions K(x1, . . . , xd) for some d. If
an irreducible variety has a function
field isomorphic to a field of rational
functions, we say that the variety is ra-
tional. It turns out that rational vari-

eties are actually quite special—it is a general fact beyond the scope of this text
that “most” varieties are not rational. In particular, for a “random” polynomial
f ∈ K[x1, . . . , xn] of sufficiently large degree, V( f ) will not be rational. The next
example illustrates, perhaps, the simplest example of a non-rational variety.

6.8 EXAMPLE V(x3 + y3 + 1) is not rational

Let K = C and let X = V(x3 + y3 + 1) ⊆ A2.
The real points of X are depicted in the im-
age to the right. We argue that X is not ratio-
nal. This argument hinges on the fact that, if
f1, f2, f3 ∈ K[x1, . . . , xn] are nonzero such that
(i) no two of them share a common irreducible
factor and (ii) f 3

1 + f 3
2 + f 3

3 = 0, then it must
be the case that f1, f2, and f3 are all constant
(see Exercise 6.2.4 for a proof).
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To argue that X is not rational, first notice that x3 + y3 + 1 is irreducible, so

K[X] = K[x, y]/〈x3 + y3 + 1〉 =⇒ K(X) = Frac(K[x, y]/〈x3 + y3 + 1〉).

Suppose that
ϕ : K(X)→ K(x1, . . . , xd)

is a field homomorphism for some d > 0; we prove that im(ϕ) ⊆ K, so ϕ cannot
be an isomorphism. Notice that ϕ([x]) = f /g and ϕ([y]) = h/k for some polyno-
mials f , g, h, k ∈ K[x1, . . . , xd] with g, k 6= 0. Using that K[x1, . . . , xn] is a UFD,
we may factor each polynomial into irreducibles and reduce the quotients; in other
words, we can assume that neither f and g nor h and k share common irreducible
factors. As [x3 + y3 + 1] = 0 ∈ K(X), we obtain the relation

0 = ϕ([x3 + y3 + 1]) =
( f

g

)3
+
(h

k

)3
+ 1.

Clearing denominators, we obtain the relation

(6.1) ( f k)3 + (gh)3 + (gk)3 = 0.

Equation (6.1) tells us that g3 | ( f k)3, but since f and g are assumed not to have any
common irreducible factors, it follows that g3 | k3. A parallel argument tells us that
k3 | g3. Thus, since g3 | k3 and k3 | g3, it follows that g3 = ak3 for some constant a.
Substituting this into Equation (6.1) and canceling the nonzero factor of k3, we have

(6.2) f 3 + (ah)3 + g3 = 0.

Notice that the irreducible factors of g are the same as those of k, and thus distinct
from both f and h, by assumption. Furthermore, f and h cannot have an irreducible
factor in common, or else, by Equation (6.2), this would also be an irreducible fac-
tor of g, contradicting our assumptions regarding f and g. Therefore, no two of
the terms in Equation (6.2) share a common irreducible factor, and we may apply
Exercise 6.2.4 to conclude that f , g, h, and k are all constant.

The argument above shows that K(X) is not isomorphic to K(x1, . . . , xd) for
any d > 0, but what if d = 0? Using that X has more than one point, we know that
K ( K[X], implying that K ( K(X) and hence K(X) is not isomorphic to K. Taken
together with the previous argument, we conclude that X is not rational.

We conclude the section with a brief comment on terminology: even though
elements of K(X) are called rational functions, they are not actually functions on
X. In particular, given an element f /g ∈ K(X) with g 6= 0, it is possible that
g(a) = 0 for some (but not all) values a ∈ X. Thus, f /g only defines a function
on the subset of X where g 6= 0. It is common to use dashed arrows for rational
functions to remind the reader that they are not defined on the entire domain:

f
g

: X 99K K.
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If we restrict the domain to the complement of V(g), then every rational function
gives rise to an actual function that assigns a value to each element of the domain:

f
g

: X \ V(g) −→ K.

Exercises for Section 6.2
6.2.1 Let X = V(xy− 1) ⊆ A2. Prove that K(X) ∼= K(t).

6.2.2 Let R and S be integral domains and ϕ : R → S an injective ring homomor-
phism. Prove that there exists a well-defined field homomorphism

ϕ : Frac(R)→ Frac(S)
a
b
7→ ϕ(a)

ϕ(b)
.

6.2.3 Let ϕ and ϕ be the homomorphisms of Example 6.7.

(a) Prove that ϕ is injective, and use this to prove that ϕ is well-defined.
(b) Prove that ϕ and ϕ−1 are, in fact, inverse field homomorphisms.

6.2.4 Assume that Char(K) 6= 3, and let f1, f2, f3 ∈ K[x1, . . . , xn] be nonzero
polynomials such that (i) no two of them share a common irreducible factor
and (ii) f 3

1 + f 3
2 + f 3

3 = 0. This exercise outlines a proof of the fact that f1,
f2, and f3 must all be constant.

(a) Toward a contradiction, assume that f1 is nonconstant in x1 and let f ′i
denote the derivative of fi with respect to x1. Prove that

f 2
1 ( f ′1 f3 − f1 f ′3) = f 2

2 ( f2 f ′3 − f ′2 f3).

(Hint: Start by differentiating f 3
1 + f 3

2 + f 3
3 = 0 using the chain rule.)

(b) Prove that f1 f ′3 − f ′1 f3 6= 0 and conclude that f2 f ′3 − f ′2 f3 6= 0.
(Hint: Apply the quotient rule to differentiate f1/ f3.)

(c) Prove that f 2
1 | ( f2 f ′3 − f ′2 f3) and conclude that

2 degx1
( f1) ≤ degx1

( f2) + degx1
( f3)− 1.

(d) Repeating the above with f1, f2, and f3 permuted in all three ways, you
obtain three inequalities. Add these inequalities to find a contradiction.

6.2.5 Let K = C and let X = V(x2 + y2 − 1) ⊆ A2. Prove that

ϕ : K(X)→ K(t)

defined by

ϕ
( [ f (x, y)]
[g(x, y)]

)
=

f
( 1−t2

1+t2 , 2t
1+t2

)
g
( 1−t2

1+t2 , 2t
1+t2

)
is a well-defined field isomorphism.
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Section 6.3 Transcendence bases
As we discussed in Section 6.1, the dimension of an affine variety X should be equal
to the maximum number of algebraically independent elements in K[X]. As it turns
out, studying algebraic (in)dependence is more straightforward in the field setting,
which is why, in Section 6.2, we introduced the function field K(X), associated to
an irreducible affine variety. Given an irreducible affine variety, there is a natural set
of inclusions

K ⊆ K[X] ⊆ K(X),

and algebraically independent elements in K[X] remain algebraically independent
in K(X). With this motivation, we now turn to studying algebraic (in)dependence in
the setting of field extensions of the form K ⊆ K(X).

To help us discuss field extensions, we introduce the notion of field generators.

6.9 DEFINITION Field generators

Let K ⊆ L be fields and let S ⊆ L be a subset. The field extension of K
generated by S is

K(S) =
{

ab−1 : a, b ∈ K[S ], b 6= 0
}
⊆ L.

We say that L is a finitely-generated field extension of K if L = K(S) for a
finite set S ⊆ L.

Notice that K(S) is the smallest subfield of L that contains both K and S (Ex-
ercise 6.3.1), and it is canonically isomorphic to Frac(K[S ]). In addition, we have
(Exercise 6.3.2)

K(S1)(S2) = K(S1 ∪ S2).

When S = {a1, . . . , an} is finite, we write K(S) = K(a1, . . . , an).

6.10 EXAMPLE Fields of rational functions

For our purposes, the prototype of a field extension of K is the field of rational
functions

K ⊆ K(x1, . . . , xn).

As the notation suggests, K(x1, . . . , xn) is finitely-generated by x1, . . . , xn.

6.11 EXAMPLE Function fields

Let X ⊆ An be an irreducible affine variety with coordinate ring K[X] and function
field K(X). The coordinate functions [x1], . . . , [xn] ∈ K[X] can naturally be viewed
as elements of K(X) and every element of K(X) can be written as

[ f (x1, . . . , xn)]

[g(x1, . . . , xn)]
=

f ([x1], . . . , [xn])

g([x1], . . . , [xn])
,

for some f , g ∈ K[x1, . . . , xn] with [g] 6= 0. By definition, the final expression lies
in K([x1], . . . , [xn]), implying that K(X) is finitely-generated by [x1], . . . , [xn].
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We now aim to define the key notion of transcendence bases, which is an ana-
logue in the field extension setting of vector space bases. Recall that a basis of a
vector space must satisfy two conditions: (i) it must be linearly independent and
(ii) it must span the vector space. The first condition places an upper bound on the
size of a basis—if you have too many elements in a vector space, then they will
be linearly dependent—and the second condition places a lower bound on the size
of a basis—if you have too few elements, then they will not span the entire vector
space. In the same way, transcendence bases are required to satisfy two properties
and, as we will see in the next section, the first places an upper bound on the size of
transcendence bases and the second places a lower bound.

6.12 DEFINITION Transcendence basis

Let K ⊆ L be fields. A subset S ⊆ L is a transcendence basis of L over K if
it satisfies the following two conditions:

(i) S is algebraically independent over K, and

(ii) L is algebraic over K(S).

By clearing denominators, (ii) is
equivalent to the seemingly stronger
condition that L is algebraic over the
K-algebra K[S ] (Exercise 6.3.4).

Before discussing concrete exam-
ples of transcendence bases, it will be
helpful to become familiar with a few
properties regarding algebraic field ex-
tensions like the one appearing in con-
dition (ii) of Definition 6.12. The next

result, which is the field analogue of Theorem 5.27, is the key tool that we require.

6.13 PROPOSITION Extending fields by algebraic elements

Let K ⊆ L be fields and let a1, . . . , an ∈ L. The following are equivalent:
(i) Each ai is algebraic over K.

(ii) K[a1, . . . , an] is a finite-dimensional vector space over K.

(iii) K[a1, . . . , an] is algebraic over K.

(iv) K[a1, . . . , an] = K(a1, . . . , an).

PROOF The equivalence of conditions (i) – (iii) is a special case of Theorem 5.27
when R = K is a field. In this setting, algebraicity is equivalent to integrality, and
finitely-generated modules are the same as finite-dimensional vector spaces.

To prove that (iv) is equivalent to the other three, it suffices to prove that (iv)
is equivalent to (iii). That (iv) implies (iii) is essentially the statement of Zariski’s
Lemma (Lemma 5.36). More specifically, if K[a1, . . . , an] = K(a1, . . . , an), then
K[a1, . . . , an] is a field containing K that is finitely-generated as a K-algebra, from
which Zariski’s Lemma tells us that K[a1, . . . , an] is algebraic over K.

It remains to prove that (iii) implies (iv). That K[a1, . . . , an] ⊆ K(a1, . . . , an)
follows from the definition of generators, so let us focus on the other inclusion.
Using that K(a1, . . . , an) is the smallest subfield of L containing K and a1, . . . , an,
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this inclusion follows if we can prove that K[a1, . . . , an] is a field. To do so, let
a ∈ K[a1, . . . , an] be nonzero; we must prove that a has a multiplicative inverse.
Using the assumption that K[a1, . . . , an] is algebraic over K, we know that there is a
nontrivial algebraic relation of the form

cdad + · · ·+ c1a + c0 = 0 =⇒ cdad + · · ·+ ciai = 0,

where c0, . . . , cd ∈ K and ci is the first nonzero coefficient. Solving for ai, we obtain

ai = −c−1
i (cdad + · · ·+ ci+1ai+1).

Cancelling the factor of ai from both sides and factoring out a on the right, we
conclude that a has an inverse:

1 =
[
− c−1

i (cdad−i−1 + · · ·+ ci+1)
]
a.

The one condition in Proposition 6.13 that is not a special case of Theorem 5.27
is condition (iv). We illustrate this condition in the following example.

6.14 EXAMPLE Q(
√

2) = Q[
√

2]

Consider
√

2 ∈ R. Since
√

2 is a root of the polynomial x2 − 2 ∈ Q[x], we see
that
√

2 is algebraic over Q. Thus, Proposition 6.13 asserts that Q(
√

2) = Q[
√

2],
which we now verify.

Using the argument of Example 5.17, we compute that Q[
√

2] = Q{1,
√

2}. It
then follows from the definition of field generators that every element of Q(

√
2) has

the form
a + b

√
2

c + d
√

2
where a, b, c, d ∈ Q with c and d not both zero. We can “rationalize” the quotient:

a + b
√

2
c + d

√
2
=

(a + b
√

2)(c− d
√

2)
(c + d

√
2)(c− d

√
2)

=
(ac− 2bd) + (ad + bc)

√
2

c2 − 2d2 = r + q
√

2,

where

r =
ac− 2bd
c2 − 2d2 ∈ Q and q =

ad + bc
c2 − 2d2 ∈ Q.

This shows that every element of Q(
√

2) is actually an element of Q[
√

2]. Since the
other equality follows from the definitions, we conclude that Q(

√
2) = Q[

√
2].

One of the most important consequences of Proposition 6.13 is the following.
The failure of this corollary in the ring setting—see Example 6.16 below—is the
essential reason why studying algebraic (in)dependence is easier in the field setting
than it is in the ring setting.

6.15 COROLLARY Algebraic over algebraic is algebraic

Let K ⊆ L ⊆ M be finitely-generated field extensions. If L is algebraic over
K and M is algebraic over L, then M is algebraic over K.
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PROOF By Proposition 6.13, the claim is equivalent to proving that, if L is a
finite-dimensional vector space over K and M is a finite-dimensional vector space
over L, then M is a finite-dimensional vector space over K. This follows from the ob-
servation (see Exercise 5.2.6) that, if L = K{a1, . . . , am} and M = L{b1, . . . , bn},
then

M = K{aibj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

The next example illustrates the failure of Corollary 6.15 in the ring setting.

6.16 EXAMPLE Corollary 6.15 fails for ring extensions

Consider the ring extensions

C ⊆ C[x]
〈x2 − 1〉 ⊆

C[x, y]
〈x2 − 1, (x− 1)y〉 .

We show that the second ring is algebraic over the first and the third is algebraic over
the second, but that the third ring is not algebraic over the first.

Beginning with the first extension, notice that, by using the relation [x2] = 1,
any element of C[x]/〈x2 − 1〉 can be written as [ax + b] for some a, b ∈ C. A
direct computation shows that such an element [ax + b] is a root of the polynomial

f (z) = z2 − 2bz + b2 − a2 ∈ C[z],

proving that the first extension is algebraic.
To show that the second extension is algebraic, notice that, by using the relations

[x2] = 1 and [xy] = [y], any element of C[x, y]/〈x2 − 1, (x− 1)y〉 can be written
as [ax + b + yg(y)] for some a, b ∈ C and g(y) ∈ C[y]. A direct computation
shows that such an element [ax + b + yg(y)] is a root of the polynomial

f (z) = [x− 1]z + [ax− bx + b− a] ∈
(
C[x]/〈x2 − 1〉

)
[z],

proving that the second extension is also algebraic.
However, even though both extensions are algebraic, the extension

C ⊆ C[x, y]
〈x2 − 1, (x− 1)y〉

is not algebraic. To convince ourselves of this, it is enough to argue that [y] is not
algebraic over C. Indeed, every nonzero element of 〈x2 − 1, (x − 1)y〉 ⊆ C[x, y]
is necessarily a multiple of x − 1, and therefore, given any nonzero polynomial
f (z) ∈ C[z], it will never be the case that

f ([y]) = [ f (y)] = 0 ∈ C[x, y]
〈x2 − 1, (x− 1)y〉 .

While Corollary 6.15 fails over rings in general, by passing to fraction fields, it
can be proved in the special setting of integral domains (Exercise 6.3.5).

We now close this section with several concrete examples to illustrate the notion
of transcendence bases. The examples range from the empty example to a long-
standing open problem concerning transcendental numbers in R.
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6.17 EXAMPLE Transcendence bases of algebraic extensions

A field extension K ⊆ L has an empty transcendence basis if and only if L is alge-
braic over K. To verify this, first notice that ∅ ⊆ L is algebraically independent for
vacuous reasons (since ∅ does not contain any elements, there cannot be an alge-
braic relation among them). Thus, by definition, ∅ ⊆ L is a transcendence basis if
and only if L is algebraic over K(∅) = K.

6.18 EXAMPLE Transcendence basis for the unit sphere

Let K = C and let X = V(x2 + y2 + z2 − 1) ⊆ A3. We verify that {[x], [y]} is
a transcendence basis of the field extension C ⊆ C(X). To do this, we have two
conditions to check.

First, we verify that {[x], [y]} is algebraically independent over C. Suppose that
there is a polynomial relation 0 = f ([x], [y]). We must prove that f = 0. Since
0 = f ([x], [y]) = [ f (x, y)] ∈ C[X], we have

f (x, y) ∈ I(X) = 〈x2 + y2 + z2 − 1〉.

However, since every nonzero element of 〈x2 + y2 + z2 − 1〉 has positive degree in
z and f (x, y) does not, this implies that f (x, y) must be the zero polynomial, and
we conclude that {[x], [y]} is algebraically independent over C.

In order to prove that C(X) is algebraic over C([x], [y]), it suffices, by Propo-
sition 6.13, to prove that [z] is algebraic over C([x], [y]). This follows from the
observation that [z] is a zero of the polynomial

g(w) = w2 + ([x]2 + [y]2 − 1) ∈ C([x], [y])[w].

More generally, if f ∈ K[x1, . . . , xn] is an irreducible polynomial not contained
in K[x1, . . . , xn−1], an analogous argument shows that {[x1], . . . , [xn−1]} is a tran-
scendence basis of

Frac(K[x1, . . . , xn]/〈 f 〉).

6.19 EXAMPLE π and e

It is a long-standing open problem to determine whether π and e are algebraically
independent over Q. If they are algebraically independent, then {π, e} is a transcen-
dence basis of Q(π, e) over Q; otherwise, either {π} or {e} would suffice.

Now that we have seen a few examples of transcendence bases, some natural
questions arise. Do transcendence bases exist for all field extensions? If so, what
can be said about the size of transcendence bases? In the next section, we prove that,
if K ⊆ L is a finitely-generated field extension, then finite transcendence bases exist,
and they all have the same size. This will allow us to define the transcendence degree
of such a field extension as the size of any transcendence basis, similarly to the way
one can define the dimension of a vector space. The notion of transcendence degree
will be the key to making a rigorous definition of dimension of affine varieties in
Section 6.5.
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Exercises for Section 6.3
6.3.1 Let K ⊆ L be a field extension and let S ⊆ L be a subset.

(a) Prove that K(S) is a subfield of L.
(b) If L′ is a subfield of L that contains K and S , prove that K(S) ⊆ L′.

6.3.2 Let K ⊆ L be a field extension and let S1,S2 ⊆ L be subsets. Prove that

K(S1)(S2) = K(S1 ∪ S2).

6.3.3 Let A be a finitely-generated K-algebra that is also an integral domain and
let S ⊆ A be a set of generators. Prove that S generates Frac(A) as a field
extension of K.

6.3.4 Let K ⊆ L be a field extension and let S ⊆ L be a set. Prove that L is
algebraic over K(S) if and only if L is algebraic over K[S ].

6.3.5 Let K be a field and suppose that A ⊆ B are finitely-generated K-algebras
such that A is algebraic over K and B is algebraic over A. Assuming that A
and B are both integral domains, prove that B is algebraic over K.

(Hint: Use fraction fields.)

6.3.6 Let f ∈ K[x1, . . . , xn] be an irreducible polynomial that is not an element of
K[x1, . . . , xn−1] and consider the irreducible affine variety X = V( f ). Prove
that {[x1], . . . , [xn−1]} is a transcendence basis of K(X) over K.
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Section 6.4 Transcendence degree
In the last section, we familiarized ourselves with transcendence bases. In many
ways, transcendence bases of field extensions are similar to bases of vector spaces.
Importantly, bases of vector spaces provide a way of measuring how big a vector
space is: all bases have the same size and the dimension of a vector space is the size
of any basis. In this section, we develop the analogous notions for transcendence
bases. In particular, we show that every finitely-generated field extension has a
finite transcendence basis and that all such bases have the same size. This allows us
to define the transcendence degree of a field extension K ⊆ L, which is a measure
of the size of L relative to K.

We begin by proving the existence of finite transcendence bases.

6.20 PROPOSITION Existence of finite transcendence bases

Let K ⊆ L be fields and a1, . . . , an ∈ L. If L is algebraic over K(a1, . . . , an),
then {a1, . . . , an} contains a transcendence basis of L over K. In particular,
finite transcendence bases exist for all finitely-generated field extensions.

PROOF We prove the result by induction on n. If n = 0, then L is algebraic over
K and ∅ is a transcendence basis (Example 6.17), proving the base case.

Suppose that the result is true for all b1, . . . , bk ∈ L with k < n, and let
a1, . . . , an ∈ L be such that L is algebraic over K(a1, . . . , an). If {a1, . . . , an} is
algebraically independent, then {a1, . . . , an} is a transcendence basis of L over K,
and we’re done. Otherwise, there must exist some polynomial relation among the
elements a1, . . . , an. Let f ∈ K[x1, . . . , xn] be a nonzero polynomial such that
f (a1, . . . , an) = 0. This polynomial relation must depend nontrivially on at least
one of the ai; assume without loss of generality that it depends on an. Then an is a
solution of

f (a1, . . . , an−1, xn) ∈ K[a1, . . . , an−1][xn] ⊆ K(a1, . . . , an−1)[xn]

showing that an is algebraic over K(a1, . . . , an−1). Thus, by Proposition 6.13,

K(a1, . . . , an−1) ⊆ K(a1, . . . , an)

is an algebraic extension. By the induction hypothesis, {a1, . . . , an−1} contains a
transcendence basis of K(a1, . . . , an−1). Up to relabeling, we can assume this tran-
scendence basis is {a1, . . . , ak} for some k < n. Then {a1, . . . , ak} is algebraically
independent and

K(a1, . . . , ak) ⊆ K(a1, . . . , an−1)

is an algebraic extension. We now have a sequence of algebraic extensions

K(a1, . . . , ak) ⊆ K(a1, . . . , an−1) ⊆ K(a1, . . . , an) ⊆ L.

By Corollary 6.15, we conclude that K(a1, . . . , ak) ⊆ L is an algebraic extension.
Along with the fact that {a1, . . . , ak} is algebraically independent, this tells us that
{a1, . . . , ak} is a transcendence basis of L over K, completing the induction step.
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The final statement in the proposition follows from the fact that, if L is finitely-
generated over K, then L is equal to—and thus algebraic over—K(a1, . . . , an) for
any set of generators a1, . . . , an ∈ L.

With a little more work and the
Axiom of Choice, one can prove
that (possibly infinite) transcendence
bases exist for all field extensions.

Our next task is to prove that every
transcendence basis has the same size.
The next lemma, named after the strat-
egy used in the proof, is the key result
that we require.

6.21 LEMMA The exchange lemma

Let K ⊆ L be fields and let a1, . . . , an ∈ L be elements such that L is
algebraic over K(a1, . . . , an). If a set S ⊆ L is algebraically independent
over K, then S is finite and |S| ≤ n.

PROOF Toward a contradiction, suppose that |S| > n. To prove the result,
we recursively “exchange” elements in {a1, . . . , an} for elements of S . In other
words, at the completion of the kth step in this process, we will have chosen distinct
elements b1, . . . , bk ∈ S such that L is algebraic over K(b1, . . . , bk, ak+1, . . . , an).
We now describe this recursive process, starting with the first step.

(Step 1) Choose an element b1 ∈ S . Since L is algebraic over K(a1, . . . , an), it
follows that L is algebraic over K[a1, . . . , an] (Exercise 6.3.4). Thus, we can choose
a polynomial f (x, a1, . . . , an) ∈ K[a1, . . . , an][x] with

f (b1, a1, . . . , an) = 0.

Since b1 ∈ S and S is algebraically independent over K, it follows that f depends
on at least one of the ai—without loss of generality, a1. Then we can view a1 as
a root of polynomial f (b1, x, a2, . . . , an) ∈ K[b1, a2, . . . , an][x]. This implies that
a1 is algebraic over K[b1, a2, . . . , an] and, thus, also algebraic over the larger ring
K(b1, a2, . . . , an). By Proposition 6.13, we obtain an algebraic field extension

K(b1, a2, . . . , an) ⊆ K(b1, a2, . . . , an)[a1]

= K(b1, a2, . . . , an)(a1)

= K(b1, a1, a2, . . . , an).

In addition, since L is algebraic over K(a1, . . . , an), it is also algebraic over the
larger field K(b1, a1, . . . , an). Thus, we see that both of the extensions in the chain

K(b1, a2, . . . , an) ⊆ K(b1, a1, a2, . . . , an) ⊆ L

are algebraic extensions. Applying Corollary 6.15 to this chain of extensions, we
see that L is algebraic over K(b1, a2, . . . , an), completing Step 1.

(Step k) Suppose that, for some k ≤ n we have chosen b1, . . . , bk−1 ∈ S such
that L is algebraic over K(b1, . . . , bk−1, ak, . . . , an). Since |S| > n ≥ k, we may
choose another element bk ∈ S \ {b1, . . . , bk−1}, and there must be a polynomial
relation f (b1, . . . , bk, ak, . . . , an) = 0. Since b1, . . . , bk are elements of the alge-
braically independent set S , this relation must depend on at least one of the ai;
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without loss of generality, suppose it depends on ak. Then ak is algebraic over
K(b1, . . . , bk, ak+1, . . . , an) and thus, both extensions in the chain

K(b1, . . . , bk, ak+1, . . . , an) ⊆ K(b1, . . . , bk, ak, . . . , an) ⊆ L

are algebraic extensions. Therefore, L is algebraic over K(b1, . . . , bk, ak+1, . . . , an),
which completes Step k.

After completing the nth step in the recursion described above, we obtain a
subset {b1, . . . , bn} ( S such that L is algebraic over K(b1, . . . , bn). Thus, any
b ∈ S \ {b1, . . . , bn} ⊆ L is algebraic over K[b1, . . . , bn], which leads to a contra-
diction of the algebraic independence of S .

The exchange lemma allows us to deduce the following important result.

6.22 THEOREM Transcendence bases all have the same size

If L is a finitely-generated field extension of K, then every transcendence
basis of L over K has the same finite size.

PROOF Suppose that L is a finitely-generated field extension of K. By Propo-
sition 6.20, we know that a finite transcendence basis exists, so choose one such
transcendence basis {a1, . . . , an}. Let S be any other transcendence basis. By defi-
nition, L is algebraic over K(a1, . . . , an) and S is algebraically independent. Thus,
by the exchange lemma, S is finite and |S| ≤ n. Write S = {b1, . . . , bm} with
m ≤ n. To finish the proof, we must prove that m ≥ n. Since {a1, . . . , an} and
{b1, . . . , bm} are both transcendence bases, L is algebraic over K(b1, . . . , bm) and
{a1, . . . , an} is algebraically independent. Thus, by the exchange lemma again, we
see that m ≥ n.

We now come to the following central definition, which will be the key to defin-
ing and studying the dimension of affine varieties in the remainder of this chapter.

6.23 DEFINITION Transcendence degree

Let K ⊆ L be a finitely-generated field extension. The transcendence degree
of L over K, denoted trdegK(L), is the size of any transcendence basis of L
over K.

We revisit the examples from the previous section.

6.24 EXAMPLE Transcendence degree of algebraic extensions

Recall from Example 6.17 that K ⊆ L is algebraic if and only if ∅ is a transcendence
basis. In other words, we see that K ⊆ L is algebraic if and only if trdegK(L) = 0.
Thus, algebraic field extensions are the smallest type of field extensions.

6.25 EXAMPLE Transcendence degree and the unit sphere

Let K = C and let X = V(x2 + y2 + z2 − 1) ⊆ A3. As we saw in Example 6.18,
the two-element set {[x], [y]} ⊆ K(X) is a transcendence basis over K. Thus,
trdegKK(X) = 2.
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6.26 EXAMPLE Transcendence degree of R(π, e)

To rephrase the open problem of Example 6.19, it is currently unknown whether
trdegRR(π, e) is one or two.

To conclude this section, we list a few useful properties for bounding transcen-
dence degree. Notice that Proposition 6.20 provides a tool for computing transcen-
dence bases and transcendence degree “from above”: every set {a1, . . . , an} ⊆ L
such that L is algebraic over K(a1, . . . , an) can be trimmed down to a transcendence
basis of L. In particular, any set of generators of L can be trimmed down to a tran-
scendence basis. The next result provides a tool for computing transcendence bases
and transcendence degree “from below”: if {a1, . . . , an} ⊆ L is an algebraically
independent set, then it can be built up to a transcendence basis of L.

6.27 PROPOSITION Independent sets are contained in bases

Let K ⊆ L be a finitely-generated field extension and suppose that
a1, . . . , an ∈ L are algebraically independent. Then {a1, . . . , an} is con-
tained in a transcendence basis of L over K.

PROOF Exercise 6.4.3

As a consequence of Propositions 6.20 and 6.27, we obtain the following result
that provides a tool for finding upper and lower bounds on transcendence degree.

6.28 COROLLARY Bounding transcendence degree

Let K ⊆ L be a finitely-generated field extension and let a1, . . . , an ∈ L.
1. If L is algebraic over K(a1, . . . , an), then trdegK(L) ≤ n.

2. If a1, . . . , an ∈ L are algebraically independent, then trdegK(L) ≥ n.

Exercises for Section 6.4
6.4.1 Suppose that L ⊆ M are fields that are finitely-generated over K. Prove that

trdegK(L) ≤ trdegK(M).

6.4.2 Compute the transcendence degree of Q(π, i,
√

2) over Q.

6.4.3 Prove Proposition 6.27.

6.4.4 Suppose that trdegK(L) = d.

(a) Prove that {a1, . . . , ad} ⊆ L is a transcendence basis of L over K if and
only if a1, . . . , ad are algebraically independent.

(b) Prove that {a1, . . . , ad} ⊆ L is a transcendence basis of L over K if and
only if L is algebraic over K(a1, . . . , ad).

6.4.5 Suppose that L is a field that is also a finitely-generated K-algebra.
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(a) Prove that trdegK(L) is the maximum number of algebraically indepen-
dent elements in L.

(b) Prove that trdegK(L) is the minimum number of elements of L that
generate a field over which L is algebraic.

6.4.6 Let A be a finitely-generated K-algebra that is also an integral domain. Prove
that any Noether basis of A ⊆ Frac(A) is a transcendence basis of Frac(A).

6.4.7 Using the notions of vector space dimension, span, and linear independence,
state the linear algebra analogues of all of the results in this section, as well as
Exercises 6.4.4 and 6.4.5.
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Section 6.5 Dimension: definition and first properties
Now that we have introduced the concept of transcendence degree, we are ready to
state the formal definition of dimension.

6.29 DEFINITION Dimension of an affine variety

Let X be an irreducible affine variety. The dimension of X is defined by

dimK(X) = trdegK(K(X)).

The dimension of a nonempty reducible variety is the maximum dimension
of its irreducible components. The empty set has dimension −1.

When the field K is clear from con-
text, we omit it and write dim(X).

There are many terms regarding di-
mension that are commonly used. For
example, varieties of dimension one
and two are called curves and surfaces,

respectively, while varieties of dimension n are often called n-folds. The codimen-
sion of an affine variety X ⊆ An is defined by

codim(X) = n− dim(X).

More generally, if X ⊆ Y ⊆ An are affine varieties, then the codimension of X in
Y is defined by

codimY(X) = dim(Y)− dim(X).

Let us compute dimension in a few concrete examples.

6.30 EXAMPLE Affine space An has dimension n

As we saw in Example 6.6, the function field of An is the field of rational functions:

K(An) = K(x1, . . . , xn).

Since x1, . . . , xn ∈ K(An) are algebraically independent and generate K(An), they
form a transcendence basis. Thus,

dim(An) = trdegK(K(A
n)) = n.

6.31 EXAMPLE The unit sphere has dimension 2

Let K = C and let X = V(x2 + y2 + z2 − 1) ⊆ A3. As we saw in Example 6.18,
the two elements

[x], [y] ∈ C(X)

form a transcendence basis. Thus,

dim(X) = trdegC(C(X)) = 2.

More generally (Exercise 6.5.4), if f ∈ K[x1, . . . , xn] is irreducible and X = V( f ),
then dim(X) = n− 1.
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We required the function field in order to ensure that transcendence degree was
well-defined; however, now that we have laid the groundwork, we can discuss di-
mension purely in terms of coordinate rings. The next result describes how we can
use the coordinate ring of possibly reducible varieties to bound their dimension.

6.32 PROPOSITION Polynomial functions and dimension

Let X be a nonempty affine variety and let F1, . . . , Fd ∈ K[X].
1. If F1, . . . , Fd are algebraically independent, then d ≤ dim(X).

2. If K[X] is integral over K[F1, . . . , Fd], then dim(X) ≤ d.

PROOF We prove the first statement and leave the second as Exercise 6.5.5. Sup-
pose that F1, . . . , Fd ∈ K[X] are algebraically independent and consider the irre-
ducible decomposition X = X1 ∪ · · · ∪ Xm. Restricting each Fi to Xj, we obtain
functions Fi|Xj ∈ K[Xj]. We claim that F1|Xj , . . . , Fd|Xj are algebraically indepen-
dent for at least one j. To see why, suppose this were not the case. Then, for each
j = 1, . . . , m, there would be a nonzero polynomial gj ∈ K[z1, . . . , zd] such that

gj(F1|Xj , . . . , Fd|Xj) = 0 ∈ K[Xj].

But if X is the union of the X1, . . . , Xm and gj(F1, . . . , Fd) vanishes when restricted
to Xj for j = 1, . . . , m, then their product would vanish on X:

m

∏
j=1

gj(F1, . . . , Fd) = 0 ∈ K[X].

However, this contradicts the assumption that F1, . . . , Fd ∈ K[X] are algebraically
independent.

Thus, for some j, the functions

F1|Xj , . . . , Fd|Xj ∈ K[Xj] ⊆ K(Xj).

are algebraically independent. It then follows that

dim(X) ≥ dim(Xj) = trdegK(K(Xj)) ≥ d,

where the first inequality and the equality follow from the definition of dimension,
while the second inequality follows from Corollary 6.28, Part 2.

As a consequence of Proposition 6.32, we have the following result, which says
that every Noether basis of a coordinate ring has the same size, equal to the dimen-
sion of the affine variety.

6.33 COROLLARY Noether bases and dimension

If X is a nonempty affine variety and {F1, . . . , Fd} ⊆ K[X] is a Noether
basis, then d = dim(X).



180 CHAPTER 6. DIMENSION OF AFFINE VARIETIES

PROOF By definition of Noether basis, F1, . . . , Fd are algebraically independent
over K and K[X] is integral over K[F1, . . . , Fd]. Thus, the two parts of Proposi-
tion 6.32 imply that d ≤ dim(X) and dim(X) ≥ d, from which we conclude that
d = dim(X).

We can also tie our formal discussion of dimension back to the characterization
of dimension given in Key Idea 6.2, which is the first part of the next result.

6.34 COROLLARY Characterizations of dimension

Let X be a nonempty affine variety.
1. The dimension of X is the maximum number of algebraically independent

functions in K[X].

2. The dimension of X is the minimum number of F1, . . . , Fd ∈ K[X] such
that K[X] is integral over K[F1, . . . , Fd].

PROOF We prove the first part and leave the second to Exercise 6.5.6.
If S ⊆ K[X] is algebraically independent, then the first part of Proposition 6.32

tells us that S is finite and |S| ≤ dim(X). Thus, the maximum number of alge-
braically independent functions in K[X] is bounded above by dim(X). On the other
hand, Noether normalization tells us that K[X] contains a Noether basis, which, by
Corollary 6.33, has size dim(X). This implies that K[X] contains at least one al-
gebraically independent set of size dim(X), and we conclude that the maximum
number of algebraically independent elements in K[X] is equal to dim(X).

We now have a number of ways to think about the dimension of an affine va-
riety, and we can use these ideas to prove that dimension satisfies certain natural
properties. The first property regards inclusions of affine varieties. Since dimension
measures the size of an affine variety, we should certainly expect that X ⊆ Y implies
dim(X) ≤ dim(Y). Less obvious, though, is the fact that this implication becomes
strict when we restrict to irreducible affine varieties. In other words, if Y ⊆ An is
an irreducible affine variety, then the only affine varieties that are strictly contained
in Y must have strictly smaller dimension. This is the content of the next result.

6.35 PROPOSITION Dimension and inclusions

If X, Y ⊆ An are affine varieties with X ⊆ Y, then dim(X) ≤ dim(Y).
Furthermore, if Y is irreducible and X ( Y, then dim(X) < dim(Y).

PROOF Let X, Y ⊆ An be affine varieties with X ⊆ Y, and define d = dim(X).
By Corollary 6.34, there exists an algebraically independent subset of K[X] of size
d. Let f1, . . . , fd ∈ K[x1, . . . , xn] be polynomials such that { f1|X , . . . , fd|X} is
an algebraically independent subset of K[X]. Since the functions f1, . . . , fd do not
satisfy an algebraic relation when restricted to X, then they certainly do not sat-
isfy an algebraic relation when restricted to the larger set Y (the reader is encour-
aged to pause and convince themselves of this assertion). Thus, { f1|Y, . . . , fd|Y} is
an algebraically independent set in K[Y], and by Corollary 6.34, we conclude that
dim(Y) ≥ d = dim(X).
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To prove the second statement, suppose, in addition, that Y is irreducible and
that X ( Y. Our aim is to prove that dim(X) < dim(Y). Toward a con-
tradiction, assume that dim(Y) = dim(X) = d. Using the assumption that
X ( Y, choose a polynomial f ∈ K[x1, . . . , xn] such that f |Y 6= 0 ∈ K[Y] but
f |X = 0 ∈ K[X]. Since the maximum number of algebraically independent ele-
ments in K[Y] is dim(Y) = d, the set { f1|Y, . . . , fd|Y, f |Y} cannot be algebraically
independent. Thus, we can choose a nontrivial polynomial

g(z) ∈ (K[ f1|Y, . . . , fd|Y])[z]

such that g( f |Y) = 0. Without loss of generality, we may assume that g is such a
polynomial of smallest possible degree. Writing the relation term-by-term, we have

0 = gk( f1|Y, . . . , fd|Y)( f |Y)k + · · ·+ g1( f1|Y, . . . , fd|Y) f |Y + g0( f1|Y, . . . , fd|Y)

Notice that g0 is not the zero polynomial, since otherwise we could cancel one factor
of f |Y (using the fact that Y is irreducible so K[Y] is an integral domain), producing a
polynomial of smaller degree that vanishes when evaluated at f |Y. Upon restricting
to X, this implies that g0 is a nonzero polynomial relation among f1|X , . . . , fd|X ,
contradicting that these are algebraically independent elements of K[Y].

The second statement of Proposition 6.35 fails without the assumption that Y is
irreducible. For example, the x-axis V(y) ⊆ A2 is strictly contained in the union
of the axes V(xy) ⊆ A2, but both varieties have dimension one.

We now have a rigorous definition of dimension, and it is not too difficult to
prove that it satisfies the first two axioms of Definition 6.3 (see Exercises 6.5.1,
6.5.2, and 6.5.3). Therefore, it remains to prove Axiom 3, which is the content of
the remaining section in this chapter.

Exercises for Section 6.5
6.5.1 Prove that dimension is an intrinsic property. In other words, prove that two

isomorphic affine varieties have the same dimension.

6.5.2 Prove that the dimension of a single point is zero.

6.5.3 Let X1, . . . , Xm ⊆ An. Use uniqueness of irreducible decompositions to
prove that

dim(X1 ∪ · · · ∪ Xm) = max{dim(X1), . . . , dim(Xm)}.

6.5.4 Let f ∈ K[x1, . . . , xn] be irreducible and consider X = V( f ) ⊆ An. Prove
that dim(X) = n− 1.

6.5.5 Let X be a nonempty affine variety and let F1, . . . , Fd ∈ K[X] such that K[X]
is integral over K[F1, . . . , Fd]. Prove that dim(X) ≤ d.

6.5.6 Prove that dim(X) is the minimum number of functions F1, . . . , Fd ∈ K[X]
such that K[X] is integral over K[F1, . . . , Fd].
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Section 6.6 The Fundamental Theorem
We now arrive at the technical heart of dimension theory: the Fundamental Theorem
of Dimension Theory. This result says that, if X ⊆ An is an irreducible affine
variety and f ∈ K[x1, . . . , xn], then either X ∩ V( f ) is a trivial intersection (empty
or all of X) or dim(X ∩ V( f )) = dim(X)− 1.

The proof of this result is rather involved, and it requires some fortitude on the
part of the reader. It draws on many of the ideas introduced in prior chapters, with
a key step coming from Noether Normalization. In addition, it requires several new
ideas regarding minimal polynomials and their relation to determinants of certain
linear transformations of algebraic field extensions. We begin with a discussion of
the new ideas, which are captured in Lemmas 6.36, 6.38, and 6.39, all of which will
then be used in the proof of the Fundamental Theorem (Theorems 6.42).

6.36 LEMMA/DEFINITION Minimal polynomial

Let L ⊆ M be a field extension. For any nonzero a ∈ M that is algebraic
over L, there exists a unique irreducible monic polynomial µa ∈ L[x] such
that µa(a) = 0 ∈ M. We call µa the minimal polynomial of a over L.

PROOF Let L ⊆ M be a field extension and a ∈ M algebraic over L. By
algebraicity, there exists a nontrivial polynomial in L[x] that vanishes at a. We may
find such a polynomial of minimal possible degree, and by dividing by the leading
coefficient, we can even find one that is monic. Let µa be a monic polynomial of
minimal degree that vanishes at a.

To prove the lemma, we prove that every monic irreducible polynomial that van-
ishes at a is equal to µa. Suppose that g ∈ L[x] is a monic irreducible polynomial
that vanishes at a. By the division algorithm,

g = qµa + r

where r = 0 or deg(r) < deg(µa). Evaluating at a and using g(a) = µa(a) = 0,
we see that r(a) = 0. Thus, the minimality of the degree of µa implies that r = 0.
Therefore, g = qµa, from which the irreducibility of g implies that q is a unit. Since
both g and µa are monic, we must have q = 1, and we conclude that g = µa.

6.37 EXAMPLE Minimal polynomial of
√

2 over Q

The minimal polynomial of
√

2 over Q is x2 − 2 ∈ Q[x]. To prove this, we
simply observe that x2 − 2 is monic, irreducible, and vanishes at

√
2, from which

Lemma 6.36 implies that it is the minimal polynomial of
√

2 over Q.

Minimal polynomials play a key role in the proof of Theorem 6.42. In that
setting, we will have a Noether basis {F1, . . . , Fd} of a coordinate ring K[X] (where
X is irreducible) and we will be considering the field extension

K(F1, . . . , Fd) ⊆ K(X).

The key result we require, which follows from the next lemma, is that, for any
F ∈ K[X] ⊆ K(X), the coefficients of µF lie in K[F1, . . . , Fd] ⊆ K(F1, . . . , Fd).
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6.38 LEMMA Minimal polynomials and Noether bases

Let A be a finitely-generated K-algebra that is also an integral domain and
let {a1, . . . , ad} be a Noether basis of A over K.
1. The field extension K(a1, . . . , ad) ⊆ Frac(A) is algebraic.

2. For any nonzero a ∈ A ⊆ Frac(A), the minimal polynomial µa of a over
K(a1, . . . , ad) satisfies

µa ∈ K[a1, . . . , ad][x].

By definition, the minimal polynomial µa is an element of K(a1, . . . , ad)[x],
meaning that the coefficients are rational functions in the Noether basis. The asser-
tion of the second part of the lemma is that the coefficients of the minimal polyno-
mial are actually polynomials in the Noether basis.

PROOF OF LEMMA 6.38 To prove that K(a1, . . . , ad) ⊆ Frac(A) is algebraic, let
a/b ∈ Frac(A). By the definition of Noether basis, A is integral and thus algebraic
over K[a1, . . . , ad]. Therefore, we may choose a polynomial f ∈ K[a1, . . . , ad][x]
such that f (a) = 0. Write

f = fdxd + fd−1xd−1 + · · ·+ f1x + f0

and define

g = ( fdbd)xd + ( fd−1bd−1)xd−1 + · · ·+ ( f1b)x + f0.

Then g ∈ K[a1, . . . , ad][x] and g(a/b) = f (a) = 0, proving that Frac(A) is
algebraic over K[a1, . . . , ad] and thus algebraic over K(a1, . . . , ad).

To prove Part 2, let a ∈ A. Again using that A is integral over K[a1, . . . , ad], we
can choose a monic polynomial f ∈ K[a1, . . . , ad][x] such that f (a) = 0. Further-
more, we can assume that f has minimal degree among the monic polynomials that
vanish at a, in which case f must also be irreducible. By the definition of Noether
basis, a1, . . . , ad are algebraically independent, so f is an irreducible element of the
multivariable polynomial ring

f ∈ K[a1, . . . , ad][x] = K[a1, . . . , ad, x]

By repeated use of Proposition 0.59, the monic polynomial f remains irreducible in
the larger ring K(a1, . . . , ad)[x], and since it vanishes at a, it must be equal to the
minimal polynomial of a. Therefore, µa = f ∈ K[a1, . . . , ad][x].

To set up the final lemma required for the proof of Theorem 6.42, let L ⊆ M be
a finitely-generated algebraic extension, which, by Proposition 6.13, implies that M
is a finite-dimensional vector space over L. For any element a ∈ M, define

Ta : M→ M
b 7→ ab.

Notice that this function is a linear transformation of M as a vector space over L.
More precisely, for any b1, b2 ∈ M and any c ∈ L, we check that

Ta(b1 + cb2) = a(b1 + cb2) = ab1 + cab2 = Ta(b1) + cTa(b2).
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As Ta : M → M is L-linear, it has a well-defined determinant det(Ta) ∈ L,
which can be computed by picking a basis of M over L, writing the linear transfor-
mation as a matrix, and computing the determinant of the matrix using any of the
usual formulas for determinants. Importantly, the determinant is independent of the
basis. The next lemma relates this determinant to the minimal polynomial of a.

6.39 LEMMA Determinants of multiplication transformations

Let L ⊆ M be a finitely-generated algebraic field extension. Then, for any
nonzero a ∈ M with minimal polynomial µa(x) ∈ L[x], we have

det(Ta) = ±µa(0)`

for some positive integer `.

PROOF Assume that L ⊆ M is an algebraic extension, or equivalently, that M is
a finite-dimensional vector space over L. Given any nonzero a ∈ M with minimal
polynomial

µa(x) = xd + µa,d−1xd−1 + · · ·+ µa,1x + µa,0,

it follows from Exercise 6.6.1 that we can find a basis for M as an L-vector space of
the form

{b1, b1a, . . . , b1ad−1, b2, b2a, . . . , b2ad−1, . . . , b`, b`a, . . . , b`ad−1}.

Writing the linear transformation Ta as a matrix in terms of this basis, Ta is a block
diagonal matrix

Ta =

 T′a · · · 0
...

. . .
...

0 · · · T′a


where

T′a =


0 0 · · · 0 −µa,0
1 0 · · · 0 −µa,1
0 1 · · · 0 −µa,2
...

...
. . .

...
...

0 0 · · · 1 −µa,d−1

 .

Computing determinants in the standard way, we have

det(Ta) = det(T′a)
` = ((−1)d−1µa,0)

` = ±µa(0)`.

6.40 EXAMPLE det(Ta) for a ∈ L

Let L ⊆ M be an algebraic field extension and suppose that a ∈ L. Then the
minimal polynomial of a is µa = x − a. Therefore, Lemma 6.39 implies that
det(Ta) = ±a` for some positive integer `. This conclusion can also be argued
directly using the fact that, in any basis of M as a vector space over L, we have
Ta = aI where I is the identity matrix. Thus, det(Ta) = det(aI) = a`, where ` is
the dimension of M as an L-vector space.
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6.41 EXAMPLE det(Ta) with a =
√

2 ∈ Q(
√

2,
√

3)

Consider a =
√

2 ∈ Q(
√

2,
√

3). A basis for Q(
√

2,
√

3) as a vector space over Q

is given by
{1,
√

2,
√

3,
√

2
√

3}
In terms of this basis, we can write

Ta =


0 2 0 0
1 0 0 0
0 0 0 2
0 0 1 0

 .

From this matrix expression, we compute det(Ta) = (−2)2 = µa(0)2.

We are now prepared to prove the main result of this section. The following
result is a restatement of Axiom 3 in Definition 6.3 and thus, completes the proof that
the notion of dimension developed in this chapter is the unique dimension function
on the set of isomorphism classes of affine varieties. We call this the “weak” version
of the fundamental theorem because we will formulate a stronger version below.

6.42 THEOREM Weak Fundamental Theorem of Dimension Theory

If X ⊆ An is an irreducible affine variety and f ∈ K[x1, . . . , xn] is a poly-
nomial such that X ∩ V( f ) is neither empty nor all of X, then

dim(X ∩ V( f )) = dim(X)− 1.

PROOF Let X ⊆ An be an irreducible affine variety and f ∈ K[x1, . . . , xn]
such that X ∩ V( f ) is neither empty nor all of X. For convenience, let us define
Y = X ∩ V( f ) and set F = f |X ∈ K[X]. We aim to prove that

dim(Y) = dim(X)− 1.

Since Y is an affine variety strictly contained in the irreducible affine variety X,
Proposition 6.35 tells us that dim(Y) ≤ dim(X)− 1. Thus, it remains to prove

dim(Y) ≥ dim(X)− 1.

By Noether normalization, we may choose a Noether basis F1, . . . , Fd ∈ K[X],
and Corollary 6.33 implies that dim(X) = d. Let µF be the minimal polynomial of
F ∈ K[X] ⊆ K(X) over K(F1, . . . , Fd). By Lemma 6.38,

µF ∈ K[F1, . . . , Fd][x].

Write
µF(x) = xk + µF,k−1xk−1 + · · ·+ µF,1x + µF,0.

Since µF(F) = 0 and F|Y = 0, we see that µF,0|Y = 0. Notice that µF,0 is neither
zero nor a unit; if it were zero, then µF(x) would be a reducible polynomial, and if
it were a unit, then µF,0|Y 6= 0. The following claim is central to the proof.
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Claim: If G ∈ K[F1, . . . , Fd] ⊆ K[X], then

G|Y = 0 if and only if G ∈
√
〈µF,0〉 ⊆ K[F1, . . . , Fd].

(⇒): Suppose that G ∈ K[F1, . . . , Fd] and G|Y = 0. Since Y = X ∩ V( f ), it
follows from the Nullstellensatz (Exercise 6.6.2) that

G ∈
√
〈 f |X〉 =

√
〈F〉 ⊆ K[X].

Thus, Gm = HF for some H ∈ K[X]. Considering the algebraic field extension
K(F1, . . . , Fd) ⊆ K(X), we see that there exist positive integers `1, `2, `3 such that

Gm`1 = det(TGm)

= det(THF)

= det(TH)det(TF)

= ±µ`2
H,0µ`3

F,0.

The first equality follows from Gm ∈ K[F1, . . . , Fd] (as in Example 6.40), the second
from Gm = HF, the third from multiplicativity of determinants and the fact that
THF = THTF, and the fourth from Lemma 6.39. Since H ∈ K[X], Lemma 6.38
implies that µH,0 ∈ K[F1, . . . , Fd]. Thus, the equation

Gm`1 = ±µ`2
H,0µ`3

F,0

lives in the polynomial ring K[F1, . . . , Fd], so G ∈
√
〈µF,0〉 ⊆ K[F1, . . . , Fd].

(⇐): If Gm = HµF,0 for some positive integer m and some H ∈ K[F1, . . . , Fd],
then µF,0|Y = 0 implies that Gm|Y = 0, from which it follows that G|Y = 0.

Having proved the claim, we now prove the theorem. Consider the restriction

ϕ : K[F1, . . . , Fd]→ K[Y]
G 7→ G|Y.

The claim implies that ker(ϕ) =
√
〈µF,0〉. Since F1, . . . , Fd are algebraically

independent, K[F1, . . . , Fd] is a polynomial ring, so Proposition 1.31 implies that√
〈µF,0〉 = 〈Q〉 where Q is the product of the distinct irreducible factors of µF,0.

Thus, by the First Isomorphism Theorem, we obtain an injection

[ϕ] :
K[F1, . . . , Fd]

ker(ϕ) = 〈Q〉 → K[Y]

[G] 7→ G|Y.

Since µF,0 is not a unit, then neither is Q, so it must depend on at least one of
the generators; without loss of generality, assume that it depends on Fd. Then
[F1], . . . , [Fd−1] are algebraically independent in the domain of [ϕ], and by injec-
tivity, it follows that F1|Y, . . . , Fd−1|Y are algebraically independent in K[Y]. Thus,
Proposition 6.32 implies that dim(Y) ≥ d− 1, as desired.
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As mentioned before the statement of Theorem 6.42, we can actually prove a
stronger statement of the fundamental theorem. Theorem 6.42 asserts that at least
one of the irreducible components of X ∩ V( f ) has dimension dim(X)− 1. How-
ever, it actually turns out that every irreducible component of X ∩ V( f ) has dimen-
sion dim(X)− 1, as we now verify.

6.43 THEOREM Strong Fundamental Theorem of Dimension

If X ⊆ An is an irreducible affine variety and f ∈ K[x1, . . . , xn] is a polyno-
mial such that X ∩V( f ) is neither empty nor all of X, then every irreducible
component of X ∩ V( f ) has dimension dim(X)− 1.

PROOF As in the proof of Theorem 6.42, set Y = X ∩ V( f ). Let Y′ be any
irreducible component of Y and let Y′′ be the union of the other irreducible compo-
nents. Since Y′′ ( Y′ ∪ Y′′, we may choose a polynomial g ∈ K[x1, . . . , xn] such
that g|Y′′ = 0 but g|Y′ 6= 0. Choose defining equations X = V( f1, . . . , fm), and
define two new varieties in An+1 by

X̃ = V( f1, . . . , fm, xn+1g− 1) and Ỹ = V( f1, . . . , fm, f , xn+1g− 1).

Notice that Ỹ = X̃ ∩ V( f ).
It can be shown (see Exercise 6.6.3) that X̃ and Ỹ are irreducible with

K(X̃) ∼= K(X) and K(Ỹ) ∼= K(Y′).

Since dimension is defined only in terms of the function field, it follows that

dim(X̃) = dim(X) and dim(Ỹ) = dim(Y′).

Since ∅ ( Y′ ( X, we see that

−1 < dim(Y′) = dim(Ỹ) < dim(X) = dim(X̃).

This implies that Ỹ = X̃ ∩ V( f ) is a nonempty, proper subset of X̃. Therefore, the
hypotheses of Theorem 6.42 are all met with respect to X̃ and Ỹ, and we conclude
that

dim(Y′) = dim(Ỹ) = dim(X̃)− 1 = dim(X)− 1.

By repeatedly applying Theorem 6.43, one obtains the following concrete appli-
cation, which says that the codimension of an affine variety is bounded above by the
number of defining equations.

6.44 COROLLARY Defining equations and dimension

If X = V( f1, . . . , fk) ⊆ An is nonempty, then dim(X) ≥ n− k.

PROOF Exercise 6.6.4

In proving the previous corollary, the reader will recognize why the strong form
of the Fundamental Theorem of Dimension is so much more useful than the weak.
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Theorem 6.43 also implies the following alternative characterization of dimension,
which, in many algebraic geometry textbooks, is taken as the definition.

6.45 COROLLARY Chains of inclusions and dimension

If X ⊆ An is an affine variety, then dim(X) is equal to the maximum d such
that there exist irreducible affine varieties X0, . . . , Xd ⊆ An with

X0 ( X1 ( · · · ( Xd ⊆ X.

PROOF Exercise 6.6.6

In concluding this chapter, we mention that it is totally reasonable to study di-
mension of algebraic varieties over fields that are not algebraically closed, such as
R. In this setting, the Fundamental Theorem of Dimension Theory fails wildly (see
Exercise 6.6.7, for example). However, the results discussed in Section 6.5 continue
to hold, because they did not require the Nullstellensatz. Surprisingly, even though
our proof of Corollary 6.45 required the Nullstellensatz, one can actually circumvent
the Nullstellensatz and prove that this characterization is equal to the transcendence
degree definition over general fields. For this, and more general results on dimension
theory, we direct the reader to a more advanced text on commutative algebra.

Exercises for Section 6.6
6.6.1 Let L ⊆ M be an algebraic extension and let a be an element of M whose

minimal polynomial has degree d.

(a) Prove that {1, a, . . . , ad−1} is a basis of L(a) as a vector space over L.

(b) If b1, . . . , b` ⊆ M is a basis for M as a vector space over L(a), prove
that {biaj | 1 ≤ i ≤ `, 0 ≤ j ≤ d− 1} is a basis of M as a vector space
over L.

(c) Given a basis of the form in Part (b), prove that the matrix associated to
the linear transformation Ta : M → M is block diagonal of the form
given in the proof of Lemma 6.39.

6.6.2 Let X ⊆ An be an affine variety and f ∈ K[x1, . . . , xn]. Use the Nullstellen-
satz to prove that F ∈ K[X] vanishes on X ∩ V( f ) if and only if

F ∈
√
〈 f |X〉.

6.6.3 Let X = V( f1, . . . , fm) ⊆ An and let X′ be any irreducible component of X.
Let g ∈ K[x1, . . . , xn] be a polynomial that vanishes on every component of
X except X′, and define

X̃ = V( f1, . . . , fm, xn+1g− 1) ⊆ An+1.

This exercise proves that X̃ is irreducible and that K(X̃) = K(X′).
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(a) Consider the homomorphism

ϕ : K[x1, . . . , xn, xn+1]→ K(X′)

h(x1, . . . , xn, xn+1) 7→ [h(x1, . . . , xn, g−1)].

Prove that ker(ϕ) = I(X̃).
(b) Applying the First Isomorphism Theorem, Part (a) implies that the ho-

momorphism [ϕ] : K[X̃] → K(X′) is an injection. Use this to explain
why X̃ is irreducible.

(c) Use [ϕ] to prove that K(X̃) ∼= K(X′).

6.6.4 Prove Corollary 6.44.

6.6.5 Suppose that f , g ∈ K[x, y, z] have at least one common zero. Prove that they
have infinitely many common zeros.

6.6.6 Prove Corollary 6.45.

6.6.7 Prove that every affine variety over R can be realized as the vanishing of
a single polynomial. In particular, over R, the dimension of a variety has
nothing to do with the number of defining equations.

6.6.8 Let X be an affine variety. Prove that the dimension of X is equal to the
maximum d such that there exist prime ideals P0, . . . , Pd ⊆ K[X] such that

P0 ( P1 ( · · · ( Pd ( K[X].

(The supremum of lengths of chains of prime ideals in a ring is called the
Krull dimension of the ring, and this exercise proves that the dimension of an
affine variety is equal to the Krull dimension of its coordinate ring.)
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Chapter 7

Tangent Spaces and Smoothness
LEARNING OBJECTIVES FOR CHAPTER 7

• Build intuition for linearizations and tangent spaces.

• Develop tools for computing linearizations and tangent spaces.

• Understand the intrinsic nature of tangent spaces.

• Explore the relationship between the dimension of a variety and the di-
mensions of its tangent spaces.

• Determine the smooth and singular points of affine varieties.

There is a very good chance that the pictures of affine varieties that we have de-
picted in this book have taken you back to your days of calculus. You probably recall
computing derivatives and tangent spaces in your calculus class, and you may also
remember that derivatives and tangent spaces provide a way to characterize where
graphs have “singularites.” For example, the fact that the derivative of the abso-
lute value function f (x) = |x| is undefined at x = 0 corresponds to the geometric
observation that the graph has a “corner” over x = 0. Our goal in this chapter is
to introduce the “calculus” of algebraic geometry; in particular, we aim to develop
the notions of linearizations and tangent spaces and to use them to give a precise
meaning of singular points of affine varieties.

We begin this chapter by defining tangent spaces in Section 7.1. Given an affine
variety X ⊆ An and a point a ∈ X, the tangent space TaX is a vector subspace of
Kn whose elements can geometrically be viewed as vectors that are tangent to X at a.
As we discuss in Section 7.2, viewing TaX as an algebraic object (a vector space) is
especially important because it allows us to interpret tangent spaces intrinsically in
terms of the coordinate ring K[X]. In particular, this implies that isomorphic affine
varieties have isomorphic tangent spaces at corresponding points. The dimension of
the tangent space TaX as a vector space is always bounded below by the dimension
of X, as we prove in Section 7.3, and the special points at which the tangent space
has larger dimension are the singular points of the variety. We close this chapter by
discussing properties of smooth and singular points in Section 7.4.

191



192 CHAPTER 7. TANGENT SPACES AND SMOOTHNESS

Section 7.1 Linearizations and tangent spaces
Tangent lines and tangent planes play a starring role in most single- and multi-
variable calculus classes. In these classes, one typically starts with a definition of
the derivative in terms of limits, then uses the limit definition to derive the standard
rules for differentiation. For example, one of the standard differentiation rules states
that the derivative of xk is kxk−1 for any k ∈ N. Since limits do not make sense
over a general ground field K, the starting point for our discussion of tangency in
algebraic geometry is with the differentiation rules for polynomials.

We assume that the reader is familiar with the standard rules for differentiating
multi-variable polynomials, and we extend these formulas to any ring R. In other
words, if

f = amxm + am−1xm−1 + · · ·+ a1x + a0 ∈ R[x],

then the derivative of f with respect to x is defined by

∂ f
∂x

= mamxm−1 + (m− 1)am−1xm−2 + · · ·+ a1 ∈ R[x],

where mam refers to adding am to itself m times. If f ∈ R[x1, . . . , xn] is a multi-
variable polynomial, then we can define a partial derivative ∂ f

∂xi
for each variable xi

by differentiating f as an element of R′[xi], where

R′ = R[x1, . . . , xi−1, xi+1, . . . , xn].

Using these partial derivatives, the key definition required for our development of
tangent spaces is the following.

7.1 DEFINITION Linearization of a polynomial at a point

If f ∈ K[x1, . . . , xn] and a = (a1, . . . , an) ∈ An, then the linearization of f
at a is defined by

La f = f (a) +
n

∑
i=1

(
∂ f
∂xi

(a) · (xi − ai)

)
∈ K[x1, . . . , xn].

We note that ∂ f
∂xi
∈ K[x1, . . . , xn] is a polynomial and ∂ f

∂xi
(a) ∈ K denotes the

evaluation of that polynomial at a, so La f ∈ K[x1, . . . , xn] is a linear polynomial.
In multi-variable calculus (in other words, when K = R), the linearization of f at a
is introduced as the linear function that most closely approximates f near a, and it is
sometimes called the linear approximation of f at a.

The linearization of an affine variety at a point is defined as the vanishing of the
linearizations of all polynomials in the vanishing ideal.

7.2 DEFINITION Linearization of an affine variety at a point

Let X ⊆ An be an affine variety and a ∈ X. The linearization of X at a is
the affine variety

LaX = V
(
{La f | f ∈ I(X)}

)
.
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The reader is encouraged to check (Exercise 7.1.1) that, if I(X) = 〈 f1, . . . , fm〉,
then

LaX = V(La f1, . . . , La fm).

Since every vanishing ideal is finitely-generated, this implies that the linearization
can always be defined by a finite set of linear polynomials. We also note that the
initial term fi(a) in the definition of each La fi vanishes, since fi ∈ I(X) and a ∈ X.

Let us consider a few examples of linearizations.

7.3 EXAMPLE Linearizations of a parabola

Consider the parabola X = V(y − x2) ⊆ A2, for which I(X) = 〈y − x2〉. To
compute the linearization at the origin, we must compute the linearization of the
generator f = y− x2 at a = (0, 0). From the definition, we have

La f = 0(x− 0) + 1(y− 0) = y.

Thus, the linearization of the parabola at the origin is the x-axis: LaX = V(y).
If we consider the point b = (1, 1), on the

other hand, we compute

Lb f = −2(x− 1) + 1(y− 1) = −2x + y + 1.

From this, we see that the linearization of the
parabola at (1, 1) is LbX = V(−2x + y + 1).

We have depicted both of these lineariza-
tions in the image to the right, which is consistent with our intuition from calculus.

7.4 EXAMPLE Linearizations of a sphere

Consider the sphere Y = V(x2 + y2 + z2− 1) ⊆ A3
C

, for which I(Y) is generated
by g = x2 + y2 + z2 − 1. To compute the linearization at a = (0, 0,−1) ∈ Y, we
start by computing the linearization of the generator:

Lag = 0(x− 0) + 0(y− 0) +−2(z + 1) = −2(z + 1).

From this, we see that LaY = V(−2(z + 1)) = V(z + 1), which is the plane
containing a that is parallel to the xy-plane.

If, on the other hand, we consider the point
b = (1/

√
3, 1/
√

3, 1/
√

3) ∈ Y, then the lin-
earization of the generator is

Lbg =
2√
3

(
x + y + z−

√
3
)
.

Thus, we have

LbY = V
(

x + y + z−
√

3
)
.

These linearizations are depicted over the real
numbers in the image, and are again consistent with our intuition from calculus.
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7.5 EXAMPLE Linearizations of a cusp

Consider the variety X = V(x2 − y3) ⊆ A2,
pictured to the right over R. As you can see, this
curve has a “cusp” at the origin, whereas it looks
“smooth” at all other points. This geometric ob-
servation is reflected in the linearization: as the
reader is encouraged to check in Exercise 7.1.3, the linearization of X at the origin
is two-dimensional (all of A2), whereas the linearization at any other point is one-
dimensional. We will see in Section 7.4 that the dimension of the linearization is a
way of detecting the “singular” points in a variety such as the cusp in X.

We now use the notion of linearizations to define tangent spaces.

7.6 DEFINITION Tangent vector and tangent space at a point

Let X ⊆ An be an affine variety and a = (a1, . . . , an) ∈ X. For any
b = (b1, . . . , bn) ∈ LaX, the tangent vector associated to b is defined by

#»

ab = (b1 − a1, . . . , bn − an) ∈ Kn.

The tangent space of X at a is the collection of tangent vectors:

TaX = { #»

ab | b ∈ LaX} ⊆ Kn.

It is common to view the tangent vector
#»

ab
geometrically as an arrow from a to b. Return-
ing to the unit sphere from Example 7.4 and tak-
ing a = (0, 0,−1), several examples of tangent
vectors are drawn in the image to the right.

At this point the reader may (rightfully) be
confused about the distinction between LaX and
TaX—these two objects feel very similar. In
fact, the natural function

LaX → TaX

b 7→ #»

ab

is a bijection that identifies LaX with TaX as sets. Why, then, do we choose to give
these two similar objects different names and notation? The reason is that we view
LaX as a geometric object—an affine variety consisting of points in An—while we
view TaX as an algebraic object, consisting of vectors in Kn. In fact, as we will see
below, the set TaX is a vector subspace of Kn, and this key fact allows us to use
standard tools from linear algebra to study tangent spaces.

To prove that the tangent space is a vector subspace of Kn, we first discuss a
reinterpretion of TaX using gradient vectors.
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7.7 DEFINITION Gradient vector

For any a ∈ An and f ∈ K[x1, . . . , xn] the gradient of f at a is the vector

∇ f (a) =
( ∂ f

∂x1
(a), . . . ,

∂ f
∂xn

(a)
)
∈ Kn.

The next result characterizes tangent spaces in terms of gradient vectors, simi-
larly to how tangent planes are computed in multivariable calculus.

7.8 PROPOSITION Characterization of tangent spaces

Let X ⊆ An be an affine variety and a ∈ X. Then

TaX = {~v ∈ Kn | ∇ f (a) ·~v = 0 for all f ∈ I(X)}.

The “·” appearing in Proposi-
tion 7.8 is the standard dot product.

PROOF Let ~v = (v1, . . . , vn) ∈ Kn.
By the definition of TaX, we see that
~v ∈ TaX if and only if ~v =

#»

ab for
some b ∈ LaX. Unwinding this, it is

equivalent to the requirement that

b := (v1 + a1, . . . , vn + an) ∈ LaX.

By the definition of LaX, we have that b ∈ LaX if and only if, for all f ∈ I(X),

0 = La f (b) =
n

∑
i=1

[ ∂ f
∂xi

(a)
]
(bi − ai) = ∇ f (a) ·~v.

Thus, ~v ∈ TaX if and only if ∇ f (a) ·~v = 0 for all f ∈ I(X).

As in the case of LaX, it is straightforward to verify that, if we have a finite set
of generators I(X) = 〈 f1, . . . , fm〉, then the vanishing of Proposition 7.8 need only
be checked on the generators:

TaX = {~v ∈ Kn | ∇ fi(a) ·~v = 0 for all i = 1, . . . , m}.

As a consequence of Proposition 7.8, we now prove that TaX is a vector space.

7.9 COROLLARY The tangent space is a vector space

Let X ⊆ An be an affine variety and a ∈ X. The tangent space TaX is a
vector subspace of Kn.

PROOF Suppose ~v, ~w ∈ TaX and r ∈ K. To check that the tangent space is a
vector subspace, we must check that ~v + r~w ∈ TaX. To accomplish this, Proposi-
tion 7.8 says that we must check that ∇ f (a)(~v + r~w) = 0 for all f ∈ I(X). Let
f ∈ I(X). Then

∇ f (a) · (~v + r~w) = ∇ f (a) ·~v + r∇ f (a) · ~w = 0
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where the first equality follows from the linearity of the dot product and the second
equality follows from Proposition 7.8 and the assumption that ~v, ~w ∈ TaX. There-
fore, by Proposition 7.8, we see that ~v + r~w ∈ TaX, concluding the proof.

Starting with an affine variety X ⊆ An and a point a ∈ X, we have now defined
a vector space TaX ⊆ Kn. However, the definition of TaX we have given is extrinsic:
it depends heavily on the inclusion X ⊆ An. In the next section, our aim is to give
an intrinsic characterization of TaX that depends only on the K-algebra K[X] and
the maximal ideal Ia ⊆ K[X] comprised of polynomial functions on X that vanish
at a.

Exercises for Section 7.1
7.1.1 Let X ⊆ An be an affine variety with a ∈ X and I(X) = 〈 f1, . . . , fm〉.

(a) Prove that
LaX = V(La f1, . . . , La fm).

(b) Prove that

TaX = {~v ∈ Kn | ∇ fi(a) ·~v = 0 for all i = 1, . . . , m}

7.1.2 Give an example of an affine variety X = V( f ) ⊆ An such that

LaX 6= V(La f ).

(In other words, when computing linearizations, it does not suffice to use
defining polynomials; rather, one requires generators for the vanishing ideal.)

7.1.3 Let X = V(x2 − y3) ⊆ A2. Prove that the linearization at (0, 0) is two-
dimensional and that the linearization at any other point is one-dimensional.

7.1.4 Let X = V(x2 + y2 − z) ⊆ A3.

(a) Draw a picture of X over R.
(b) Prove that the linearization at (0, 0, 0) is three-dimensional and that the

linearization at any other point of X is two-dimensional.

7.1.5 For any affine variety X ⊆ An and a ∈ X, prove that

dim(TaX) = dim(LaX),

where the left-hand side is the dimension as a vector space and the right-hand
side is the dimension as an affine variety.



7.2. TANGENT SPACES FROM COORDINATE RINGS 197

Section 7.2 Tangent spaces from coordinate rings
In this section, our aim is to reinterpret the tangent space TaX purely in terms of
the coordinate ring K[X]. One of the most important consequences of this intrinsic
description of the tangent space is that it will imply that tangent spaces are preserved
under isomorphism. In other words, if F : X → Y is an isomorphism and a ∈ X,
then we can conclude that TaX and TF(a)Y are isomorphic vector spaces.

In order to start our intrinsic description of the tangent space, we first require an
intrinsic way of thinking about a point a ∈ X. Given a ∈ X, define

Ia = {F ∈ K[X] | F(a) = 0} ⊆ K[X].

From the definition, we see that Ia is a subset of K[X]. However, more is true: Ia is
a maximal ideal (Exercise 7.2.1).

In the quotient description of K[X], the definition of Ia can be made quite con-
crete. To see this, suppose that X ⊆ An, so that K[X] = K[x1, . . . , xn]/I(X). Let
a = (a1, . . . , an) ∈ X. Then, given F = [ f ] ∈ K[X] where f ∈ K[x1, . . . , xn], we
have F ∈ Ia if and only if f (a) = 0. Since every polynomial that vanishes at a can
be written as

f = (x1 − a1) f1 + · · ·+ (xn − an) fn

for some polynomials f1, . . . , fn ∈ K[x1, . . . , xn], we see that

(7.1) Ia =
〈
[x1 − a1], . . . , [xn − an]

〉
⊆ K[x1, . . . , xn]

I(X)
.

Our aim in this section is to prove the following result, which characterizes the
tangent space TaX in terms of Ia ⊆ K[X].

7.10 THEOREM Ia/I2
a = (TaX)∨

Let X ⊆ An be an affine variety and let a ∈ X. Then there is a canonical
vector space isomorphism

Ia/I2
a = (TaX)∨.

Before proving this theorem, we pause to parse the statement by recalling some
important concepts from linear algebra.

First of all, if V is a vector space over K, then V∨ denotes the dual space: an
element of V∨ is a linear map ϕ : V → K. Since linear maps can be added and
multiplied by scalars, the dual space is, itself, a vector space (of the same dimension
as V, if V is finite-dimensional). Therefore, the right-hand side of the equality in
Theorem 7.10 is the vector space of linear maps ϕ : TaX → K.

To parse the left-hand side of Theorem 7.10, first observe that Ia can naturally be
viewed as a vector space: adding two functions that vanish at a results in a function
that vanishes at a, and multiplying a function that vanishes at a by a scalar results in
a function that vanishes at a. The ideal I2

a = Ia · Ia is the ideal product of Ia with
itself. For example, using the generators for Ia in Equation (7.1), it follows that

(7.2) I2
a =

〈
[(xi − ai)(xj − aj)] | 1 ≤ i, j ≤ n

〉
⊆ Ia.
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Notice that I2
a is a vector subspace of Ia, so it makes sense to take a vector space

quotient Ia/I2
a . The reader is encouraged to convince themselves (Exercise 7.2.2)

that, in terms of the generators in Equation (7.1), the vector space quotient is spanned
by [x1 − a1], . . . , [xn − an]:

Ia/I2
a = K

{
[x1 − a1], . . . , [xn − an]

}
.

In particular, this implies that Ia/I2
a is a finite-dimensional vector space, and Theo-

rem 7.10 is the assertion that there is a canonical isomorphism between Ia/I2
a and

(TaX)∨ as finite-dimensional vector spaces.

PROOF OF THEOREM 7.10 We define a canonical surjective linear map

ϕ : Ia → (TaX)∨

and prove that ker(ϕ) = I2
a . To define ϕ, suppose that F ∈ Ia and write F = [ f ] for

some f ∈ K[x1, . . . , xn]. We define ϕ(F) to be the linear map

ϕ(F) : TaX → K
~v 7→ ∇ f (a) ·~v.

Of course, we should be worried that this definition depends on the choice of repre-
sentative f . However, due to Proposition 7.8, it follows (Exercise 7.2.3) that

[ f ] = [g] =⇒ ∇ f (a) ·~v = ∇g(a) ·~v for all ~v ∈ TaX,

so ϕ(F) ∈ (TaX)∨ is independent of the choice of representative f . To check that
ϕ is linear, we require that ϕ(F + rG) = ϕ(F) + rϕ(G) for any F, G ∈ K[X] and
r ∈ K; this follows from linearity of derivatives (Exercise 7.2.4). Thus, it remains
to prove that ϕ is surjective and that ker(ϕ) = I2

a .
To prove that ϕ is surjective, let ρ : TaX → K be a linear map. Define

f = ρ(~e1)(x1 − a1) + · · ·+ ρ(~en)(xn − an) ∈ K[x1, . . . , xn],

where~e1, . . . ,~en are the standard basis vectors of Kn, and notice that [ f ] ∈ Ia. We
claim that ϕ([ f ]) = 0. Unraveling the definitions, we see that ∇ f (a) ·~ei = ρ(~ei)
for all i = 1, . . . , n. Since a linear map on TaX ⊆ Kn is uniquely determined by
its values on the standard basis vectors, we have ∇ f (a) ·~v = ρ(~v) for all ~v ∈ TaX
and we conclude that ϕ([ f ]) = ρ. Thus, ϕ is surjective.

To prove that ker(ϕ) = I2
a , first suppose that F ∈ I2

a . By Equation (7.2), it
follows that F = [ f ] where f has the form

f =
n

∑
i,j=1

(xi − ai)(xj − aj) fi,j for some fi,j ∈ K[x1, . . . , xn].

Using the product rule to compute partial derivatives of f , one can calculate that
∇ f (a) =~0, from which it follows that F ∈ ker(ϕ). Thus, I2

a ⊆ ker(ϕ).
To prove the other inclusion, suppose that F ∈ ker(ϕ) and write F = [ f ] for

some f ∈ K[x1, . . . , xn]. The assumption that F ∈ ker(ϕ) means that

∇ f (a) ·~v = 0 for all ~v ∈ TaX.
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Choosing generators I(X) = 〈g1, . . . , gm〉, Proposition 7.8 and a standard result in
linear algebra (Exercise 7.2.5) then imply that

∇ f (a) =
m

∑
i=1

ai∇gi(a)

for some values a1, . . . , am ∈ K. Since gradients act linearly on polynomials and
since I(X) is closed under taking linear combinations, we then see that

∇ f (a) = ∇g(a) for some g =
m

∑
i=1

aigi ∈ I(X).

Using that F = [ f ] is in the domain of ϕ and thus [ f ] ∈ Ia, we can write

f =
n

∑
i=1

bi(xi − ai) +
n

∑
i,j=1

fij(xi − ai)(xj − aj).

Writing a similar expression for g, the equality ∇ f (a) = (b1, . . . , bn) = ∇g(a)
implies that

f − g =
n

∑
i,j=1

( fij − gij)(xi − ai)(xj − aj).

Therefore, since g ∈ I(X), we conclude that [ f ] = [ f − g], from which it follows
that

F = [ f − g] ∈
〈
[(xi − ai)(xj − aj)] | 1 ≤ i, j ≤ n

〉
= I2

a ,

finishing the proof.

A very important fact about duals of finite-dimensional vector spaces is that there
is a canonical isomorphism

(7.3) V = (V∨)∨

that takes a vector ~v ∈ V to the linear map V∨ → K that sends ϕ ∈ V∨ to ϕ(~v). If
the reader has never pondered this fact, we encourage them to take some moments
to reflect on this isomorphism; in particular, it is a useful exercise to verify that it
is both injective and surjective. Taking duals of both sides in Theorem 7.10 and
applying (7.3), we arrive at the following result.

7.11 COROLLARY TaX = (Ia/I2
a )
∨

Let X ⊆ An be an affine variety and let a ∈ X. Then there is a canonical
vector space isomorphism

TaX = (Ia/I2
a )
∨.

The importance of Corollary 7.11 is that it leads to a completely intrinsic inter-
pretation of the tangent space. We spell this out carefully in the next result.
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7.12 COROLLARY Tangent spaces are intrinsic

Let X and Y be affine varieties, F : X → Y an isomorphism, and a ∈ X.
Then F induces a vector space isomorphism

TaX ∼= TF(a)Y.

PROOF By Exercise 7.2.6, the pullback F∗ : K[Y] → K[X] identifies the maxi-
mal ideals IF(a) and Ia:

F∗(IF(a)) = Ia,

from which it also follows that

F∗(I2
F(a)) = I2

a .

Therefore, F∗ induces a vector space isomorphism IF(a)/I2
F(a)
∼= Ia/I2

a , and taking
duals gives an isomorphism TaX ∼= TF(a)Y.

Exercises for Section 7.2
7.2.1 Let X be an affine variety and a ∈ X a point. Prove that Ia ⊆ K[X] is a

maximal ideal.

7.2.2 Let X ⊆ An be an affine variety and a ∈ X. Prove that

Ia/I2
a = K

{
[x1 − a1], . . . , [xn − an]

}
.

7.2.3 Let X ⊆ An be an affine variety and a ∈ X. Prove that if [ f ] = [g] ∈ K[X],
then ∇ f (a) ·~v = ∇g(a) ·~v for all ~v ∈ TaX.

7.2.4 Let ϕ be defined as in the proof of Theorem 7.10. For any F, G ∈ K[X] and
r ∈ K, use linearity of derivatives to prove that

ϕ(F + rG) = ϕ(F) + rϕ(G).

7.2.5 Let ~v1, . . . ,~vm ∈ Kn and let V ⊆ Kn be the linear subspace defined by

V = {~v ∈ Kn | ~vi ·~v = 0 for all i = 1, . . . , m}.

Suppose that ~w ∈ Kn satisfies ~w ·~v = 0 for all ~v ∈ V. Prove that ~w is in the
span of ~v1, . . . ,~vm. (Hint: Consider the matrix M with rows ~v1, . . . ,~vm. and
the matrix M′ obtained from M by appending the row ~w. Use a rank-nullity
argument to prove that rk(M) = rk(M′).)

7.2.6 Let X ⊆ Am and Y ⊆ An be affine varieties, F : X → Y an isomorphism,
and a ∈ X. Prove that F∗ : K[Y] → K[X] identifies the maximal ideals IF(a)
and Ia:

F∗(IF(a)) = Ia.



7.3. TANGENT SPACES AND DIMENSION 201

Section 7.3 Tangent spaces and dimension
In Section 7.1, we saw several examples of linearizations and tangent spaces. One
thing you may have observed is that the dimension of the tangent space was some-
times bigger than, but never smaller than, the dimension of the variety itself. That
the dimension of an irreducible variety gives a lower bound for the dimension of the
tangent space at any point on that variety is the main result of this section.

7.13 PROPOSITION Lower bound on tangent space dimension

Let X ⊆ An be an irreducible affine variety and a ∈ X. Then

dim(TaX) ≥ dim(X).

We note that the dimension appearing in the left-hand side of the inequality is
the dimension of TaX ⊆ Kn as a vector space, while the dimension in the right-
hand side is the dimension of X ⊆ An as an affine variety. If one prefers, they
may interpret both sides of the inequality in Proposition 7.13 as dimensions of affine
varieties in An by noting (Exercise 7.1.5) that dim(TaX) = dim(LaX).

Before proving Proposition 7.13, we first prove a stronger biconditional result in
the zero-dimensional setting.

7.14 LEMMA Zero-dimensional tangent spaces

If X ⊆ An is an irreducible affine variety and a ∈ X, then dim(X) = 0 if
and only if dim(TaX) = 0.

PROOF If dim(X) = 0, then X consists of the single point a and it can be
checked from the definitions that TaX = {0} (Exercise 7.3.1).

To prove the other direction, suppose that dim(TaX) = 0 and consider the
maximal ideal Ia ⊆ K[X] comprised of polynomial functions that vanish at a. Our
aim is to show that Ia is the zero ideal, from which it follows that the zero ideal is
maximal in K[X], so K[X] is a field, from which the Nullstellensatz implies that X
is a single point.

Since a finite-dimensional vector space and its dual have the same dimension,
Theorem 7.10 and the assumption that dim(TaX) = 0 imply that Ia = I2

a . Choose
generators

Ia = 〈F1, . . . , Fm〉.

Since Ia = I2
a , we can view each Fi as an element of I2

a , allowing us to find equations
of the form

Fi = Gi,1F1 + · · ·+ Gi,mFm,

where Gi,j ∈ Ia for each i, j = 1, . . . , m. Thus, we obtain a system of linear equa-
tions

(I − G) ·

 F1
...

Fm

 =

 0
...
0

 ,
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where G is the matrix with entries Gi,j. An application of Cramer’s rule then implies
that

det(I − G)Fi = 0 ∈ K[X]

for all i = 1, . . . , m, where I is the m×m identity matrix. Notice that det(I − G)
is a polynomial function on X, and because Gi,j(a) = 0 for all i, j, we see that
det(I − G) takes value 1 at a. Thus, det(I − G) is not the zero function on X,
and because K[X] is an integral domain (here, we use the assumption that X is
irreducible), we conclude that Fi = 0 for all i. Thus, Ia is the zero ideal, concluding
the proof.

We now prove Proposition 7.13. The proof uses induction on dim(X), where
the induction step (which requires Lemma 7.14) is accomplished by slicing both
X and LaX with a hyperplane—a variety defined by a single linear equation—and
applying the Fundamental Theorem of Dimension Theory.

PROOF OF PROPOSITION 7.13 Given an irreducible affine variety X ⊆ An and
a point a ∈ X, we prove that dim(TaX) ≥ dim(X) by induction on dim(X).

Base case: If dim(X) = 0, then the fact that vector space dimensions are non-
negative implies dim(TaX) ≥ dim(X). (In fact, by Lemma 7.14, we know more:
dim(TaX) = dim(X) in this case.)

Induction step: Let X ⊆ An be an irreducible affine variety of positive di-
mension, and suppose that the inequality of the proposition holds for all irreducible
affine varieties of dimension dim(X)− 1. Let a = (a1, . . . , an) ∈ X.

Since we have assumed that dim(X) > 0, the “if” direction of Lemma 7.14
implies that TaX ) {0}, which is equivalent to LaX ) {a}. Thus, we can choose
a point b ∈ LaX \ {a}. The two points a, b ∈ An must differ in at least one
coordinate; without loss of generality, assume that they differ in the first coordinate
and define the hyperplane

H = V(x1 − a1) ⊆ An.

Set Y = X ∩ H. Notice first that Y cannot be all of X. Indeed, if Y = X, then
X ⊆ H, which would imply that LaX ⊆ H (Exercises 7.3.2 and 7.3.3). But H was
chosen specifically so that b ∈ LaX but b /∈ H, so LaX 6⊆ H. Thus, we indeed have
Y 6= X. Moreover, since a ∈ Y, we conclude that

(7.15) ∅ ( Y ( X,

from which the Fundamental Theorem of Dimension Theory implies that every irre-
ducible component of Y has dimension dim(X)− 1.

Let Z be an irreducible component of Y that contains a. Since Z ⊆ X and
Z ⊆ H, we have that LaZ ⊆ LaX (Exercise 7.3.2) and LaZ ⊆ H (Exercise 7.3.3).
This implies that

(7.16) LaZ ⊆ LaX ∩ H ( LaX,

from which it follows that TaZ ( TaX, so dim(TaZ) < dim(TaX).
Putting everything together and using the induction hypothesis on Z, we have

that
dim(X)− 1 = dim(Z) ≤ dim(TaZ) ≤ dim(TaX)− 1,

from which it follows that dim(X) ≤ dim(TaX), completing the proof.
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While Proposition 7.13 gives a lower bound for the dimension of TaX, there
does not exist an upper bound. To illustrate this point, the next example describes a
method for constructing affine curves containing a point at which the tangent space
has arbitrarily high dimension.

7.17 EXAMPLE Small varieties with big tangent spaces

Fix n ≥ 1 and consider the affine variety

Xn = V(xn
2 − xn+1

1 , xn
3 − xn+2

1 , . . . , xn
n − x2n−1

1 ) ⊆ An.

Note that X2 is the cusp of Example 7.5. It can be shown (Exercise 7.3.4) that Xn is
a one-dimensional irreducible affine variety and that its points take the form

Xn =
{
(bn, bn+1, . . . , b2n−1) | b ∈ A1}.

Let a = (0, . . . , 0) ∈ X; we argue that LaXn = An, implying that TaXn = Kn.
Recall that LaXn = V(La f | f ∈ I(X)). So consider a polynomial

f ∈ I(Xn) ⊆ K[x1, . . . , xn].

Since f vanishes at a = (0, . . . , 0) ∈ Xn, it has a vanishing constant term and we
can write

f =
n

∑
i=1

cixi + g

where ci ∈ K and the terms in g all have degree at least two. Evaluating at a point
(bn, . . . , b2n−1) ∈ Xn, we have

0 = f (bn, . . . , b2n−1) =
n

∑
i=1

cibn+i−1 + g(bn, . . . , b2n−1).

Since this relation holds for all b ∈ A1, it follows that the associated polynomial is
the zero polynomial:

0 =
n

∑
i=1

ciyn+i−1 + g(yn, . . . , y2n−1) ∈ K[y].

Since the terms in ∑n
i=1 ciyn+i−1 all have distinct powers of y that are less than 2n

whereas the terms in g(yn, . . . , y2n−1) all have degree at least 2n, it follows that
ci = 0 for all i. Therefore, the linear terms in f vanish, so La f = 0. Since this holds
for all f ∈ I(Xn), we conclude that LaXn = V(0) = An and TaXn = Kn.

The Whitney Embedding Theo-
rem states that any n-dimensional
smooth manifold can be viewed as a
submanifold of R2n−1.

The previous example has an inter-
esting consequence about embedding
affine varieties that can be contrasted
with the Whitney Embedding Theorem
in the study of smooth manifolds. Since
the tangent space of Xn at the origin is
n-dimensional, then any affine variety isomorphic to Xn will also have a tangent
space that is n-dimensional, which implies that the curve Xn cannot be isomorphic
to any affine variety in Am with m < n. Thus, for any m > 0, this shows that there
exist one-dimensional affine varieties that cannot be embedded in Am.
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Exercises for Section 7.3
7.3.1 If X = {a} ⊆ An is a single point, prove that TaX = {0} ⊆ Kn.

7.3.2 Let X ⊆ Y ⊆ An be affine varieties. For any a ∈ X, prove that

LaX ⊆ LaY.

Conclude that TaX ⊆ TaY.

7.3.3 Prove that, if X ⊆ An is a linear variety, then LaX = X for any a ∈ X.

7.3.4 Let Xn be the affine variety defined in Example 7.17.

(a) Prove that

Xn =
{
(bn, bn+1, . . . , b2n−1) | b ∈ A1}.

(b) Prove that dim(Xn) = 1. (Hint: Prove that {[x1]} is a Noether basis.)
(c) Prove that Xn is irreducible. (Hint: Part (a) may be helpful.)

7.3.5 This exercise illustrates some strange behavior of tangent spaces that occurs
over the real numbers. Consider the irreducible real affine variety

X = V(y2 − x(x + 1)2) ⊆ A2
R.

(a) Prove that (−1, 0) is an isolated point of X. In other words, prove that
(−1, 0) ∈ X and you can find a circular disk D of some positive radius
centered at (−1, 0) such that D ∩ X = {(−1, 0)}.

(b) Given that (−1, 0) is an isolated point of X, you might expect that
dim(T(−1,0)X) = 0. To the contrary, show that dim(T(−1,0)X) = 2.

(c) As we have seen in previous examples, the real solutions of polynomial
equations do not typically see the whole picture; often one needs to look
at the complex solutions. If we consider the complex variety

XC = V(y2 − x(x + 1)2) ⊆ A2
C,

what do you think is happening at the point (−1, 0) ∈ XC that helps
explain your answer to part (b)?
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Section 7.4 Smooth and singular points
One of the most important aspects of tangent spaces is that they detect when affine
varieties have “kinks” or “cusps.” For instance, we saw in Example 7.5 that the
“cusp” point in the variety V(x2 − y3) ⊆ A2 is special in that the tangent space at
this point is two-dimensional, while the tangent space at all other points is only one-
dimensional. Such special points in a variety where the dimension of the tangent
space jumps are called singular points, as we make precise in the next definition.

7.18 DEFINITION Smooth and singular points

Let X be an irreducible affine variety and let a ∈ X. We say that X is smooth
at a if dim(TaX) = dim(X); otherwise, we say that X is singular at a. We
say that X is smooth if it is smooth at every point a ∈ X; otherwise, we say
that X is singular.

By Proposition 7.13, singular points
are points a ∈ X for which

dim(TaX) > dim(X).

One can also define smoothness of re-
ducible varieties, but because different
components can have different dimen-
sions, the dimension of X should be
replaced with its local dimension at a,
which is the maximum dimension of all

irreducible components that contain a. For simplicity, we restrict our focus to irre-
ducible varieties throughout our discussion of smoothness.

7.19 EXAMPLE Affine space is smooth

Since I(An) = {0} ⊆ K[x1, . . . , xn], it follows that, for any a ∈ An, we have

LaAn = V(La0) = V(0) = An,

which implies that TaAn = Kn. Therefore,

dim(TaAn) = dim(Kn) = n = dim(An),

showing that An is smooth at all points.

7.20 EXAMPLE The cusp is singular at the origin

Consider the variety X = V(x2− y3) ⊆ A2 of Example 7.5. By Exercise 7.1.3, the
tangent space is two-dimensional at (0, 0) and one-dimensional at all other points of
X. Since X is itself a one-dimensional variety, this shows that X is singular at the
origin but smooth at all other points.

7.21 EXAMPLE The cone is singular at the origin

Let X = V(x2 + y2 − z2) ⊆ A3, which is the
cone whose real points are depicted to the right.
It can be shown that X is singular at the origin,
where the surface is pinched down to a point,
but smooth at all other points (Exercise 7.4.4).
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Given that the tangent spaces of an affine variety X ⊆ An are vector subspaces
of Kn, one might rightfully expect that tools from linear algebra can be used to
determine the singular points of a variety. The key object we require to import linear
algebra tools into studying tangent spaces and singularities is the Jacobian matrix,
which simply organizes the partial derivatives of a finite collection of polynomials.

7.22 DEFINITION Jacobian matrix

Given polynomials f1, . . . , fm ∈ K[x1, . . . , xn], the Jacobian matrix of
f1, . . . , fm is the m× n matrix

Jac f1,..., fm =


∂ f1
∂x1

· · · ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

· · · ∂ fm
∂xn

 .

Notice that the entries in the matrix Jac f1,..., fm are all elements of K[x1, . . . , xn],
so it makes sense to evaluate them at any point a ∈ An, obtaining an m× n matrix

Jac f1,..., fm(a) ∈ Kmn.

The next result interprets the tangent space at a as the kernel of this matrix, which
leads to a determinantal characterization of the singular points of a variety.

7.23 PROPOSITION Jacobian criterion for smoothness

If X ⊆ An is an irreducible affine variety with I(X) = 〈 f1, . . . , fm〉, then

TaX = ker(Jac f1,..., fm(a)).

Consequently, X is singular at a ∈ X if and only if

rk(Jac f1,..., fm(a)) < codim(X).

PROOF Notice that the rows of Jac f1,..., fm(a) are the gradients of the functions
f1, . . . , fm:

Jac f1,..., fm(a) =

 ∇ f1(a)
...

∇ fm(a)

 .

By definition of matrix multiplication, we have that ~v ∈ ker(Jac f1,..., fm(a)) if and
only if ∇ fi(a) · ~v = 0 for all i = 1, . . . , m. Therefore, Proposition 7.8 and the
comments immediately following its proof imply that

TaX = ker(Jac f1,..., fm(a)).

The Rank-Nullity Theorem then implies that

dim(TaX) = n− rk(Jac f1,..., fm(a)).
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By Proposition 7.13, it follows that

rk(Jac f1,..., fm(a)) ≤ codim(X),

and the definition of smooth and singular points then implies that X is singular at a
if and only if equality fails.

The Jacobian criterion is especially simple in the case of hypersurfaces.

7.24 EXAMPLE Jacobian criterion for hypersurfaces

Let X = V( f ) where f ∈ K[x1, . . . , xn] is irreducible, so that I(X) = 〈 f 〉. Then
codim(X) = 1 and the Jacobian criterion says that X is singular at a if and only if
the 1× n matrix ( ∂ f

∂x1
(a) · · · ∂ f

∂xn
(a)
)

has rank zero. Thus, X is singular at a if and only if

∂ f
∂x1

(a) = · · · = ∂ f
∂xn

(a) = 0.

By Proposition 7.23, the singular points of a variety are characterized as the
points where the Jacobian drops rank. A convenient attribute of this characterization
is that the points at which the Jacobian drops rank are, themselves, the solutions of a
system of polynomial equations. This leads to the following important consequence.

7.25 COROLLARY Singular points are closed

If X ⊆ An is an irreducible affine variety and Sing(X) ⊆ X is the set of
singular points of X, then Sing(X) is also an affine variety.

Before presenting the proof, we first recall that an r× r minor of a matrix M is
the determinant of an r × r matrix obtained by removing some subset of rows and
columns from M, and an important linear algebra result states that rk(M) < r if
and only if all r× r minors of M vanish.

PROOF OF COROLLARY 7.25 Choose a generating set I(X) = 〈 f1, . . . , fm〉
and, for simplicity, set r = codim(X). By Proposition 7.23, a point a ∈ An is a
singular point of X if and only if fi(a) = 0 for all i = 1, . . . , m and

rk(Jac f1,..., fm(a)) < r.

Thus, Sing(X) is the vanishing set of the polynomials f1, . . . , fm ∈ K[x1, . . . , xn]
together with the r × r minors of Jac f1,..., fm , each of which is a polynomial in
K[x1, . . . , xn].

Knowing that Sing(X) is an affine variety allows us to study Sing(X) using all
of the tools in our affine variety toolkit. For instance, the next example uses this fact
to show that “almost all points” (in a dimension-theoretic sense) of an irreducible
hypersurface are smooth.
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7.26 EXAMPLE Generic smoothness of irreducible hypersurfaces

Let X = V( f ) ⊆ An where f ∈ K[x1, . . . , xn] is irreducible. We claim that X has
at least one smooth point. To justify this, suppose to the contrary that every point of
X is singular. By the Jacobian criterion, this implies that

∂ f
∂x1

, . . . ,
∂ f
∂xn
∈ K[x1, . . . , xn]

all vanish on X, so they are elements of the vanishing ideal I(X) = 〈 f 〉. Since f
is irreducible, it cannot be constant; without loss of generality, suppose that f has
positive degree in x1. Then ∂ f

∂x1
is not the zero polynomial and has degree strictly

less than f , contradicting that it is an element of 〈 f 〉.
Thus, X has at least one smooth point, from which it follows that Sing(X) ( X.

Knowing that both Sing(X) and X are affine varieties, and that X is irreducible, it
then follows from Proposition 6.35 that dim(Sing(X)) < dim(X). In other words,
since the dimension of Sing(X) is strictly smaller than X, this says that the singular
points are very special points of X: almost all points of X are smooth, a property
that is often referred to as generic smoothness.

We note that generic smoothness holds for general affine varieties and follows
from the fact that every affine variety has at least one smooth point. A proof of the
latter fact is slightly beyond the scope of our current discussion.

Exercises for Section 7.4
7.4.1 Consider the affine variety X = V(y2 − x3 − x2) ⊆ A2

C.

(a) Draw a picture of the real points of X and make a conjecture about where
X might be singular.

(b) Use the Jacobian criterion to determine all points where X is singular.

7.4.2 Let f ∈ K[x1, . . . , xn] be a square-free polynomial and consider the affine
variety X = V(x2

n+1 − f ) ∈ An+1.

(a) Prove that X is irreducible.
(b) Prove that X is smooth.

7.4.3 Prove that the complex unit sphere

X = V(x2
1 + · · ·+ x2

n − 1) ⊆ An
C

is smooth.

7.4.4 Prove that the cone V(x2 + y2 − z2) ⊆ A3 is singular at the origin and
smooth at all other points.

7.4.5 Consider the curve X = V(y− x2, z− x3) ⊆ A3. Prove that X is smooth
using two different methods:

(a) by proving that X is isomorphic to A1; and
(b) by applying the Jacobian criterion.



Chapter 8

Products
LEARNING OBJECTIVES FOR CHAPTER 8

• Prove that the product of affine varieties is an affine variety, and determine
defining equations of X×Y from those of X and Y.

• Describe the elements of a tensor product of R-modules, and use the tensor
product rules to detect when two elements are equal.

• Identify, in several examples, a tensor product of R-modules with a more
familiar module.

• Prove that a tensor product of two polynomial rings is isomorphic as an
algebra to a polynomial ring.

• Compute the coordinate ring of X×Y as a tensor product of the coordinate
rings of X and Y.

A common way in which to build new mathematical objects from old is to take
Cartesian products. The product of two topological spaces, for example, is a topo-
logical space when equipped with the product topology, and the product of two
groups is a group when equipped with the componentwise operation. In this chap-
ter, we seek to understand the Cartesian product of two affine varieties.

It takes a small bit of work to convince oneself that the product of affine vari-
eties is itself an affine variety, but after carrying this out, the equivalence of algebra
and geometry invites a natural question: what is the algebraic operation on coordi-
nate rings that corresponds to the geometric operation of Cartesian product? More
precisely, how is the K-algebra K[X×Y] related to K[X] and K[Y]?

The answer to this question is that K[X × Y] is the tensor product of K[X] and
K[Y]; in the special case where X = Y = A1, this is the statement that K[x, y]
is the tensor product of K[x] and K[y]. Because tensor products are likely to be
unfamiliar—or if not unfamiliar, then intimidating—to many readers, we do not
assume any prior knowledge of them. Instead, we start from the goal of defining an
algebraic operation that combines K[x] and K[y] to produce K[x, y], and we build
up the definition of the tensor product slowly to suit that goal. After studying the
definition and properties of tensor products, we will be prepared to prove that

K[X×Y] = K[X]⊗K K[Y]

for any affine varieties X and Y. As an application, we prove in the final section of
this chapter that the product of two smooth affine varieties of dimension d and e is,
itself, a smooth affine variety of dimension d + e.

209
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Section 8.1 The product of varieties is a variety
Given affine varieties X ⊆ Am and Y ⊆ An, the Cartesian product X×Y is

X×Y := {(a, b) | a ∈ X, b ∈ Y} ⊆ Am ×An.

In what follows, we use different
variable sets for Am and An to
avoid confusing the two.

On the other hand, Am ×An is canon-
ically identified with Am+n, so we can
view

X×Y ⊆ Am+n.

Our first goal is to prove that, in this affine space, X×Y is itself an affine variety.

8.1 PROPOSITION The product of varieties is a variety

The product of affine varieties is a variety. Specifically, if

X = V( f1, . . . , fr) ⊆ Am and Y = V(g1, . . . , gs) ⊆ An,

where f1, . . . , fr ∈ K[x1, . . . , xm] and g1, . . . , gs ∈ K[y1, . . . , yn], then

X×Y = V( f1, . . . , fr, g1, . . . , gs) ⊆ Am+n,

in which we view both f1, . . . , fr and g1, . . . , gs as elements of the larger
polynomial ring K[x1, . . . , xm, y1, . . . , yn].

PROOF A point (a, b) = (a1, . . . , an, b1, . . . , bm) ∈ Am+n lies in X × Y if and
only if a ∈ X and b ∈ Y, which, by the definitions of X and Y as vanishing sets, is
true if and only if

f1(a) = · · · = fr(a) = 0

and
g1(b) = · · · = gs(b) = 0.

If we now view f1, . . . , fr as elements of K[x1, . . . , xm, y1, . . . , yn] that happen to
involve only the first m variables, then fi(a, b) = fi(a). Similarly, gj(a, b) = gj(b).
Thus, (a, b) ∈ X×Y if and only if

f1(a, b) = · · · = fr(a, b) = g1(a, b) = · · · = gs(a, b) = 0,

which says precisely that X×Y = V( f1, . . . , fr, g1, . . . , gs).

8.2 EXAMPLE A parabola in A3

Let X = V(y− x2) ⊆ A2 and Y = V(z− 1) ⊆ A1. Then

X×Y = V(y− x2, z− 1) ⊆ A3,

which is a parabola contained in the plane that is parallel to the xy-plane and at a
height of 1.
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8.3 EXAMPLE A cylinder

Let X = V(x2 + y2 − 1) ⊆ A2 and Y = A1. Then

X×Y = V(x2 + y2 − 1) ⊆ A3,

which is vertical cylinder depicted below.

× =

Passing from the world of geometry to the world of algebra, we are met with the
next natural question, the one that motivates the rest of this chapter: can we compute
the coordinate ring K[X×Y] in terms of the two coordinate rings K[X] and K[Y]?

The best possible answer to this question would be to specify an algebraic oper-
ation ? such that

K[X] ? K[Y] = K[X×Y]

for all affine varieties X and Y. Whatever ? might be, a special case would neces-
sarily be that

K[x] ? K[y] = K[x, y],

coming from taking X = Y = A1 and therefore X×Y = A2.
The reader might search her mind at this moment for any ways she currently

knows to combine two K-algebras A and B to produce a new K-algebra A ? B. The
first such operation that many students learn is the direct sum A ⊕ B. This is not
what we seek, though; the natural ring structure on A⊕ B is componentwise,

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2),
(a1, b1) · (a2, b2) = (a1a2, b1b2),

and it is straightforward to show (Exercise 8.1.5) that this never produces an integral
domain. Thus, K[x, y] cannot be the same as K[x]⊕ K[y]. See Exercise 8.1.6 for
another perspective on why the direct sum is not the right operation for this purpose.

The correct choice for the operation ? turns out to be the tensor product of K-
algebras. In the next three sections, we define tensor products of any modules and
study their key properties before returning to geometry to prove that the tensor prod-
uct indeed captures the coordinate ring of a product of affine varieties.

Exercises for Section 8.1
8.1.1 Let X = V(x2− 1) ⊆ A1 and let Y = V(y− z) ⊆ A2. Draw a picture over

R of X×Y ⊆ A3.
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8.1.2 Draw a picture over R of the affine variety

Z = V(x + z2 − z, x) ⊆ A3 = A2 ×A1.

Is Z = X × Y for affine varieties X ⊆ A2 and Y ⊆ A3? If so, what are X
and Y? If not, how can you tell?

8.1.3 Draw a picture over R of the affine variety

Z = V(xy, yz, xz− x, z2 − z) ⊆ A3 = A2 ×A1.

Is Z = X × Y for affine varieties X ⊆ A2 and Y ⊆ A3? If so, what are X
and Y? If not, how can you tell?

8.1.4 Let I ⊆ K[x1, . . . , xn] and J ⊆ K[y1, . . . , ym] be nonzero ideals. Let

I′ ⊆ K[x1, . . . , xn, y1, . . . , ym]

consist of the same elements as I, but viewed as polynomials in this larger
variable set, and let J′ ⊆ K[x1, . . . , xn, y1, . . . , ym] be defined analogously.

(a) Prove that I′ and J′ are not ideals.
(b) Prove that V(I)× V(J) = V(〈I′〉+ 〈J′〉), where 〈I′〉 and 〈J′〉 are the

ideals in K[x1, . . . , xn, y1, . . . , ym] generated by the sets I′ and J′.

8.1.5 Prove that, if A and B are any rings besides {0}, then the ring A ⊕ B with
componentwise addition and multiplication is not an integral domain.

8.1.6 This problem provides a further perspective on the difference between K[x, y]
and K[x]⊕ K[y].

(a) Prove that, under the natural inclusions

K[x] ⊆ K[x, y] and K[y] ⊆ K[x, y],

any element h ∈ K[x, y] can be expressed as

h = f1g1 + f2g2 + · · ·+ fkgk

for some f1, . . . , fk ∈ K[x] and g1, . . . , gk ∈ K[y].
(b) Prove that, under the natural inclusions

K[x] ⊆ K[x]⊕ K[y] and K[y] ⊆ K[x]⊕ K[y],

any element h ∈ K[x]⊕ K[y] can be expressed as

h = f + g

for some f ∈ K[x] and g ∈ K[y].
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Section 8.2 Tensor products of modules
The goal of this section is to define the tensor product M ⊗R N, a new R-module
built from R-modules M and N. The model situation is when M = R[x] and
N = R[y], in which case we will have

R[x]⊗R R[y] = R[x, y].

In order to understand how to generalize this example, we focus on one key prop-
erty of the two-variable polynomial ring, which we have already mentioned in Ex-
ercise 8.1.6: every element h ∈ R[x, y] can be expressed (non-uniquely) as a sum

h = f1g1 + f2g2 + · · ·+ fkgk

for f1, . . . , fk ∈ R[x] and g1, . . . , gk ∈ R[y]. For instance, 3x2y + 2x + 4xy2 can
be written as a sum of three terms

(3x2) · y + (2x) · 1 + (4x) · y2.

Now let M and N be any R-modules. A “product” figi in which fi ∈ M and
gi ∈ N can be understood, formally, as an element of M × N, so the first step
toward defining M ⊗R N is to construct a module in which it makes sense to add
such products together. This is a special case of the more general notion of formal
linear combinations.

8.4 DEFINITION Formal Z-linear combination

Let S be any set. A formal Z-linear combination of elements of S is an
expression of the form

∑
s∈S

as · s,

where as ∈ Z for all s ∈ S and as = 0 for all but finitely many choices of
s. We consider two formal Z-linear combinations equal if and only if all of
their coefficients agree; that is,

∑
s∈S

as · s = ∑
s∈S

bs · s

if and only if as = bs for all s ∈ S.

We stress here that the elements of S in a formal linear combination are nothing
but symbols that record the information of their coefficients, analogously to the way
the variables x1, . . . , xn in a monomial xα1

1 · · · x
αn
n are nothing but symbols that

record the information of their exponents α1, . . . , αn. In particular, the data of a
formal linear combination of elements of S is equivalent to the data of a function

f : S→ Z

f (s) = as,

in which f (s) = 0 for all but finitely many s ∈ S. We only choose to express this
information as a linear combination for notational convenience.
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8.5 EXAMPLE Formal linear combinations of elements of a finite set

We have chosen a strange set S here
to emphasize that the elements of S
need not have any structure, nor any
meaning beyond their role as place-
holders for their coefficients.

Let S = {♦,♥,♣,♠}. Then

3♦− 2♥+ 1♣+ 7♠

and

0♦+ 4♥− 30♣+ 0♠

are examples of formal linear combinations of elements of S.

8.6 EXAMPLE Formal linear combinations of elements of an infinite set

Let S = {x1, x2, x3, . . .}. Taking the convention of omitting a summand as · s when
as = 0, formal linear combinations of elements of S are finite sums like

7x2 + 4x5 − 2x6

or
3x1 + 5x17 − 12x100 − 9x120.

Even though S may not have any structure whatsoever, the set of all formal linear
combinations of elements of S forms a group.

8.7 DEFINITION Free abelian group

Let S be any set. The set of all formal linear combinations of elements of
S is called the free abelian group on S and is denoted ZS. It is an abelian
group under the operation

∑
s∈S

as · s + ∑
s∈S

bs · s = ∑
s∈S

(as + bs) · s.

For instance, adding the formal linear combinations in Example 8.5 gives(
3♦− 2♥+ 1♣+ 7♠

)
+
(
0♦+ 4♥− 30♣+ 0♠

)
= 3♦+ 2♥− 29♣+ 7♠,

essentially a process of “combining like terms.” In fact, it is not difficult to show
(Exercise 8.2.1) that

Z{♦,♥,♣,♠} ∼= Z4,

via the isomorphism

a♦+ b♥+ c♣+ d♠ 7→ (a, b, c, d).

The reader can likely extrapolate from here that

ZS ∼= Zn
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for any finite set S of cardinality n. Since further details on free abelian groups are
not needed for our development of the tensor product, we leave the proof of this
statement—as well as more on the case where S is infinite—to the exercises.

Returning to our goal of defining M ⊗R N, let M and N again be any R-
modules. We can now consider the free abelian group

Z(M× N) =

{
a1 · (m1, n1) + · · ·+ ak · (mk, nk)

∣∣∣∣ a1,...,ak∈Z,
m1,...,mk∈M,
n1,...,nk∈N

}
,

where we again take the convention of omitting terms from a formal linear combi-
nation if their coefficient is zero. For example, a typical element of Z(R[x]× R[y])
might be

3 · (x2, y) + 2 · (x, 1) + 4 · (x, y2).

Replacing commas with multiplication, the above begins to look a lot like

3x2y + 2x + 4xy2 ∈ R[x, y],

so the reader may become hopeful that Z(R[x]× R[y]) is isomorphic to R[x, y].
Alas, this is not yet the case. While there is a map from Z(R[x] × R[y]) to

R[x, y] defined by

a1 · ( f1, g1) + · · ·+ ak · ( fk, gk) 7→ a1 f1g1 + · · ·+ ak fkgk,

this map is not injective. In particular, the three formal linear combinations

3 · (x2, y) + 2 · (x, 1) + 4 · (x, y2),

1 · (3x2, y) + 1 · (2x, 1) + 1 · (4x, y2),

1 · (x2, 3y) + 1 · (x, 2) + 1 · (x, 4y2)

are all different element of Z(R[x]× R[y]), but they all map to the same element
3x2y + 2x + 4xy2 of R[x, y]. Another source of non-injectivity comes from ele-
ments like

1 · (x2, y) + 1 · (x2, 1) and 1 · (x2, y + 1),

which are different elements of Z(R[x]× R[y]) that map to the same element

x2y + x2 = x2(y + 1)

of R[x, y].
By taking a quotient of Z(R[x]× R[y]) by a certain subgroup, however, we can

equate elements whose images in R[x, y] are the same. This, at last, will give us the
definition of the tensor product. We return to the general context of R-modules to
state the definition.
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8.8 DEFINITION Tensor product of R-modules

Let M and N be R-modules. Then the tensor product of M and N is

M⊗R N =
Z(M× N)

H
,

where H is the subgroup of Z(M × N) generated by all elements of the
following three forms:

(m, n1 + n2)− (m, n1)− (m, n2), where m ∈ M, n1, n2 ∈ N;
(m1 + m2, n)− (m1, n)− (m2, n), where m1, m2 ∈ M, n ∈ N;
(rm, n)− (m, rn), where r ∈ R, m ∈ M, n ∈ N.

The tensor product is an R-module, with addition defined from the addition
in Z(M× N) and scalar multiplication defined by

r · [a1(m1, n1) + · · ·+ ak(mk, nk)] = [a1(rm1, n1) + · · ·+ ak(rmk, nk)].

We denote the coset in M⊗R N of an element a1(m1, n1) + · · ·+ ak(mk, nk)
of Z(M× N) by

(8.9) a1m1 ⊗ n1 + · · ·+ akmk ⊗ nk.

The quotient by H ensures that, in M ⊗R N, the following equations hold for all
m, m1, m2 ∈ M, all n, n1, n2 ∈ N, and all r ∈ R:

m⊗ (n1 + n2) = m⊗ n1 + m⊗ n2

(m1 + m2)⊗ n = m1 ⊗ n + m2 ⊗ n
(rm)⊗ n = m⊗ (rn).

We sometimes refer to these equations as the “tensor product relations.”

8.10 EXAMPLE Elements of R[x]⊗R R[y]

In the tensor product R[x]⊗R R[y], an example of an element is

3x⊗ y + x⊗ y2 + 2x2 ⊗ 1.

By the tensor product relations, this is the same as the element

x⊗ (3y) + x⊗ y2 + 2x2 ⊗ 1,

and also the same as
x⊗ (3y + y2) + 2x2 ⊗ 1,

as well as many others. Note that, if ⊗ is replaced by multiplication in R[x, y], then
the above two-variable polynomials are all equal; this is the motivation for defining
the tensor product relations the way we do.
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8.11 EXAMPLE Elements of Z2 ⊗Z Z4

Consider the tensor product of the two finite abelian groups (Z-modules) Z2 and
Z4. An example of an element in Z2 ⊗Z Z4 might be

(8.12) 1⊗ 2 + 1⊗ 3.

This can be re-written in various ways using the tensor product relations; for exam-
ple, the first summand equals

1⊗ (2 · 1) = (2 · 1)⊗ 1 = 0⊗ 1

and the second summand equals

1⊗ (3 · 1) = (3 · 1)⊗ 1 = 1⊗ 1,

so the element in (8.12) is the same as

0⊗ 1 + 1⊗ 1 = (0 + 1)⊗ 1 = 1⊗ 1.

In Example 8.14 of the next section, we give a complete description of the elements
of Z2 ⊗Z Z4, but the motivated reader might try to describe them now.

Two comments are in order at this point. First, there is an apparent ambiguity in
the notation (8.9): an expression like 2m⊗ n might mean

(2m)⊗ n,

i.e., the equivalence class of the element (m + m, n) ∈ Z(M × N), or it might
mean

2 ·m⊗ n,

i.e., the sum of the equivalence class of (m, n) ∈ Z(M × N) with itself. The
ambiguity is resolved by the tensor product relations, however, since they imply

(2m)⊗ n = (m + m)⊗ n = m⊗ n + m⊗ n = 2 ·m⊗ n.

As a result, we are justified in writing 2m⊗ n without any clarifying parentheses.
Second, an arbitrary element of M⊗R N can be expressed as

m1 ⊗ n1 + · · ·+ mk ⊗ nk,

Beware! A common mistake is to
think that every element of M⊗R N
is of the form m⊗ n, which is false.

in which m1, . . . , mk ∈ M and
n1, . . . , nk ∈ N. Indeed, by defini-
tion, an element of M ⊗R N has the
form (8.9) for some a1, . . . , ak ∈ Z, but
these coefficients can be absorbed into
m1, . . . , mk by the argument in the previous paragraph. We sometimes refer to ele-
ments of M⊗R N of the form m⊗ n as simple tensors, so another way to say what
we have just said is that every element of M⊗R N is a sum of simple tensors.
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Equipped now with the definition of the tensor product, have we achieved our
goal? In particular, is it true that

R[x]⊗R R[y] ∼= R[x, y]?

We at least have a candidate for an isomorphism:

ϕ : R[x]⊗R R[y]→ R[x, y]

ϕ
(

f1(x)⊗ g1(y) + · · ·+ fk(x)⊗ gk(y)
)
= f1(x)g1(y) + · · ·+ fk(x)gk(y).

This matches with our intuition from earlier in the chapter; for example,

ϕ(3x2 ⊗ y + 2x⊗ 1 + 4x⊗ y2) = 3x2y + 2x + 4xy2.

But since the domain of ϕ is a quotient, it is not at all clear that ϕ is well-defined.
To prove this, we need to develop some further theory of tensor products.

Exercises for Section 8.2
8.2.1 Prove that the function

ϕ : Z{♦,♥,♣,♠} → Z4

ϕ(a♦+ b♥+ c♣+ d♠) = (a, b, c, d)

is an isomorphism of groups.

8.2.2 This exercise shows that ZS is a free Z-module for any set S.

(a) Suppose that S is a finite set with n elements. Extending Exercise 8.2.1,
exhibit an isomorphism of groups ZS ∼= Zn.

(b) Now let S be any set, not necessarily finite. Prove that the elements

{1 · s | s ∈ S} ⊆ ZS

are linearly independent over Z, and that ZS is generated by these ele-
ments.

8.2.3 Use the tensor product relations to express the element

x2 ⊗ y3 + x⊗ (2y3) ∈ R[x]⊗R R[y]

in at least two other ways.

8.2.4 Let a, b ≥ 2 be integers. Prove that every element of Za ⊗Z Zb is a simple
tensor.

8.2.5 Carefully describe all of the elements of Z2 ⊗Z Z5. Which ones are equal to
which other ones? What can you say about the group Z2 ⊗Z Z5?
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Section 8.3 First properties of tensor products
We begin this section with a basic but useful property of tensor products, which the
reader might expect given that our intuition has thus far been built from thinking of
⊗ as capturing multiplication in a two-variable polynomial ring.

8.13 PROPOSITION Tensoring with zero

Let M and N be R-modules. Then in M⊗R N, we have

m⊗ 0 = 0

for all m ∈ M and
0⊗ n = 0

for all n ∈ N. (Here, the “0” on the right-hand side of both equations denotes
the additive identity in the module M⊗R N.)

PROOF By the tensor product relations,

m⊗ 0 = m⊗ (0 + 0) = m⊗ 0 + m⊗ 0.

Subtracting m ⊗ 0 from both sides yields m ⊗ 0 = 0. The proof of the second
equation is similar.

8.14 EXAMPLE Z2 ⊗Z Z4
∼= Z2

An arbitrary element of the tensor product Z2 ⊗Z Z4 is

m1 ⊗ n1 + · · ·+ mk ⊗ nk,

where m1, . . . , mk ∈ Z2 and n1, . . . , nk ∈ Z4. By Proposition 8.13, any summands
in which mi = 0 vanish, so it suffices to assume that mi = 1 for all i. But

1⊗ n1 + · · ·+ 1⊗ nk = 1⊗ (n1 + · · ·+ nk),

so in fact, any element of Z2⊗Z Z4 is equal to 1⊗ n for some n ∈ Z4. This leaves
four possibilities:

1⊗ 0, 1⊗ 1, 1⊗ 2, and 1⊗ 3.

The first and third of these are in fact equal, since 1⊗ 0 = 0 and also

1⊗ 2 = 1⊗ (2 · 1) = (2 · 1)⊗ 1 = 0⊗ 1 = 0.

Similarly, the elements 1⊗ 1 and 1⊗ 3 are equal, because

1⊗ 3 = 1⊗ (3 · 1) = (3 · 1)⊗ 1 = 1⊗ 1.

Thus, we have
Z2 ⊗Z Z4 = {0, 1⊗ 1}.

Assuming these two elements are distinct—which will follow from Proposition 8.20
below—this shows that Z2 ⊗Z Z4

∼= Z2.
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8.15 EXAMPLE Z2 ⊗Z Z3 = {0}
The same argument as the previous example shows that any element of Z2 ⊗Z Z3
is equal to 1⊗ n for some n ∈ Z3, leaving three possibilities:

1⊗ 0, 1⊗ 1, and 1⊗ 2.

In fact, however, all three of these are equal to 0 ∈ Z2⊗Z Z3. To see this, note that

1⊗ 1 = 1⊗ (4 · 1) = (4 · 1)⊗ 1 = 0⊗ 1 = 0

and

1⊗ 2 = 1⊗ (2 · 1) = (2 · 1)⊗ 1 = 0⊗ 1 = 0.

Thus, Z2 ⊗Z Z3 = {0}.

8.16 EXAMPLE Zn ⊗Z Q = {0}
Let n be any natural number, and consider the tensor product Zn⊗Z Q. An arbitrary
element of this tensor product is

a1 ⊗ b1 + · · ·+ ak ⊗ bk

with a1, . . . , ak ∈ Zn and b1, . . . , bk ∈ Q. For each of these summands, however,
we have

ai ⊗ bi = ai ⊗
(

n · bi
n

)
= (n · ai)⊗

bi
n

= 0⊗ bi
n

= 0,

so there are no nonzero elements in Zn ⊗Z Q.

Proposition 8.13 is useful for showing that an element of a tensor product is zero,
but—as we saw already in Example 8.14—proving that an element is not zero is
another matter. For this, we need a way to detect whether an element of Z(M× N)
lies in the subgroup H given in Definition 8.8. In fact, this issue is really the heart of
the matter in our development of tensor products. Recall that our overarching goal
is to prove that

R[x]⊗R R[y] ∼= R[x, y],

and while we have a candidate isomorphism ϕ : R[x]⊗R R[y] → R[x, y], we must
prove that ϕ is well-defined. This amounts to showing that elements of R[x]⊗R R[y]
that are equal to zero—or in other words, elements of Z(R[x] × R[y]) that lie in
H—are sent to zero by ϕ. Knowing what lies in H is the crux.

To resolve this issue, we briefly detour into the terminology of bilinearity.
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8.17 DEFINITION R-bilinear

Let M, N, and L be R-modules. A function

ϕ : M× N → L

is R-bilinear if
• ϕ(m1 +m2, n) = ϕ(m1, n) + ϕ(m2, n) for all m1, m2 ∈ M, n ∈ N;

• ϕ(rm, n) = rϕ(m, n) for all r ∈ R, m ∈ M, n ∈ N;

• ϕ(m, n1 + n2) = ϕ(m, n1) = ϕ(m, n2) for all m ∈ M, n1, n2 ∈ N;

• ϕ(m, rn) = rϕ(m, n) for all r ∈ R, m ∈ M, n ∈ N.

In other words, if either the first input or the second input to an R-bilinear map
ϕ is held fixed, then ϕ is a homomorphism of R-modules in the other input.

8.18 EXAMPLE Multiplication is bilinear

Considering R as an R-module, the map

ϕ : R×R→ R

ϕ(m, n) = mn

is R-bilinear by the distributive, associative, and commutative properties of multi-
plication in R. More generally, if A is an R-algebra, then the map

ϕ : A× A→ A
ϕ(m, n) = mn

is R-bilinear by the algebra axioms.

8.19 EXAMPLE Products of linear maps are bilinear

Considering R2, R3, and R as R-modules, the map

ϕ : R2 ×R3 → R

ϕ
(
(x, y), (u, v, w)

)
= (2x + 3y) · (5u− v + w)

is R-bilinear. More generally, if M and N are R-modules and A is an R-algebra,
and if ϕ1 : M→ A and ϕ2 : N → A are homomorphisms of R-modules, then

ϕ : M× N → A
ϕ(m, n) = ϕ1(m)ϕ2(n)

is R-bilinear (Exercise 8.3.2).

The definition of R-bilinearity likely reminds the reader of the tensor product
relations, so it may come as no surprise that R-bilinearity is the key to determining
which elements of M⊗R N are zero. The following proposition makes this precise.



222 CHAPTER 8. PRODUCTS

8.20 PROPOSITION Defining property of tensor products

Let M, N, and L be R-modules. If ϕ : M× N → L is R-bilinear, then the
function

ϕ̂ : M⊗R N → L
ϕ̂(m1 ⊗ n1 + · · ·+ mk ⊗ nk) = ϕ(m1, n1) + · · ·+ ϕ(mk, nk)

is a well-defined homomorphism of R-modules.

Before proving the proposition, let us illustrate it in a few examples.

8.21 EXAMPLE Mapping Z2 ⊗Z Z4 to Z2

To define a homomorphism from Z2 ⊗Z Z4 to Z2, start with

ϕ : Z2 ×Z4 → Z2

ϕ(a, b) = a · π(b),

where π : Z4 → Z2 is the map that reduces inputs modulo 2. The reader is
encouraged to convince themselves directly of the bilinearity of ϕ, though it also
follows from Example 8.19 since π is a Z-module homomorphism. Given this
bilinearity, ϕ induces

ϕ̂ : Z2 ⊗Z Z4 → Z2

ϕ̂(a1 ⊗ b1 + · · ·+ ak ⊗ bk) = a1π(b1) + · · ·+ akπ(bk),

which by Proposition 8.20 is a well-defined homomorphism of Z-modules. The fact
that ϕ̂ is well-defined is illustrated by the fact that equivalent elements of Z2⊗Z Z4
are mapped to the same element of Z2; for example, we saw in Example 8.14 that

1⊗ 1 = 1⊗ 3 ∈ Z2 ⊗Z Z4,

and the reader can readily verify that

ϕ̂(1⊗ 1) = ϕ̂(1⊗ 3) = 1 ∈ Z2.

Note, furthermore, that the fact that ϕ̂(1⊗ 1) 6= 0 implies 1⊗ 1 6= 0, resolving the
issue raised in Example 8.14. In fact, since Z2 has only two elements, this proves
that ϕ̂ is an isomorphism.

8.22 EXAMPLE Mapping R[x]⊗ R[y] to R[x, y]

To consider an example that is especially relevant for us, let us define a homomor-
phism from R[x]⊗R R[y] to R[x, y] by starting with the following R-bilinear map:

ϕ : R[x]× R[y]→ R[x, y]
ϕ( f , g) = f · g.
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Again, the reader is encouraged to check the R-bilinearity of ϕ directly, but it is also
a special case of Exampe 8.19. The induced homomorphism

ϕ̂ : R[x]⊗R R[y]→ R[x, y]

given by Proposition 8.20 is defined by

ϕ̂( f1 ⊗ g1 + · · ·+ fk ⊗ gk) = f1 · g1 + · · ·+ fk · gk.

For example,
ϕ̂(x2 ⊗ y + x2 ⊗ 1) = x2y + x2,

while
ϕ̂(x2 ⊗ (y + 1)) = x2(y + 1).

The equality of these two images is consistent with the equality

x2 ⊗ y + x2 ⊗ 1 = x2 ⊗ (y + 1) ∈ R[x]⊗R R[y].

and illustrates the fact that ϕ̂ is well-defined.

With these examples in mind, let us turn to the proof of the proposition in general.

PROOF OF PROPOSITION 8.20 First, extend the function ϕ : M × N → L to
a function ϕ̃ : Z(M × N) → L by defining it to act linearly on formal linear
combinations. That is, define

ϕ̃ : Z(M× N)→ L

ϕ̃
(
a1(m1, n1) + · · ·+ ak(mk, nk)

)
= a1 · ϕ(m1, n1) + · · ·+ ak · ϕ(mk, nk).

This function is automatically well-defined (since its domain has no relations), and
some moment’s reflecting should convince the reader that it is a homomorphism of
additive groups.

The claim, now, is that ϕ̃(α) = 0 for all α in the subgroup H specified by
Definition 8.8. If this is the case, then ϕ̃ induces a well-defined homomorphism of
additive groups

Z(M× N)

H
→ L

[a1(m1, n1) + · · ·+ ak(mk, nk)] 7→ a1 · ϕ(m1, n1) + · · ·+ ak · ϕ(mk, nk),

and this is precisely ϕ̂.
To prove the claim, let α ∈ H. Then α is a sum of the generators of H listed in

Definition 8.8, so since ϕ̃ is a homomorphism of additive groups, it suffices to prove
that ϕ̃ sends each of these generators to zero. This is indeed the case; for example,

ϕ̃
(
(m, n1 + n2)− (m, n1)− (m, n2)

)
= ϕ(m, n1 + n2)− ϕ(m, n1)− ϕ(m, n2),

which equals zero by the definition of R-bilinearity. A similar argument applies to
the second type of generator of H, whereas for the third type of generator, we have

ϕ̃
(
(rm, n)− (m, rn)

)
= ϕ(rm, n)− ϕ(m, rn) = rϕ(m, n)− rϕ(m, n) = 0,
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again by the definition of R-bilinearity. It follows that ϕ̃ sends every generator of H
to zero, so ϕ̃(α) = 0.

We now know that ϕ̂ is a well-defined homomorphism of additive groups, so the
only thing left to check is that it respects scalar multiplication. This is a straightfor-
ward unwinding of the definitions that we leave to Exercise 8.3.3.

The stage is now set to prove that our candidate isomorphism from R[x]⊗R R[y]
to R[x, y] is an isomorphism after all. We conclude this story in the next section.

Exercises for Section 8.3
8.3.1 Prove that the map

ϕ : R[x]× R[y]→ R[x, y]

ϕ
(

f (x), g(y)
)
= f (x) · g(y)

is R-bilinear.

8.3.2 Let M and N be R-modules, let A be an R-algebra, and let ϕ1 : M→ A and
ϕ2 : N → A be homomorphisms of R-modules. Prove that the map

ϕ : M× N → A

ϕ(m, n) = ϕ1(m)ϕ2(n)

is R-bilinear.

8.3.3 Prove that, if ϕ : M× N → L is R-bilinear, then the function ϕ̂ of Proposi-
tion 8.20 respects scalar multiplication; that is,

ϕ̂(r · (m1 ⊗ n1 + · · ·+ mk ⊗ nk)) = r · ϕ̂(m1 ⊗ n1 + · · ·+ mk ⊗ nk)

for all r ∈ R, m1, . . . , mk ∈ M, and n1, . . . , nk ∈ N.

8.3.4 Prove that, for any natural numbers a and b,

Za ⊗Z Zb
∼= Zgcd(a,b).

(You may wish to cite the result of Exercise 8.2.4.)

8.3.5 Let V be a K-vector space with basis {ei}i∈I and let W be a K-vector space
with basis { f j}j∈J .

(a) Prove that the elements

{ei ⊗ f j | i ∈ I, j ∈ J}

form a basis of V ⊗K W.
(b) Assuming V and W are finite-dimensional, what does part (a) tell you

about the relationship between dim(V⊗K W), dim(V), and dim(W)?
(c) Use part (a) to argue that K[x]⊗K K[y] ∼= K[x, y] as K-vector spaces by

giving a bijection between bases of each.
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8.3.6 Let M and N be any R-modules. Prove that M⊗R N ∼= N ⊗R M.

8.3.7 Let M be any R-module. Prove that M⊗R R ∼= M as R-modules by showing
that the function

σ : M→ M⊗R R

σ(m) = m⊗ 1

is an isomorphism.

8.3.8 Let M, M′, and N be R-modules. Prove that

(M⊕M′)⊗R N ∼= (M⊗R N)⊕ (M′ ⊗R N).

8.3.9 (a) To what familiar R-vector space is Rn ⊗R C isomorphic? Prove your
answer.

(b) To what familiar R-vector space is R[x]⊗R C isomorphic? Prove your
answer.

8.3.10 Let R and S be rings with R ⊆ S, where we view S as an R-module in
the usual way, and let M be an R-module. Prove that M ⊗R S (which, by
construction, is an R-module) in fact has the structure of an S-module, where
the scalar multiplication is given by

s · (m1 ⊗ s1 + · · ·+ mk ⊗ sk) := m1 ⊗ (ss1) + · · ·+ mk ⊗ (ssk).

(The passage from M to M ⊗R S is called extension of scalars and is illus-
trated by the two examples in Exercise 8.3.9)
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Section 8.4 Tensor products of algebras
Our goal in introducing tensor products was to construct an operation that combines
K[x] and K[y] to produce K[x, y], and we can now prove that ⊗ achieves this goal.

8.23 PROPOSITION R[x]⊗R R[y] ∼= R[x, y]

The map

R[x]⊗R R[y]→ R[x, y]
f1 ⊗ g1 + · · ·+ fk ⊗ gk 7→ f1 · g1 + · · ·+ fk · gk

is a well-defined isomorphism of R-modules.

PROOF As we saw in Example 8.22, the map

ϕ : R[x]× R[y]→ R[x, y]

given by ϕ( f , g) = f · g is R-bilinear. Thus, by Proposition 8.20, it induces a
well-defined homomorphism of R-modules

ϕ̂ : R[x]⊗R R[y]→ R[x, y],

which is precisely the map in the statement of Proposition 8.23. To prove that ϕ̂
is an isomorphism, note that any element of R[x, y] can be written uniquely as

This argument is a restatement, in
the more general context of free R-
modules, of the argument for K-
vector spaces in Exercise 8.3.5.

∑
i,j

rijxiyj,

where the sum is over all pairs of non-
negative integers i, j and all but finitely
many of the coefficients rij ∈ R are zero. By the same token, any element of
R[x]⊗R R[y] can be expressed, using the tensor product relations, as

∑
i,j
(rijxi)⊗ yj;

see Exercise 8.4.1. Thus, we can define a function

ψ : R[x, y]→ R[x]⊗R R[y]

ψ

(
∑
i,j

rijxiyj

)
= ∑

i,j
(rijxi)⊗ yj,

which is a homomorphism of R-modules and inverse to ϕ̂.

We have now proven that, when X = Y = A1, we have

K[X]⊗K K[Y] ∼= K[X×Y]

as K-modules. There is still one last piece of the puzzle missing, however: the right-
hand side of the above isomorphism is a K-algebra, whereas the left-hand side is thus
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far only a K-module. To upgrade our isomorphism to the level of K-algebras, we
must explain how to give an algebra structure to the tensor product of two algebras.

8.24 DEFINITION Tensor product of R-algebras

Let A and B be R-algebras. Their tensor product is the R-module A⊗R B,
equipped with the R-algebra structure given by setting

(m⊗ n)(m′ ⊗ n′) = (mm′)⊗ (nn′)

and extending by linearity.

The stipulation that we “extend by linearity” is nothing but the standard distribu-
tivity of multiplication. For example,

(x⊗ y2 + x3⊗ y)(1⊗ y + 2x2⊗ y4) = x⊗ y3 + 2x3⊗ y6 + x3⊗ y2 + 2x5⊗ y5

in R[x]⊗R R[y].
Given that elements of A ⊗R B can be expressed in multiple ways, it is not

immediately clear that the multiplication in Definition 8.24 is well-defined. For
instance, we have

(5x)⊗ (y + y2) = x⊗ 5y + x⊗ 5y2,

but suppose we multiply both the left-hand side and the right-hand side by x2 ⊗ y;
do we get the same answer? Indeed we do: on one hand, we get(

(5x)⊗ (y + y2)
)(

x2 ⊗ y
)
= (5x3)⊗ (y2 + y3),

while on the other hand, we get(
x⊗ 5y + x⊗ 5y2

)(
x2 ⊗ y

)
= x3 ⊗ 5y2 + x3 ⊗ 5y3,

and these two expressions are easily seen to be equal under the tensor product rules.
To check that the product in Definition 8.24 is well-defined in general, it is help-

ful to use what we already know about constructing well-defined maps out of tensor
products. Toward this end, fix β ∈ A⊗R B and define a function

µ : A× B→ A⊗R B

by sending (m, n) ∈ A× B to the product of m⊗ n with β:

µ(m, n) = (m⊗ n)β.

It is straightforward to check that µ is R-bilinear; for example,

µ(m1 + m2, n) =
(
(m1 + m2)⊗ n

)
β

=
(
m1 ⊗ n + m2 ⊗ n

)
β

= (m1 ⊗ n)β + (m2 ⊗ n)β

= µ(m1, n) + µ(m2, n).
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It follows that µ induces a well-defined map

A⊗R B→ A⊗R B,

and this is precisely the map α 7→ αβ. Thus, multiplication by any β ∈ A⊗R B is
indeed well-defined.

One should also verify that this multiplication makes A⊗R B into an R-algebra,
meaning that it satisfies the axioms of both an R-module and a ring and that these
structures are compatible via the equation

(8.25) r · (αβ) = (r · α)β = α(r · β)

for all r ∈ R and all α, β ∈ A ⊗R B. The fact that A ⊗R B is an R-module fol-
lows from the results of Section 8.2, while the fact that it is a ring follows from
associativity (which, in turn, follows from associativity of the product in A and B)
and distributivity (which holds by definition, since we have defined the product by
extending linearly). The compatibility (8.25) is a consequence of the tensor product
relations; we leave the details to Exercise 8.4.2.

Equipped with this algebra structure, a stronger version of Proposition 8.23 is
now available.

8.26 PROPOSITION R[x]⊗R R[y] ∼= R[x, y] as algebras

The map

R[x]⊗R R[y]→ R[x, y]
f1 ⊗ g1 + · · ·+ fk ⊗ gk 7→ f1 · g1 + · · ·+ fk · gk

is an isomorphism R-algebras.

PROOF Proposition 8.23 shows that this map is an isomorphism of R-modules,
and by Exercise 8.4.3, it respects multiplication.

We can now at last conclude that

K[A1]⊗K K[A1] ∼= K[A1 ×A1]

as K-algebras, so it is meaningful to ask: given any affine varieties X and Y, do we
have an isomorphism of K-algebras

K[X]⊗K K[Y] ∼= K[X×Y]?

The goal of the next section is to prove that this is indeed the case.

Exercises for Section 8.4
8.4.1 Prove that any element of R[x]⊗R R[y] can be expressed, via the tensor prod-

uct relations, as
∑
i,j
(rijxi)⊗ yj,

in which rij ∈ R.
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8.4.2 Prove that
r · (αβ) = (r · α)β = α(r · β)

for all r ∈ R and all α, β ∈ R[x]⊗R R[y].

8.4.3 Prove that the map ϕ̂ of Proposition 8.23 satisfies

ϕ̂(αβ) = ϕ̂(α)ϕ̂(β)

for all α, β ∈ R[x]⊗R R[y].

8.4.4 Generalize the argument of Proposition 8.26 to prove that

R[x1, . . . , xn]⊗R R[y1, . . . , ym] ∼= R[x1, . . . , xn, y1, . . . , ym]

as R-algebras.

8.4.5 Prove that, for any a, b ∈ K, there is an isomorphism of K-algebras

K[x]
〈x− a〉 ⊗K

K[y]
〈y− b〉

∼=
K[x, y]

〈x− a, y− b〉 .

To what more familiar K-algebra are both sides isomorphic?

8.4.6 Let R and S be rings with R ⊆ S.

(a) Viewing S as an R-module in the usual way, prove that there is an iso-
morphism of R-algebras

R[x]⊗R S ∼= S[x].

(b) Prove that the isomorphism of part (a) also holds as S-algebras, where
the left-hand side is viewed as an S-algebra via Exercise 8.3.10.
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Section 8.5 The coordinate ring of a product
We proved in Section 8.1 that the product of affine varieties is a variety, and we
are now ready to compute the coordinate ring of such a product in terms of the
coordinate ring of the two factors.

8.27 THEOREM The coordinate ring of a product

For any affine varieties X and Y, we have

K[X×Y] = K[X]⊗K K[Y]

as K-algebras.

Before we prove this theorem in general, let us refocus on the goal by returning
to a specific example.

8.28 EXAMPLE The coordinate ring of a parabola in A3

As in Example 8.2, let X = V(y− x2) ⊆ A2 and let Y = V(z− 1) ⊆ A1, so that

X×Y = V(y− x2, z− 1) ⊆ A3,

a parabola in the z = 1 plane of A3. One can prove (directly, or via the Nullstellen-
satz in the case where K is algebraically closed) that

K[X×Y] =
K[x, y, z]

〈y− x2, z− 1〉 .

The reader is encouraged to verify that this quotient is isomorphic as a K-algebra to
K[x]. On the other hand, the ideals 〈y− x2〉 ⊆ K[x, y] and 〈z− 1〉 ⊆ K[z] are also
radical, so

K[X] =
K[x, y]
〈y− x2〉

∼= K[x]

and

K[Y] =
K[z]
〈z− 1〉

∼= K.

Thus, by the result of Exercise 8.3.7, we have

K[X]⊗K K[Y] ∼= K[x]⊗K K ∼= K[x],

so indeed, K[X×Y] and K[X]⊗K K[Y] are isomorphic.

PROOF OF THEOREM 8.27 Let X ⊆ An and Y ⊆ Am. To define the isomor-
phism of Theorem 8.27, consider the function

ϕ : K[X]× K[Y]→ K[X×Y]
ϕ(F, G) = F× G,
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where F× G is the function on X×Y given by

(F× G)(a, b) = F(a)G(b).

The reader can readily convince themselves that, if F and G are polynomial func-
tions, then F×G is indeed also a polynomial function. Furthermore, ϕ is K-bilinear,
so it induces a homomorphism of K-modules

ϕ̂ : K[X]⊗K K[Y]→ K[X×Y].

To know that ϕ̂ is a homomorphism of K-algebras, we should also check that it
respects multiplication. This follows from the observation that, for F, F′ ∈ K[X]
and G, G′ ∈ K[Y], one has(

(FF′)× (GG′)
)
=
(

F× G
)(

F′ × G′
)
∈ K[X×Y]

(Exercise 8.5.3). This says that

(8.29) ϕ̂
(
(F⊗ G)(F′ ⊗ G′)

)
= ϕ̂(F⊗ G)ϕ̂(F′ ⊗ G′),

Recall that a simple tensor is an ele-
ment of M⊗R N of the form m⊗ n,
and any element of M⊗R N is a sum
of simple tensors.

so ϕ̂ respects multiplication of simple
tensors. More generally, the fact that
ϕ̂(αβ) = ϕ̂(α)ϕ̂(β) for any α and β in
K[X] ⊗K K[Y] follows from (8.29) by
distributivity.

Thus, ϕ̂ is a homomorphism of K-
algebras, and it remains to prove that it is a bijection.

(Surjectivity) Choose any H ∈ K[X × Y]. Then H is the restriction to X × Y
of a polynomial function h ∈ K[x1, . . . , xn, y1, . . . , ym]. By breaking h into a sum
of monomials, one sees that

h(x, y) =
`

∑
i=1

fi(x)gi(y)

for polynomials f1, . . . , f` ∈ K[x1, . . . , xn] and g1, . . . , g` ∈ K[y1, . . . , yn]. Let
F1, . . . , F` ∈ K[X] be the polynomial functions defined by restricting f1, . . . , f`, and
similarly G1, . . . , G` ∈ K[Y]. Then

ϕ̂

(
`

∑
i=1

Fi ⊗ Gi

)
= H,

as one sees by evaluating both sides on an arbitrary point (a, b) ∈ X×Y.
(Injectivity) Suppose that

H =
`

∑
i=1

Fi ⊗ Gi ∈ K[X]⊗K K[Y]

and ϕ̂(H) = 0. Using the tensor product relations, one can always ensure that
G1, . . . , G` are linearly independent over K; the general proof of this statement is
Exercise 8.5.4, but as an illustrative example, suppose that

H = F1 ⊗ G1 + F2 ⊗ G2 + F3 ⊗ G3
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in which we have a linear dependence like G3 = G1 + 2G2. Then the reader can
easily check that

H = (F1 + F3)⊗ G1 + (F2 + 2F3)⊗ G2.

If G1 and G2 are linearly independent, then we are done, whereas if they are not, the
process can be repeated to combine the two summands of H into one.

Assume, then, that G1, . . . , G` are linearly independent over K. Our goal is to
prove that the fact that ϕ̂(H) = 0 implies H = 0, and to do this, it suffices to show
that Fi = 0 for all i. Toward a contradiction, suppose that Fi 6= 0 for some i; without
loss of generality, we may assume that F1 6= 0. This means that F1(a) 6= 0 for some
a ∈ X.

Fix such a point a ∈ X, and consider the polynomial function

`

∑
i=1

Fi(a)Gi ∈ K[Y].

This function sends any b ∈ Y to

`

∑
i=1

Fi(a)Gi(b) = ϕ̂(H)(a, b) = 0,

where the second equality follows from our assumption that ϕ̂(H) = 0. Thus,

`

∑
i=1

Fi(a)Gi = 0 ∈ K[Y].

This is a nontrivial linear dependence among G1, . . . , G`, since the coefficient F1(a)
is nonzero, so we have arrived at a contradiction. It follows that Fi = 0 for all i and
hence H = 0, completing the proof that ϕ̂ is an isomorphism.

8.30 EXAMPLE Polynomial functions on a parabola in A3

Returning once more to the variety X × Y of Example 8.28, an example of a poly-
nomial function H ∈ K[X×Y] might be

H : X×Y → K

H(a, b, c) = ac + b2,

which is the restriction of the polynomial h(x, y, z) = xz + y2. If F1, F2 ∈ K[X] are
the restrictions of the polynomials f1(x, y) = x and f2(x, y) = y2, respectively, and
G1, G2 ∈ K[Y] are the restrictions of the polynomials g1(z) = z and g2(z) = 1,
respectively, then we have

ϕ̂(F1 ⊗ G1 + F2 ⊗ G2) = H.

Of course, recalling that X×Y = V(y− x2, z− 1), we could equally well express
H as

H(a, b, c) = a + a4,
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in which case we would see that

ϕ̂((F1 + F4
1 )⊗ 1) = H.

This corresponds to the fact that

F1 ⊗ G1 + F2 ⊗ G2 = (F1 + F4
1 )⊗ 1 ∈ K[X]⊗K K[Y],

as one can verify from the defining equations of X and Y together with the tensor
product rules.

In the next, and final, section of the chapter, we use Theorem 8.27 to prove vari-
ous properties of products pertaining to irreducibility, dimension, and smoothness.

Exercises for Section 8.5
8.5.1 What is the coordinate ring of the cylinder V(x2 + y2 − 1) ⊆ A3? Express

your answer both as a tensor product and as a quotient of K[x, y, z].

8.5.2 Let X ⊆ An be any affine variety, and let Y ⊆ Am be a finite set consisting
of r points.

(a) Describe X×Y ⊆ An ×Am geometrically.
(b) Prove that K[Y] ∼= Kr, and deduce—using the results of Exercises 8.3.8

and 8.3.7—that K[X×Y] is isomorphic to the direct sum of r copies of
K[X].

(c) Explain the relationship between the geometric statement in part (a) and
the algebraic statement in part (b).

8.5.3 Let X and Y be affine varieties, and let F, F′ ∈ K[X] and G, G′ ∈ K[Y].
Prove that (

(FF′)× (GG′)
)
=
(

F× G
)(

F′ × G′
)

in K[X×Y].

8.5.4 Let M and N be modules over a field R. Prove that any element of M⊗R N
can be expressed as

m1 ⊗ n1 + · · ·+ m` ⊗ n`

in which n1, . . . , n` are linearly independent over R. (Hint: Any element
of M ⊗R N can be represented as a sum of simple tensors; choose such a
representation with the minimum number of summands.)

8.5.5 Let X and Y be affine varieties, and let p : X×Y → X be the projection map
p(a, b) = a. Since p is surjective, p∗ : K[X] → K[X × Y] is an injective
homomorphism of K-algebras by Exercise 4.2.9. Describe p∗ explicitly as a
homomorphism

K[X]→ K[X]⊗K K[Y].
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Section 8.6 Attributes of products
In this section, we study attributes, such as dimension, irreducibility, and smooth-
ness, of products of affine varieties. We begin with a discussion of dimension. One
should expect that dim(X × Y) = dim(X) + dim(Y), either by analogy to the
dimension of vector spaces or by viewing dimension intuitively as the number of
independent directions in which a point can move. The first result of this section
says that this expectation is indeed satisfied.

8.31 PROPOSITION The dimension of a product

If X and Y are nonempty affine varieties, then

dim(X×Y) = dim(X) + dim(Y).

PROOF Suppose that dim(X) = d and dim(Y) = e. By Theorem 5.31, Noether
bases exist for each of the K-algebras K[X] and K[Y], and by Corollary 6.33, any
such Noether bases have size d and e, respectively. Since the subalgebra generated
by a Noether basis is isomorphic to a polynomial ring, this implies that K[X] is
module-finite over a subalgebra isomorphic to K[Ad], and similarly for K[Y]. In
other words,

K[X] ∼= K[Ad]{a1, . . . , am} and K[Y] ∼= K[Ae]{b1, . . . , bn}

for some a1, . . . , am ∈ K[X] and b1, . . . , bn ∈ K[Y]. By Theorem 8.27, we have

K[X×Y] = K[X]⊗K K[Y],

implying that K[X×Y] contains a subalgebra isomorphic to

K[Ad]⊗K K[Ae] = K[Ad+e]

and what remains to show is that K[X×Y] is module-finite over this subalgebra.
Any element of K[X] can be written as F1a1 + · · ·+ Fmam for some elements

F1, . . . , Fm ∈ K[Ad], and any element of K[Y] can be written as G1b1 + · · ·+ Gnbn
for some G1, . . . , Gn ∈ K[Ae]. From this we see that any simple tensor in K[X×Y]
can be written as

(F1a1 + · · ·+ Fmam)⊗ (G1b1 + · · ·+ Gnbn) = ∑
i,j

Fiai ⊗ Gjbj

= ∑
i,j
(Fi ⊗ Gj)(ai ⊗ bj)

where Fi ⊗Gj ∈ K[Ad+e]. Since every simple tensor in K[X×Y] can be written as
a K[Ad+e]-linear combination of simple tensors of the form ai ⊗ bj, it then follows
that any element of K[X×Y] can be thus written. Therefore, we have proved that

K[X×Y] ∼= K[Ad+e]{ai ⊗ bj | i = 1, . . . , m, b = 1, . . . , n}.

Since K[X × Y] is module-finite over a polynomial ring with d + e variables, we
conclude that dim(X×Y) = d + e = dim(X) + dim(Y).
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We now turn toward a discussion of irreducibility. In fact, this discussion is
necessary in order to set the stage for results on smoothness, since we have defined
smoothness only in the setting of irreducible affine varieties. Thus, in order for it to
be sensible to show that a product of smooth affine varieties is smooth, we must first
confirm that a product of irreducible varieties is irreducible.

8.32 PROPOSITION Products of irreducible varieties are irreducible

If X and Y are irreducible affine varieties, then X×Y is irreducible.

8.33 EXAMPLE A parabola in A3 is irreducible

If X = V(y − x2) ⊆ A2 and Y = V(z − 1) ⊆ A1, then both X and Y are
irreducible, and the product

X×Y = V(y− x2, z− 1) ⊆ A3

is a parabola in A3. The irreducibility of X × Y follows from the isomorphism
X×Y ∼= X, which is simply a restriction of the vertical projection A3 → A2.

8.34 EXAMPLE A reducible product

Let X = V(xy) ⊆ A2 and let Y = A1. Then X = V(x) ∪ V(y) is reducible, as is
the product:

X×Y = V(x) ∪ V(y) ⊆ A3;

see the image below.

× =

While this example is rather simplified by the fact that Y is an entire affine space,
it contains the kernel of the proof of Proposition 8.32: if Y is irreducible, then a
decomposition of X × Y as a union of two affine varieties can only come from a
similar decomposition of X.

PROOF OF PROPOSITION 8.32 Suppose that X ⊆ An and Y ⊆ Am are irre-
ducible. To prove that X × Y is irreducible, we must show that one can only have

(8.35) X×Y = Z1 ∪ Z2

for affine varieties Z1, Z2 ⊆ X×Y ⊆ Am+n if either Z1 = X×Y or Z2 = X×Y.
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Suppose that (8.35) holds, and for each point a ∈ X, consider the set

{a} ×Y ⊆ X×Y.

For example, if X × Y is the cylinder of Example 8.3 or the intersecting planes of
Example 8.34, then the sets {a} × Y are the vertical lines in the product. Each set
{a} × Y is an affine variety (because both {a} and Y are affine varieties), and they
are all isomorphic to Y; therefore, since Y is irreducible, {a} × Y is irreducible for
all a ∈ X. Intersecting both sides of (8.35) with {a} ×Y yields

{a} ×Y =
(
({a} ×Y) ∩ Z1

)
∪
(
({a} ×Y) ∪ Z2

)
.

Given that {a} ×Y is irreducible, it must be the case that either

({a} ×Y) ∩ Z1 = {a} ×Y or ({a} ×Y) ∩ Z2 = {a} ×Y.

In other words, for any a ∈ X, either

{a} ×Y ⊆ Z1 or {a} ×Y ⊆ Z2.

Thus, if we define two sets

X1 =
{

a ∈ X | {a} ×Y ⊆ Z1
}

and X2 =
{

a ∈ X | {a} ×Y ⊆ Z2
}

,

then

(8.36) X1 ∪ X2 = X.

So far, we only know that X1 and X2 are subsets of X, but in fact, they are affine
varieties themselves. To see this, recall that Z1 is an affine variety, so we have

Z1 = V( f1, . . . , fr)

for some polynomials f1, . . . , fr ∈ K[x1, . . . , xn, y1, . . . , ym]. For any b ∈ Y, fixing
the y-coordinates of these polynomials at b and letting the x-coordinates vary yields
an affine variety

(X1)b = V
(

f1(x, b), . . . , fr(x, b)
)
⊆ An.

In other words,

(X1)b = {a ∈ An | f1(a, b) = · · · = fr(a, b) = 0}
= {a ∈ An | (a, b) ∈ Z1}.

Note that

X1 = {a ∈ X | (a, b) ∈ Z1 for all b ∈ Y} = X ∩
⋂

b∈Y

(X1)b,

so X1 is an intersection of affine varieties and is thus an affine variety. The same
argument applies to X2.
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Recalling equation (8.36), we have now expressed X as a union of two affine
varieties. Given that X is irreducible, this is only possible if either X1 = X or
X2 = X. The case that X1 = X means that for all a ∈ X,

{a} ×Y ⊆ Z1,

or in other words, that for all a ∈ X and all b ∈ Y,

(a, b) ∈ Z1.

That is, X×Y = Z1. Similarly, the case that X2 = X means that X×Y = Z2. We
have thus shown that either X × Y = Z1 or X × Y = Z2, and this completes the
proof that X×Y is irreducible.

The stage is now set for the final topic of this section: a discussion of smoothness
of products. The following result describing linearizations and tangent spaces of
products is the crucial step toward showing that a product of smooth affine varieties
is smooth.

8.37 PROPOSITION Tangent spaces of products

If X ⊆ Am and Y ⊆ An are affine varieties with a ∈ X and b ∈ Y, then

L(a,b)(X×Y) = LaX× LbY and T(a,b)(X×Y) = TaX⊕ TbY.

PROOF Suppose that X = V( f1, . . . , fk) and Y = V(g1, . . . , g`). By Proposi-
tion 8.1, we have

X×Y = V( f1, . . . , fk, g1, . . . , g`).

As we saw in Section 7.1,

LaX = V(La f1, . . . , La fk),
LbX = V(Lbg1, . . . , Lbg`), and

L(a,b)(X×Y) = V(La f1, . . . , La fk, Lbg1, . . . , Lbg`).

Thus, by Proposition 8.1 again, we conclude that L(a,b)(X×Y) = LaX× LbY.
To prove the statement regarding tangent spaces, recall from Section 7.1 that

TaX =
{ #  »

aa′ | a′ ∈ LaX
}
⊆ Km and TaY =

{ #  »

bb′ | b′ ∈ LaX
}
⊆ Kn.

Therefore, the vector space TaX⊕ TbY ⊆ Km ⊕ Kn = Km+n consists of vectors of
the form ( #  »

aa′,
#  »

bb′
)

with a′ ∈ LaX and b′ ∈ LbY. By definition of the vector between two points of
affine space (Section 7.1), it follows that( #  »

aa′,
#  »

bb′
)
=

#                         »

(a, b)(a′, b′).

Thus,
TaX⊕ TbY =

{
#                         »

(a, b)(a′, b′)
∣∣ (a′, b′) ∈ LaX× LbY

}
.
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Since LaX × LbY = L(a,b)(X × Y) (by the first part of the proposition), we then
conclude that

TaX⊕ TbY =
{

#                         »

(a, b)(a′, b′)
∣∣ (a′, b′) ∈ L(a,b)(X×Y)

}
= T(a,b)(X×Y).

8.38 COROLLARY Products and smoothness

If X and Y are smooth irreducible varieties, then so is X×Y.

PROOF Suppose that X and Y are smooth irreducible varieties. Given any
(a, b) ∈ X×Y, we then have

dim(X×Y) = dim(X) + dim(Y)
= dim(TaX) + dim(TbY)
= dim(TaX⊕ TbY)
= dim(T(a,b)(X×Y)),

where the first equality is Proposition 8.31, the second uses the assumption that both
X and Y are smooth, the third is the fact that vector space dimension is additive over
direct sums, and the fourth is Proposition 8.37. By definition of smoothness, this
implies that X×Y is smooth.

Exercises for Section 8.6
8.6.1 Let X = V(xy) ⊆ A2 and let Y = V(z2 − 1) ⊆ A1. Calculate the irre-

ducible decomposition of X×Y ⊆ A3.

8.6.2 Does the converse of Proposition 8.32 hold? Prove or give a counterexample.

8.6.3 State and prove a result that describes the irreducible components of X × Y
in terms of the irreducible components of X and Y.

8.6.4 Write an alternative proof of Proposition 8.31 by arguing that, for any irre-
ducible affine varieties X and Y, we have

(a) K(X×Y) = K(X)⊗K K(Y), and
(b) trdegK(K(X)⊗K K(Y)) = trdegKK(X) + trdegKK(Y).

8.6.5 Suppose that K is algebraically closed, and let A and B be finitely-generated
reduced K-algebras.

(a) Combine Proposition 8.32 with other results you have learned to show
that if A and B are integral domains, then A⊗K B is an integral domain.

(b) Prove that the result of part (a) can fail if K is not algebraically closed
by arguing that

C⊗R C ∼= C⊕C

as R-algebras, and although C is an integral domain, C⊕C is not.
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8.6.6 Does the converse of Corollary 8.38 hold? More specifically, if X and Y
are irreducible and X × Y is smooth, does this imply that both X and Y are
smooth? Prove or give a counterexample.
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Part II

Projective varieties
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Chapter 9

Projective Varieties
LEARNING OBJECTIVES FOR CHAPTER 9

• Become acquainted with projective space from various perspectives.

• Understand what it means for a polynomial to vanish at a point of projec-
tive space.

• Become acquainted with the projective V- and I-operators, and the rela-
tionship between them.

• Calculate the affine restrictions of a projective variety and the projective
closure of an affine variety.

• Familiarize ourselves with the projective Nullstellensatz.

Up until this point in the book, all of the varieties that we have studied have
lived inside of affine space An. There is a larger ambient space, however, in which
the notion of “variety” also make sense, known as projective space and denoted Pn.
The goal of this chapter is to define Pn and the projective varieties one obtains as
vanishing sets of polynomials inside Pn.

The motivation for this generalization comes from the desire to make uniform
statements in settings where a statement about affine varieties has unavoidable ex-
ceptions. A key example of this phenomenon is the statement that, in A2, any pair
of lines must intersect—with the unavoidable exception of parallel lines. Projective
space P2 can be viewed as the result of adding “points at infinity” to A2, where
each line in A2 meets a particular point at infinity dictated by the line’s slope. With
the addition of these extra points, we find in P2 that every pair of lines intersects,
without exception. This is a special case of a beautiful result known as Bézout’s The-
orem, which states that a pair of curves in P2, defined by polynomials of degrees r
and s, intersect in r · s points when counted appropriately. While the corresponding
statement in A2 is often true, one can easily find exceptions: the parabola V(y− x2)
and the vertical line V(x) intersect in only a single point, for example. From the per-
spective of P2, this exception again occurs because there is an additional intersection
“at infinity” that is hidden when one restricts attention to A2.

These observations in plane geometry led algebraic geometers to ultimately un-
derstand Pn, and not An, as the most natural ambient space in which to work. While
the definition of projective space can be difficult to digest on a first pass, the elegance
and uniformity that it will lend to our study of algebraic geometry will certainly be
worth the effort.

243
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Section 9.1 Projective space
Part of what makes the study of projective varieties challenging on a first encounter—
but also what makes it rich and interesting—is the multitude of different ways in
which one can define projective space. We will present three different perspectives
on projective space, beginning with the one that is the most computationally useful.

9.1 DEFINITION Projective space, first perspective

Let n ∈ N. The n-dimensional projective space over K, denoted Pn
K or

simply Pn, is the set

Pn =
Kn+1 \ {(0, 0, . . . , 0)}

∼ ,

where ∼ is the equivalence relation given by

(a0, a1, . . . , an) ∼ (b0, b1, . . . , bn)

⇐⇒

(λa0, λa1, . . . , λan) = (b0, b1, . . . , bn) for some λ ∈ K \ {0}.

We denote the equivalence class of (a0, a1, . . . , an) by [a0 : a1 : · · · : an].

Note that the term “dimension” in this context should be taken, for now, as noth-
ing more than an indication of the number of coordinates; since Pn is neither a
vector space nor an affine variety, it cannot be meaningfully given a dimension in
any of the contexts in which that term has been used thus far in this book. Neverthe-
less, our use of the term “n-dimensional” may make somewhat more sense after the
following examples.

9.2 EXAMPLE 0-dimensional projective space

An element of P0 is an equivalence class [a], where a ∈ K \ {0} and [a] = [b] if
λa = b. In particular, taking λ = 1/a shows that [a] = [1] for any a ∈ K \ {0}, so
P0 has just a single element:

P0 = {[1]}.
9.3 EXAMPLE 1-dimensional projective space

Elements of P1 are of the form [a0 : a1], where a0, a1 ∈ K are not both zero. For
instance, [1 : 2] ∈ P1, and scaling both coordinates by the same λ ∈ K \ {0} yields
different representations of the same element:

[1 : 2] = [2 : 4] = [3 : 6] = [−1 : −2] = · · · .

It is instructive to divide the elements of P1 into two types: those whose first coor-
dinate is nonzero and those whose first coordinate is zero. Consider an element of
the first type, such as [3 : 7] ∈ P1. Scaling both coordinates by 1/3 shows that

[3 : 7] = [1 : 7/3] ∈ P1,
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and similarly, any element of P1 with nonzero first coordinate is equal to [1 : b] for
some b ∈ K. On the other hand, an element of P1 whose first coordinate is zero
is always equal to [0 : 1]; for instance, scaling both coordinates by 1/4 shows that
[0 : 4] = [0 : 1] ∈ P1.

The conclusion that we arrive at, then, is that

(9.4) P1 = {[1 : b] | b ∈ K} t {[0 : 1]}.

We use the symbol t for disjoint
unions; in other words, A = B t C
means A = B ∪ C and B ∩ C = ∅.

Some reflection should convince the
reader that two elements [1 : b] and
[1 : b′] with b 6= b′ cannot be equal
to one another in P1. As a result, there
is a natural bijection between the ele-
ments of the form [1 : b] ∈ P1 and the elements of A1 given by

{[1 : b] | b ∈ K} → A1

[1 : b] 7→ b.

Under this bijection, the decomposition (9.4) can be viewed as

(9.5) P1 = A1 t {[0 : 1]}.

9.6 EXAMPLE 2-dimensional projective space

As above, the elements of P2 can be divided into two types, depending on whether
their first coordinate is nonzero or zero, and those with nonzero first coordinate can
be rescaled to the form [1 : b1 : b2]. Thus,

P2 = {[1 : b1 : b2] | b1, b2 ∈ K} t {[0 : a1 : a2] | a1, a2 ∈ K not both zero}.

Also analogously to the previous example, elements of the first type are in natural
bijection with A2:

{[1 : b1 : b2] | b1, b2 ∈ K} → A2

[1 : b1 : b2] 7→ (b1, b2).

Now there is not just a single element with first coordinate zero, however, but many;
for example, [0 : 0 : 1] 6= [0 : 1 : 1]. In fact, elements of P2 with first coordinate
zero are in natural bijection with a projective space of one dimension lower:

{[0 : b1 : b2] | b1, b2 ∈ K not both zero} → P1

[0 : b1 : b2] 7→ [b1 : b2].

Under these two bijections, we have shown that

(9.7) P2 = A2 tP1.

The decompositions (9.5) and (9.7) can be generalized to any n, and doing so
brings us to our second perspective on projective space.
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9.8 PROPOSITION Projective space, second perspective

For any n ≥ 1, there is a natural bijection

Pn = An tPn−1.

The elements of Pn−1 inside Pn are referred to as points at infinity in Pn.

The proof of this bijection is the content of Exercise 9.1.3; the key point, as
we saw in the cases of P1 and P2 above, is that elements of Pn with nonzero first
coordinate correspond to elements of An, whereas elements with first coordinate
zero correspond to elements of Pn−1.

Why, though, the terminology “points at infinity”? To understand this, consider
the case of P1

R. Under the decomposition

P1
R = A1

R t {[0 : 1]},

the elements 1, 2, 3, . . . ∈ A1
R correspond to the following elements of P1

R:

[1 : 1], [1 : 2], [1 : 3], . . . ∈ P1
R.

By rescaling, though, these can be re-expressed as[
1
1 : 1

]
,
[

1
2 : 1

]
,
[

1
3 : 1

]
, . . . ∈ P1

R.

Our use of “limits” in Pn is merely
intuitive, for now, since a topology is
needed to make limits precise.

Thus, as n ∈ A1
R approaches ∞, the

corresponding element [ 1
n : 1] ∈ P1

R

approaches [0 : 1]. This is why we refer
to [0 : 1] as the point at infinity, writing

P1
R = A1

R t {∞}.

Note that the points −n ∈ A1
R, corresponding to [1 : −n] ∈ P1

R, also approach
[0 : 1] as n → ∞. Thus, visually, it is illustrative to depict P1

R as a loop: as we go
infinitely far in either direction of A1

R, we end up at the same point [0 : 1].

For n > 1, it becomes more difficult to give a visual representation of Pn, but
the same perspective still holds. For example, we have

P2
R = A2

R t {points at infinity}.

In this space, we can “walk toward infinity” along any line in A2
R. To do so, consider

the sequence of points (1, m), (2, 2m), (3, 3m), . . . that radiate outward along the
line y = mx. These correspond in P2

R to

[1 : 1 : m], [1 : 2 : 2m], [1 : 3 : 3m], . . . ∈ P2
R,
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which can be re-scaled to equal[
1
1 : 1 : m

]
,
[

1
2 : 1 : m

]
,
[

1
3 : 1 : m

]
, . . . ∈ P2

R

and thus approach [0 : 1 : m]. This limit is a “point at infinity” in P2
R, since it is

a point with first coordinate zero. Below, we have depicted A2
R along with several

points at infinity in P2
R that are approached along lines of different slopes.

We see now why P2
R has many points at in-

finity whereas P1
R had just one: in P2

R, the point
at infinity that we approach by walking outward
along a line depends on the slope of that line.
In fact, the idea of “following a line to the point
at infinity to which it leads” can be made pre-
cise as a bijection between points at infinity in
P2

R and lines through the origin in A2
R. This is

a special case of a more general phenomenon,
which we now state.

9.9 PROPOSITION Points at infinity are slopes of lines

For any n ≥ 1, there is a natural bijection

(9.10) {points at infinity in Pn} = {lines through (0, . . . , 0) in An}.

PROOF A line through (0, . . . , 0) ∈ An is, by definition, a set of points of the
form

L = {(a1b, a2b, . . . , anb) | b ∈ K},

where ai ∈ K are fixed and at least one ai is nonzero. The bijection (9.10), then, is
given by associating to the line

L = {(a1b, a2b, . . . , anb) | b ∈ K}

the point at infinity
[0 : a1 : a2 : · · · : an] ∈ Pn,

which (as the reader is encouraged to verify intuitively) should be viewed as the
point toward which an outward-radiating sequence of points on L tends.

Given that the points at infinity in Pn are also in bijection with Pn−1, Proposi-
tion 9.9 can be viewed in another light: it gives us our third perspective on projective
space, which is often taken as an alternative definition of the space itself.

9.11 COROLLARY Projective space, third perspective

For any n ∈N, there is a natural bijection

Pn = {lines through (0, . . . , 0) in An+1}.
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Tracing through the bijection of Proposition 9.9 explains how to match up the
first and third perspectives with one another: an element [a0 : a1 : · · · : an] ∈ Pn is
equivalent to a point at infinity [0 : a0 : a1 : · · · : an] ∈ Pn+1, which corresponds
to a line

L = {(a0b, a1b, . . . , anb) | b ∈ K}
through the origin in An+1.

With these ideas combined, an element of Pn can be viewed in three different
ways: as an equivalence class [a0 : a1 : · · · : an], as a point either in An or at
infinity, or as a line through the origin in An+1. Moving fluidly between these
perspectives as the context dictates is one of the skills that the reader will develop
as we explore projective space and—beginning in the next section—the analogue in
projective space of all we know about varieties.

Exercises for Section 9.1
9.1.1 Let [2 : 1 : 3] ∈ P2. Prove that

[2 : 1 : 3] = [6 : 3 : 9]

but that
[2 : 1 : 3] 6= [6 : 4 : 12].

In general, which [a : b : c] ∈ P2 satisfy [2 : 1 : 3] = [a : b : c]?

9.1.2 Prove that [a0 : · · · : an] = [b0 : · · · : bn] ∈ Pn if and only if

aibj = ajbi for all i, j.

9.1.3 Prove that there is a natural bijection

Pn = An tPn−1

in three steps:

(a) Let
U = {[a0 : a1 : · · · : an] ∈ Pn | a0 6= 0}.

and
V = {[a0 : a1 : · · · : an] ∈ Pn | a0 = 0}.

Prove that Pn = U tV.
(b) Prove that there is a natural bijection between U and An.
(c) Prove that there is a natural bijection between V and Pn−1.

9.1.4 Prove that there is a natural bijection

Pn = An tAn−1 tAn−2 t · · · tA1 tA0.

9.1.5 Let [2 : 1 : 3] ∈ P2. Describe this point as

(a) an element of A2 t {points at infinity},
(b) a line through (0, 0, 0) in A3.

9.1.6 Repeat Problem 9.1.5 for the point [0 : 1 : 3] ∈ P2. Which lines through
(0, 0, 0) ∈ A3 correspond to points at infinity in P2?
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Section 9.2 The projective V-operator
Just like an affine variety, a projective variety is defined as the common vanishing
of a set of polynomials. Taking the perspective on Pn given in Definition 9.1, the
inputs to those polynomials are tuples (a0, . . . , an). However, since Definition 9.1
involves an equivalence relation, a polynomial might vanish on one representative
but not on another, so it’s not immediately clear what we mean when we say that a
polynomial “vanishes” at a point of projective space.

For instance, suppose we consider points [a0 : a1] ∈ P1 as inputs to the two-
variable polynomial

f = x2
0 − x1.

The point [2 : 4] would seem to be in the vanishing set of f , since

f (2, 4) = 22 − 4 = 0.

On the other hand, however, we see that [2 : 4] = [4 : 8], and

f (4, 8) = 42 − 8 = 8 6= 0.

Thus, the question of whether f vanishes at the point [2 : 4] = [4 : 8] does not seem
to have a well-defined answer. The solution to this discrepancy is simply to declare
that a polynomial “vanishes” at a point of projective space only if it vanishes when
evaluated at every representative of the point.

9.12 DEFINITION Projective vanishing

Let f ∈ K[x0, . . . , xn] be a polynomial and let a ∈ Pn be a point. We say
that f vanishes at a and write f (a) = 0 if

f (a0, . . . , an) = 0

for every representative a = [a0 : · · · : an].

For example, the polynomial f (x0, x1) = x2
0 − x1 does not vanish at the point

[2 : 4] ∈ P1 because it does not vanish when evaluated at the equivalent representa-
tive a = [4 : 8]. A priori, checking that a polynomial vanishes at every representative
of a point seems to be an arduous task—after all, there are infinitely-many represen-
tatives for any point. However, this task can be simplified with the introduction of
homogeneous polynomials.

9.13 DEFINITION Homogeneous polynomial

A polynomial f ∈ K[x0, . . . , xn] is homogeneous of degree d if every
nonzero term of f has degree d.

For example, the polynomial f = x2
0 − x1 is inhomogeneous, because it has

a nonzero term of degree one and another of degree two, while the polynomial
g = x2

0 − 2x0x1 is homogeneous of degree 2. The zero polynomial is vacuously
homogeneous of every degree, since it does not have any nonzero terms.
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In the context of studying vanishing within projective space, the importance of
working with homogeneous polynomials is the following result.

9.14 LEMMA Projective vanishing of homogeneous polynomials

Let f ∈ K[x0, . . . , xn] be a homogeneous polynomial and let

[a0 : · · · : an] = [b0 : · · · : bn] ∈ Pn.

Then
f (a0, . . . , an) = 0 ⇐⇒ f (b0, . . . , bn) = 0.

In other words, when working with homogeneous polynomials, vanishing of a
polynomial can be verified by checking vanishing at a single representative. For
example, consider the homogeneous polynomial g = x2

0 − 2x0x1. To check that g
vanishes at the point [2 : 1] ∈ P1, it suffices to verify vanishing at one representa-
tive:

g(2, 1) = 22 − 2 · 2 · 1 = 0.

If we replace [2 : 1] by the alternative representative [4 : 2] (or any other represen-
tative for this point of P1), the vanishing persists:

g(4, 2) = 42 − 2 · 4 · 2 = 0.

PROOF OF LEMMA 9.14 The key observation we need is that f is homogeneous
of degree d if and only if

(9.15) f (λa0, . . . , λan) = λd f (a0, . . . , an)

for all λ, a0, . . . , an ∈ K; see Exercise 9.2.1. Given this, suppose that

[a0 : · · · : an] = [b0 : · · · : bn] ∈ Pn.

By the definition of the equivalence relation on Pn, there exists a nonzero λ ∈ K
such that

(λa0, . . . , λan) = (b0, . . . , bn).

From (9.15) we then see that f (b0, . . . , bn) and f (a0, . . . , an) differ by the nonzero
scalar multiple λd, so one vanishes if and only if the other does.

Lemma 9.14 shows that we can readily determine whether a homogeneous poly-
nomial vanishes at a point of projective space, simply by checking a single represen-
tative, but what about the vanishing of an inhomogeneous polynomial? To address
this question, we introduce the homogeneous components of a polynomial.

9.16 DEFINITION Homogeneous components

Given a polynomial f ∈ K[x0, . . . , xn], the dth homogeneous component of
f , denoted fd, is the sum of all nonzero terms of f of degree d. If f does not
have any nonzero terms of degree d, then fd = 0.
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For example, the nonzero homogeneous components of the polynomial

f = x4z + x2y + xyz + x + y + 5

are
f5 = x4z, f3 = x2y + xyz, f1 = x + y, f0 = 5.

The next result describes the vanishing of a polynomial at a point of projective
space in terms of the vanishing of its homogeneous components.

9.17 LEMMA Projective vanishing and homogeneous components

Let f ∈ K[x0, . . . , xn] be a polynomial and a ∈ Pn a point. Then f vanishes
at a if and only if every homogeneous component of f vanishes at a.

In other words, in order to determine whether a general polynomial vanishes
at (every representative of) a point of Pn, Lemmas 9.14 and 9.17 together imply
that it suffices to check whether each homogeneous component vanishes at a single
representative of that point.

PROOF OF LEMMA 9.17 Let f ∈ K[x0, . . . , xn] be a polynomial of degree d,
which can be written as a sum of its homogeneous components of degree ≤ d:

(9.18) f =
d

∑
k=0

fk.

If each fk vanishes at every representative of a point a, then it follows from (9.18)
that f vanishes at every representative of a.

Conversely, assume that f vanishes at every representative of a. Choose one
particular representative a = [a0 : · · · : an]. Then, for any λ ∈ K \ {0}, we have

0 = f (λa0, . . . , λan) =
d

∑
k=0

fk(λa0, . . . , λan)

=
d

∑
k=0

λk fk(a0, . . . , an),

where the second equality uses (9.15). In other words, the single variable polynomial

d

∑
k=0

xk fk(a0, . . . , an) ∈ K[x]

vanishes at infinitely many values of K, so it must be the zero polynomial, implying
that fk(a0, . . . , an) = 0 for all k. Since fk is homogeneous, Lemma 9.14 then
implies that fk vanishes at every representative of a.

With a better understanding of what it means for polynomials to vanish at points
of projective space, we now come to the natural definition of a projective variety.
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9.19 DEFINITION Projective V-operator

Let S ⊆ K[x0, x1, . . . , xn] be a set of polynomials. The projective vanishing
set of S is

VP(S) = {a ∈ Pn | f (a) = 0 for all f ∈ S}.

We say that a subset X ⊆ Pn is a projective variety if X = VP(S) for some
set S ⊆ K[x0, . . . , xn].

We often omit the subscript and write
simply V(S) ⊆ Pn when it is clear
from context that we are working in
projective space, as opposed to affine
space.

Lemma 9.17 implies that every pro-
jective variety can be described by a set
of homogeneous polynomials—simply
replace the inhomogeneous polynomi-
als in S with their homogeneous com-
ponents. Because of this, it is common
in practice to describe projective vari-

eties using only homogeneous polynomials, as in the following examples.

9.20 EXAMPLE ∅ and Pn are projective varieties

As in the affine case, we have V(1) = ∅ and V(0) = Pn, so ∅ and Pn are projec-
tive varieties.

9.21 EXAMPLE Projective varieties in P1

In P1, let

X = V(2x0 − x1) = {[a0 : a1] ∈ P1 | 2a0 − a1 = 0}.

A point [a0 : a1] in X cannot have a0 = 0, since then the equation 2a0 − a1 = 0
would force that a1 = 0, as well. Thus, we have

X = {[a : 2a] ∈ P1 | a ∈ K \ {0}} = {[1 : 2]},

since multiplying both coordinates by a−1 shows that [a : 2a] = [1 : 2] for any a.
More generally (in perfect analogy to the situation for A1), any projective variety in
P1 is either ∅, P1, or a finite set of points (Exercise 9.2.2).

9.22 EXAMPLE A line in P2

In P2, consider the projective variety

X = V(x0 + x1 − x2) = {[a0 : a1 : a2] ∈ P2 | a0 + a1 − a2 = 0}.

A point [a0 : a1 : a2] in X cannot have a0 = a1 = 0, since then the defining equation
would force that a2 = 0, as well. It follows that

X = {[a0 : a1 : a0 + a1] ∈ P2 | a0, a1 ∈ K not both 0},

and from here it is not difficult to see that the points of V(x0 + x1 − x2) are in
bijection with P1.
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The geometry of this example mirrors the affine case, in which the vanishing of
a degree-1 polynomial in A2 is a line isomorphic to A1. We refer to X as a line in
P2 to emphasize this analogy, but this terminology should be taken with a grain of
salt: as we saw in the previous section, P1 does not look like our familiar notion of
a “number line,” even over the real numbers.

As a first step toward utilizing the algebraic structure of polynomial rings to
study projective varieties, we note that every projective variety can be defined by an
ideal, a result that is parallel to Proposition 1.15 in the affine setting.

9.23 PROPOSITION Projective varieties are defined by ideals

If S ⊆ K[x0, x1, . . . , xn] is a set of polynomials, then

VP(S) = VP(〈S〉).

PROOF Exercise 9.2.5

As in the affine case, knowing that any projective variety can be defined by an
ideal allows us to leverage the algebraic structure of polynomial rings to deduce that
every projective variety can be defined by finitely many polynomials. Moreover, in
the projective case we get a little more: utilizing Lemma 9.17, it follows that every
projective variety is the vanishing of a finite set of homogeneous polynomials.

9.24 COROLLARY Projective varieties are finitely-generated

Any projective variety X ⊆ Pn is of the form X = VP( f1, . . . , fk) where
f1, . . . , fk ∈ K[x0, x1, . . . , xn] are homogeneous polynomials.

PROOF Exercise 9.2.6.

At this point, we can begin to see the utility of working algebraically with defin-
ing ideals of projective varieties, rather than merely sets of polynomials. In partic-
ular, it is through passing to an ideal and using Hilbert’s Basis Theorem for poly-
nomial rings that one proves Corollary 9.24. Just like in the affine setting, while
there may be many defining ideals for a single projective variety, there is always one
distinguished ideal among all of its defining ideals—the vanishing ideal. In the next
section, we turn to a discussion of vanishing ideals in the projective setting.

Exercises for Section 9.2
9.2.1 Let f ∈ K[x0, x1, . . . , xn] be a nonzero polynomial. Prove that f is homoge-

neous of degree d if and only if, for any λ, a0, a1, . . . , an ∈ K,

f (λa0, λa1, . . . , λan) = λd f (a0, a1 . . . , an).

9.2.2 Prove that every projective variety in P1 is either ∅, P1, or a finite set of
points.
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9.2.3 Let
X = V(x0x1 − x2

2) ⊆ P2.

(a) Prove that an element [a0 : a1 : a2] ∈ X cannot have a0 = a1 = 0, and
from here, describe a bijection between X and P1.

(b) Let U = {[a0 : a1 : a2] ∈ P2 | a0 6= 0}, which, by the results of
the previous section, is in natural bijection with A2. Prove that X ∩U
is identified by this bijection with an affine variety in A2. What is that
affine variety?

(c) Compute all points of X \ U, and describe how these points are ap-
proached by points in the affine variety you found in (b).

9.2.4 Prove that finite unions and arbitrary intersections of projective varieties are,
themselves, projective varieties.

9.2.5 Prove Proposition 9.23.

9.2.6 Prove Corollary 9.24.
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Section 9.3 The projective I-operator
The projective V-operator allows us to pass from collections of polynomials to sub-
sets of projective space, and we now turn to the projective I-operator, which moves
us in the opposite direction. The definition of IP is as one might expect.

9.25 DEFINITION Projective I-operator

Let X ⊆ Pn be a subset. The vanishing ideal of X is

IP(X) = { f ∈ K[x0, . . . , xn] | f (a) = 0 for all a ∈ X}.

We say that a subset of K[x0, . . . , xn] is a projective vanishing ideal if it is of
the form IP(X) for some X ⊆ Pn.

As for the VP-operator, we often
write I(X) when it is clear from
context whether we are working in
affine or projective space.

Recalling Definition 9.12, when we
say that f (a) = 0, we are asserting
that f vanishes at every representative
of the point a ∈ Pn. For instance, if
[1 : 0] ∈ X, then we can say for certain
that the polynomial f = x0 − 1 is not

an element of I(X)—even though f (1, 0) = 0, notice that f does not vanish when
evaluated at the representative [2 : 0] = [1; 0]. The next example elaborates further
on this discussion.

9.26 EXAMPLE Vanishing ideal of a point in P1

Let X = {[1 : 0]} ⊆ P1. Then f = x1 is in I(X), since any representative of the
point [1 : 0] ∈ X is of the form [a : 0] for some a, and f (a, 0) = 0 for any choice
of a. More generally, we see that 〈x1〉 ⊆ I(X), and in fact, we claim that there is
equality: I(X) = 〈x1〉.

To prove the remaining inclusion, let f ∈ I(X). Then f (a, 0) = 0 for all
nonzero a ∈ K. It follows that f (x0, 0) is a single-variable polynomial with in-
finitely many zeroes, so it must be the zero polynomial. Write f as an element of
(K[x0])[x1]:

f = ∑
d≥0

fd(x0)xd
1 .

Using f0(x0) = f (x0, 0) = 0, we conclude that

f = x1 ∑
d≥1

fd(x0)xd−1
1 ∈ 〈x1〉.

9.27 EXAMPLE Vanishing ideal of a line in P2

If X is the line V(x0 + x1 − x2) ⊆ P2 of Example 9.22, then

I(X) = 〈x0 + x1 − x2〉.
The fact that every element of 〈x0 + x1 − x2〉 vanishes at every point of X is essen-
tially immediate, while the reverse inclusion is the content of Exercise 9.3.8.
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As in the affine case, projective vanishing ideals are, in fact, ideals, and more-
over, they are readily seen to be radical ideals. In the projective setting, though, we
get even more. In particular, Lemma 9.17 implies that, for every f ∈ I(X), every
homogeneous component of f must also be an element of I(X). This attribute of
I(X) is the defining property of what it means to be a homogeneous ideal.

9.28 DEFINITION Homogeneous ideals in polynomial rings

An ideal I ⊆ K[x0, . . . , xn] is homogeneous if, for every f ∈ I, every homo-
geneous component of f is also in I.

While the above definition of homogeneous ideals is directly motivated by our
discussion of vanishing ideals, the following result offers an important alternative
characterization of homogeneous ideals that is, perhaps, more straightforward, and
that can be quite useful in practice.

9.29 PROPOSITION Characterizing homogeneous ideals

An ideal I ⊆ K[x0, . . . , xn] is homogeneous if and only if it admits a set of
homogeneous generators.

PROOF First, suppose that I is a homogeneous ideal, and let S ⊆ I be the subset
consisting of all homogeneous polynomials in I. We claim that I = 〈S〉. The
inclusion 〈S〉 ⊆ I is immediate, since S ⊆ I and I is an ideal. Conversely, suppose
that f ∈ I. Then we can express f as a sum of nonzero homogeneous components
fk, and the fact that I is a homogeneous set means that fk ∈ I for each k. Given that
fk is homogeneous, it follows that fk ∈ S . Therefore, f is a sum of elements of S ,
so f ∈ 〈S〉.

Conversely, suppose I = 〈S〉, where S is a set of homogeneous polynomials.
To prove that I is a homogeneous set, let f ∈ I. The fact that I = 〈S〉 means that

f =
m

∑
i=1

gihi

for some gi ∈ K[x0, . . . , xn] and hi ∈ S ; in particular, hi is homogeneous of some
degree di. For each k, we have

fk =
m

∑
i=1

(gihi)k,

where, in the right-hand side, (gihi)k denotes the kth homogeneous component of
the polynomial gihi. By Exercise 9.3.1, we can rewrite the summands as

(gihi)k =

{
(gi)k−di

· hi if di ≤ k
0 if di > k,

where (gi)k−di
is the (k− di)th homogeneous component of gi. This implies that

(gihi)k ∈ I, so fk is a sum of elements of I and hence fk ∈ I. Thus, I is a
homogeneous ideal and the proof is complete.



9.3. THE PROJECTIVE I-OPERATOR 257

Having established an understanding of homogeneous ideals, we now return to
the primary topic of this section. The next result summarizes the most important
algebraic attributes of vanishing ideals.

9.30 PROPOSITION IP(X) is a homogeneous radical ideal

If X ⊆ Pn is any subset, then IP(X) ⊆ K[x0, x1, . . . , xn] is a homogeneous
radical ideal.

PROOF The fact that IP(X) is a radical ideal follows from the exact same argu-
ment as in the affine case (Proposition 1.24), as the reader is encouraged to verify.
That I(X) is homogeneous follows directly from Lemma 9.17.

As in the affine case, our primary reason for defining vanishing ideals is to have
a distinguished defining ideal for any projective variety. That the vanishing ideal
serves this role is verified in the third item of the next result, which is just one of a
number of important properties relating the projective V- and I-operators.

9.31 PROPOSITION Basic properties of VP and IP

Let S , T ⊆ K[x0, x1, . . . , xn] and X, Y ⊆ Pn be subsets.
1. If S ⊆ T , then VP(S) ⊇ VP(T ).
2. If X ⊆ Y, then IP(X) ⊇ IP(Y).

3. VP(IP(X)) ⊇ X, with equality if and only if X is a projective variety.

4. IP(VP(S)) ⊇ S , with equality if and only if S is a projective vanish-
ing ideal.

PROOF The proofs of these statements are analogous to those of their affine
counterparts (Propositions 2.1 and 1.21), as the reader is encouraged to verify.

Continuing to parallel the affine situation, we recall that, in the affine case, the
relationship between the V- and I-operators was leveraged to prove the existence
and uniqueness of irreducible decompositions. We now state the projective ana-
logue, starting with the natural definition of an irreducible projective variety, which
carries over verbatim from the affine case.

9.32 DEFINITION Irreducible projective variety

A projective variety X ⊆ Pn is reducible if X = X1 ∪ X2 for some pro-
jective varieties X1, X2 ( X, and X is irreducible if it is neither empty nor
reducible.

As one might expect, irreducible decompositions always exist and are unique in
the projective setting, and the proof of this fact is parallel to the affine situation.
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9.33 PROPOSITION/DEFINITION Irreducible decomposition

Let X ⊆ Pn be a nonempty projective variety. Then there exist irreducible
projective varieties X1, . . . , Xr ⊆ X such that Xi 6⊆ Xj for any i 6= j and

(9.34) X =
r⋃

i=1

Xi.

Moreover, the projective varieties X1, . . . , Xr are unique up to reordering;
we call these the irreducible components of X, and refer to (9.34) as the
irreducible decomposition of X.

PROOF The proof, which uses the relationship between the projective V- and I-
operators, along with the Noetherian property of K[x0, . . . , xn], is analogous to that
of the affine statement (Proposition/Definition 2.32), as the reader is encouraged to
verify.

At this point, the structural parallels between projective varieties and affine va-
rieties have begun to emerge, and indeed, many of the results in the projective case
have proofs that are identical, or at least analogous, to the affine case. However, our
geometric intuition for projective varieties is still lacking; after all, how can we draw
pictures of projective varieties when Pn is so difficult to visualize, even over the real
numbers, for n ≥ 2? The key to answering this question lies in two techniques for
moving between the projective and affine settings, to which we devote the next two
sections.

Exercises for Section 9.3
9.3.1 Let g ∈ K[x0, x1, . . . , xn] be any polynomial and let h ∈ [x0, x1, . . . , xn] be

homogeneous of degree d. Prove that, for each k ≥ 0, we have

(gh)k =

{
gd−k · h if d ≤ k
0 if d > k.

9.3.2 Which of the following ideals are homogeneous? Prove your answers.

(a) 〈x + 1〉 ⊆ K[x, y]
(b) 〈x + y〉 ⊆ K[x, y]
(c) 〈x2 + y, x2 − y〉 ⊆ K[x, y]
(d) 〈x2 + y2, xy2 + y3 + x2, y2 − x2〉 ⊆ K[x, y]

9.3.3 Let X ⊆ Pn be a projective variety. Prove that X is irreducible if and only if
IP(X) is a prime ideal.

9.3.4 Prove that a subset X ⊆ Pn consists of a single point if and only if IP(X) is
a maximal ideal.

9.3.5 Review the proof of Proposition 1.24 to make sure that every step can be
carried out in the projective setting, thereby proving that projective vanishing
ideals are radical ideals.
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9.3.6 Review the proofs of Propositions 2.1 and 1.21 to make sure that every step
can be carried out in the projective setting, thereby proving Proposition 9.31.

9.3.7 Review the proof of Proposition/Definition 2.32 to make sure that every step
can be carried out in the projective setting, thereby proving Proposition/Defi-
nition 9.33.

9.3.8 Let X = V(x0 + x1 − x2) ⊆ P2. We prove that I(X) = 〈x0 + x1 − x2〉.
One inclusion is immediate, as discussed in Example 9.27. For the reverse
inclusion, proceed as follows:

(a) Let f ∈ I(X), and assume that f is homogeneous. Prove that for any
a0 6= 0 and any a1, we have

f (a0, a1, a0 + a1) = 0.

(b) Conclude that for any a0 6= 0, the polynomial f (a0, x1, a0 + x1) is the
zero polynomial in K[x1].

(c) Conclude, from here, that the polynomial f (x0, x1, x0 + x1), viewed as
a polynomial in the variable x0 with coefficients in K[x1], is the zero
polynomial.

(d) Argue that, since f (x0, x1, x0 + x1) = 0, we have

f ∈ 〈x0 + x1 − x2〉.

(e) You have now shown that every homogeneous element of I(X) is in
〈x0 + x1 − x2〉. Explain why it follows that, in fact, every element of
I(X) is in 〈x0 + x1 − x2〉.
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Section 9.4 Affine restrictions
In order to relate a projective variety to a more easily visualizable affine variety,
we recall the second perspective on projective space from Section 9.1, wherein we
view Pn as the result of adding points at infinity to An. By ignoring these points,
each projective variety has an affine restriction, and this restriction gives a helpful—
though incomplete—picture of what the projective variety looks like. Before ex-
plaining the concept in general, we look at a specific example.

9.35 EXAMPLE Affine restriction of a quadric curve in P2

In settings involving both affine and
projective varieties, we often use the
notation VA and IA for the affine V-
and I-operators to distinguish them
from their projective counterparts.

Consider the projective variety

X = VP(x2
0 + x2

1 − x2
2) ⊆ P2.

Any point in X whose first coordinate
is nonzero can be expressed in homoge-
nous coordinates as [1 : a1 : a2], where
1 + a2

1 − a2
2 = 0. Thus, setting

X0 = VA(1 + x2
1 − x2

2) ⊆ A2,

there is a natural bijection

X = X0 t {[0 : a1 : a2] | a2
1 − a2

2 = 0}.

There are two points of the second type: a point [0 : a1 : a2] satisfying

a2
1 − a2

2 = (a1 − a2)(a1 + a2) = 0

must be of the form [0 : a : a] or [0 : a : −a], and under the equivalence relation on
P2, this means that it is either [0 : 1 : 1] or [0 : 1 : −1]. Thus,

X = X0 t {[0 : 1 : 1], [0 : 1 : −1]}.

Working over the real numbers, we can draw
the affine variety X0: it is the hyperbola shown
at right, which captures almost all of X. The
two additional points in X are the points at in-
finity that one reaches by walking along the two
asymptotes of X0. Namely, the two asymptotes
of X0 are the lines through the origin of slope
1 and −1, which—as we saw in the discussion
following Proposition 9.11—tend toward the points [0 : 1 : 1] and [0 : 1 : −1] in
P2. As you can see, following the path that X makes with X0 and the two points at
infinity, we can see that X forms a single loop, just like P1

R. In fact, once we have
discussed isomorphisms of projective varieties, we will see that there is an isomor-
phism X ∼= P1.
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Generalizing Example 9.35, if X = VP(S) ⊆ Pn is a projective variety, then

X = X0 t {points at infinity in X},

where
X0 = {[a0 : · · · : an] ∈ X | a0 6= 0},

and the points at infinity in X are those with a0 = 0. That is, X0 = X ∩An under
the natural bijection between An and points in Pn with nonzero first coordinate.
Given that points of X0 can be expressed in the form [1 : b1 : · · · : bn], we see that

X0 = VA(S0) ⊆ An,

where
S0 = { f (1, x1, . . . , xn) | f ∈ S} ⊆ K[x1, . . . , xn].

In particular, X0 is an affine variety, called the affine restriction of X. Before giving
a general definition of affine restrictions, we discuss one more class of examples.

9.36 EXAMPLE Restricting lines in P2

The affine restriction of the projective variety X = VP(x0 + x1 − x2) ⊆ P2 from
Example 9.22 is the line X0 = VA(1 + x1 − x2) ⊆ A2, and the only point at
infinity of X is [0 : 1 : 1]. More generally, the affine restriction of the projective
variety

L = VP(bx0 + mx1 − x2) ⊆ P2.

is
L0 = VA(b + mx1 − x2) ⊆ A2,

which is a line with vertical intercept b and slope m. Some moments reflecting
should convince the reader that L again contains just one point at infinity: [0 : 1 : m].
This is a more precise manifestation of what we saw informally in Section 9.1: the
point [0 : 1 : m] is the point at infinity that one reaches by “walking along L0.”

In particular, we see again that the point at infinity reached by walking along L0
only depends on the slope of L0. Parallel lines, then, such as

VA(1 + 3x1 − x2), VA(2 + 3x1 − x2) ⊆ A2,

do not meet in A2, yet when viewed as the affine restrictions of the projective lines

VP(x0 + 3x1 − x2), VP(2x0 + 3x1 − x2) ⊆ P2,

they meet at the point at infinity [0 : 1 : 3], dictated by their common slope. For this
reason, P2 is sometimes referred to as the setting in which “parallel lines meet.” See
Exercise 9.4.1 for a more complete exploration of this phenomenon.

The role played by x0 in the above discussion, as opposed to any other variable,
is arbitrary. More generally, restricting a projective variety to the points of Pn with
nonzero ith coordinate yields an affine variety, described in the following definition.
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9.37 DEFINITION Affine patches and affine restrictions

For each i ∈ {0, 1, . . . , n}, the ith affine patch of Pn is the set

An
i = {[a0 : a1 : · · · : an] ∈ Pn | ai 6= 0},

and for any set X ⊆ Pn, the intersection X ∩An
i is called the ith affine

restriction of X.

The reader should pause to convince themselves (Exercise 9.4.2) that for any
i, there is a natural bijection An

i = An, and under this bijection, the ith affine
restriction of X = VP(S) is VA(Si) ⊆ An, where

Si = { f (x0, . . . , xi−1, 1, xi+1, . . . , xn) | f ∈ S}.

9.38 EXAMPLE Affine restrictions of a cubic curve in P2

Consider the three affine restrictions of X = VP(x0x2
2 − 2x3

1 − 2x0x2
1) ⊆ P2:

X0 = VA(x2
2 − 2x3

1 − 2x2
1) ⊆ A2,

X1 = VA(x0x2
2 − 2− 2x0) ⊆ A2,

X2 = VA(x0 − 2x3
1 − 2x2

1x0) ⊆ A2.

The full projective variety X is the union of these three subsets, which intersect in
points with more than one nonzero coordinate. Thus, one can construct X by “gluing
together”—with substantial overlap—three affine varieties. For example, the point
[1 : 1 : 2] ∈ X can be found in each of the three affine patches: in X0, it has affine
coordinates (x1, x2) = (1, 2); in X1, it has affine coordinates (x0, x2) = (1, 2); and
in X2, it has affine coordinates (x0, x1) = ( 1

2 , 1
2 ). In the images below, we have

depicted the three affine patches over the real numbers, marking four color-coded
points on each that are identified within X. The arrows suggest the orientation in
which these affine patches are glued together.

By carefully tracing the curve, moving between affine patches when necessary, one
sees that, when viewed over the real numbers, X forms a “figure-eight.” While the
first affine patch is missing only a single point (the point at infinity on a vertical
line), the second and third are each missing two points, one of which (the point at
infinity on a horizontal line) is the point at which the figure-eight crosses itself.
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The passage from a projective variety X to its affine restrictions involves simply
setting one of the coordinates equal to 1, but can we reverse this procedure? Namely,
starting from an affine variety X, can one find a projective variety X such that X is
one of the affine restrictions of X? The answer is yes: the associated projective
variety is called the projective closure of X—the topic of the next section.

Exercises for Section 9.4
9.4.1 A line in P2 is defined as a projective variety of the form

VP(ax0 + bx1 + cx2) ⊆ P2

where a, b, c ∈ K are not all zero. For this exercise, let X and Y be a pair of
distinct lines in P2.

(a) Prove that X ∩Y consists of a single point.
(b) Suppose that the first affine restrictions X0 and Y0 are nonempty. Prove

that X0 and Y0 are lines in A2.
(c) Prove that X ∩Y = X0 ∩Y0 whenever X0 and Y0 are not parallel.
(d) Now suppose that X0 and Y0 are parallel lines. What can we say about

the defining equations of X and Y? In what point do X and Y intersect?

This clarifies the fact that parallel lines in A2 meet “at infinity” in P2.

9.4.2 (a) Prove that there is a natural bijection between the affine patch An
i ⊆ Pn

and An.
(b) If X = VP(S) ⊆ Pn, prove that the bijection in (a) identifies X ∩An

i
with VA(Si) ⊆ An, where

Si = { f (x0, . . . , xi−1, 1, xi+1, . . . , xn) | f ∈ S}.

9.4.3 Let X = VP(x0x2 − x2
1) ⊆ P2.

(a) Calculate the three affine restrictions X0, X1, and X2, and draw a picture
of each over the real numbers.

(b) Consider the point (2, 4) ∈ X0 ⊆ A2. As an element of X, this is the
point [1 : 2 : 4], which also lies in X1. What are the coordinates of this
point in X1 ⊆ A2?

(c) Repeat the reasoning of part (b) for several other points in X0 ∩ X1 to
illustrate, visually, how X0 and X1 fit together inside X. Then, do the
same for X1 and X2 and for X0 and X2.
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Section 9.5 Projective closures
In the previous section, we learned how to view a projective variety as the disjoint
union of an affine variety and a collection of points at infinity, and in this section,
we reverse that process, describing a method for producing a projective variety by
adding points at infinity to an affine variety. Let j0 : An → Pn be the function

j0(a1, . . . , an) = [1 : a1 : · · · : an],

which is a bijection onto the affine patch An
0 ⊆ Pn. If X ⊆ An is an affine

variety, then j0(X) ⊆ Pn is a subset of Pn whose first affine restriction is X by
construction, but j0(X) is not, in general, a projective variety. In order to extend
j0(X) to a projective variety, one must add some additional points; the minimal
projective variety obtained in this way is called the projective closure of X.

9.39 DEFINITION Projective closure

Let X ⊆ An be an affine variety, and let j0(X) be the image of X in the first
affine patch An

0 ⊆ Pn. The projective closure of X, denoted X ⊆ Pn, is the
intersection of all projective varieties that contain j0(X).

That X is, itself, a projective variety follows from the fact that (even infinite)
intersections of projective varieties are projective varieties (Exercise 9.2.4). By def-
inition, we see that X is the “smallest” projective variety containing j0(X); in other
words, it is contained within every other projective variety containing X.

9.40 EXAMPLE Projective closure of a line

If X = VA(1 + x1 − x2) ⊆ A2, then

j0(X) = {[1 : a : 1 + a] | a ∈ K} ⊆ P2.

In particular, since
[1 : a : 1 + a] = [ 1

a : 1 : 1
a + 1]

when a 6= 0, we see that j0(X) contains [b : 1 : b + 1] for any b ∈ K \ {0}. But a
projective variety that contains all of these points must also contain the correspond-
ing point with b = 0; see Exercise 9.5.1. Thus, given that [0 : 1 : 1] /∈ j0(X), we
see that j0(X) cannot be a projective variety.

Adding this one missing point yields a projective variety:

VP(x0 + x1 − x2) = j0(X) t {[0 : 1 : 1]},

as one verifies by splitting into cases depending on whether the first coordinate is
zero or nonzero. Thus, VP(x0 + x1 − x2) is the smallest projective variety contain-
ing j0(X), implying that X = VP(x0 + x1 − x2).

9.41 EXAMPLE Projective closure of a parabola

Consider the parabola
X = VA(x2 − x2

1) ⊆ A2.
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Then
j0(X) = {[1 : a : a2] | a ∈ K} ⊆ P2.

As in the previous example, from the fact that

[1 : a : a2] = [ 1
a2 : 1

a : 1]

for a 6= 0, we see that j0(X) contains [b2 : b : 1] for any b ∈ K \ {0}. But again,
a projective variety containing all of these points must contain the point [0 : 0 : 1];
since j0(X) does not contain this point, it cannot be a projective variety.

By adding the missing point, we find a projective variety:

VP(x0x2 − x2
1) = j0(X) t {[0 : 0 : 1]},

and we conclude that X = VP(x0x2 − x2
1).

In each of the previous two examples, the affine variety X was defined by an
inhomogeneous polynomial f , and the defining polynomial of X could be obtained
from f by “homogenizing”: multiplying each term of f by a power of x0 to produce
a homogeneous polynomial. To illustrate the idea in another example, let

f (x1, x2, x3) = x2
1 + x2 + x1x4

3.

Then the highest-degree term is the last one, which has degree 5, and we homogenize
f by multiplying each term by the necessary power of x0 to give it degree 5. The
result is the homogeneous polynomial

f (x0, x1, x2, x3) = x3
0x2

2 + x4
0x2 + x1x4

3.

The following definition describes this procedure in general.

9.42 DEFINITION Homogenization of a polynomial

Let f ∈ K[x1, . . . , xn] be a polynomial of degree d. The homogenization of
f is defined by

f = xd
0 · f

( x1

x0
, . . . ,

xn

x0

)
∈ K[x0, x1, . . . , xn].

The reader should verify (Exercise 9.5.3) that f is a homogeneous polynomial
of degree d satisfying

(9.43) f (1, x1, . . . , xn) = f (x1, . . . , xn),

and that this definition agrees with the term-by-term procedure described above.
In Examples 9.40 and 9.41, we had X = VA( f ) and X = VP( f ), which might

lead one to postulate that if X = VA( f1, . . . , fr), then X = VP( f 1, . . . , f r). This
would be convenient if it were the case; not only would it make computing projective
closures a straightforward process, but it would imply, via equation (9.43), that the
first affine restriction of X is X. Unfortunately, the passage from X to X is not
always quite so simple, as the next example illustrates.
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9.44 EXAMPLE The twisted cubic curve

Let X = VA(x2 − x2
1, x3 − x3

1) so that

j0(X) = {[1 : a : a2 : a3] | a ∈ K} ⊆ P3.

Similarly to Examples 9.40 and 9.41, any projective variety containing j0(X) must
also contain the point [0 : 0 : 0 : 1]. It follows that j0(X) is not a projective variety,
but direct computation (Exercise 9.5.6) shows that j0(X) t {[0 : 0 : 0 : 1]} is:

X = VP(x0x2 − x2
1, x0x3 − x3

1, x1x3 − x2
2) = j0(X) ∪ {[0 : 0 : 0 : 1]}.

This projective variety is called the twisted cubic curve.
The first two defining polynomials of X are obtained by homogenizing the defin-

ing polynomials of X, but the third is also necessary. Without it,

(9.45) VP(x0x2 − x2
1, x0x3 − x3

1)

contains j0(X), but also contains all of the points [0 : 0 : b : c] ∈ P3. Thus, while
(9.45) is a projective variety containing j0(X), it is quite a bit larger than X.

While Example 9.44 shows that the projective closure of X = VA( f1, . . . , fr)
is not, in general, obtained by homogenizing f1, . . . , fr, there is a fix: instead of
homogenizing only an arbitrarily chosen set of defining polynomials, we should
homogenize every polynomial in the vanishing ideal of X.

9.46 DEFINITION Homogenization of an ideal

Let I ⊆ K[x1, . . . , xn] be an ideal. The homogenization of I is the set

I = { f | f ∈ I} ⊆ K[x0, . . . , xn].

Careful: I is not generally an ideal;
can you see why?

By homogenizing every polynomial
in the vanishing ideal of an affine vari-
ety, we then obtain enough polynomials
to describe its projective closure.

9.47 PROPOSITION Projective closures via homogenization

If X is any affine variety, then X = VP

(
IA(X)

)
.

PROOF We prove both inclusions.

(⊆) Note that
j0(X) ⊆ VP

(
IA(X)

)
,

since if [1 : a1 : · · · : an] ∈ j0(X) and g ∈ IA(X), then g = f for some
f ∈ IA(X) and hence g(1, a1, . . . , an) = f (a1, . . . , an) = 0. Thus, VP

(
IA(X)

)
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is a projective variety containing j0(X), and since X is the smallest projective variety
containing j0(X), it follows that X ⊆ VP

(
IA(X)

)
.

(⊇) We prove that

(9.48) IP(X) ⊆ IP

(
VP

(
IA(X)

))
,

then applying VP to both sides of this containment implies, by Proposition 9.31, that

X ⊇ VP

(
IA(X)

)
,

as required. To prove (9.48), let g ∈ IP(X). Given that IP(X) is a homogeneous
ideal and thus admits a set of homogeneous generators, it suffices to assume for the
proof of (9.48) that g is homogeneous.

Even though g is homogeneous, it may not be the homogenization of an ele-
ment of K[x1, . . . , xn], since it could be the case that every term of g contains x0.
However, if k ∈ Z≥0 is the maximum power of x0 such that g = xk

0h for some
h ∈ K[x0, x1, . . . , xn], then Exercise 9.5.8 implies that h is the homogenization of
the polynomial h0 = h(1, x1, . . . , xn) ∈ K[x1, . . . , xn]. Using that g vanishes on
X ⊇ j0(X), we see that h0 vanishes on X: for any (a1, . . . , an) ∈ X, we have

h0(a1, . . . , an) = h(1, a1, . . . , an) = g(1, a1, . . . , an) = 0.

Thus, h(1, x1, . . . , xn) ∈ IA(X), so h ∈ IA(X), and it follows that

g ∈ 〈IA(X)〉 ⊆ IP

(
VP

(
IA(X)

))
,

where the containment is another application of Proposition 9.31. This completes
the proof of (9.48) and hence the proof of the proposition.

Proposition 9.47 is a statement about vanishing ideals, but combining it with the
Nullstellensatz yields a result on defining ideals, which can be useful in practice.

9.49 COROLLARY Projective closures via defining ideals

If I ⊆ K[x1, . . . , xn] is an ideal, then VA(I) = VP(I).

PROOF Let I ⊆ K[x1, . . . , xn] be any ideal. By Proposition 9.47 and the Null-
stellensatz, we have

(9.50) VA(I) = VP

(
IA(VA(I))

)
= VP

(√
I
)

.

From here, Exercise 9.5.9 shows that〈√
I
〉
=
√〈

I
〉

,

so the equalities in (9.50) can be continued with

VP

(√〈
I
〉)

= VP

(〈
I
〉)

= VP(I),

in which the first equality is an application of Exercise 9.5.10.
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9.51 EXAMPLE The twisted cubic revisited

In light of Corollary 9.49, we can make further sense of the phenomenon observed
in Example 9.44. In that case, X = VA(I) for the ideal

I = V(x2 − x2
1, x3 − x3

1).

The homogenization of I contains the homogenizations of x2 − x2
1 and x3 − x3

1,
meaning

I ⊇ 〈x0x2 − x2
1, x0x3 − x3

1〉.

But the containment is strict: to see why, notice that there is a homogeneous poly-
nomial in I itself, namely

x1x3 − x2
2 = (x2 − x2

1) · (−x2 − x2
1) + (x3 − x3

1) · x1.

This polynomial is therefore in I, but it cannot be in 〈x0x2− x2
1, x0x3− x3

1〉 because
any element of this ideal vanishes at [0 : 0 : 1 : 0] and x1x3 − x2

2 does not. In fact,
one can show that

I = 〈x0x2 − x2
1, x0x3 − x3

1, x1x3 − x2
2〉,

at which point Proposition 9.47 again gives the result

X = VP(x0x2 − x2
1, x0x3 − x3

1, x1x3 − x2
2).

This example highlights the fact that, in general,

〈 f1, . . . , fk〉 6= 〈 f1, . . . , fk〉.

Fortunately, however, this issue does not arise when the ideal is principal: one has

(9.52) 〈 f 〉 =
〈

f
〉

for any f ∈ K[x1, . . . , xn]; see Exercise 9.5.11. Combining (9.52) with Corol-
lary 9.49 gives the following useful result.

9.53 COROLLARY Projective closures of hypersurfaces

If f ∈ K[x1, . . . , xn], then VA( f ) = VP( f ).

A final corollary of Proposition 9.47 is that taking affine restrictions is, in some
sense, the inverse of taking projective closures, as stated in the next result.

9.54 COROLLARY (X)0 = X

If X is an affine variety, then the affine restriction of the projective closure of
X is X. More succinctly, (X)0 = X.
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PROOF Let S = IA(X). Combining Proposition 9.47 with Definition 9.37, we
see that the affine restriction of X is VA(S0), where

S0 = {g(1, x1, . . . , xn) | g ∈ IA(X)}
= { f (1, x1, . . . , xn) | f ∈ IA(X)}
= IA(X).

Thus, the affine restriction of X is VA(IA(X)) = X, as claimed.

Affine restrictions and projective closures set up a close connection between
affine varieties and projective varieties, and as we have seen, the theory in the two
settings is essentially parallel. The reader may expect, then, that there is a projective
version of the Nullstellensatz. This is indeed the case, and the last section of this
chapter is devoted to developing it.

Exercises for Section 9.5
9.5.1 Let X ⊆ P2 be a projective variety containing the points [b : 1 : b + 1] for all

b ∈ K \ {0}. Prove that [0 : 1 : 1] ∈ X.

9.5.2 Generalizing the previous exercise, let f0, . . . , fn ∈ K[x] be single-variable
polynomials, not all zero, and let X ⊆ Pn be a projective variety such that

[ f0(b) : · · · : fn(b)] ∈ X

for all b ∈ K \ {0}. Prove that

[ f0(0) : · · · : fn(0)] ∈ X.

9.5.3 Prove that, for any polynomial f ∈ [x1, . . . , xn] of degree d, the homogeniza-
tion f is a homogeneous polynomial of degree d satisfying

f (1, x1, . . . , xn) = f (x1, . . . , xn).

9.5.4 Let f , g ∈ K[x1, . . . , xn].

(a) Prove that f g = f · g.
(b) Is it the case that f + g = f + g? Prove or give a counterexample.

9.5.5 Mimic the arguments of Examples 9.40 and 9.41 to prove that the projective
closure of the affine variety

X = VA(x1x2 − 1) ⊆ A2

must contain the points [0 : 0 : 1] and [0 : 1 : 0], and conclude that

X = VP(x1x2 − x2
0).

What are the asymptotes of X, and how does your answer relate to the points
at infinity of X?
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9.5.6 Let
X = VA(x2 − x2

1, x3 − x3
1) ⊆ A3

be the affine twisted cubic. Prove that

X = VP(x0x2 − x2
1, x0x3 − x3

1, x1x3 − x2
2).

9.5.7 Calculate the projective closure of the affine variety

X = V(x− 1, y) ⊆ A2.

Prove your answer.

9.5.8 Let h ∈ K[x0, x1, . . . , xn]. Prove that if x0 - h, then h is the homogenization
of

h(1, x1, . . . , xn) ∈ K[x1, . . . , xn].

9.5.9 Let I ⊆ K[x1, . . . , xn] be any ideal. Prove that

〈√
I
〉
=
√
〈 I 〉 .

9.5.10 Let I ⊆ K[x1, . . . , xn] be a homogeneous ideal. Prove that
√

I is also a
homogeneous ideal, and that

VP(I) = VP

(√
I
)

.

9.5.11 Prove that
〈 f 〉 =

〈
f
〉

for any f ∈ K[x1, . . . , xn]. (Hint: Use Exercise 9.5.4.)
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Section 9.6 The projective Nullstellensatz
How might one generalize the statement of the Nullstellensatz to the projective set-
ting? The most straightforward generalization one might hope for is that

(9.55) IP(VP(I)) =
√

I

for any ideal I ⊆ K[x0, x1, . . . , xn]. Unfortunately, this is not quite correct. First,
since vanishing ideals are homogeneous, (9.55) can only be true if I is a homoge-
neous ideal. But even among homogeneous ideals, there is a case when (9.55) fails:

I = 〈x0, x1, . . . , xn〉.
More explicitly, if I = 〈x0, x1, . . . , xn〉, notice that VP(I) consists of all points
[a0 : a1 : · · · : an] ∈ Pn at which each of the polynomials x0, x1, . . . , xn vanishes,
which can only be the case if ai = 0 for each i. Since no such points exist in
Pn, it follows that VP(I) = ∅. Every polynomial vacuously vanishes at every
point of ∅, implying that IP(VP(I)) = K[x0, x1, . . . , xn]. On the other hand,
I = 〈x0, x1, . . . , xn〉 is a radical (in fact, maximal) ideal, so

√
I = 〈x0, x1, . . . , xn〉.

Tying together these observations, we conclude that

IP(VP(I)) = K[x0, . . . , xn] 6= 〈x0, . . . , xn〉 =
√

I.

To avoid this pesky exception to (9.55), we give the ideal I = 〈x0, x1, . . . , xn〉 a
name that emphasizes our unwillingness to consider it.

9.56 DEFINITION Irrelevant ideal

The ideal 〈x0, x1, . . . , xn〉 ⊆ K[x0, x1, . . . , xn] is called the irrelevant ideal.
An ideal that is not the irrelevant ideal is called relevant.

The projective Nullstellensatz asserts that, aside from the irrelevant ideal, the
affine Nullstellensatz directly generalizes.

9.57 THEOREM Projective Nullstellensatz

Let I ⊆ K[x0, x1, . . . , xn] be a homogeneous ideal. If
√

I is relevant, then

IP(VP(I)) =
√

I.

If
√

I is the irrelevant ideal, then IP(VP(I)) = K[x0, x1 . . . , xn].

Fortunately, the projective Nullstellensatz can be derived as a consequence of
its affine cousin without re-developing the algebraic machinery. The key idea is
to leverage a different relationship between affine and projective geometry than the
ones we considered in the previous two sections.

Notice that a homogeneous ideal I ⊆ K[x0, x1, . . . , xn] can be used in two dif-
ferent ways. On one hand, it defines a projective variety VP(I) ⊆ Pn. But on the
other hand, before learning about projective varieties, we would have simply viewed
I as an ideal in n + 1 variables, defining an affine variety VA(I) ⊆ An+1. What is
the relationship between VP(I) and VA(I)? Let us consider an example.
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9.58 EXAMPLE VP(I) versus VA(I)

Consider K = R and let I = 〈−x2
0 + x2

1 + x2
2〉 ⊆ R[x0, x1, x2]. Then

VP(I) = {[a0 : a1 : a2] ∈ P2 | − a2
0 + a2

1 + a2
2 = 0}.

If a0 6= 0, then by rescaling all three coordinates we can assume that a0 = 1. If, on
the other hand, a0 = 0, then the defining equation becomes a2

1 + a2
2 = 0, implying

that a1 = a2 = 0. Since no such point with a0 = a1 = a2 = 0 exists in P2, we
conclude that

VP(I) = {[1 : a1 : a2] ∈ P2 | − 1 + a2
1 + a2

2 = 0},

which is in bijection with the unit circle in A2—that is, with VA(−1 + x2
1 + x2

2).
Alternatively viewing I as defining an affine

variety in A3, we see that VA(I) is the cir-
cular cone with vertex at the origin depicted
at right. (In the image, x0 is the verti-
cal coordinate). The projective variety VP(I)
is visible in this image as the intersection
of VA(I) with the plane x0 = 1. Fur-
ther, we note that VA(I) is the union of all
lines through the origin that correspond, un-
der the bijection of Corollary 9.11, to points of
VP(I).

The fact that V(I) is a cone in the previous example is no accident: a cone
C ⊆ A3 has the property that whenever (a0, a1, a2) ∈ C, the entire line

{(λa0, λa1, λa2) | λ ∈ K}

is contained in C; from the projective perspective, this is the statement that mem-
bership of [a0 : a1 : a2] in C is well-defined. To make this observation precise in
general, we introduce the language of affine cones.

9.59 DEFINITION Affine cone

Let X ⊆ Pn be any subset. The affine cone over X is the set

C(X) = {(0, . . . , 0)} ∪ {(a0, . . . , an) | [a0 : · · · : an] ∈ X} ⊆ An+1.

For instance, the affine cone over VP(I) ⊆ P2 in Example 9.58 is equal to
VA(I) ⊆ A3. This is a special case of the following lemma.

9.60 LEMMA VA(I) = C(VP(I))

If I ( K[x0, x1, . . . , xn] is a proper homogeneous ideal, then

VA(I) = C
(
VP(I)

)
.



9.6. THE PROJECTIVE NULLSTELLENSATZ 273

PROOF First, note that (0, . . . , 0) ∈ VA(I) for every proper homogeneous ideal
I ( K[x0, . . . , xn]. To see this, recall from Proposition 9.29 that I has a set of
homogeneous generators. If (0, . . . , 0) /∈ VA(I), then at least one of these gen-
erators must be a homogeneous polynomial f such that f (0, . . . , 0) 6= 0. But the
only homogeneous polynomials that do not vanish at (0, . . . , 0) are the nonzero
constant polynomials, and if such a polynomial is among the generators of I, then
I = K[x0, x1, . . . , xn], contradicting the assumption that I is a proper ideal.

Thus, (0, . . . , 0) ∈ VA(I). Moreover, if at least one coordinate of (a0, . . . , an)
is nonzero, then it follows from the definitions of the V-operators that

(a0, . . . , an) ∈ VA(I)⇔ [a0 : · · · : an] ∈ VP(I)⇔ (a0, . . . , an) ∈ C(VP(I)).

This implies that VA(I) = C(VP(I)), as claimed.

We have now used affine cones to relate the VA- and VP-operators, and they can
analogously be used to relate the IA- and IP-operators, as the next lemma shows.

9.61 LEMMA IP(X) = IA(C(X))

If X ⊆ Pn is a nonempty subset, then

IP(X) = IA

(
C(X)

)
.

The exceptions to Lemma 9.60 and
9.61, when I = K[x0, . . . , xn] in the
first case or X = ∅ in the second,
are necessary; see Exercise 9.6.2.

PROOF By Propositions 9.30 and
9.29, there exists a set of homogeneous
generators of IP(X). None of these
can be a nonzero constant polynomial,
since X 6= ∅, and it follows that
they are all homogeneous polynomials
of positive degree and hence vanish at (0, . . . , 0) ∈ An+1. Thus, we have
f (0, . . . , 0) = 0 for all f ∈ IP(X), and with this, the definition of IP(X) can
be re-expressed as follows:

IP(X) = { f ∈ K[x0, . . . , xn] | f (0, . . . , 0) = 0 and
f (a0, . . . , an) = 0 ∀[a0 : · · · : an] ∈ X}

= IA

(
{(0, . . . , 0)} ∪ {(a0, . . . , an) | [a0 : · · · : an] ∈ X}

)
= IA

(
C(X)

)
,

as claimed

Equipped with Lemmas 9.60 and 9.61, the proof of the projective Nullstellensatz
is an application of the affine Nullstellensatz, as we now discuss.

PROOF OF THEOREM 9.57 Let I ⊆ K[x0, x1, . . . , xn] be a homogeneous ideal.
If I = K[x0, x1, . . . , xn], then

IP(VP(I)) = IP(∅) = K[x0, x1, . . . , xn] =
√

I,

so the theorem holds in this case.
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Assume, now, that I is a proper ideal. We claim, in this case, that
√

I is the
irrelevant ideal if and only if VP(I) = ∅. To see this, note first that if

√
I is the

irrelevant ideal, then

VP(I) = VP(
√

I) = VP(〈x0, . . . , xn〉) = ∅,

where the first equality is Exercise 9.5.10. Conversely, if VP(I) = ∅, then Lemma 9.60
implies

VA(I) = C
(
VP(I)

)
= C(∅) = {(0, . . . , 0)},

from which the affine Nullstellensatz shows that

√
I = IA(VA(I)) = IA({(0, . . . , 0)}) = 〈x0, . . . , xn〉.

Now, to prove the projective Nullstellensatz, suppose first that
√

I is not the
irrelevant ideal, so that VP(I) 6= ∅. Then Lemma 9.61 shows that

IP(VP(I)) = IA

(
C(VP(I))

)
,

and then Lemma 9.60 (which applies because I is a proper ideal), along with the
affine Nullstellensatz, show that

IA

(
C(VP(I))

)
= IA(VA(I)) =

√
I.

Finally, if
√

I is the irrelevant ideal, then VP(I) = ∅ and the statement

IP(VP(I)) = K[x0, x1, . . . , xn]

is immediate from the definitions.

As a first application of the projective Nullstellensatz, we see that the computa-
tion of projective vanishing ideals is now greatly simplified.

9.62 EXAMPLE Vanishing ideal of a line in P2, revisited

Let X = V(x0 + x1 − x2) ⊆ P2, as in Example 9.27. We outlined a direct compu-
tation of IP(X) in Exercise 9.3.8, but with the projective Nullstellensatz, we now
need only observe that 〈x0 + x1− x2〉 is a radical homogeneous ideal that is not the
irrelevant ideal. Thus,

IP(X) = IP(VP(〈x0 + x1 − x2〉)) = 〈x0 + x1 − x2〉.

Furthermore, just as in the affine case, the projective Nullstellensatz clarifies the
domains on which the projective V- and I-operators are inverses, allowing us to
describe the following dictionary between projective varieties and associated ideals.
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9.63 PROPOSITION Projective varieties and ideals

The VP- and IP-operators are inverse, inclusion-reversing bijections that
translate between the following hierarchies of ideals and varieties:{

relevant homogeneous
radical ideals in K[x0, . . . , xn]

}
←→ {projective varieties in Pn}

⊆ ⊆{
relevant homogeneous

prime ideals in K[x0, . . . , xn]

}
←→ {irreducible varieties in Pn}

⊆ ⊆{
relevant homogeneous

maximal ideals in K[x0, . . . , xn]

}
←→ {points in Pn}.

PROOF Let X ⊆ Pn be a projective variety. First, note that IP(X) is indeed a
homogeneous radical ideal in K[x0, x1, . . . , xn] by Proposition 9.30. Furthermore,
IP(X) is not the irrelevant ideal. To see why not, suppose to the contrary that

IP(X) = 〈x0, . . . , xn〉.

Then Proposition 9.31 implies

X = VP(IP(X)) = V(〈x0, . . . , xn〉) = ∅.

But then
IP(X) = IP(∅) = K[x0, . . . , xn],

contradicting our assumption that IP(X) is the irrelevant ideal. Thus, IP maps any
projective variety in Pn to a relevant homogeneous radical ideal in K[x0, . . . , xn],
and conversely, VP maps any such ideal to a projective variety, by definition. The
fact that

VP(IP(X)) = X and IP(VP(I)) = I

on these domains follows from Proposition 9.31 and the projective Nullstellensatz,
respectively, justifying the first bijection in the proposition. The other two bijections
then follow from Exercises 9.3.3 and 9.3.4

Exercises for Section 9.6
9.6.1 Draw a picture, over the real numbers, of the affine cone over the projective

variety
X = VP(x2 − yz) ⊆ P2.

(Computer graphing software might help.) Where, in your picture, do you see
the affine restriction

X0 = V(x2 − y) ⊆ A2?

9.6.2 (a) Show that Lemma 9.60 fails if I = K[x0, x1, . . . , xn].
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(b) Show that Lemma 9.61 fails if X = ∅.

9.6.3 Use the projective Nullstellensatz to calculate (with proof) IP(X) for the pro-
jective variety

X = V(x2 − yz) ⊆ P2.

9.6.4 Use the projective Nullstellensatz to calculate (with proof) IP(X) for the
twisted cubic

X = {[a3 : a2b : ab2 : b3] | [a : b] ∈ P1} ⊆ P3.



Chapter 10

Maps of Projective Varieties
LEARNING OBJECTIVES FOR CHAPTER 10

• Become acquainted with regular maps between projective varieties.

• Study isomorphisms in the setting of projective varieties.

• Build a toolkit of examples of regular maps, including polynomial maps,
isomorphisms, projective equivalences, and Veronese embeddings.

• Become familiar with Segre maps and use them to define products of pro-
jective varieties.

In the introduction to Chapter 4, the reader was encouraged to ask a key question
whenever a new type of mathematical object is introduced: which maps between
these objects preserve their relevant structure? For affine varieties, we landed upon
polynomial maps as the appropriate notion of structure-preserving maps, and the
goal of this chapter is to define a corresponding notion of maps between projective
varieties.

This goal is complicated by a number of crucial differences between affine and
projective varieties. For starters, due to the equivalence relation in the definition of
Pm, a polynomial f ∈ K[x0, . . . , xm] does not give a well-defined function on a
projective variety X ⊆ Pm, simply because the value of the polynomial is sensitive
to scaling the homogeneous coordinates in Pm. However, if f happens to be homo-
geneous of degree d, then we have seen that scaling homogeneous coordinates has a
fairly simple effect on the value of f :

f (λa0, . . . , λam) = λd f (a0, . . . , am) for all λ ∈ K \ {0}.

It then follows that, given polynomials f0, . . . , fn ∈ K[x0, . . . , xm] that are all ho-
mogeneous of the same degree—at least one of which does not vanish at a—we
obtain a well-defined value

[ f0(a) : · · · : fn(a)] ∈ Pn,

which is independent of the choice of homogeneous coordinates for a. Motivated by
this observation, such tuples of polynomials will form the foundation of our study
of maps between projective varieties.

In general, if X ⊆ Pm and Y ⊆ Pn are projective varieties, we will say that a
function F : X → Y is a regular map if it can be realized (at least locally) by a tuple
of polynomials f0, . . . , fn that are homogeneous of the same degree. Regular maps
serve as the structure-preserving maps between projective varieties, and our primary
aim in this section is to initiate their study.

277
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Section 10.1 Regular maps of projective varieties
Our goal in this section is to familiarize ourselves with the precise notion of a regular
map between two projective varieties. As we alluded to in the introduction to this
chapter, regular maps between projective varieties are locally modeled by collections
of polynomials that are homogeneous of the same degree. Before introducing the
key definitions, a few observations are in order.

Suppose that f ∈ K[x0, . . . , xm] and a ∈ Pm. Upon choosing homogeneous
coordinates and writing a = [a0 : · · · : an], we can evaluate f to obtain a value:

f (a0, . . . , an) ∈ K.

However, as we have seen, different choices of homogeneous coordinates for a lead
to different values when evaluating f , so the value of f is not well-defined at points
of Pm. As a workaround, let us suppose that f0, . . . , fn ∈ K[x0, . . . , xm] are homo-
geneous of the same degree d and that at least one of them does not vanish at a. Then
we can collect the values together and view them as a point of projective space:

[ f0(a0, . . . , an) : · · · : fn(a0, . . . , an)] ∈ Pn.

Something quite nice has occurred in doing this: the corresponding point in Pn is
actually independent of the choice of homogeneous coordinates for a. Indeed, if we
choose any other homogeneous coordinates a = [λa0 : · · · : λan], then

[ f0(λa0, . . . , λan) : · · · : fn(λa0, . . . , λan)]

= [λd f0(a0, . . . , an) : · · · : λd fn(a0, . . . , an)]

= [ f0(a0, . . . , an) : · · · : fn(a0, . . . , an)],

where the first equality uses homogeneity of the fi and the second uses the equiva-
lence relation in Pn. In this situation, we henceforth adopt the shorthand notation

[ f0(a) : · · · : fn(a)] = [ f0(a0, . . . , an) : · · · : fn(a0, . . . , an)],

which is a slight abuse of notation, given that the individual values fi(a) are not
well-defined. By evaluating at all points of Pm where at least one of the fi does not
vanish, we thus obtain a function

[ f0 : · · · : fn] : Pm \ V( f0, . . . , fn)→ Pn.

Functions arising in this way lead to a natural notion of polynomial maps be-
tween projective varieties, which serve as a first approximation to the more general
notion of regular maps, which will be introduced later in the section.

10.1 DEFINITION Polynomial map between projective varieties

Let X ⊆ Pm and Y ⊆ Pn be projective varieties. A map F : X → Y is called
a polynomial map if there exist polynomials f0, . . . , fn ∈ K[x0, . . . , xm], all
homogeneous of the same degree, such that X ∩ V( f0, . . . , fn) = ∅ and

F(a) = [ f0(a) : · · · : fn(a)] for all a ∈ X.

If f0, . . . , fn can be taken to be linear, we say that F is a linear map.
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Note that the conditions that f0, . . . , fn are homogeneous of the same degree
and that X ∩ V( f0, . . . , fn) = ∅ together ensure that [ f0(a) : · · · : fn(a)] is a
well-defined point of Pn for all a ∈ X. Let us consider a few concrete examples.

10.2 EXAMPLE A polynomial map from P1 to a conic

Let X = V(y2 − xz) ⊆ P2 and consider the function

G : P1 → X

[a : b] 7→ [a2 : ab : b2].

Observe that G is a polynomial map that can be realized by the three polynomi-
als x2, xy, y2 ∈ K[x, y]. That G is defined at every point of P1 follows from the
observation that

V(x2, xy, y2) = ∅ ⊆ P1,

and to verify that the image of G lies in X, note that y2 − xz vanishes when evalu-
ated at [a2 : ab : b2], for any [a : b] ∈ P1.

10.3 EXAMPLE A linear map from a quadric surface to P2

Let X = V(w2 + x2 + y2 − z2) ⊆ P3, and note that [0 : 0 : 0 : 1] /∈ X. Thus, we
obtain a linear map

H : X → P2

[a : b : c : d] 7→ [a : b : c],

given by the homogeneous linear polynomials w, x, y ∈ K[w, x, y, z].
To visualize H, let us consider the affine

patch X0 where w 6= 0:

X0 = V(1 + x2 + y2 − z2) ⊆ A3.

Restricting to this patch, the map H sends
(b, c, d) ∈ X0 to (b, c) ∈ A2, which can be
visualized over the real numbers as the two-to-
one map that vertically projects the two-sheeted
hyperboloid depicted at right onto the horizon-
tal coordinate plane.

10.4 EXAMPLE Linear projections

Generalizing the previous example, suppose that X ⊆ Pn is a projective variety that
does not contain the point [0 : · · · : 0 : 1]. The linear projection of X onto Pn−1 is
the linear map

H : X → Pn−1

[a0 : · · · : an−1 : an] 7→ [a0 : · · · : an−1].

One way to visualize the map H is as follows: given a point a = [a0 : · · · : an] ∈ X,
there is a unique line La ⊆ Pn that passes through both [0 : · · · : 0 : 1] and a:

La = {[ca0 : · · · : can−1 : dan] | [c : d] ∈ P1}.
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This line intersects the hyperplane V(xn) ⊆ Pn at the point [a0 : · · · : an−1 : 0],
and making the natural identification of V(xn) with Pn−1, this intersection point is
H(a). Thus, intuitively, we view H(X) as the shadow that X casts on V(xn) when
a light shines from a. In the affine patch where x0 6= 0, the lines La are “vertical”
lines for which only the last coordinate varies and the hyperplane V(xn) is the “hor-
izontal” hyperplane for which the last coordinate is zero; thus, as in Example 10.3,
the linear projection in this patch can be viewed as the vertical projection.

To motivate the more general definition of regular maps, we note that the con-
straint in Definition 10.1 that X ∩ V( f0, . . . , fn) = ∅ is often too restrictive, and it
is useful to allow ourselves the flexibility to work with maps that are described by
polynomials only “locally.” To better understand this, let us consider an example.

10.5 EXAMPLE A piecewise polynomial function from a conic to P1

Let X = V(y2 − xz) ⊆ P2 and consider the pair of homogeneous linear polynomi-
als x, y ∈ K[x, y, z]. Note that these polynomials do not give rise to a polynomial
map from X to P1, simply because V(x, y)∩ X = {[0 : 0 : 1]} 6= ∅. However, we
still obtain a function from a subset of X to P1:

[x : y] : X \ V(x, y)→ P1

[a : b : c] 7→ [a : b].

Importantly, it’s not the pair (x, y) that interests us, but the function [x : y] that
the pair defines. For example, the function [5x : 5y] is the same as [x : y], simply
because points of P1 are invariant under scaling coordinates. More generally, recall-
ing that two points of P1 are equal when their cross-ratio vanishes (Exercise 9.1.2),
we see that two functions [ f : g] and [ f ′ : g′] are equal—at all points where they
are both defined—exactly when their cross-ratio vanishes on X:

f g′ − g f ′ ∈ I(X).

For example, the maps [x : y] and [y : z] agree at all points of their common
domain within X because their cross-ratio is xz− y2, which vanishes on X. Let us
consider, then, the second of these two functions:

[y : z] : X \ V(y, z)→ P1

[a : b : c] 7→ [b : c].

Observe that the domains of [x : y] and [y : z] collectively cover all of X, since the
first only omits [0 : 0 : 1] while the second only omits [1 : 0 : 0]. Since the maps
agree at all points where both are defined, we can then combine them to obtain a
piecewise-defined function on all of X:

F : X → P1

[a : b : c] 7→
{
[a : b] [a : b : c] /∈ V(x, y)
[b : c] [a : b : c] /∈ V(y, z).
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The function F : X → P1 in the previous example is not described by a single
pair of polynomials, but it is “locally” polynomial in the following sense: for ev-
ery point p ∈ X, there exists a pair f , g ∈ K[x, y, z]—possibly different pairs for
different points—such that p /∈ V( f , g) and

F(a) = [ f (a) : g(a)] for all a ∈ X \ V( f , g).

This characterization of F motivates the definition of regular maps.

10.6 DEFINITION Regular map between projective varieties

Let X ⊆ Pm and Y ⊆ Pn be projective varieties. A map F : X → Y
is said to be a regular map if, for every p ∈ X, there exist polynomials
f0, . . . , fn ∈ K[x0, . . . , xm], all homogeneous of the same degree, such that
p /∈ V( f0, . . . , fn) and

F(a) = [ f0(a) : · · · : fn(a)] for all a ∈ X \ V( f0, . . . , fn).

In other words, a map F : X → Y is regular if, for every p ∈ X, we can find
a polynomial expression for F that is well-defined at p, even though it may not be
well-defined on all of X. It follows from the definitions that every polynomial map is
regular, but the converse is not true: not every regular map can be described globally
by a single tuple of polynomials. We verify this in the next example.

10.7 EXAMPLE A regular map that is not a polynomial map

Let X = V(y2 − xz) ⊆ P2 and consider again the regular map of Example 10.5:

F : X → P1

[a : b : c] 7→
{
[a : b] [a : b : c] /∈ V(x, y)
[b : c] [a : b : c] /∈ V(y, z).

We claim that F is not a polynomial map. To justify this, suppose to the contrary
that there exists f , g ∈ K[x, y, z], homogeneous of the same degree d, such that
V( f , g) ∩ X = ∅ and F = [ f : g]. Using that y2 = xz on X, we may replace every
instance of y2 in both f and g with xz without affecting the map [ f : g]. This allows
us to reduce to the case that both f and g are linear in y:

f = f0 + y f1 and g = g0 + yg1 for some f0, f1, g0, g1 ∈ K[x, z].

Since F = [ f : g], the formula for F then implies that f vanishes at [0 : 0 : 1] but
not at [1 : 0 : 0], and it follows that f0 = axd for some nonzero a ∈ K. Similarly,
g0 = bzd for some nonzero b ∈ K. Since the function [ f : g] must be equal to
[x : y] at all points in their common domain, we have

y f − xg ∈ I(X) = 〈y2 − xz〉,

implying that
axdy + y2 f1 − bxzd − xyg1 ∈ 〈y2 − xz〉.
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Subtracting (y2 − xz) f1 ∈ 〈y2 − xz〉, we then see that

axdy + xz f1 − bxzd − xyg1 ∈ 〈y2 − xz〉,

and since every nonzero element of 〈y2 − xz〉 is at least quadratic in y, we have

axdy + xz f1 − bxzd − xyg1 = 0.

Identifying the constant and linear coefficients in y, we see that

f1 = bzd−1 and g1 = axd−1,

from which it follows that

f = axd + byzd−1 and g = bzd + ayxd−1.

However, letting c ∈ K be any value such that c2d−1 = −b/a, one readily checks
that [c : 1 : c−1] is a point of X at which both f and g vanish, a contradiction of the
assumption that V( f , g) ∩ X = ∅. Thus, no such f and g can exist.

We close this section by mentioning that, in general, a method for describing
a regular map is to define it piecewise, much like we did in Example 10.5. More
precisely, a regular map F : X → Y between projective varieties X ⊆ Pm and
Y ⊆ Pn can always be described by a collection of functions of the form

[ f0 : · · · : fn] : X \ V( f0, . . . , fn)→ Y.

This collection of functions must satisfy the following two properties:

1. If [ f0 : · · · : fn] and [g0 : · · · : gn] are both in the collection, then

figj − f jgi ∈ I(X) for all i, j.

2. Every p ∈ X must be in the domain of at least one function in this collection.

The first condition ensures that two functions in this collection agree on their com-
mon domain, which allows us to combine them to obtain a well-defined function
on their union, and the second condition ensures that the union of all the domains
covers X. In fact, while it is not obvious from the definition, the reader is encour-
aged to verify that every regular map can be described by a finite collection of such
functions (Exercise 10.1.7).

Exercises for Section 10.1
10.1.1 Let X ⊆ Pm and Y ⊆ Pn be projective varieties, and let F : X → Y be a

regular map. If Z ⊆ Pm is any projective variety such that Z ⊆ X, explain
why the restriction F|Z : Z → Y is also a regular map.

10.1.2 Let X ⊆ P`, Y ⊆ Pm, and Z ⊆ Pn be projective varieties. If F : X → Y
and G : Y → Z are regular maps, prove that G ◦ F : X → Z is also regular.

10.1.3 Let X = V(wz− xy) ⊆ P3.
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(a) Construct a regular map F : X → P1 that extends the function

[w : x] : X \ V(w, x)→ P1.

(b) Prove that F is surjective.
(c) Describe the preimage of F over any point in P1.

10.1.4 Prove that every regular map F : P1 → Pn is a polynomial map.

10.1.5 Prove that the map

[x0 : · · · : xn−1] : Pn \ V(x0, . . . , xn−1)→ Pn−1

cannot be extended to a regular map on all of Pn.

10.1.6 Let X ⊆ Pn be a projective variety that does not contain [0 : · · · : 0 : 1] and
consider the linear projection

H : X → Pn−1

[a0 : · · · : an−1 : an] 7→ [a0 : · · · : an−1]

Prove that H is finite-to-one. In other words, prove that, for any a ∈ Pn−1,
the preimage H−1({a}) is a finite set.

10.1.7 Let X ⊆ Pm and Y ⊆ Pn be projective varieties. Prove that every regular
map F : X → Y can be described by a finite collection of functions of the
form

[ f0 : · · · : fn] : X \ V( f0, . . . , fn)→ Y.
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Section 10.2 Isomorphisms of projective varieties
Having developed an appropriate notion of maps between projective varieties, we
now turn to a discussion of isomorphisms. We begin with the natural definition.

10.8 DEFINITION Isomorphism of projective varieties

An isomorphism of projective varieties X ⊆ Pm and Y ⊆ Pn is a regular
map F : X → Y for which there exists a regular map G : Y → X that is
inverse to F. If there exists an isomorphism between X and Y, we say that X
and Y are isomorphic and write X ∼= Y.

As in the case of affine varieties, we
view the intrinsic nature of a projec-
tive variety to be the structure that is
preserved under isomorphism.

A few moments reflecting should
convince the reader that isomorphisms
are an equivalence relation on the set of
projective varieties—verifying this as-
sertion carefully requires knowing that
compositions of regular maps are regu-

lar (see Exercise 10.1.2). As a first example, building on the maps discussed in the
previous section, we observe that the conic V(y2 − xz) ⊆ P2 is isomorphic to P1.

10.9 EXAMPLE V(y2 − xz) ∼= P1

Let X = V(y2 − xz) ⊆ P2 and let F : X → P1 and G : P1 → X be the regular
maps introduced in Examples 10.7 and 10.2, respectively:

F([a : b : c]) =

{
[a : b] [a : b : c] /∈ V(x, y)
[b : c] [a : b : c] /∈ V(y, z).

and
G([a : b]) = [a2 : ab : b2].

We claim that these two regular maps are inverse to one another. Given a point
[a : b] ∈ P1, we compute

F(G([a : b])) = F([a2 : ab : b2]) =

{
[a2 : ab] if a 6= 0

[ab : b2] if b 6= 0

}
= [a : b].

Conversely, given a point [a : b : c] ∈ X, we compute

G(F([a : b : c])) = G

({
[a : b] if (a, b) 6= (0, 0)
[b : c] if (b, c) 6= (0, 0)

})

=

{
[a2 : ab : b2] if (a, b) 6= (0, 0)

[b2 : bc : c2] if (b, c) 6= (0, 0)

}
= [a : b : c],

where the final equality uses the fact that b2 = ac for every [a : b : c] ∈ X. Since F
and G are inverse regular maps, we conclude that X ∼= P1.
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A special class of isomorphisms arises from linear transformations on projective
space. To set up notation, suppose that A is an invertible (n + 1)× (n + 1) matrix
with entries in K. For each point p ∈ Pn, we define a new point Ap ∈ Pn by
choosing homogeneous coordinates for p, viewing them as a column vector, and
multiplying the column vector on the left by the matrix A. For example, if

A =

 1 1 0
1 0 2
0 1 −1


and p = [a0 : a1 : a2], then Ap = [a0 + a1 : a0 + 2a2 : a1 − a2].

More generally, if we write A = (aij), the procedure described above gives rise
to a linear map FA : Pn → Pn defined by linear polynomials whose coefficients are
the rows of A:

FA =
[ n

∑
j=0

a0jxj : · · · :
n

∑
j=0

anjxj

]
.

The invertibility of A implies that FA is defined at every point of Pn, and, moreover,
that the inverse of FA is the regular map

FA−1 : Pn → Pn

(see Exercise 10.2.3). Thus, FA is an isomorphism from Pn to itself, and we give
isomorphisms arising from invertible matrices in this way a special name.

10.10 DEFINITION Projective equivalence

A projective equivalence of Pn is an isomorphism of the form

FA : Pn → Pn

p 7→ Ap,

where A is an invertible (n + 1)× (n + 1) matrix with entries in K. We say
that two projective varieties X, Y ⊆ Pn are projectively equivalent if there
exists a projective equivalence FA : Pn → Pn such that FA(X) = Y.

Intuitively, we view a projective equivalence simply as a change of coordinates
in Pn, similar to a change of basis in a vector space. Let us consider an example.

10.11 EXAMPLE Projectively equivalent conics

Consider the two projective varieties

X = V(x2 + y2 + z2) ⊆ P2
C and Y = V(y2 − xz) ⊆ P2

C.

We claim that X and Y are projectively equivalent, and we exhibit this through a
change of coordinates in the defining equations. More precisely, notice that

x2 + y2 + z2 = y2 − (zi + x)(zi− x).
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This implies that [a : b : c] ∈ X if and only if [ci + a : b : ci− a] ∈ Y. In other
words, letting A be the invertible matrix

A =

 1 0 i
0 1 0
−1 0 i

 ,

we see that FA(X) = Y, so X and Y are projectively equivalent.

In fact, the previous example can be generalized in a somewhat surprising way.

10.12 EXAMPLE All irreducible conics are projectively equivalent

Let X = V( f ) ⊆ P2
C where f ∈ C[x, y, z] is irreducible and homogeneous of

degree 2. We claim that X is projectively equivalent to V(x2 − yz).
First, suppose that f does not have any nonzero coefficients of x2, y2, or z2:

f = axy + bxz + cyz for some a, b, c ∈ C.

By irreducibility, we must have a 6= 0, and the invertible change of variables

(x, y, z) 7→ (x + y, x− y, z)

transforms f into ax2 − ay2 + bxz + cxz + (b− c)yz, which has a nonzero coef-
ficient of x2. Therefore, working up to projective equivalence, we may assume that
X = V( f ) where f has at least one nonzero square term. Up to reordering variables
and scaling the polynomial, we may assume that the coefficient of x2 is 1:

f = x2 + axy + by2 + cxz + dz2 + exz for some a, b, c, d, e ∈ C.

By “completing the square,” we can write

x2 + axy + by2 =
(

x +
a
2

y
)2

+
(
b− a2

4
)
y2,

and it follows that the invertible change of coordinates

(x, y, z) 7→
(

x− a
2

y, y, z
)

transforms f into a polynomial without an xy-term. Similarly, we can transform f
into a polynomial without an xz-term. Thus, working up to projective equivalence,
we may assume that f has the form

f = x2 + ay2 + byz + cz2 for some a, b, c ∈ C.

Since C is algebraically closed, ay2 + byz + cz2 factors as a product of linear poly-
nomials `1, `2 ∈ C[y, z], and by irreducibility of f , it must be the case that `1 and
`2 are linearly independent. Thus, f = x2 − (−`1)`2, and the invertible change of
coordinates

(x, y, z) 7→ (x,−`1, `2)

transforms x2 − yz into f , so V( f ) is projectively equivalent to V(x2 − yz).
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Combining Examples 10.9 and 10.12, we have essentially proved the following.

10.13 PROPOSITION All irreducible conics are isomorphic to P1

Let f ∈ K[x, y, z] be irreducible and homogeneous of degree 2. Then

V( f ) ∼= P1.

PROOF The combination of Examples 10.9 and 10.12 proves the case K = C.
For the more general setting, we note that the computations in the examples read-
ily extend to any (algebraically closed) field of characteristic not equal to 2 (when
competing the square, we divided by 2, which is not valid if the characteristic is 2).
With a slightly different argument, however, the result of Example 10.12 continues
to hold in characteristic 2 (Exercise 10.2.4).

While Proposition 10.13 tells us that the intrinsic nature of irreducible conics in
P2 is rather simplistic—they are all isomorphic to P1—we caution the reader against
being misled into thinking that the intrinsic nature of curves of higher degree in P2

is just as simple. In fact, upon increasing the degree by one, it can be shown that
there are infinitely many distinct isomorphism classes of irreducible cubic curves in
P2, none of which are isomorphic to P1. Cubic curves in P2 form the basis of the
study of elliptic curves, which is a fascinating branch of mathematics to which a
great many researchers have devoted their entire careers.

The discussion of isomorphisms naturally leads to the question: how might we
study the intrinsic nature of projective varieties? In the affine setting, we introduced
the coordinate ring of an affine variety as a key tool in this regard: two affine va-
rieties are isomorphic if and only their coordinate rings are isomorphic, allowing
us study the intrinsic nature of affine varieties by studying the algebraic structure
of their coordinate rings. Motivated by the affine setting, we might wonder, then,
if there is an algebraic object that captures the intrinsic nature of projective vari-
eties. Following our developments in the affine setting, it is completely natural to
introduce the homogeneous coordinate ring of a projective variety X ⊆ Pn:

K[x0, . . . , xn]

I(X)
.

Unfortunately, unlike in the affine setting, the homogeneous coordinate ring is not
preserved by isomorphisms, as the next example illustrates.

10.14 EXAMPLE Isomorphisms and homogeneous coordinate rings

As we have seen in Example 10.9, X = V(y2 − xz) ⊆ P2 is isomorphic to P1.
However, the homogeneous coordinate rings of these two projective varieties are

K[x, y, z]
〈y2 − xz〉 and K[s, t],

respectively, and these are not isomorphic rings. In particular, the equation y2 = xz
can be used to show that the former is not a unique factorization domain, while the
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latter is. Another way to see that these rings are not isomorphic is that, if they were,
then the equivalence of algebra and geometry in the setting of affine varieties would
imply an isomorphism of affine varieties

VA(y2 − xz) ∼= A2,

but the former has a singularity at the origin while the latter is nonsingular.

Homogeneous coordinate rings play
an important role in projective ge-
ometry, but they will not be central
to the developments in this text.

While the previous example implies
that homogeneous coordinate rings are
not complete algebraic invariants of
projective varieties, it still leaves open
the possibility that maybe there exists a
different algebraic object associated to

projective varieties that encodes all of their intrinsic structure. As we will see in the
next chapter, however, there is not a single algebraic object that encodes the intrin-
sic nature of a projective variety, but an entire family of algebras, leading us to the
notion of a sheaf of algebras. Loosely speaking each algebra in the sheaf records
local geometric information about the projective variety, while the way in which the
algebras fit together records the global geometry of the variety. Once we have devel-
oped these ideas, we will have a much better understanding of the intrinsic nature of
projective varieties.

Before getting too far ahead of ourselves, however, we will continue to hone our
understanding of maps between projective varieties in the next two sections, each of
which is devoted to classical family of maps: the Veronese and Segre maps.

Exercises for Section 10.2
10.2.1 Let X = V(wy− xz, x2 − wy, y2 − xz) ⊆ P3, and consider the map

F : P1 → X

[a : b] 7→ [a3 : a2b : ab2 : b3].

Prove that F is an isomorphism by constructing a regular inverse.

10.2.2 Let `1, . . . , `k be homogeneous linear polynomials that are linearly indepen-
dent. Prove that V(`1, . . . , `k) ⊆ Pn is isomorphic to Pn−k.

10.2.3 Let A be an invertible (n + 1)× (n + 1) matrix A with entries in K.

(a) Prove that FA : Pn → Pn is a regular map.
(b) Prove that FA−1 is the inverse of FA.

10.2.4 Let K be an algebraically closed field of characteristic 2 and let f ∈ K[x, y, z]
be an irreducible homogeneous polynomial of degree 2. Prove that V( f ) is
projectively equivalent to V(x2 − yz).

10.2.5 Let X, Y ⊆ Pn be projective varieties that are projectively equivalent. Prove
that

K[x0, . . . , xn]

I(X)
∼=

K[x0, . . . , xn]

I(Y) .
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10.2.6 Let X ⊆ Pn be a projective variety and let `0, . . . , `k ∈ K[x0, . . . , xn] be
homogeneous linear polynomials such that V(`0, . . . , `k)∩X = ∅. Consider
the linear map

L : X → Pk

a 7→ [`0(a) : · · · : `n(a)].

(a) If `0, . . . , `k are linearly independent, prove that there exists a projective
equivalence FA : Pn → Pn such that, for all a = [a0 : · · · : an] ∈ X,

L(FA(a)) = [a0 : · · · : ak].

(b) If `0, . . . , `k are linearly independent, prove that L is finite-to-one. (Hint:
Exercise 10.1.6).

(c) Prove that L is finite-to-one even if `0, . . . , `k are not linearly indepen-
dent.

10.2.7 Let X and Y be isomorphic projective varieties. Prove that X is irreducible if
and only if Y is irreducible.
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Section 10.3 Veronese maps
In this section, we introduce the Veronese maps, named in honor of the Italian math-
ematician Giuseppe Veronese (1854–1917). These are a family of regular maps be-
tween projective spaces that can be described by the collection of all monomials of a
fixed degree. The utility of Veronese maps is that they allow us to reduce the degree
of projective varieties and maps between them. More precisely, as we will see in
this section, Veronese maps can be leveraged to prove the following two somewhat
surprising properties.

1. Up to isomorphism, every projective variety can be realized as the vanishing
of a collection of polynomials of degree at most two (Proposition 10.22).

2. Up to isomorphism, every polynomial map of projective varieties is a linear
map (Proposition 10.23).

Let us dive in and begin our discussion of Veronese maps with the definition.

10.15 DEFINITION Veronese maps

For any d, n ≥ 1, the Veronese map Fd,n : Pn → P(d+n
d )−1 is the polynomial

map
Fd,n = [xd

0 : xd−1
0 x1 : xd−2

0 x2
1 : xd−2

0 x1x2 : · · · : xd
n],

where the monomials appearing in the definition are all possible monomials
of degree d in the variables x0, . . . , xn.

Exercise 10.3.1 outlines a strategy to prove that there are precisely (d+n
d ) mono-

mials of degree d in the variables x0, . . . , xn (which explains the dimension of the
projective space that serves as the codomain of Fd,n). Furthemore, Exercise 10.3.2
asks the reader to verify that these monomials do not simultaneously vanish at any
point of Pn, explaining why the domain of Fd,n is all of Pn.

As a first example, setting d = 2 and n = 1, the Veronese map is

F2,1 : P1 → P2

[a : b] 7→ [a2 : ab : b2],

which is the map F that we considered in Examples 10.2 and 10.9. In that particular
case, we described the image F2,1(P

1) as the projective variety V(y2 − xz) ⊆ P2,
and our next aim is to generalize this description to Fd,n(P

n) for any d and n. In
order to describe the image of any Veronese map as a projective variety, we first
establish convenient notation for the coordinates of the codomain of Fd,n.

Note that degree-d monomials in the variables x0, . . . , xn can be indexed by
tuples D = (d0, . . . , dn) of non-negative integers with d0 + · · · + dn = d; more
specifically, the monomial associated to D = (d0, . . . , dn) is

xD = xd0
0 xd1

1 · · · x
dn
n .

In light of this, we denote the coordinates of P(d+n
d )−1 by yD for each such tuple D,

so that Fd,n is the map given by the sequence of polynomials whose yD-coordinate
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is xD. For instance, in the case d = 2 and n = 1 considered above, we denote
the coordinates in P2 by y(2,0), y(1,1), and y(0,2), in which case F2,1 sends a point
a = [a0 : a1] to the point whose y(2,0)-coordinate is a2

0, whose y(1,1)-coordinate is
a0a1, and whose y(0,2)-coordinate is a2

1. From this, one sees that F2,1 maps to the
variety

V(y(2,0)y(0,2) − y2
(1,1)) ⊆ P2.

More generally, images of Veronese maps are described by the following result.

10.16 PROPOSITION Images of Veronese maps

For any d, n ≥ 1, the image of the Veronese map Fd,n : Pn → P(d+n
d )−1 is

Xd,n = V({yDyD′ − yEyE′ | D + D′ = E + E′}) ⊆ P(d+n
d )−1.

PROOF That Fd,n(P
n) ⊆ Xd,n is a result of the observation that

aDaD′ − aEaE′ = ad0+d′0
0 · · · adn+d′n

n − ae0+e′0
0 · · · aen+e′n

n = 0

for any a ∈ Pn and for any tuples D, D′, E, E′ such that D + D′ = E + E′.
Conversely, to show that Fd,n(P

n) ⊇ Xd,n, let b ∈ Xd,n, so that the coordinates
of b satisfy bDbD′ = bEbE′ for all tuples D, D′, E, E′ with D + D′ = E + E′. From
the relations bDbD′ = bEbE′ , one can show (Exercise 10.3.3) that

(10.17) bD1 bD2 · · · bDk = bE1 bE2 · · · bEk

for all tuples D1, . . . , Dk, E1, . . . , Ek such that D1 + · · ·+ Dk = E1 + · · ·+ Ek. In
particular, for D = (d0, . . . , dn), we have

(10.18) bd
D = bd0

(d,0,...,0)b
d1
(0,d,0,...,0) · · · b

dn
(0,...,0,d).

This implies that at least one of the coordinates

b(d,0,...,0), b(0,d,0,...,0), . . . , b(0,...,0,d)

is nonzero, for otherwise (10.18) would yield bD = 0 for all D, which is impossible
in projective space.

Suppose, then, without loss of generality, that b(d,0,...,0) is nonzero. Define an
element a = [a0 : · · · : an] ∈ Pn by choosing a0 to be any element of K satisfying
ad

0 = b(d,0,...,0), and for 1 ≤ i ≤ n, set

ai = a0 ·
b(d−1,0,...,0,1,0,...,0)

b(d,0,...,0)
,

in which the 1 in the index of the numerator is in the ith coordinate. We claim that

(10.19) Fd,n(a) = b.
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To prove (10.19), note that the definition of Fd,n and of ai implies that, for any
D = (d0, . . . , dn), the yD-coordinate of Fd,n(a) is

ad0
0 ad1

1 · · · a
dn
n = ad0+d1+···+dn

0

bd1
(d−1,1,0,...,0)

bd1
(d,0,...,0)

bd2
(d−1,0,1,0,...,0)

bd2
(d,0,...,0)

· · ·
bdn
(d−1,0,...,0,1)

bdn
(d,0,...,0)

= b(d,0,...,0)

bd1
(d−1,1,0,...,0)

bd1
(d,0,...,0)

bd2
(d−1,0,1,0,...,0)

bd2
(d,0,...,0)

· · ·
bdn
(d−1,0,...,0,1)

bdn
(d,0,...,0)

.

From here, an application of equation (10.17) shows that the above equals bD. This
proves (10.19) and thus completes the proof that Xd,n = Fd,n(P

n).

Proposition 10.16 generalizes one aspect of Example 10.9—it gives explicit
defining equations for the variety into which Fd,n maps—but in the case of Ex-
ample 10.9, we actually proved more: we showed that the Veronese map was an
isomorphism onto its image. This fact is also true of all Veronese maps.

10.20 PROPOSITION Veronese maps are embeddings

For any d, n ≥ 1, the Veronese map Fd,n : Pn → Xd,n is an isomorphism.

In many mathematical contexts, an
“embedding” refers to a map that is
an isomorphism onto its image.

PROOF To prove that Fd,n is an iso-
morphism onto Xd,n, we construct a
regular inverse Gd,n : Xd,n → Pn.
Given any b ∈ Xd,n, define Gd,n(b) as
follows:

Gd,n(b) =


[b(d,0,...,0) : b(d−1,1,...,0) : · · · : b(d−1,0,...,1)] b(d,0,...,0) 6= 0
[b(1,d−1,...,0) : b(0,d,...,0) : · · · : b(0,d−1,...,1)] b(0,d,...,0) 6= 0

...
...

[b(1,0,...,d−1) : b(0,1,...,d−1) : · · · : b(0,0,...,d)] b(0,0,...,d) 6= 0.

From the defining equations of Xd,n, it follows that the cross-ratios of any two of
the above expressions for Gd,n vanish on Xd,n, showing that Gd,n is well-defined at
all points where at least one of the coordinates b(d,0,...,0), b(0,d,...,0), . . . b(0,0,...,d) is
nonzero. Furthermore, as we saw in the proof of Proposition 10.16, at least one of
these coordinates is nonzero for every b ∈ Xd,n. Thus, Gd,n : X → Pn is a regular
map. It remains to check that Fd,n and Gd,n are inverse functions, which is left as an
exercise to the reader (Exercise 10.3.4).

The varieties Xd,n ⊆ P(n+d
d ) are called Veronese varieties. Up to isomorphism,

Proposition 10.20 shows that the Veronese variety Xd,n is intrinsically nothing more
than a different perspective on projective space Pn. However, by studying the var-
ious Veronese models of Pn, it is possible to reduce the maximum degree of the
defining polynomials of a projective variety X ⊆ Pn. Before describing the result
in general, let us see how this process works in an example.
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10.21 EXAMPLE Veronese image of a cubic curve

Let X = V(x3
0 + x3

1 + x3
2) ⊆ P2, and consider the Veronese map

F3,2 : X → P(5
3)−1 = P9.

Recall that the coordinates yD of P3 are indexed by triples D = (d0, d1, d2) such
that d0 + d1 + d2, and observe that, for any a = [a0 : a1 : a2] ∈ P2, we have

a ∈ X ⇐⇒ a3
0 + a3

1 + a3
2 = 0⇐⇒ F3,2(a) ∈ V(y(3,0,0) + y(0,3,0) + y(0,0,3)).

It then follows that

F3,2(X) = X3,2 ∩ V(y(3,0,0) + y(0,3,0) + y(0,0,3)).

Moreover, by Proposition 10.20, F3,2 gives an isomorphism P2 ∼= X3,2, and it fol-
lows that the restriction of F3,2 gives an isomorphism

X ∼= X3,2 ∩ V(y(3,0,0) + y(0,3,0) + y(0,0,3)).

Since X3,2 is defined by quadratic polynomials (Proposition 10.16), this shows that
X is isomorphic to a projective variety that can be defined by polynomials of degree
at most two, even though our original expression for X described it as the vanishing
of a cubic polynomial.

Building upon the previous example, we now describe the general result.

10.22 PROPOSITION Projective varieties are defined by quadratics

Up to isomorphism, every projective variety can be written as the vanishing
of a finite set of homogeneous polynomials of degree at most two.

PROOF Let X ⊆ Pn be a projective variety. We first observe (Exercise 10.3.5)
that we can write X = V( f1, . . . , fk) where each fi ∈ K[x0, . . . , xn] is homoge-
neous of the same degree d. In other words, we can write each fi as

fi = ∑
D

ai,Dxd0
0 · · · x

dn
n

where the sum is over all tuples D = (d0, . . . , dn) of nonnegative integers that sum
to d and ai,D ∈ K. Consider the Veronese map

Fd,n : Pn → P(n+d
d )−1,

and define linear polynomials `1, . . . , `k in the variables of the codomain by

`i = ∑
D

ai,DyD.
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As in Example 10.21, for any a ∈ Pn, we have

a ∈ X ⇐⇒ Fd,n(a) ∈ Xd,n ∩ V(`1, . . . , `k),

implying that Fd,n(X) = Xd,n ∩ V(`1, . . . , `k). Since Fd,n : Pn → P(n+d
d )−1 is a

regular map, it restricts to a regular map

Fd,n : X → Xd,n ∩ V(`1, . . . , `k).

Moreover, since Fd,n is an isomorphism onto Xd,n (Proposition 10.20), it then fol-
lows that F−1

d,n : Xd,n → Pn restricts to an inverse regular map

F−1
d,n : Xd,n ∩ V(`1, . . . , `k)→ X.

Thus, X ∼= Xd,n ∩ V(`1, . . . , `k), and the result now follows from the fact that Xd,n
can be defined by quadratics (Proposition 10.16) while each `i is linear.

It is worth noting that, while Proposition 10.22 reduces the maximum degree of
the defining polynomials of a projective variety, it generally increases the number of
defining polynomials quite drastically. For instance, in Example 10.21, dimension
arguments (which will be made precise in the next chapter) imply that we require at
least 8 linear and quadratic polynomials to describe the Veronese image of the cubic
curve, even though the cubic curve, itself, only required one defining polynomial.

As a final application of Veronese maps, the next result says that all polynomial
maps are, up to isomorphism on the domain, linear maps.

10.23 PROPOSITION Up to isomorphism, polynomial maps are linear

If F : X → Y is a polynomial map of projective varieties, then there exists an
isomorphism G : X → Z and a linear map L : Z → Y such that F = L ◦G.

PROOF See Exercise 10.3.6.

An interesting consequence of Proposition 10.23 is the following result.

10.24 COROLLARY Polynomial maps are finite-to-one

If F : X → Y is a polynomial map of projective varieties, then for any b ∈ Y,
there are finitely many a ∈ X such that F(a) = b.

PROOF With notation as in the statement of Proposition 10.23, any polynomial
map F can be written as a composition L ◦ G where G is an isomorphism and L is
linear. The result then follows from the observation that isomorphisms are one-to-
one, while linear maps are finite-to-one (Exercise 10.2.6).

Corollary 10.24 is another indication of just how restrictive polynomial maps
are, providing additional justification for why it is important to work with the more
flexible notion of regular maps, where polynomiality is only assumed locally.
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Exercises for Section 10.3
10.3.1 Let d, n ≥ 1 be integers and let SBd,n denote the sequences of d “stars” and n

“bars. For example, if (d, n) = (4, 3), a few elements of SBd,n are

( ? | ? ? | | ? ), ( | | | ? ? ? ? ), and ( ? | ? | ? | ? ).

(a) Explain why SBd,n has (d+n
d ) elements.

(b) Describe a bijection between SBd,n and the set of monomials of degree
d in the variables x0, x1, . . . , xn.

(c) Conclude from (a) and (b) that there are exactly (d+n
d ) monomials of

degree d in the variables x0, x1, . . . , xn.

10.3.2 Prove that the dth Veronese map Fd,n is regular at every point of Pn.

10.3.3 Let Xd,n ⊆ P(d+n
d )−1 be the Veronese variety and consider a point b ∈ Xd,n.

The exercise proves that the product of coordinates

bD1 · · · bDk ∈ K

only depends on D1 + · · ·+ Dk ∈ Nn+1. Fix a tuple (e1, . . . , en) ∈ Nn+1

such that e0 + · · ·+ en = dk and let S denote the sequences of length dk that
contain e0 entries equal to 0, e1 entries equal to 1, and so on. For each σ ∈ S ,
define bσ ∈ K by setting

bσ = bD1 · · · bDk

where the ith entry of Dj is the number of is in the jth subsequence of σ of
length d.

(a) To parse notation, consider the tuple (e0, e1, e2) = (3, 2, 4) where we
take n = 2 and d = k = 3. Write down three examples of sequences
σ ∈ S and the corresponding values bσ ∈ K.

(b) Prove that the function ϕ : S → K sending σ to bσ is a surjection onto

{bD1 · · · bDk | D1 + · · ·+ Dk = (e1, . . . , en)}.

(c) Suppose that σ and σ′ are two sequences in S that differ by a transposi-
tion of adjacent terms. Use the defining equations of Xd,n to prove that
ϕ(σ) = ϕ(σ′).

(d) Using the fact that adjacent transpositions generate all permutations,
conclude that bD1 · · · bDk only depends on D1 + · · ·+ Dk.

10.3.4 With notation as in the proof of Proposition 10.20, prove that Fd,n and Gd,n
are inverse functions.

10.3.5 (a) Let f ∈ K[x0, . . . , xn]. Prove that

VP( f ) = VP(xd
0 f , . . . , xd

n f ).

(b) Prove that every projective variety can be defined by a finite set of ho-
mogeneous polynomials that all have the same degree.

10.3.6 Prove Proposition 10.23. (Hint: Take G to be the restriction of a Veronese
map.)
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Section 10.4 Segre maps and products
In the final section of this chapter, our aim is to study products of projective vari-
eties. The notion of products is quite a bit more involved in the projective case than
it was in the affine case. The complications stem from the fact that, while there was
a natural identification Am ×An = Am+n in the affine setting, no such identifi-
cation exists between Pm × Pn and Pm+n, as the reader is encouraged to ponder.
In fact, it’s not even obvious at the onset how to think of Pm ×Pn, itself, as a pro-
jective variety. Our first task is to interpret Pm × Pn as a projective variety, and
we accomplish this using Segre maps, named in honor of the Italian mathematician
Corrado Segre (1863–1924).

10.25 DEFINITION Segre maps

For any m, n ≥ 0, the Segre map Sm,n : Pm ×Pn → P(m+1)(n+1)−1 is the
function

Sm,n = [x0y0 : x0y1 : · · · : xmyn−1 : xmyn],

where the monomials in the definition are all possible products xiyj.

To parse the definition, let us take a look at the first interesting example.

10.26 EXAMPLE The Segre map S1,1

Consider the Segre map in the case m = n = 1:

S1,1 : P1 ×P1 → P3

([a0 : a1], [b0 : b1]) 7→ [a0b0 : a0b1 : a1b0 : a1b1].

Note that scaling the homogeneous coordinates within either P1 simply results in a
uniform scaling of all of the coordinates in the image. Moreover, one checks that

a0b0 = a0b1 = a1b0 = a1b1 = 0 =⇒ a0 = a1 = 0 or b0 = b1 = 0.

These two observations, together, imply that S1,1 is well-defined at every point of
P1 × P1. Generalizing this, the reader is encouraged to verity that Sm,n is well-
defined at every point of Pm ×Pn (Exercise 10.4.1).

Even though Segre maps are well-defined at every point of their domain, it does
not make sense to ask whether they are regular maps, because we have not yet given
the domain the structure of a projective variety. In fact, we will use the Segre map to
do just that, by showing that the Segre map is a bijection of Pm ×Pn with a projec-
tive variety in P(m+1)(n+1)−1. To accomplish this task, it will be useful to introduce
notation that allows us to conveniently organize the coordinates of P(m+1)(n+1)−1.

Observe that P(m+1)(n+1)−1 has (m+ 1)(n+ 1) homogeneous coordinates; we
denote these coordinates by zij with 0 ≤ i ≤ m and 0 ≤ j ≤ n. Conveniently, these
coordinates naturally organize into an m × n matrix A(z), whose ij-entry is zij.
With this labeling, we take the convention that the zij-coordinate of the Segre map
Sm,n is xiyj. Using this notation, we now describe the image of the Segre maps.
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10.27 PROPOSITION The Segre map injects onto a projective variety

For any m, n ≥ 0, the Segre map Sm,n is an injection of Pm ×Pn onto

Zm,n = V({zijzk`− zi`zkj | 0 ≤ i, k ≤ m, 0 ≤ j, ` ≤ n}) ⊆ P(m+1)(n+1)−1.

Zm,n is defined by all 2× 2 minors
of the matrix A(z), which is an ex-
ample of a “determinantal variety.”

PROOF We prove that the image of
Sm,n is equal to Zm,n, and we leave the
verification that Sm,n is injective as an
exercise (Exercise 10.4.2).

To prove that the image of Sm,n is
contained in Zm,n, it suffices to show that zijzk` − zi`zkj vanishes when evaluated at
any point in the image of Sm,n, which follows from the observation that

(aibj)(akb`)− (aib`)(akbj) = 0 for any (a, b) ∈ Pm ×Pn.

Conversely, to prove that Zm,n is contained in the image of Sm,n, let c ∈ Zm,n.
This means that all of the 2× 2 minors of A(c) vanish, implying that the rank of
A(c) is at most one, or in other words, that every row of A(c) is a multiple of some
row. Since there must be at least one nonzero row, assume without loss of generality
that the 0th row is nonzero, and denote it by b = (b0, . . . , bn). Let ai ∈ K be the
value such that the ith row of A(c) is equal to aib. One readily checks that

c = Sm,n([1 : a1 : · · · : am], [b0 : b1 : · · · : bn]),

showing that c is in the image of Sm,n.

10.28 EXAMPLE The image of S1,1

Considering again the case m = n = 1, denote the coordinates on P3 by z00, z01,
z10, and z11. Proposition 10.27 shows that S1,1 is an injection onto the projective
variety in P3 defined by vanishing of the 2× 2 determinant

det
[

z00 z01
z10 z11

]
= z00z11 − z01z10.

The importance of Proposition 10.27 is that it identifies the product Pm × Pn

with a projective variety in P(m+1)(n+1)−1, thereby giving us a natural way to view
the product, itself, as a projective variety. The next result shows that we can use
Segre maps to naturally view the product of any two projective varieties—not just
projective spaces—as a projective variety.

10.29 PROPOSITION Products of projective varieties

If X ⊆ Pm and Y ⊆ Pn are projective varieties, then the Segre map Sm,n
restricts to an injection of X×Y onto a projective variety in P(m+1)(n+1)−1.
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PROOF Suppose that X = V(S) and Y = V(T ), where S ⊆ K[x0, . . . , xm] and
T ⊆ K[y0, . . . , yn] are finite sets of homogeneous polynomials. For every f ∈ S
and g ∈ T and for each 0 ≤ i ≤ n and 0 ≤ j ≤ m, define

fi = f (z0i, z1i, . . . , zmi) and gj = g(zj0, zj1, . . . , zjn).

Let S′ be the collection of all such fi and let T ′ be the collection of all such gj. The
reader is encouraged to verify (Exercise ??) that

Sm,n(X×Y) = Sm,n(P
m ×Pn) ∩ V(S ′ ∪ T ′).

By Proposition 10.27, we know that Sm,n is an injection and that Sm,n(Pm × Pn)
is a projective variety. Since intersections of projective varieties are, themselves,
projective varieties, we conclude that Sm,n(X×Y) is a projective variety.

Since the Segre map identifies X×Y with Sm,n(X×Y), we now use this iden-
tification to define products within the realm of projective varieties.

10.30 DEFINITION Product of projective varieties

If X ⊆ Pm and Y ⊆ Pn are projective varieties, then their product X × Y
(as a projective variety) is the projective variety

Sm,n(X×Y) ⊆ P(m+1)(n+1)−1.

10.31 EXAMPLE A doubly-ruled surface

Let us pause to visualize the projective variety P1 ×P1, which, by Definition 10.30
and Example 10.28, is equal to the projective variety V(z00z11 − z01z10) ⊆ P3.
Consider the affine chart where z00 6= 0, which
is the affine surface defined by

VA(z11 − z01z10) ⊆ A3.

The image to the right is a depiction of this
affine chart over R, from which we can see that
the surface is doubly-ruled: it can be viewed as
a disjoint union of lines in two different ways.
The double-ruling in this affine chart is reflect-
ing the more general fact that the projective sur-
face P1 ×P1 ⊆ P3 is also doubly-ruled: it can
be realized as a disjoint union of (projective) lines in P3 in two different ways. The
two different rulings of P1 ×P1 are given by the subsets in P3 of the form

{a} ×P1 and P1 × {b},

as the reader is encouraged to explore in Exercise 10.4.4.



10.4. SEGRE MAPS AND PRODUCTS 299

Having realized the product X × Y as a projective variety, it is now possible
discuss regular maps to and from X × Y. The following result addresses the two
most important examples of regular maps from a product: the projection maps.

10.32 PROPOSITION Projection maps are regular

If X ⊆ Pm and Y ⊆ Pn are projective varieties, then the projection maps
π1 : X×Y → X and π2 : X×Y → Y are regular.

PROOF Without loss of generality, we focus on π1. It suffices to note that, for
any c = (a, b) ∈ X×Y ⊆ P(m+1)(n+1)−1, we can write π1(c) using the following
piecewise polynomial expressions:

π1(c) =


[c00 : · · · : cm0] c /∈ V(z00, . . . , zm0)

...
...

[c0n : · · · : cmn] c /∈ V(z0n, . . . , zmn).

To verify the above expression for π1, suppose that c = (a, b) ∈ X × Y. Then
the zij-coordinate of c is aibj. Note that at least one of the coordinates of a and
at least one of the coordinates of b is nonzero. If bj 6= 0, it then follows that
c /∈ V(z0j, . . . , zm,j), and we compute

[c0j : · · · : cmj] = [a0bj : · · · : ambj] = [a0 : · · · : am] = π1(c),

verifying the above piecewise polynomial expressions for π1(c).

Just as we can take products of projective varieties, we can also take products of
maps to each factor. The next result addresses products of regular maps.

10.33 PROPOSITION Products of regular maps are regular

Let W ⊆ P`, X ⊆ Pm, and Y ⊆ Pn be projective varieties. If F : W → X
and G : W → Y are regular maps, then the function

F× G : W → X×Y
a 7→ (F(a), G(a))

is a regular map.

PROOF Let p ∈ W. By the definition of regular maps, there exist homogeneous
polynomials

f0, . . . , fm, g0, . . . , gn ∈ K[w0, . . . , x`]

such that p /∈ V( f0, . . . , fm) ∪ V(g0, . . . , gn), and

F(a) = [ f0(a) : · · · : fm(a)] for all a ∈W \ V( f0, . . . , fm)

and
G(a) = [g0(a) : · · · : gn(a)] for all a ∈W \ V(g0, . . . , gn).
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It then follows that p /∈ V({ figj | 0 ≤ i ≤ m, 0 ≤ j ≤ n}) and, by the definition
of products of projective varieties, we have

(F× G)(a) = [ f0(a)g0(a) : f0(a)g1(a) : · · · : fm(a)gn−1(a) : fm(a)gn(a)]

for all a ∈ W \ V({ figj | 0 ≤ i ≤ m, 0 ≤ j ≤ n}). Thus, F× G can be locally
described by the polynomials figj, verifying that F× G is regular.

An important consequence of the previous two results is the following, which
shows that the intrinsic nature of products depends only on the intrinsic nature of
each factor.

10.34 COROLLARY Products preserve isomorphisms

Let X, X′, Y, Y′ be projective varieties. If X ∼= X′ and Y ∼= Y′, then

X×Y ∼= X′ ×Y′.

PROOF Let F : X → X′ and G : Y → Y′ be isomorphisms. Since the projection
maps are regular, precomposing F and G with the projection maps yield regular
maps

F ◦ π1 : X×Y → X′ and G ◦ π2 : X×Y → Y′.

The product of these two regular maps is then the regular map

X×Y → X′ ×Y′

(a, b) 7→ (F(a), G(b)).

Since F and G are isomorphisms, they have regular inverses, and repeating the above
procedure with F−1 and G−1 yields a regular map

X′ ×Y′ → X×Y

(a, b) 7→ (F−1(a), G−1(b)).

The above pair of regular maps between X × Y and X′ × Y′ are inverse to each
other, from which we conclude that X×Y ∼= X′ ×Y′.

Exercises for Section 10.4
10.4.1 For any a = [a0 : · · · : am] ∈ Pm and b = [b0 : · · · : bn] ∈ Pn, let

Sm,n(a, b) = [a0b0 : a0b1 : · · · : ambn−1 : aman] ∈ P(m+1)(n+1)−1.

(a) Prove that Sm,n(a, b) does not depend on the choice of homogeneous
coordinates for a or b.

(b) Prove that at least one coordinate of Sm,n(a, b) must be nonzero.

10.4.2 Prove that the Segre map Sm,n : Pm ×Pn → P(m+1)(n+1)−1 is an injection.
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10.4.3 Let X = V(S) ⊆ Pm and Y = V(T ) ⊆ Pn where S ⊆ K[x0, . . . , xm] and
T ⊆ K[y0, . . . , yn] are finite sets of homogeneous polynomials. For every
f ∈ S and g ∈ T and for each 0 ≤ i ≤ n and 0 ≤ j ≤ m, define

fi = f (z0i, z1i, . . . , zmi) and gj = g(zj0, zj1, . . . , zjn).

Let S′ be the collection of all such fi and let T ′ be the collection of all such
gj. Prove that

Sm,n(X×Y) = Sm,n(P
m ×Pn) ∩ V(S ′ ∪ T ′).

10.4.4 Prove that the subsets of P1 × P1 of the form {a} × P1 and P1 × {b} are
lines in P3. In other words, describe each of these subsets as the image of a
linear map P1 → P3.

10.4.5 Let X ⊆ Pm and Y ⊆ Pn be projective varieties. Prove that X×Y and Y×X
are projectively equivalent in P(m+1)(n+1)−1. Conclude that X×Y ∼= Y×X.
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Chapter 11

Quasiprojective Varieties
Coming soon!
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