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You may bring to the exam a handwritten memory aid sheet of size A4 with text only on one side,
containing your name and student id in the upper right corner. You don’t need to return your memory
aid sheet. The exam contains 4 problems each worth 6 points.

1. Which of the following statements are true in general for real-valued random variables?
Explain why a statement is generally true, or give a counterexample.

(a) X ⊥⊥ Y and Y ⊥⊥ Z =⇒ X ⊥⊥ Z. (2 p)
Solution. False. Let X and Y be independent and Ber(1/2)-distributed, defined on some
probability space (Ω,A,P). Define Z(ω) = X(ω) for all ω. Then X ⊥⊥ Y and Y ⊥⊥ Z
but X and Z are not independent.

For example, we may take Ω = {0, 1}2 and A = 2Ω and P to be the uniform distribution
on Ω, and then define X(ω1, ω2) = ω1, Y (ω1, ω2) = ω2, and Z(ω1, ω2) = ω1.

(b) (X1, X2) ⊥⊥ (Y1, Y2) =⇒ X1 ⊥⊥ Y2. (2 p)
Solution. True. Define f(x1, x2) = x1 and g(y1, y2) = y2. Define X = (X1, X2) and
Y = (Y1, Y2). Then X ⊥⊥ Y implies f(X) ⊥⊥ g(Y ), as we remember from the lectures.

(c) X ⊥⊥ Y and X, Y ≥ 0 =⇒ E(XY ) = EX EY . (2 p)
Solution. True. This was proved in the lectures. For indicators X = 1A and Y = 1B this
reduces to the definition of independence. By linearity this extends to finite-range random
variables. By monotone continuity of integration, this in turn extends to nonnegative
random variables, be they finite or infinite.

2. Fix numbers 0 < a < b, and let Sn = X1 + · · · + Xn be a sum of independent random
variables distributed according to the exponential distribution with rate parameter b and density
function fb(x) = 1(0,∞)(x) be

−bx with respect to the Lebesgue measure on the real line.

(a) Compute the moment generating function MSn(t) = EetSn . For which values of t is the
moment generating function finite? (2 p)
Solution.

MX1(t) =

∫ ∞

0

etx be−bx dx =

∫ ∞

0

be(t−b)x dx =

{
b

b−t
, t < b,

∞, t ≥ b.
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By independence,

MSn(t) = E
n∏

j=1

etXj = MX1(t)
n =

{(
b

b−t

)n
, t < b,

∞, t ≥ b.

(b) Prove that P( 1
n
Sn ≥ 1

a
) ≤ e−nt/aMSn(t) for all t > 0. (1 p)

Solution. By Markov’s inequality,

P
( 1
n
Sn ≥ 1

a

)
= P

(
Sn ≥ n

a

)
= P

(
etSn ≥ ent/a

)
≤ 1

ent/a
EetSn = e−nt/aMSn(t).

(c) Determine a value of t that yields the sharpest bound in (b) and prove that

P
(
1

n
Sn ≥ 1

a

)
≤ e−nD(a∥b),

where D(a∥b) = log a
b
+ b

a
− 1. (2 p)

Solution. For any 0 < t < b,

e−nt/aMSn(t) = e−nt/a

(
b

b− t

)n

= e−nI(t),

where I(t) = t/a− log( b
b−t

). Differentiation shows that

I ′(t) =
1

a
− 1

b− t
, I ′′(t) = − 1

(b− t)2
.

We see that I is strictly concave on (0, b) and I ′(t∗) = 0 for t∗ = b − a. This is the
point at which I attains its largest value, and we obtain the sharpest bound in (c). By
substituting this value in (c) we see that P

(
1
n
Sn ≥ 1

a

)
≤ e−nI(t∗) with

I(t∗) = t∗/a− log
b

b− t∗
= (b− a)/a− log

b

a
= log

a

b
+

b

a
− 1.

(d) Comment briefly how the inequality in (c) relates to the weak law of large numbers. (1 p)
Solution. We note that EX1 = 1

b
. The weak law of large numbers hence states that

1
n
Sn → 1

b
in probability. As a consequence, for ϵ = 1

a
− 1

b
> 0,

P
( 1
n
Sn ≥ 1

a

)
= P

( 1
n
Sn −

1

b
≥ ϵ
)

≤ P
(∣∣∣ 1

n
Sn −

1

b

∣∣∣ ≥ ϵ
)

→ 0.

Therefore, the WLLN tells that P( 1
n
Sn ≥ 1

a
) → 0, whereas the upper bound of (c) tells

that this convergence happens exponentially fast.

2 / 5



MS-E1600 Probability Theory
Department of Mathematics and Systems Analysis
Aalto University

Leskelä–Alaluusua
19 Feb 2024

Examination

3. Let Xn, X be a real-valued random variables defined on a probability space (Ω,A,P) such
that E|X| < ∞ and E|Xn −X| ≤ 1

n
for all n ≥ 1. For each of the following, prove that the

statement is true, or give a counterexample confirming that the statement is false.

(a) Xn
P−→ X. (2 p)

Solution. True. Markov’s inequality implies P(|Xn −X| > ϵ) ≤ ϵ−1E|Xn −X| ≤ ϵ−1n−1

for all ϵ > 0.

(b) P(Xn = 0) → P(X = 0). (2 p)
Solution. False. Consider constant random variables such that Xn(ω) = 1/n and
X(ω) = 0 for all ω. Then E|Xn −X| = 1

n
→ 0 but∣∣P(Xn = 0)− P(X = 0)
∣∣ = |1− 0| = 1 for all n.

(c) W1(Law(Xn),Law(X)) → 0. (2 p)
Solution. True. Denote µn = Law(Xn), µ = Law(X), and λn = Law(Xn, X). Then the
marginals of λn are equal to µn and µ, so that λn ∈ Γ(µn, µ). Therefore,

W1(µn, µ) ≤
∫
R2

|x− y|λn(dx, dy) = E|Xn −X| ≤ 1

n
→ 0.

Recall that the Wasserstein distance between probability measures µ and ν on (R,B(R)) is
defined by

W1(µ, ν) = inf
λ∈Γ(µ,ν)

∫
R2

|x− y|λ(dx, dy),

with Γ(µ, ν) denoting the collection of probability measures on (R2,B(R2)) having first marginal
µ and second marginal ν.

4. For a probability measure µ on (R,B(R)), define (µK)(B) =
∫
R K(x,B)µ(dx), where

K(x,B) =
∞∑
y=0

1B(x+ y) e−55
y

y!
for x ∈ R and B ∈ B(R).

(a) Prove that µK is a probability measure on (R,B(R)). (2 p)
Solution. Denote k(y) = e−5 5y

y!
. For disjoint B1, B2, · · · ∈ B(R), 1∪jBj

(x + y) =∑
j 1Bj

(x+ y) implies (F refers to Fubini)

K(x,∪jBj) =
∞∑
y=0

∞∑
j=1

1Bj
(x+ y) k(y)

F
=

∞∑
j=1

∞∑
y=0

1Bj
(x+ y) k(y) =

∞∑
j=1

K(x,Bj).
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Hence ∫
R
K(x,∪jBj)µ(dx) =

∫
R

∞∑
j=1

K(x,Bj)µ(dx)

F
=

∞∑
j=1

∫
R
K(x,Bj)µ(dx) =

∞∑
j=1

(µK)(Bj),

so that µK is disjointly sigma-additive.
Hence µK is a measure because (µK)(∅) =

∫
R K(x, ∅)µ(dx) =

∫
R 0µ(dx) = 0, and a

probability measure because (µK)(R) =
∫
R K(x,R)µ(dx) =

∫
R 1µ(dx) = 1.

(b) Compute µ2({0}) where µ2 = (δ0K)K and δ0 is the Dirac measure at 0. (2 p)
Solution. Let µ1 = δ0K. Then

µ1(B) = (δ0K)(B) =

∫
R
K(x,B) δ0(dx) = K(0, B),

so that

µ1(B) =
∞∑
y=0

1B(y) k(y) =
∞∑
y=0

k(y) δy(B)

equals the Poisson distribution with probability mass function k(y) = e−5 5y

y!
. Because µ1

is a discrete probability measure with all its mass concentrated on the set of nonnegative
integers, we find that

µ2(B) =

∫
R
K(y,B)µ1(dy) =

∞∑
y=0

K(y,B) k(y).

In particular,

µ2({0}) =
∞∑
y=0

K(y, {0})k(y) =
∞∑
y=0

(
∞∑
z=0

1{0}(y + z) k(z)

)
k(y) = k(0)2 = e−10.

Solution. [Alternative solution] The kernel represents a random walk where at each
step we add a Poisson distributed random variable with mean 5. The initial condition
µ0 = δ0 tells that the random walk starts deterministically at 0. After two steps the
walk has made two independent Poisson jumps. Hence µ2 = Law(0 + ξ1 + ξ2) where
ξ1, ξ2 are independent Poisson-distributed random variables with mean 5. Then µ2({0}) =
P(0 + ξ1 + ξ2 = 0) = P(ξ1 = 0, ξ2 = 0) = P(ξ1 = 0)P(ξ2 = 0) = e−10.

(c) Let γ1 = γ0K where γ0(B) =
∫
B

1√
2π
e−

1
2
x2
dx is the standard normal distribution. Deter-

mine independent random variables X and Y such that γ1 = Law(X + Y ). (2 p)
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Solution. Let X and Y be independent and such that X is standard normal and Y is
Poisson-distributed with mean 5. Then Law(X) = γ0 and Law(Y ) = δ0K =: µ1. Then

P(X + Y ∈ B) =

∫
R

∫
R
1B(x+ y) γ0(dx)µ1(dy)

=

∫
R

∑
y∈Z+

1B(x+ y)µ1({y})

 γ0(dx)

=

∫
R
K(x,B) γ0(dx)

= (γ0K)(B).

Therefore, we conclude that Law(X + Y ) = γ0K.
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