SCHEDULE

	Date		Торіс
1.	Wed	28.02.	Lec-1: Introduction
2.	Mon	04.03.	Lec-2: Crystal Chemistry & Tolerance parameter
3.	Mon	04.03.	EXERCISE 1
4.	Wed	06.03.	Lec-3: Crystal Chemistry & BVS
5.	Fri	08.03.	Lec-4: Symmetry & Point Groups
6.	Mon	11.03.	EXERCISE 2
7.	Wed	20.03.	Lec-5: Crystallography & Space Groups (Linda)
8.	Fri	22.03.	Lec-6: XRD & Reciprocal lattice (Linda)
9.	Mon	25.03.	EXERCISE 3 (Linda)
10.	Thu	04.04.	Lec-7: Rietveld <mark>(Linda)</mark>
11.	Fri	05.04.	EXERCISE 4: Rietveld (Linda)
	Mon	08.04.	EXERCISE 4: Rietveld (Linda)
12.	Thu	11.04.	Lec-8: ND & GI-XRD
13.	Fri	12.04.	Lec-9: XRR (Topias)
14.	Mon	15.04.	EXERCISE 5: XRR (Topias)
	Wed	17.04.	EXERCISE 5: XRR (Topias)
15.	Mon	22.04.	Lec-10: Synchrotron radiation & XAS & EXAFS
16.	Wed	24.04.	Mössbauer (to 25.10)
17.	Fri	26.04.	EXERCISE 6
18.	Mon	29.04.	Seminars:
19.	Fri	03.05.	Seminars:
20.	Mon	06.05.	ADDITIONAL DISCUSSION/QUESTION POSSIBILITY

Periodic table of the elements

		📃 Alkali metals				📃 Ha	alogens	5										
iod	group			Alkaline	e-earth	metals	🗌 No	oble ga	ses									
per	1*	1	Transition metals			📃 Ra	Rare-earth elements (21, 39, 57–71)											
1	1	Other metals			ar	and lanthanoid elements (57–71 only) 2												
	Н	2				_						13	14	15	16	17	Не	
2	3	4	Other nonmetals			Actinoid elements						5	6	7	8	9	10	
	Li	Ве												С	Ν	0	F	Ne
3	11	12											13	14	15	16	17	18
	Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Р	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
_	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
58 59 60 61 62 63 64 65 66 67 68 69 70 71]									
	lanthai	noid sei	ries 6	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	1
actinoid series /			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		

*Numbering system adopted by the International Union of Pure and Applied Chemistry (IUPAC). © Encyclopædia Britannica, Inc.

LECTURE 3: CRYSTAL CHEMISTRY & BVS

- Correlations between: Ionic radius (r), Coordination number (CN), Bond distance (d) & Valence state (V)
- Bond Valence Sum (BVS): quantitative measure for the correlation
- Pauling's second rule was a "simple-minded" but important first step for the BVS concept
- Also, recall what we discussed in the previous lecture on the Tolerance Parameter concept

BOND & VALENCE

ORGANIC COMPOUNDS

- Bonds (mostly) have integer valence values: Single, Double or Triple
- Correlation between Bond order & Bond length: the higher the order, the shorter the bond
- Each atom in on organic molecule has a valence value that equals to the number of bonds it forms
- FOR EXAMPLE: formaldehyde HCHO

Bonds: 2 x C-H, 1 x C=O

Valences: C : 4, O : 2, H : 1

H / H-C=O

C-C 1.54 Å

C=C 1.33 Å

C≡C 1.20 Å

INORGANIC COMPOUNDS

- Bonds do not adopt integer valence values only
- FOR EXAMPLE: Aluminum is trivalent in all its compounds but exists commonly in octahedral (or tetrahedral) coordination

Acta Crystallographica Section B Structural Science

ISSN 0108-7681

Electron density and energy density view on the atomic interactions in $SrTiO_3$

Sr

Elizabeth A. Zhurova^a and Vladimir G. Tsirelson^b*

The results of topological analysis of the electron density in an $SrTiO_3$ crystal based on the experimental (at 145 K) and

Received 27 March 2002 Accepted 29 May 2002

PAULING's SECOND RULE (Valence-Sum-Rule)

- Valence sum of an atom is equal to the sum of bond valences (BVs) around it
- Valence sum of an atom is equal to its oxidation state (OS)

EXAMPLE-1: Perovskite CaTiO₃

OS(Ti) = +4 & CN(Ti) = 6, hence BV(Ti-O) = 4/6 = 0.67 OS(Ca) = +2 & CN(Ca) = 12, hence BV(Ca-O) = 2/12 = 0.167→ since OS(O) = -2 = - (2 x 0.67 + 4 x 0.167), CN(O) = 6

EXAMPLE-1: Rutile TiO₂

OS(Ti) = +4 & CN(Ti) = 6, hence BV(Ti-O) =
$$4/6 = 0.67$$

→ since OS(O) = -2 = - (3 x 0.67), CN(O) = 3

EXAMPLE-3: Silicate minerals consist of SiO₄ tetrahedra. Silicon has the oxidation state of +4, and CN = 4, hence each Si-O bond valence is 4/4 = 1. Since oxygen valence is -2, each oxygen can make only two bonds to Si atoms. Hence, in silicates the SiO₄ tetrahedra can only share corners (not e.g. edges)

NOTE: stability of crystals decrease when the polyhedra share edges

Linus Pauling (1901–1994)

- American chemist, biochemist and peace activist, graduated from Oregon State University
- One of the founders of quantum chemistry: contributions to chemical bonding, electronegativity, orbital hybridization, molecular biology, protein structure, X-ray crystallography
- Nobel Prize in Chemistry in 1954, Nobel Peace Prize in 1962

Bond-Valence-Sum (BVS) Calculation

- Quantitative relation between the bond valence and the bond length
- Bond valence can be fractional & Neighbours may be unequivalent
- The shorter the bond, the stronger it is, and the larger the s_{ij} is
- Empirical equation:
 - $s_{ij} = exp[(R^{0}_{ij} d_{ij})/0.37]$
 - $V_i = \pm \sum s_{ij}$
- R⁰_{ij} values tabulated (for various i-j combinations)

- 1. I.D. Brown, Chem. Soc. Reviews 7, 359-376 (1978).
- I.D. Brown, "The chemical bond in inorganic chemistry: the bond valence model" Oxford Univ. Press, New York (2002).
- 3. Brown & Altermatt, Acta Cryst. B 41, 244-247 (1985).
- Brese & O'Keeffe, Acta Cryst. B 47, 192-197 (1991).
- 5. O'Keeffe, Acta Cryst. A 46, 138-142 (1990).

$$s_{ij} = \exp\left[\frac{(R_{ij}^0 - d_{ij})}{0.37}\right]$$

Examples of R⁰ Values

Ca ²⁺ - O ²⁻	1.933
Sr ²⁺ - O ²⁻	2.118
Ba ²⁺ - O ²⁻	2.265
Fe ²⁺ - O ²⁻	1.734
Fe ³⁺ - O ²⁻	1.759
Cu+ - O ²⁻	1.60
Cu ²⁺ - O ²⁻	1.679
Cu ³⁺ - O ²⁻	1.73
Cu ²⁺ - S ²⁻	2.054
Cu ³⁺ - Cl ⁻	1.979
Cu ³⁺ - F ⁻	1.58

COPPER OXIDES

Compound	CN(Cu)	Cu-O bonds	V _{nom} (Cu)	BVS : V _{Cu}
Cu ₂ O	2	2 x 1.849	+1	+1.02
CuO	4	2 x 1.951 2 x 1.961	+11	+1.89
Sr ₂ CuO ₃	4	2 x 1.958 2 x 1.967	+11	+1.86
KCuO ₂	4	2 x 1.815 2 x 1.832	+111	+3.11
LaCuO ₃	6	6 x 1.952	+111	+3.29
LaCuO _{2.5}	5	2 x 1.941 2 x 1.966 1 x 2.285	+11	+2.10

R⁰: Cu⁺-O²⁻ 1.600 Å, Cu²⁺-O²⁻ 1.679 Å, Cu³⁺-O²⁻ 1.730 Å

BVS (Bond Valence Sum)

- Empirical but highly useful tool !!!
- Validation of crystal structure determination results
- "Inspecting" crystal structures (e.g. to find bonding instabilities)
- Location of light atoms (H, Li, etc.) that are hard to find by XRD, by examining the valences of the surrounding atoms
- Prediction of bond distances: $d_{ij} = R^0_{ij} 0.37 \text{ x In } s_{ij}$ (can handle unsymmetrical coordination environments)
- Prediction/design of new materials/structures (for synthesis efforts);
 c.f. Tolerance parameter
- Determining the charge distribution between two (or multiple) different sites of the same element in the same crystal structure
- Reasoning/prediction of structural distortions → important e.g. for ferroelectrics, piezoelectrics and magnetics

Mixed Valency: e.g. Verwey Transition

Material Design

YOU CAN SEE from the BVS EQUATION:

Distorting the environment around an atom by lengthening some bonds and shortening others while holding the average bond length constant \rightarrow Increase in the BVS

YOU CAN PREDICT for your NEW MATERIAL:

Distortion around a certain (transition metal) atom, is likely to occur if the atom is located on a crystal site that is too large (BVS too small); In such a case the distortion would increase the BVS towards the ideal value.

FeTiO3 (Ilmenite)

ILMENITE STRUCTURE

- Consists of Fe²⁺ and Ti⁴⁺ ions, both located within oxygen octahedra

- XRD analysis can not directly tell us whether the Fe²⁺ ions are within the smaller and the Ti⁴⁺ ions within the larger octahedra, or vice versa

- BVS calculation confirms that: Fe occupies larger (red) octahedra & Ti occupies smaller (blue) octahedra

$YBa_2Cu_3O_{7-\delta}$ SUPERCONDUCTOR:

Oxygen (non)stoichiometry controls superconductivity properties

Phase Diagram of High-T_c Superconductors

Oxygen content in $YBa_2Cu_3O_{7-\delta}$ controls the valence state of copper, and thereby the superconductivity (Tc value)

Illustration how the YBa₂Cu₃O₇₋₅ structure is derived from the perovskite ABO₃ structure through cation ordering and ordered oxygen vacancies

A-site ordered & oxygen-vacancy ordered TRIPLE PEROVSKITE A'A"₂B₃O_{8 (= 9-1)}

Cu(1)O chain Cu(2)O₂ planes $YBa_{2}Cu(1)Cu(2)_{2}O_{7}$

BVS calculation shows:

- Oxygen content decreases

 both V[Cu(1)] & V[Cu(2)] decrease
- Same trend for V[Cu(2)] & T_c value
 V[Cu(2)] controls superconductivity

R.J. Cava et al., Physica C 165, 419 (1990).