Sustainable design S10 Barriers and policies

Anubhuti Bhatnagar 24-05-2024

Aalto University School of Arts, Design and Architecture

Readings for the session

Allwood, J., & Cullen, J. (2010). Sustainable Materials – with Both Eyes Open

Chapter 23: Business activity evaluation

Also discussed:

Chapter 24: The influence of policy

Chapter 25: The actions of individuals

Where do you think change comes from? Driving forces of sustainability?

In Session 1, we looked at drivers of sustainability:

- Innovative business
- Consumers and value change
- Science and technology
- Regulation

Business activity evaluation: Barriers to change

Material efficiency does not always pay	Standardization vs optimization	Evolution of the industry is path dependent
Risk aversion and imperfect information	Product sales vs service revenue	Consumer attitude to access vs value

Barrier 1: Material efficiency does not always pay!

Problem:

- 1. Material cost is only a fraction of the purchase price
- 2. For fabricator & manufacturer, labor costs outweigh material efficiency benefits

Solution:

1. Regulatory pressure to improve efficiency through emission saving benefits

Opportunities vs. time

Tracking the cost of resources

- The cost of losses increases along the value chain ۲
- Eliminate the causes at the earlier stages ۲
- Easier to recover production scrap than a damaged final product ۲

Barrier 2: Standardization vs optimization

- Standardization = Economies of scale
 - *High-volume products*
 - Ease of production, handling storage and transport.
 - Downstream production is easy
- Optimization = Make and use only what you need

Standard vs optimized beam (Source: Ch 12)

- <u>Problem:</u> "Does using less metal now to make an optimized component, compromise our ability to adapt or use the component in future for a changed or different use?"
- Solution: Design for modularity with a combination of standardized and optimized components

Role of Design

Design for assembly & disassembly

Parts consolidation, modularization, combination, appropriate fastening methods

STEP 01

Design for reuse, remanufacture & recycling

Optimized dismantling of products, ease of extending life

Manufacturing method selection

Environmentally friendly production with reduced material waste, promote reuse

Barrier 3: Evolution of the industry is path dependent

Problem: No one likes 'Disruptive technology'

- Disruption leads to job loss, IPR issues
- Look at standardization vs optimization
- Small-scale change vs large scale disruption
- Ex: Reluctance of primary steel producers to secondary steel production despite available technology

Solution:

- Regulatory interventions to enforce new practices
- Life cycle thinking & impact assessments

Risk of technology lock in (Source: <u>Schmidt et al. 2016</u>)

Barrier 4: Risk aversion and imperfect information

Problem:

- Overdesign due to safety concerns and fear of penalties
- 2. Lack of information on future use and product composition for optimal design

Solution:

 Better communication between makers and commissioners and insurers

Barrier 5: Focus on product sales and not service revenue

Problem:

• Business models are focused on sales not service so

increased material use rather than longer product life

Solution:

• Explore better service providing models and build customer relationship

Barrier 6: Consumer attitude to access vs value

Problem:

- Consumers demand products with higher safety limits than needed
- Quick payback of short-lived products overtakes the benefits of buying longer lasting products

Solution:

Increased transparency in emissions and material impacts, better products at competitive prices

Consumers as drivers of sustainability

Survey of 27,000 people in the EU Member States in 2022 [↗]

Finnish consumer attitudes to reuse

onsibility mion, whose res	ponsibility is it to or	ganize reuse of the follow	wing products and so	ervices?		
0	Retailers	Specialized companies	Third sector	Public sector	Mine	Total %
Food Housing Transportation Consumer electronics Average	O 22 21 • 53 26.75	10 14 40 29 23.25	12 1 1 1 3.75	12 11 34 4 15.25	44 53 14 12 30.75	100 100 100 100
What would be your prefe	rred way to extend t	he lifespan of the follow	ing products and ser	vices?		
	Service	Third sector	Public	sector	Do it myself	Total %
Food Housing Transportation	4 53 57 75	15 2 1	10 3 2	0 8 5	71 42 17	100 100 100
Average	47.25	5.75	10	.5	36.5	100
What is your preferred way	y to obtain the follow	ving products and service	es?			
				Buy as		
	Service	Buy as used	Joint purchase	new	Public service	Total %
Food	3	17	4	71	6	100
Housing	33	29	2	34	3	100
Transportation	7	35	5	23	31	100
Consumer electronics	2	10	2	84	2	100

3.25

Cells with bolded figures were removed from the analyses.

11.25

22.75

E

Average

Place: Finland; Respondents: 1555; Year of survey: 2018; Source: Mykkänen & Repo (2021) [2]

53.0

10.5

Role of circular economy in business models

Circular economy in practice

Aalto University School of Arts, Design

and Architecture

CIRCULAR DESIGN	OPTIMAL USE	CIRCULAR DESIGN

Design products and materials with the aim of long term value retention: Product Design, Circular Materials, Classic Long Life, Encourage Sufficiency Support better usage and product productivity: Product as a Service, Life Extension, sharing Platforms, Sell and buy back, Repair & Maintenance Service Capture value after user life:

2nd hand seller, Refurbisher, Recysler, Recaptured material supplier

Challenges of circular business models

Making policies work for our goals

Aalto University School of Arts, Design and Architecture

Based on the Sustainable Development Strategy for the United Kingdom

(Figure 24.1, Chapter 25, Allwood & Cullen, 2010)

Making policies work for our goals

Enforce

- o Emission reduction targets should consider embodied emissions. Ex: 'Zero carbon' houses
- Waste policy should be directed towards minimizing embodied energy losses. Ex: recycle vs reuse
- Health and safety legislation should not prevent material efficiency. Ex: Overall risk analysis
- Product durability standards should be considered. Ex: Eco-design
- Encourage
 - o The tax system should encourage material efficiency. Ex: Tax on disposable products
 - o Material efficiency should be rewarded in voluntary eco-standards. Ex: Steel quality certificate
- Enable
 - o Government should promote meaningful data collection on material efficiency. Ex: LCA
 - o Government should provide greater clarity on requirements or reuse. Ex: Digital product passport

Making policies work for our goals

• Exemplify

- Government procurement can be used to promote material efficiency through their purchasing choice to demonstrate good practices.
- Engage
 - Raise consumer awareness of embodied energy.

Waste hierarchy for industries & consumers

EU policy timeline for textile industry

School of Arts, Design and Architecture

Digital product passport [/]

- Make all information available to user
- The EU Strategy for Sustainable and Circular Textiles (March 2022)
- Eco-design for Sustainable Products Regulation to define requirements by 2024.
- DPPs become mandatory by 2030.

Waste framework directive (EPR)

Extended Producer Responsibility (EPR) puts responsibility on

producers to bear the cost of waste management. Ex: Batteries, e-

waste, packaging, tires

	Benefits		Challenges
•	Economic instrument to stimulate better design to reduce costs	•	Only applicable with specific country. Cross-border secondhand market is not included
•	Obliges producers to take responsibility for the end-of-life phase	•	Focusses only on loss of value rather than value retention
	Asito University	•	No consultation with economic actors who resell, repair, refurbish, or recycle products
?	School of Arts, Design and Architecture	•	Does not address 'bad design'

What can individuals do?

- Building & infrastructure: Use an existing building, reduce use-phase energy, re-use construction materials, design for disassembly, keep it modular, prevent excess material use, choose long lasting parts for insides, repair damages in time.
- Industrial equipment: Include maintenance, operating and future replacement costs in mind, choose a modular design (onion skin model)
- Consumer goods: Cars should have lowest fuel use and embodied energy with easy maintenance. Appliances should be bought with long term requirements in mind with guarantees. Packaging should be reusable or easy to recycle
- Before buying/ discarding consider repair, reuse (resell), disassemble and reuse, recycle

Aalto University School of Arts, Design and Architecture

What can individuals do?

While working in manufacturing / product design...

School of Arts. Desian Architecture

- Try to reduce the material costs, embodied emissions, yield losses. •
- Optimize quality for suitable lifespan. •
- Shorter-lived components should be separable from long-lived • structural components.
- Ensure disassembly at the end of life to reuse or recycle ٠ components.
- Segregate metal waste for reuse and recycling. •
- Document the product's specification and guidelines for • maintenance.
- Explore buy-back contracts. •

What can individuals do?

- Industry: Promote efficient processes, and heat recovery options. Recover and reuse metals, concrete, paper, plastics. Explore novel process development. Offer reuse certification where possible.
- Insurance sector: Offer risk assessments for investing in new processes, reusing products/ appliances
- Marketing & advertising: Build customer trust by transparent reporting
- Retail: Work with suppliers to put durability labels on products.
 Collection mechanisms for packaging, promoting durable & reusable products.
- Education: Teach about sustainability, evaluate claims, develop new technologies

Aalto University School of Arts, Design and Architecture

Design for sustainability and SDGs

Designing for sustainable agriculture

Designing for health & well-being

Designing for resource efficiency

Designing for inclusivity

Designing for water conservation

Takeaways

- Business are facing many barriers in promoting more sustainability but there are also many opportunities.
- > Consumers can demand sustainability through access to better information
- > Circular economy is an emerging business model to address both material use and sustainability
- Governments can both enforce and enable industries to bring a change. EPR and Digital passports.
- > But it all starts with better design: Design for redesign, disassembly, multiple users, etc.

Thank you!

Anubhuti Bhatnagar

Post-doctoral Researcher

Department of Design | Aalto University

anubhuti.bhatnagar@aalto.fi

Write the drivers and opportunities for your material...

- Open the link provided: <u>https://miro.com/app/board/uXjVMFh2kDk=/</u>
- Discuss with your group for 30 minutes

