2D lattices

| Lattice: $(\mathrm{P}=$ primitive; $\mathrm{C}=$ centered) | Max symmetry | Symmetry operation |
| :--- | :--- | :--- | :--- |

Hermann-Mauguin:
1,2,3,4,6 for the rotation axis
m for the reflection line
Combining:
3 m : a 3-fold rotation axis lying on a reflection line 6 mm : a 6 fold axis lying on two symmetry lines

Penrose tilling
Quasicrystal: repeated pattern but no lattice \rightarrow no translational symmetry (Al-Pd-Mn)

2D symmetry figures

Point symmetry operation: leaves (at least) one point of the crystal fixed

Symmetry operations: symbols		
$\boldsymbol{9}$	1-fold: no symmetry	
$\boldsymbol{0}$	2-fold: 180° symmetry	diad
\boldsymbol{A}	3-fold: 120° symmetry	triad
$\boldsymbol{\square}$	4-fold: 90° symmetry	tetrad
$\boldsymbol{0}$	6-fold: 60° symmetry	hexad

Symmetry operations: symbols		
	Atom at lattice point	
	Mirror line	m
-	Glide line	g
	Primitive	p
	Centred	c

Examples:

The 17 2D plane groups:

Lattice type	Symmetry operations	Plane group
Oblique		p1
Oblique		p2
Rectangular		Pm
Rectangular	\square	Pg
Rectangular C (rhombus)		Cm
Rectangular		$\begin{gathered} \text { Pmm } \\ \text { (p2mm) } \end{gathered}$
Rectangular	i	$\begin{gathered} \text { Pmg } \\ (\mathrm{p} 2 \mathrm{mg}) \end{gathered}$
Rectangular		$\begin{gathered} \text { Pgg } \\ (\mathrm{p} 2 \mathrm{gg}) \end{gathered}$

Sectangular C

3D Bravais lattices \& 32 point groups

System	Bravais lattices	Symmetry point groups		
		No c.o.sym.	Center o.s.	min. sym.
Triclinic $\begin{aligned} & a \neq b \neq c \\ & \alpha \neq \beta \neq \gamma \neq 90^{\circ} \end{aligned}$	1-fold axis	1	$\overline{1}$	None
Monoclinic $\begin{aligned} & a \neq b \neq c ; \\ & \alpha=\gamma=90^{\circ} ; \beta \neq \\ & 90 \end{aligned}$	2-fold axis	2	$\frac{2}{m}$	1 diad or inversion diad
Orthorhombic $\begin{aligned} & a \neq b \neq c \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	3*2-fold axis	$\begin{gathered} 222 \\ 2 \mathrm{~mm} \end{gathered}$	mmm	$\begin{gathered} 3 \text { diads at } \\ 90^{\circ} \end{gathered}$
Tetragonal $\begin{aligned} & a=b \neq c \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$ 4-fold axis	4-fold axis	$\begin{gathered} 4 \begin{array}{c} 4 \\ 422 \\ 4 \mathrm{~mm} \\ \overline{4} 2 \mathrm{~m} \end{array} \end{gathered}$	$\begin{gathered} \frac{4}{\mathrm{~m}} \\ \frac{4}{\mathrm{mmm}} \end{gathered}$	1 tetrad or inversion tetrad
Rhombohedral (=trigonal) $\begin{aligned} & a=b=c \\ & \alpha=\beta=\gamma \neq 90^{\circ} \end{aligned}$	3-fold axis	$\begin{gathered} 3 \\ 32 \\ 3 \mathrm{~m} \end{gathered}$	$\begin{gathered} \overline{3} \\ \overline{3} \mathrm{~m} \end{gathered}$	1 triad or inversion triad
Hexagonal $\begin{aligned} & a=b \neq c \\ & \alpha=\beta=90, \gamma=120^{\circ} \end{aligned}$	6-fold axis	6 $\overline{6}$ 622 6 mm $\overline{6} \mathrm{~m} 2$	$\begin{gathered} \frac{6}{\mathrm{~m}} \\ \frac{6}{\mathrm{mmm}} \end{gathered}$	1 hexad or inversion hexad
Cubic $\begin{aligned} & a=b=c \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	4*3-fold axis	$\begin{gathered} 23 \\ 423 \\ \overline{4} 3 \mathrm{~m} \end{gathered}$	$\begin{gathered} \mathrm{m} 3 \\ \mathrm{~m} 3 \mathrm{~m} \end{gathered}$	4 triads at $109,47^{\circ}$

3D symmetry operators

Symmetry operations: symbols	
$\overline{2}=\mathrm{m}$	Roto-inversion; 180°
$\overline{3}$	Roto-inversion; 120°
$\overline{4}$	Roto-inversion; 90°
$\overline{6}$	Roto-inversion; 60°
$\frac{3}{\mathrm{~m}}$	Mirror plane is in-plane: diad ($\mathrm{m} \perp 3$ is equal to $\overline{6}$)

Symmetry operations: symbols	
$\boldsymbol{0}$	$\boldsymbol{0}+$ inversion $(\overline{2}=\mathrm{m})$
$\boldsymbol{\Delta}$	$\mathbf{\Delta}+$ inversion
$\boldsymbol{\square}$	$\boldsymbol{\square}+$ inversion
$\boldsymbol{0}$	$\boldsymbol{+}$ + inversion
\boldsymbol{O}	Point above plane
O	Point below plane

Examples: (Exercise 4.6)
3: Rotate 120° + invert 180°

Glide plane

- usually symbolized by a, b, c according to which plane of the unit cell they are parallel to
- the n glide = glide along the half of a diagonal of a face
- the d glide $=$ a fourth of the way along either a face or space diagonal of the unit cell

3D screw axis

Rotation: counter-clockwise \& up
Enantiomorphs are NOT each other's mirror images!

230 space groups in 3D

Construction and stereographic projection

Space g	ups: symbols	Stereographic projections for all space groups: http://img.chem.ucl.ac.uk/sgp/mainmenu.htm
$\bigcirc{ }^{+}$	Point above plane	
$\bigcirc \bigcirc^{\frac{1}{2}+}$	Point $1 / 2$ above plane	
(9)	Point mirrored \& below plane	
(9) ${ }^{\frac{1}{4}-}$	Point mirrored $\& 1 / 4$ below plane	
-(1)	All possibilities present	

Examples: (Exercise 4.10)

Orthorhombic: 3 two-fold axes 3 mirror planes Inversion symmetry:	
Tetragonal One 4-fold axis 4 twofold axes (2 unique) 5 mirror planes (3 unique) Inversion symmetry:	
Cubic Three 4-fold axis Four 3-fold axis Six 2-fold axis 9 mirror planes Inversion symmetry	

Example: Exercise 4.12
The 7 point symmetry groups of the hexagonal system

Miller indices

Point		Planes		
Fraction coordinates are multiplied into integers in the vector notation		Parallel planes make up families of planes. Intersects are inversed and integers used		
Point coordinates	Point vector	Axis intersects	Plane index	
1/2, 0, 1	[102]	1/2, 0, 1	(201)	
2/3, 1, 1/2		$1 / 4,1 / 2,2 / 3$	(843)	
Family of vectors		Multiplicity of planes		
The family of vectors who, due to crystal symmetry, are identical: multiplicity		Again, dependent on crystal symmetry		
$\left\langle\begin{array}{lll}1 & 0 & 0\end{array}\right\rangle$ cubic$\quad\left[\begin{array}{l}1 \\ {\left[\begin{array}{l}1 \\ 1\end{array}\right.} \\ \hline\end{array}\right.$	$\begin{aligned} & {\left[\begin{array}{lll} 1 & 0 & 0 \end{array}\right],\left[\begin{array}{lll} 0 & 1 & 0 \end{array}\right],\left[\begin{array}{lll} 0 & 0 & 1 \end{array}\right]} \\ & {\left[\begin{array}{lll} 1 & 0 & 0 \end{array}\right],\left[\begin{array}{lll} 0 & 1 & 0 \end{array}\right],\left[\begin{array}{lll} 0 & 0 & 1 \end{array}\right]} \end{aligned}$			$\left.\begin{array}{l} \left(\begin{array}{lll} 0 & 1 & 1 \end{array}\right), \\ (\overline{1} 0 \end{array}\right)$
Angle between dir product. For direct at an angle φ :	rections is given by scalar ctions [$u_{1} v_{1} w_{1}$] and $\left[\begin{array}{lll}u_{2} & v_{2} & w_{2}\end{array}\right]$	Zone axis: set of plane intersections are parall planes $\left(h_{1} k_{1} l_{1}\right)$ and		ystal whose intersection of two 2) passing origo:
$\cos \varphi=\frac{u_{1}}{\sqrt{u_{1}^{2}+}{ }_{1}}$	$\frac{u_{1} u_{2}+v_{1} v_{2}+w_{1} w_{2}}{+v_{1}^{2}+w_{1}^{2}} \cdot \sqrt{u_{2}^{2}+v_{2}^{2}+w_{2}^{2}}$	Zone axis [uvw]	I_{1}	$\begin{aligned} & u=\left(k_{1} l_{2}-k_{2} l_{1}\right), \\ & v=\left(l_{1} h_{2}-l_{2} h_{1}\right), \\ & w=\left(h_{1} k_{2}-h_{2} k_{1}\right) \end{aligned}$

Weiss zone law:

Check whether an axis is parallel to a family of planes:
If $u h+v k+w l=0 \rightarrow$ axis lies in the family.

Plane made of by two vectors:

Find the plane ($h \mathrm{k} l$) that gives the Weiss zone law:

$$
h u_{1}+k v_{l}+l w_{l}=0 \text { and } h u_{2}+k v_{2}+l w_{2}=0
$$

Hexagonal: Miller-Bravais indices

Introduce index $\mathrm{i}=-(\mathrm{h}+\mathrm{k}) \rightarrow(\mathrm{h} \mathrm{k} \mathrm{i} \mathrm{I)}$
The planes of the zone belonging to the z-axis can be obtained by permutation!
Zone axis: [U V T W] \rightarrow do it with Miller planes
Weiss law: $h U+k W+i T+l W=0$

Miller - Miller-Bravais transformations

Miller-Bravais to Miller	Miller to Miller-Bravais
$\mathrm{u}=(\mathrm{U}-\mathrm{T})$	$\mathrm{U}=(2 \mathrm{u}-\mathrm{v}) / 3$
$\mathrm{v}=(\mathrm{V}-\mathrm{T})$	$\mathrm{V}=(2 \mathrm{v}-\mathrm{u}) / 3$
$\mathrm{w}=\mathrm{W}$	$\mathrm{T}=-(\mathrm{u}+\mathrm{v}) / 3=-(\mathrm{U}+\mathrm{V})$
	$\mathrm{W}=\mathrm{w}$

Crystal diffraction: structure factor

When an electromagnetic wave falls in on an electron (charged particle) the electron will start oscillating with the same wavelength as the incoming wave and there will be a defined phase relationship, i.e. the radiation is coherent.

Scattering intensity I is proportional to charge and scattering angle 2ϑ, and inversely proportional to mass.

$$
I \propto\left(\frac{e^{2}}{c^{2} m_{e}}\right)^{2}\left(1+\cos ^{2} 2 \theta\right)
$$

Atomic scattering factor:

$$
f=\frac{\text { amplitude scattered by one atom }}{\text { amplitude scattered by a single electron }}
$$

Maximum scattering intensity is forward \rightarrow intensity \propto to Z. In all other directions intensity is lowered. An atom with Z electrons can be expected to scatter Z times \rightarrow lighter elements become 'invisible'. The atom is the size scale of X-rays \rightarrow destructive interferences can occur among the scattered waves.

Red planes are at lattice points, and fulfil the Bragg equation; $\mathrm{d}=(\mathrm{hOO})$.
If the atom B is situated halfway between $A \& C$, it will destructively interfere with their intensity.
The more similar its form factor is to $A \& C$, the more significant the extinction.
For more than one atom / unit cell \rightarrow phase difference of the waves scattered by different atoms

| Structure factor
 expression: | $F(h k l)=\sum_{0}^{N} f_{n} e^{i 2 \pi\left(h x_{n}+k y_{n}+l z_{n}\right)} \quad e^{i \pi n}=\left\{\begin{array}{c}1 \text { when n is even } \\ -1 \text { when n is odd }\end{array}\right.$ |
| :--- | :--- | :--- | :--- |

Summation over all atoms at all lattice sites!

Example: (Exercise 6.4)

	FCC: 4 atoms Equivalent atoms are at: $\begin{aligned} & (000),(1 / 21 / 20),(1 / 201 / 2),(01 / 21 / 2) \\ & \quad F=f\left[e^{i \pi(h+k)}+e^{i \pi(k+l)}+e^{i \pi(l+h)}\right] \end{aligned}$	Interference enhancement: ($h \mathrm{k} l$) all even or odd: $\boldsymbol{F}=\mathbf{4 f}$ (111), (200), (220), (333), (420), ... Extinctions: (h k l) mixed oddity: $\boldsymbol{F = 0}$ (100), (211); (210), (032), (033), ...
	BBC: 2 atoms Equivalents: (000), ($1 / 21 / 21 / 2$)	$\begin{aligned} & \hline \text { h+k+l even: } \boldsymbol{F}=2 \boldsymbol{f} \\ & \text { h+k+l odd: } \boldsymbol{F = 0} \end{aligned}$

Reciprocal lattice

The direct lattice describes mathematically the arrangement of the motif (atoms or molecules) in the crystal. There are 14 Bravais lattices.

The reciprocal lattice is an array of points where each lattice point is associated with a particular set of planes of the direct lattice.

- The reciprocal mathematically connects the direct lattice planes, the Bragg law and the directions of the diffracted beam (Reciprocal: 'multiplicatory inverse')

Reciprocal lattice vector $\mathrm{d}_{1}{ }^{*}$

- Defines the normal of a crystal plane
- Length is inversely proportional to interplanary distance

$$
0 \quad\left|d_{1}^{*}\right|=1 /\left|d_{1}\right|
$$

- The reciprocal vectors draw up the reciprocal lattice points
Addition rule is valid:

$$
\mathbf{d}_{h k l}^{*} \cdot \mathbf{d}_{m n o}^{*}=\mathbf{d}_{h+m k+n l+o}^{*}
$$

Reciprocal unit cell

- Defined by a*, b*, and *c

Unit cell volume:

- $\quad V=\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$ and $V^{*}=1 / V$
$\mathbf{a}^{*}=\mathbf{d}_{100}^{*} \perp \mathbf{b}^{*}, \mathbf{c}^{*}$ and $\left|\mathbf{a}^{*}\right|=\mathbf{a}^{*}=1 / \mathbf{d}_{100}^{*}$
$\mathbf{b}^{*}=\mathbf{d}_{010}^{*} \perp \mathbf{a}^{*}, \mathbf{c}^{*}$ and $\left|\mathbf{b}^{*}\right|=\mathbf{b}^{*}=1 / \mathbf{d}_{010}^{*}$
$\mathbf{c}^{*}=\mathbf{d}_{100}^{*} \perp \mathbf{a}^{*}, \mathbf{b}^{*}$ and $\left|\mathbf{c}^{*}\right|=\mathbf{c}^{*}=1 / \mathbf{d}_{001}^{*}$
Rule: $\mathbf{a} \cdot \mathbf{a}^{*}=1$

Connection to Miller indices and plane families

Plane axial interceptions	Plane Miller index	Reciprocal vector
$1 / \mathrm{h}, 1 / \mathrm{k}, 1 / \mathrm{l}$	(h k I)	$\mathrm{d}_{\mathrm{hkl}}{ }^{*}=\mathrm{ha}^{*}+\mathrm{kb}^{*}+\mathrm{Ic} *$

Angles and distances

Interplanary angle	d-spacing between planes (h k I)
Scalar product	$\left(1 / \mathbf{d}_{h k l}\right)^{2}=\mathbf{d}_{h k l}^{*} \cdot \mathbf{d}_{h k l}^{*}$
$\mathbf{a}^{*} \cdot \mathbf{b}^{*}=\left\|\mathbf{a}^{*}\right\|\left\|\mathbf{b}^{*}\right\| \cos \theta$	$=\left(h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}\right) \cdot\left(h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}\right)$

Orthorhombic d-spacing	Tetragonal d-spacing	Cubic d-spacing
$\frac{1}{\mathbf{d}^{2}}=\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2}}$	$\frac{1}{\mathbf{d}^{2}}=\frac{h^{2}+k^{2}}{a^{2}}+\frac{l^{2}}{c^{2}}$	$\frac{1}{\mathbf{d}^{2}}=\frac{h^{2}+k^{2}+l^{2}}{a^{2}}$

Weiss-zone law
A plane (h k l) lies in a zone [u v w] when $\mathbf{d}_{h k l}^{*} \perp \mathbf{r}_{u v w}$
$\mathbf{d}_{h k l}^{*} \cdot \mathbf{r}_{u v w}=\left(h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}\right) \cdot(u \mathbf{a}+v \mathbf{b}+w \mathbf{c})=0$

Relationships to direct space:	Bravais lattice	Simple cubic	FCC	BCC
	Reciprocal lattice	Simple cubic	BCC	FCC

Laue equations: conditions for diffraction

Constructive interference from $\mathbf{3}$ atoms:

Bragg law:

$$
\begin{gathered}
\left|\mathbf{s}-\mathbf{s}_{\mathbf{0}}\right|=2 \sin \theta=\lambda\left|\mathbf{d}_{h k l}^{*}\right| \\
2 \sin \theta=\lambda\left|h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}\right|
\end{gathered}
$$

Conditions for constructive interference:

$$
(A B-C D)=a\left(\cos \alpha_{n}-\cos \alpha_{0}\right)=n_{x} \lambda
$$

Laue equations:

$$
\begin{aligned}
a\left(\cos \alpha_{n}-\cos \alpha_{0}\right) & =\mathbf{a} \cdot\left(\mathbf{s}-\mathbf{s}_{\mathbf{0}}\right)=n_{x} \lambda=h \lambda \\
b\left(\cos \beta_{n}-\cos \beta_{0}\right) & =\mathbf{b} \cdot\left(\mathbf{s}-\mathbf{s}_{\mathbf{0}}\right)=n_{y} \lambda=k \lambda \\
c\left(\cos \gamma_{n}-\cos \gamma_{0}\right) & =\mathbf{c} \cdot\left(\mathbf{s}-\mathbf{s}_{\mathbf{0}}\right)=n_{z} \lambda=l \lambda \\
\frac{\left(\mathbf{s}-\mathbf{s}_{\mathbf{0}}\right)}{\lambda} & =h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}
\end{aligned}
$$

Ewald sphere

- Representation of diffraction on crystal; crystal is in centre
- Peaks in a spectrum = norms of the reciprocal vectors
- Radius $=1 / \lambda$ (reciprocal wavelength)
- Draw reciprocal lattice in same scale
\rightarrow intersections of reciprocal sphere points with sphere surface $=$ diffracted beam maximi
- Find all possible diffraction points by rotating the reciprocal lattice
- Equal to rotating the Ewald sphere
\rightarrow Resolution sphere of $R=2 / \lambda$
- Maximum n.o. peaks = n.o. reciprocal lattice points circumscribed by

Laue technique

- Varies the size of the Ewald sphere by varying λ
$\rightarrow \mathrm{Min} / \mathrm{max}$ spheres, peaks in between
- Used for thin single crystals, fixed in place
- Transmission or reflection mode measurement
- Film placed behind (T) or before (R) sample
- Cannot measure lattice constants or peak intensity
- Crystal orientation analysis \& quality evaluation
- Phase distribution and grain orientation mapping
- Strain/stress mapping
- The curves of points represent zone groups of planes

○ T-mode gives circles; R-mode gives hyperbolae

- Laue pattern can be converted to a stereographic projection
- Done by software

Stereographic projection

- Crystal is imagined in the middle of the sphere
- Crystal plane normal (poles) are projected onto the sphere
- Projected points are transferred to the equatorial plane

- Projecting towards the sphere's south pole
- Alternatively: extend from south pole to the north tangential surface
- The resulting stereographic projection represents the 3D crystal in 2D
- Angles between axes/poles can be measured with the Wulff net
- Rotate net until the points to compared are on the same circle
- Count the difference in latitude (1 line $=10^{\circ}$)

Diffraction \& interference

Narrow gap diffraction:

Interference occurs when the width is of the order of the wavelength

Destructive:
$B C=(n+1 / 2) \lambda$

Destructive:
$B C=n \lambda$

Diffraction from grating:

Distance between slits on the order of magnitude of the wavelength, slits very narrow \rightarrow Huygen's wavelet approximation

Destructive:
$A \sin (\alpha)=(n+1 / 2) \lambda$

Constructive:
$A \sin (\alpha)=n \lambda$

If the wavelength is too small (scale of diffraction gap/grating is too big), the interference fringes will be too close together do discern \rightarrow continuous irradiation

Bragg law:

$2 d \sin (\theta)=n \lambda$
d

Diffraction methods

- X-ray diffraction (XRD): interference of multiple (layered) reflections
- A collective phenomenon, only occurring at specific angles
- Bragg diffraction: diffraction via imaginary diffraction planes (geometrical construction)
- Laue indices: planes with common factors
- Diffractometer \rightarrow diffracted spectrum (diffractogram): intensity vs. angle 2ϑ
- Lattice type and parameters, atomic structure, strain, crystallites; texture \& size \& quality, ...
- Small sources (tube, lab diffractometer) and big ones (synchrotrons)

methods	λ	θ
Laue method	Variable	fixed
Rotation techniques	fixed	Variable
Powder diffraction	fixed	Variable

Electron diffraction

Wavelength by de Broglie $\boldsymbol{\lambda}=\boldsymbol{h} / \boldsymbol{p}$ (h: Planck)
Electrons accelerated by voltage \boldsymbol{U}
$\rightarrow \boldsymbol{E}_{\text {pot }}=\boldsymbol{e} \boldsymbol{U}$ and $\boldsymbol{p}=\left(2 \boldsymbol{m}_{e} e \boldsymbol{U}\right)^{1 / 2}$
TEM: Tunnelling Electron Microscopy
Another possibility: Neutron diffraction

Powder diffraction

- Randomly oriented microcrystals, often in a powder
- All planes of $d_{h k l}$ spacing diffract at the same 2θ angle
- Intensity cone of semi-angle 2θ about the direct beam: Debye-Scherrer rings
- Disadvantage: conversion of 3D to 2D data array
- \rightarrow inevitable loss of information
- Assumptions: perfect statistical distribution

- Ignore possibility of preferential break planes
- Find out: lattice (type, parameters \rightarrow phase), strain \& deformation, size of microcrystals, quality

The Debye-Scherrer method (1930)

- Classic method: sample in cylindrical camera
- Debye-Scherrer rings captured on photographic film
- Sample is a rod shape or powder in a capillary tube
- Added feature: sample rotation
- Chambers typically $57,3 \mathrm{~mm}\left(1 \mathrm{~mm}=2^{\circ}\right)$ or $114,6 \mathrm{~mm}\left(1 \mathrm{~mm}=1^{\circ}\right)$
- Can control ambience (inert gas/vacuum)
- Very small samples can give very good resolution (0,001 Å)
- Beam leftovers collected and absorbed by lead
- 'parasitic beam'
- Modern equivalent: film replaced with detector array

Resolving power

Increases with increasing R and θ

$$
\begin{aligned}
& \lambda=2 d \sin \theta \\
& 0=2 d \operatorname{Cos} \theta \delta \theta+2 \sin \theta \delta d \\
& \frac{\delta \theta}{\delta d}=\frac{-1}{d} \tan \theta
\end{aligned}
$$

Resolution increases with θ

$$
\begin{aligned}
& S=2 \theta R ; \quad \delta \theta=\frac{\delta S}{2 R} \\
& \frac{\delta S}{\delta d}=\frac{-2 R}{d} \tan \theta
\end{aligned}
$$

δS is the distance between 2 close peaks measured on the detector (film) surface

$$
\frac{d}{\delta d}=\frac{-2 R}{\delta S} \tan \theta, \text { or } \quad \delta S=-2 R \frac{\delta d}{d} \tan \theta
$$

Seemann-Bohlin chamber

Euclides:

"the angles in the same segment of a circle are equal"

- Polycrystalline sample fixed between A \& B
- Photographic film mounted between $N \& M$
- All beams diffracted by a select plane will focus at F
- Regardless of where they refracted
- Much higher intensity than Debye-Scherrer: larger sample
- Higher resolution then Debye-Scherrer (factor 2)

Bragg-Brentano geometry

- Most common in modern diffractometers
- Approximates parallel beam at large radius
- As 2ϑ is varied, the focusing circle shrinks
- With a flat sample, focusing is never perfect
- Focus improves by smaller sample areas and larger machines
- Detector is electronic: scintillation counter or similar
- Digitized signal, step scattered intensity

Grazing incidence geometry

- Measuring ultra-thin layers (<10-20 nm)
- Thin film epitaxy, film quality, ...
- Parabolic mirror: parallel beams
- Can be replaced by Soller slit

Parallel beam geometry

- Same geometry as above
- Measure irregular shapes without distortion

Parabolic Göbel mirrors

- Multilayer crystal mirror: works by Bragg diffraction
- d-spacing varies in a controlled manner
- Picks up a slice (ca 1°) of the divergent primary beam
- High-energy parallel beam produced

- Extremely expensive to manufacture
- Specific to wavelength and machine geometry

Other parallelization methods

- Channel-cut crystal monochromators are used for high-resolution measurements.
- They provide highly monochromatic beam (better than curved crystals or parabolic mirror)
- The disadvantage is a significant loss of intensity and rather complicated and delicate alignment

Monochromators

Flat crystal monochromator

Simplest and cheapest: rather low efficiency.
Only the selected wavelength is diffracted and redirected; all others pass.

Curved crystal monochromator (Johansson)

 Improvement of the flat crystal.The crystal's curvature radius is twice that of the focusing circle; then cut to fit the focusing circle.

Beam absorption

I	Intensity (E/s)	${ }^{1} \square$					$-\frac{d I}{I}=\mu d x$
μ	Linear absorption coefficient	0.8					
μ^{*}	Mass absorption coefficient ($\mathrm{cm}^{2} / \mathrm{g}$)	0.6					$I_{x}=I_{0} e^{-\mu x}$
w_{i}	Substance i weight fraction	0.4					
θ	Angle of incidence	0.4					$\mu^{*}=\frac{\mu}{\rho}$
ρ	Density						
x	Depth	$G_{x}(x)=1-e^{\frac{-2 \mu x}{\sin \theta}}$					$\mu^{*}=\sum_{i=1} w_{i} \mu_{i}^{*}$
G_{x}	Energy fraction absorbed at depth x			$x)=$	$1-$	$e^{\frac{-2 i n}{\sin }}$	

Powder diffraction

- Identification of $d_{h k l}$ values and corresponding intensities
- Intensity generally drop with increasing 2ϑ
- Compare spectrum with the reference or search in the database;
- Phase identification software, Hanawalt tables
- For a known structure, peaks can normally be identified by logic - extinctions make it harder
- Problems:
- Peaks missing (weak, hidden, extinct), extra peaks
- Mismatch of relative intensities, peaks shifted (sample misalignment)
- Distorted / too wide peaks (crystal size)
- High background (amorphous phase, fluorescence)
- ICDD: International Centre for Diffraction Data
- PDF: Powder Diffraction File (L3, s.20-22)

Rietveld method

- Fit the whole spectrum, not the individual peaks
- Include background and peak shapes in the algorithm
- \rightarrow minimize intensity difference
- Possible even when peaks overlap completely

Graphic technique

1. Know the basic lattice structure (cubic, orthorhombic, ...)
2. Combine Bragg's law with the expression for interplanary distance
3. Plot $\sin ^{2}(\vartheta)$ as a function of $\left(h^{2}+k^{2}+l^{2}\right)$ and find k as an expression of a
4. Solve for a by substituting the other parameters with experimental data
5. Requirement: All abscissa values (y-values) of the plotted line must be integers

Errors in Bragg-Brentano geometry

Sample displacement

- Greatest source of errors in PXRD: beam is refracted too low/high
\rightarrow no convergence at detector \rightarrow observed peak is shifted
- Use the right sample holders \& correct sample preparation
- Internal calibrations and correction algorithms
- Error is avoided using parallel-beam optics

Flat specimen

- Sample is flat; focusing circle is not \rightarrow surface misalignment
- Asymmetric broadening at low angles 2θ
- Use narrow divergence slits, smaller sample
- Error is avoided using parallel-beam optics

Other:

- Poor counting statistics, scan speed, grain size problem, ...

$$
\Delta 2 \theta=-\frac{2 l \cos \theta}{R}
$$

$l \quad$ Displacement distance
$R \quad$ Goniometer radius
$\Delta 2 \theta \quad$ Peak displacement (rad)

Pole figures

- Diffractometer equipped with Eulerian cradle needed
- Measuring preferred orientation of crystals (powder/film)
- XRD already known, suitable 2ϑ peak selected
- Fix 2ϑ and χ, and rotate around $\varphi ; \varphi$-scan
- Obtain the stereographic projection (contour maps) of the distribution of poles for a chosen set of planes
- Width of distribution indicates strength of preference

Rocking curve scan: Ω-scan

- Fix 2ϑ and scan a range of ω while rotating φ
- Grain surface alignment (textured thin films)

Azimuthal scan: φ-scans

- Distinguish between textured and epitaxial films
- Must use planes NOT parallel to the sample surface
- If the scan shows peaks, crystallites are aligned
- X is found as the angle between the film normal and the normal of the chosen plane (angle between $\mathrm{d}_{1}{ }^{*}$ and $\mathrm{d}_{2}{ }^{*}$)

Fixed 2ϑ and $\chi, \operatorname{vary} \varphi$

Beam broadening: sources of peak shape distortions

- Distribution of d-spacings for every plane family
- Surface tensions of nanoparticles
- Impurities, shape, surface treatment
- Instrument effects
- Measured as peak half-height width distortion β
- Peak width can indicate nanocrystallite size!
- Instrument calibration is important!
$\begin{array}{ll}\circ & \text { Gauss: } \beta_{\text {meas }}{ }^{2}=\beta_{\text {peak }}{ }^{2}+\beta_{\text {instr }}{ }^{2} \\ \circ & \text { Cauchy: } \beta_{\text {meas }}=\beta_{\text {peak }}+\beta_{\text {instr }}\end{array}$

Distortion by deformation:

$$
\begin{gathered}
\beta_{d e f}=\delta(2 \theta)=2 \frac{\delta d}{d} \tan \theta \\
\varepsilon=\frac{\delta d}{d} \quad \sigma=\varepsilon E=1 / 2 \beta E \cot \theta
\end{gathered}
$$

Nanocrystallite size D: (P. Scherrer formula)

$$
\beta_{n c r}=\frac{K \lambda}{D \cos \theta} \quad K=\frac{2}{\sqrt{\pi}} \sqrt{\ln 2} \approx 0,9
$$

Reciprocal space mapping of epitaxial films

High-resolution diffraction optics

Rocking curves for epitaxial layers

- Normal is perpendicular to the substrate surface
- ω is also the diffraction angle $(\omega=\vartheta)$
- Double-axis measurement: total intensity refracted over a range of 2ϑ is mapped as a function of ω

