Underground Thermal Energy Storage (UTES)

Mateusz Janiszewski

Post-doctoral researcher

My introduction

- Post-doctoral researcher at Aalto University and Rock Mechanics Specialist at Fractuscan Ltd
- Academic background:
 - DSc in Geoengineering @ Aalto, 2019
 - Master's in Mining Engineering (EMC European Mining Course) @ Aalto, TU Delft & RWTH Aachen, 2014)
- Research topics: underground thermal energy storage, fracturing geomechanics, photogrammetry, virtual reality, risk assessment

Learning goals

After this session, you should

- be able to differentiate between different UTES methods
- be able to describe the typical phases of UTES projects
- be able to tell why do we need site investigation in UTES projects
- how do we measure thermal properties of rocks relevant for UTES

Content

UTES methods

UTES project

Thermal properties of rocks and soils

Content

1 2 3

UTES methods

UTES project

Thermal properties of rocks and soils

Why do we need to store thermal energy?

- Intermittent nature of renewable energy
- Supply and demand mismatch
- Passive energy storage since early humans

Passive energy storage in ground

flickr.com

https://web.uponor.hk/

What are the requirements for a sensible heat storage medium?

The ground as a heat storage reservoir

- High heat capacity
 - Water ≈ 2*rocks
- Moderate thermal conductivity
 - Rocks 2 3 W m⁻¹K⁻¹
 - Depends on the mineral composition
 - Soils 1 2 W m⁻¹K⁻¹
 - depends on water content

Country	Typical ground temperature (°C) 10–150 m depth range		
Norway	2–7		
Finland	2–6		
Denmark	6–11		
Poland	8–11		
United Kingdom	9–14		
France	9–15		
Romania	12–16		
Italy	10-15		
Spain	15-19		
Greece	14–20		

Table 3.1 The thermal conductivity and volumetric heat capacity of selected rocks and minerals

Rocks	1.8 1.9–2.4 (<i>2.3</i>)
Con1 0.3	<i>1.8</i> 1.9–2.4 (<i>2.3</i>)
0.3	1.9-2.4 (2.3)
Limestone 1.5–3.0 (2.8, massive limestone)	
Shale 1.5–3.5 (2.1)	2.3
Basalt 1.3–2.3 (1.7)	2.4-2.6
Diorite 1.7–3.0 (2.6)	<i>2.9</i> –3.3
Sandstone 2.0-6.5 (2.3)	2.0-2.1
Gneiss 2.5-4.5 (2.9)	2.1-2.6 (2.1)
Arkose 2.3–3.7 (2.9)	2.0
Granite 3.0–4.0 (3.4)	1.6-3.1 (2.4)
Quartzite 5.5-7.5 (6.0)	1.9-2.7 (2.1)
Minerals	. ,
Plagioclase 1.5-2.3	1.64-2.21
Mica 2.0-2.3	2.2-2.3
K-feldspar 2.3–2.5	1.6-1.8
Olivine 3.1–5.1	2.0-3.6
Quartz 7.7-7.8	1.9-2.0
Calcite 3.4-3.6	2.24
Pyrite 19.2–23.2	2.58
Galena 2.3–2.8	1.59
Haematite 11.3–12.4	3.19
Diamond 545	_
Halite 5.9–6.5	1.98
Other	
Air 0.024	1.29 × 10 ⁻³ at 1 atm
Glass 0.8–1.3	1.6-1.9
Concrete 0.8–1.7 (1.6)	1.8
Ice 1.7–2.0 (2.2)	1.9
Water 0.6	4.18
Copper 390	3.5
Freon-12 ^a at 7°C (liquid) 0.073	1.3
Oak 0.1–0.4	1.4
Polypropene 0.17–0.20	1.7
Expanded polystyrene 0.035	-

UTES

UTES = "systems for storing thermal energy using natural underground sites" (Lee, 2013)

<u>;</u>

Developed since 1970

used when large storage volumes are needed

Temperature: Low vs high temperature

Purpose: heating, cooling, combined heating and cooling

Technology: boreholes, aquifers, caverns, pits

Application: residential, commercial, industrial

UTES methods

- Most common in aquifers (ATES) and boreholes (BTES)
- Other: caverns (CTES), pit (PTES) and tank (TTES), Combi/hybrid
- Depends on site specific conditions
 - Geology (rock vs. soil, properties)
 - Groundwater
- Engineering challenges:
 - Selecting the best UTES method
 - Selecting the most efficient shape
 - Economical excavation

ATES

- Group of wells in an aquifer
- High hydraulic conductivity required
- Injection/extraction schemes depending
 on the season
- Ground (matrix) and ground water as storage media
- Heat transfer is both convective and conductive
- glacial vs. alluvial vs. hard rock aquifer

ATES - construction

- Wells drilled into the aquifer
- wells equipped with pumps, production- and injection-pipes
- mineralogy, geochemistry and microbiology

Drilling rig in action Double-wann Gas Water Faucet Rotary Disk of Driller Air Compressor Double-wall Drill Pip Single-wall Drill Pipe well head well housing aquifer valve and submer well screen sible clay layer pump

aquifer

borehole

gravel pack

piezometer

Reverse Circulation Tricone Bit

Gas-Water Mixe

Sedimentation Tank

ATES – continuous vs cyclic regime

Continuous regime

Cyclic regime

ATES – example 2

Arlanda airport, Sweden

- Heating and cooling
- 11 wells (5 cold and 6 warm)
- Water flow rate 720 m³/h
- 10-15 GWh
- Payback time 6-7 years

https://underground-energy.com/ourtechnology/ates/

BTES

- Heat is stored directly in the ground via boreholes
- Borehole Heat Exchangers
- No separated storage volume
- Conductive heat transfer
- Rock/soil as the storage medium
- Modular design

https://underground-energy.com/our-technology/btes/

BTES - construction

- shape to maximize the volume to surface area ratio
- heat exchanger u-tubes are connected in series – radial path
- Parallel circuits to distribute the flow
- Charging: flow from center to outer edge; Discharging: vice-versa

http://dlsc.ca/

Nordel et al. 2015

BTES – borehole heat exchanger BHE

- Coaxial
- Single U-tube
- Double U-tube
- Grouted vs. water-filled
- Thermal resistance
- PEX tubes

$$R_{\rm b} = \frac{T_{\rm f,l} - T_{\rm b}}{q_{\rm b}}$$

Scorpo, 2013

BTES –water-filled vs. grouted boreholes

Skarphagen et al. 2019

Aalto University School of Engineering

19

BTES – example

- DLSC, Canada
 - Okotoks, Canada
 - 144 boreholes, 35m deep
 - 24 parallel strings with 6 boreholes in series
 - 98% solar fraction, SPH

CTES

- Large cavern excavated in rock
- High charging/discharging power
- High capital cost
- Good rock conditions required
- reuse of abandoned caverns is possible

CTES - construction

Aalto University School of Engineering

CTES – example 1

Lyckebo, Sweden

- Volume: 104 300 m³
- Storage capacity: 5.5 GWh
- Temperature: 40-90 °C
- Charge and discharge via telesco pipes
- SPH and DHW
- Cost 4.3 M€

CTES – reuse of abandoned caverns

Aspects to consider:

- shape (thermal stratification) vs. mechanical stability
- Interference of multiple caverns

<u>Seppälä, 2016</u>

Vihanti mine

- Pit excavated into the ground
- Bottom lined, top covered
- Large storage volumes
- Water as storage medium (sometimes water + gravel)
- Max temperature 90 °C (due to liner)
- Mainly Denmark, Sweden, and Germany

Pit (PTES)

PTES - construction

- Bottom and walls covered with liner
- Floating cover
- Polyethylene lining (Geotextile)

iea-dhc.org

PTES – example

70 000 m²

Vojens, Denmark

- Seasonal storage
- Solar heating plant SDH
- Old sand pit

TTES

- Wide range of utilization (independent from geology)
- Water as storage medium
- Three requirements:
 - stratification
 - min. dead water volume
 - min. heat loss/gain

TTES - construction

- Tank built from reinforced concrete
 or steel
- Fully or partially buried in the ground
- Insulated roof and walls

Construction of the water-tank stores in Hannover

TTES – example

Munich, Germany

- Built in 2007 and ntegrated into district heating system for 300 apartments
- 5700 m³ volume
- Charged by 3000 m² solar collectors
- Prefabricated concrete elements
- Foam glass gravel layer for insulation of the floor, expanded glass insulation in walls
- Stratification device inside the tank

COMBI/HYBRID

- Combine advantages of multiple UTES methods
- Example: CTES + BTES
 - Heat injection/extraction power of CTES
 - Lower cost of BTES

Nordell, 2012

COMBI/HYBRID – example 1

Kerava, Finland

- Solar village of 44 houses
- 1500 m³ Water Storage
- 11000 m³ Rock Storage
- 2 Rings of boreholes (54 in total)
- Thermally stratified water tank (top 50°C)
- Energy storage efficiency of 85%
- Operation from 1983 till 1985

COMBI/HYBRID – example 2

Attenkirchen, Germany

- Tank
 - 9 m diameter
 - 8.5 m depth
 - 500 m³ volume
- Boreholes
 - 90 boreholes
 - 30 m deep
 - 3 rings
 - 10 500 m³ volume
 - double U-tube
- Cost
 - 330 k€ storage; 1.2 M€ whole system

Reuss et al. 2006

COMBI/HYBRID - concept

Janiszewski et al. 2019

Fractured TES (HYDROCK concept)

- Heat transfer between fluid and rock through parallel sub-horizontal fracture planes
- Hydraulic fracturing in vertical boreholes
- Lower number of borehole required compared to BTES

Pros and cons of UTES methods

Method	Pros	Cons
ATES	 + Efficient provision of heating and cooling + Easily integration + Small land footprint 	 Hydrogeological restrictions Limited to places where extraction is possible Difficult to balance charging and discharging
BTES	+ Seasonal storage + Modular	Low storage efficiencyLimited charging/discharging power
PTES	+ Potential for very large storage capacity+ Seasonal storage	Low energy densityLarge land footprint
CTES	 + High charging/discharging power + Large storage capacity 	Requires hard rockHigh capital cost
TTES	+ Scalable+ No site restrictions	 Space requirement High capital cost Heat loss of small systems

UTES Thermal storage efficiency

Method	Storage efficiency, %		
ATES	70 – 90%		
BTES	30 – 60%		
PTES	up to 80%		
TTES	50 – 90%		
CTES	40 – 90%		

Content

UTES methods

UTES project

Case study 2: open stopes

UTES Project phases

Desktop Feasibility Study

Non-intrusive, look for fatal flaws Preliminary cost estimate

Geologic characterization Thermal modelling of the system

Detailed Design

Equipment specification Integration with Mechanical, Electrical & Plumbing systems Detailed cost estimate

Construction Comn

Commissioning

Operation, Maintenance & Monitoring

-\v

UTES feasibility study

Q

Geological evaluation

Thermophysical and mechanical properties Hydraulic properties

Engineering evaluation

Cooling/heating configuration Heating requirements Size and capacity Conceptual design Efficiency Energy and emissions reductions Construction and installations Safety

Financial evaluation

Construction cost Resources use Financial benefit (Net Present Value)

Environmental standards Identification of required permits

<u>~</u>

UTES Costs

Example of cost distribution (Tørring, DK). Note that storage is not included. (Source: PlanEnergi)

The cost of the planning, designing & optimization is approximately 2-5 % of the total investments

The investment, maintenance and operational cost have to be related to its thermal performance in the overall system!

Numerical simulation as a design tool

Evaluation of different storage methods

Evaluation criteria	ATES	BTES	CTES	PTES	TTES
Simplicity of obtaining sufficient storage volume	+++	+++	++	++	++
Economics	+++	++	+	+	+
Storage efficiency	++	+	+++	++	++
Site requirements	+	++	++	++	+++
Adaptability	++	+++	+	+	+
Small scale feasibility	+++	+++	+	+	+++
Simplicity of the storage system	+++	+++	++	+	+

Aalto University

School of Engineering

Honkonen, M. 2015. Thermal energy storage concepts and their feasibility. Master's thesis. Aalto University.

Group Exercise 1

Task: Suggest appropriate UTES method for case A and B. Justify your selection.

- Solar thermal energy
- Seasonal storage
- 100 houses
- Rock + unknown soil depth

Case B

- District heating network
- Short term storage (to balance variable heat) consumption
- City with 500k inhabitants

Content

Learning goals

Case study 1: tunnels Thermal properties of rocks

44

Why do we need to know what is in the ground?

- What is the lithology? soil, rock?
- Thermal properties of ground
- Groundwater flow
- Soil depth fluctuation
- Method selection depends on site specific conditions

Site investigations are crucial in UTES projects!

The higher the heat capacity, the more heat can be stored in the ground

Site investigations - examples

Soil depth

Aalto Universitv

chool of Engineering

- soil depth can fluctuate by few meters in a small area
- especially important in BTES!
 - Drilling cost with casing costs 3-4 times as much as drilling in hard rock
- determine the soil depth, for example using a georadar or seismic profiling

Fractures and ground water flow

- High groundwater flow may lead to high heat losses
- GW in bedrock takes place in fractures
- Grouting in boreholes may be required if fractures with groundwater flow are present
- Maps, outcrops, test boreholes, permeability tests

alto University chool of Engineering

Thermal properties of rocks in Finland

Aalto University School of Engineering

Thermal response testing (TRT, DTRT)

TRT provides an average (effective) **thermal conductivity** of the storage volume as well as the **thermal resistance of the borehole**

DTRT (Disturbed TRT) for more detailed analysis of anisotropic and heterogenous environments – provides layered thermal conductivity and borehole thermal resistance

- borehole
- circulation pump + pipe system
- heater with constant power rate
- continuous logging of the inlet and outlet temperatures of the flow

<u>gtk.fi</u>

Measurements of thermal properties

 $s = \frac{\lambda}{\rho c}$

```
where

s is thermal diffusivity (m<sup>2</sup> s<sup>-1</sup>)

\lambda is thermal conductivity (W m<sup>-1</sup> K<sup>-1</sup>)

c is specific heat capacity (J kg<sup>-1</sup> K<sup>-1</sup>)

\rho is density (kg m<sup>-3</sup>)
```


Typically two of the three thermal properties are measured and the third one is calculated (density must be known or measured)

Example test: Thermal (optical) scanning

thermal conductivity and thermal diffusivity

Thermal conductivity lab test

- Fine-grained hornblende-biotite gneiss (Figure 13, left)
- Migmatic granite (Figure 13, right)

Sample & direction of analysis

Table 7. TCS results for Gneiss samples		Table 8. TCS results for Granite sample			
Gneiss	λ_{ave}	aave	Granite	λ_{ave}	α_{ave}
Direction	[W/mK]	[x10 ⁻⁶ m ² /s]	Direction	[W/mK]	[x10 ⁻⁶ m ² /s]
1	3,076	1,621	1	3,012	1,611
2	2,704	1,264	2	3,033	1,599
3	2,541	1,468	3	2,868	1,544
Overall	2,774	1,451	Overall	2,971	1,585

Caballero Hernandez (2017) In situ experimentation and numerical model validation of thermal flow in shallow crystalline rock, Otaniemi case, Master's thesis

Heat capacity lab test

- In the simplest application specific heat capacity is determined with a calorimeter
- The application used at Geological Survey of Finland:
- Heating of the sample (about 25-30 g piece of rock, i.e. thermal conductivity sample) in boiling water
- Calorimeter contains 100 g of water at room temperature
- Final temperature of the calorimeter after adding the sample is determined

Group Exercise 2

Task: Suggest a preliminary site investigation plan forBTES project in Southern Finland

What should be measured and why?

Group Exercise 2

Thermophysical and mechanical properties of the ground and aquifer

- Soil/rock types
- Bedrock depth (drilling cost)
- Thermal conductivity (TRT)
- Discontinuities (is grouting needed?)
- Hydraulic properties
- Groundwater elevation
- Groundwater flow
- (Geochemistry)???

Summary

- UTES can help to correct the mismatch between supply and demand of energy
- Various methods: BTES, ATES, CTES, PTES, TTES, Hybrid/Combi
- Selection of the method depends on the site-specific conditions
- Site investigations plan is crucial
- Coordinated set of actions is needed to realize the maximum benefits of UTES

Relevant additional reading

Lee (2013) Underground thermal energy storage. Springer

Cabeza (2014) <u>Advances in thermal energy storage systems: methods and applications.</u> <u>Elsevier</u> – ch.1, 2, 5, 6, 7

Dincer & Rosen (2010) <u>Thermal energy storage: systems and applications. Wiley.</u> – ch.3, 4, 5, 7.4, 7.5

Banks, (2012) An Introduction to Thermogeology: Ground Source Heating and Cooling

Kallesøe, A.J. & Vangkilde-Pedersen, T. (eds). 2019: Underground Thermal Energy Storage (UTES) – state-of-the-art, example cases and lessons learned. HEATSTORE project report

