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1 Pre-assignment Description

1.1 Introduction to QUBE-Servo 2 Hardware

The QUBE-Servo 2 system is an advanced educational platform designed by Quanser to facilitate the study of

control systems through direct experimentation. It features a direct-drive DC motor and integrated encoders

for precise angular position measurements. This allows students to conduct a wide range of experiments, from

basic motor control to complex feedback systems, making it an excellent tool for exploring the principles and

strategies of control systems [1]. The hardware has two modules, a disk, and a rotary inverted pendulum.

Figure 1 presents the two modules and the hardware.

Figure 1: Quanser QUBE Servo 2 hardware [1].

For an in-depth exploration of the hardware’s setup, operation, and capabilities, students are encouraged to

review the QUBE-Servo 2 User Manual.pdf [3] provided on the course page.

For a more detailed demonstration of the QUBE-Servo 2, refer to this instructional video by Quanser [2]:

https://www.youtube.com/watch?v=8jbtVTqc7Wg.

1.2 Connection to the Pre-assignment

In the pre-assignment, students will receive a single MATLAB Live Script file, student.mlx, containing

the entire assignment. Within this document, students are expected to both answer open-ended questions

and tackle coding tasks. Upon finishing, the completed assignment should be submitted under the filename

your student number.mlx.

• Proportional Derivative (PD) Controller Design: The QUBE-Servo 2 DC motor can be repre-

sented by a transfer function, which is fundamental to the design and analysis of control systems. This

representation allows for the application of theoretical control models to a physical system, providing a

direct link between mathematical expressions and real-world outcomes. The students will use the transfer
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function of the QUBE-Servo 2 to design PD controllers for controlling the position of the disk. Please

refer to Section 2 for the detailed instructions.

• Linear Quadratic Regulator (LQR) Design: The second task focuses on stabilizing the pendulum in

its upright position on the QUBE-Servo 2 system. The equations of motion that describe this scenario are

provided to lay the foundation for the LQR approach. Although the derivation of these equations is not

a task requirement, understanding them is essential for comprehending the system’s dynamics. Following

this, the assignment involves linearizing the equations to convert the system’s complex dynamics into

a state-space model. The core of the task then concentrates on designing the LQR in MATLAB and

understanding the effect of Q and R matrices to optimize the system’s performance. Please refer to

Section 3 for detailed instructions.
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2 PD Controller Design

2.1 Introduction

The Qube Servo 2 voltage to position transfer function G(s) can be defined as:

G(s) =
Θm(s)

Vm(s)
=

K

s(τs+ 1)
=

23.2

s(0.13s+ 1)
, (1)

where we use a steady-state gain K = 23.2 radV−1 s−1 and a time constant τ = 0.13 s. In this system, we have

Θm(s) as the motor/disk position and Vm(s) as the applied motor voltage [1].

In the lab session, you will focus on the PID controllers and the effect of each term on the closed-loop system.

Before that, we have an analytical design pre-assignment. For simplicity, you will focus on the PD controllers

in this assignment.

Given the plant transfer function

G(s) =
K

τs2 + s
(2)

and the PD controller

C(s) = Kp +Kds. (3)

Figure 2: PD controlled closed loop system.

Then, the closed-loop transfer function Tcl(s) can be written after a set of calculations by using intermediate

signals. Let’s start with the controller’s output which is determined by the proportional and derivative actions

on the error signal:

U(s) = (Kp +Kds)E(s). (4)

The plant output as a function of the controller’s output is:

Y (s) =
K

(τs+ 1)s
U(s). (5)

The error signal derived from the reference input and the plant’s output is:

E(s) = R(s)− Y (s). (6)

Substituting the expressions for U(s) and E(s) into Y (s) yields

Y (s) =
K

(τs+ 1)s
((Kp +Kds)(R(s)− Y (s))) . (7)
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We next rearrange the terms to isolate Y (s):

(τs2 + s)Y (s) +K(Kp +Kds)Y (s) = K(Kp +Kds)R(s). (8)

After rearranging the terms, we aim to isolate the output Y (s) on one side to solve for the closed-loop transfer

function. The final equation for Y (s) in terms of R(s) is

Y (s)(τs2 + s+KKp +KKds) = K(Kp +Kds)R(s). (9)

The final form of the closed-loop transfer function is

Tcl(s) =
Y (s)

R(s)
=

K(Kp +Kds)

τs2 + s(1 +KKd) +KKp
. (10)

This is the closed-loop transfer function, Tcl(s), which defines the system’s behavior from input to output. The

characteristic equation of the closed-loop system λcl(s) is found by setting the denominator of Tcl(s) = 0:

λcl(s) = τs2 + (1 +KKd)s+KKp = 0. (11)

2.2 Second Order System Characterization

In Section 2.1, the characteristic polynomial is found for the closed-loop system. Now, we will explain our

design idea. For that, we will recall the generic second-order system characterization. Second-order systems are

characterized by a transfer function with a quadratic denominator in the standard form:

Tdes(s) =
ω2
n

s2 + 2ζωns+ ω2
n

, (12)

where ωn is the natural frequency, and ζ is the damping ratio. The natural frequency ωn indicates the system’s

responsiveness, while the damping ratio ζ characterizes the oscillatory nature of the system’s response. The

desired characteristic equation of the system is:

λdes(s) = s2 + 2ζωns+ ω2
n = 0. (13)

The roots of this equation, or the poles of the transfer function T (s), determine the system’s response charac-

teristics. The location of the poles in the complex plane provides insights into the transient and steady-state

behaviors of the system. For a PD-controlled system, the controller parameters Kp and Kd are adjusted such

that the closed-loop system behaves like a desired second-order system with specified ζ and ωn values.

2.3 Summary

So far we have:

• Derived the closed-loop transfer function Tcl(s) parametrically.

• Switched to its characteristic equation λcl(s).

• Observed that λcl(s) is of the second order.

• Presented the generic form of a second-order system’s transfer function as the desired closed-loop transfer

function Tdes(s). This form includes ζ and ωn, which are viewed as design parameters.

• Switched to a desired characteristic equation λdes(s).

Next steps will include:

• Given the desired system requirements, compute ζ and ωn.

• Then, calculate the Tdes(s) and λdes(s).

• Finally, set the equality λdes(s) = λcl(s) to find the PD-controller parameters.

• At the end, check the step response of the system to verify if the desired system requirements are satisfied.
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2.4 Task Description

Please complete the exercises in the provided MATLAB live script (student.mlx) related to the design and

analysis of a PD controller for a second-order control system. Detailed explanations and instructions for each

task are available within the script. There will be 4 different questions related to PD design.

1. Calculate the damping ratio and natural frequency for a system with specified overshoot and settling time.

2. Use the MATLAB solve function to determine the PD controller parameters.

3. Define the closed-loop transfer function using the calculated PD parameters and system model.

4. Analyze the system’s response to a step input and compare the results with the expected performance

criteria.

Refer to the student.mlx file for a detailed guide, and make use of MATLAB’s documentation to assist you as

needed. After completing this part remember to complete the LQR design task.
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3 Linear Quadratic Regulator (LQR) Design

3.1 Introduction

Linear Quadratic Regulator (LQR) control allows the control of multiple states with a state feedback control

matrix K. The main idea is to minimize a cost function so that certain criteria set by the Q and R matrices

are met. The cost function is given as follows [1]:

J =

∫ ∞

0

(xref − x(t))TQ(xref − x(t)) + u(t)TRu(t)dt. (14)

3.2 Physical Model and Linearization

Figure 3: Rotary inverted pendulum model [1]

To find the state space model of the rotary inverted pendulum, the physical characteristics need to be modeled

by finding the system’s equations of motion. Figure 3 shows the rotary arm and pendulum. The angle θ is the

angle between the rotary arm and the base of the Quanser Qube-Servo 2, and the angle α is the angle between

the rotary arm and the pendulum. The pendulum angle α is defined to be 0 when the pendulum is in the

upright position. Around zero the angle becomes positive to the counter-clockwise direction and negative to

the clockwise direction.

The equations for the rotary inverted pendulum were derived using the Euler-Lagrange method, which uses the

total kinetic and potential energy of the system to find the equations of motion. Deriving these equations is

not within the scope of this course, so they are given as follows [1]:
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(Jr + Jp sin(α
2))θ̈ −mpℓr cos(α)α̈− 2Jp sin(α) cos(α)θ̇α̇−mpℓr sin(α)α̇

2 = τ − br θ̇ (15)

Jpα̈−mpℓr cos(α)θ̈ + Jp sin(α) cos(α)θ̇
2 −mpgℓ sin(α) = −bpα̇. (16)

Here, the subscripts r and p refer to the rotary arm and the pendulum, respectively. The half length of the

pendulum is ℓ =
Lp

2 , and Jp is the moment of inertia around the pendulum center of mass, which is mp. Note

that the length of the rotary arm is r, and the moment of inertia is Jr. The base of the rotary arm is attached

to the DC motor, which generates the torque τ on the right side of the equation. The torque is specified by [1]:

τ =
km

(
vm − kmθ̇

)
Rm

, (17)

where km is the DC motor back-EMF value, Rm is the resistance, and vm is the applied voltage.

The system equations include sine and cosine functions, which are non-linear functions. This is why we need

to linearize the model for the linear state-space representation. After linearization, the model equations are

presented as [1]

Jr θ̈ −mpℓrα̈ = τ − br θ̇ (18)

and

Jpα̈−mpℓrθ̈ −mpgℓα = −bpα̇. (19)

Notice how the terms containing sine and cosine have disappeared.

For the state-space representation, we need to solve the equations for acceleration. The accelerations of α and

θ are

θ̈ =
1

Jt

(
m2

pℓ
2rgα− Jpbr θ̇ −mpℓrbpα̇+ Jpτ

)
(20)

and

α̈ =
1

Jt

(
mpgℓJrα−mpℓrbr θ̇ − Jpbpα̇+mprℓτ

)
, (21)

where

Jt = JpJr −m2
pℓ

2r2. (22)

3.3 Task Description

Please complete the exercises in the provided MATLAB live script (student.mlx) related to the design and

analysis of an LQR. Detailed explanations and instructions for each task are available within the script. There

will be 5 different questions related to LQR design.

1. Explain why the non-linear model is linearized in the context of the LQR.

2. How is the linearization done? (Hint: Approximate the functions f(α) = sin(α) and g(α) = cos(α) as the

first two terms of the Taylor series. Note that the linearized model only works properly when α values are

close to 0, so the linearization should be done at the real value 0.)

3. What are the purposes of the Q and R matrices?

4. Given the state-space matrices, use the LQR function to calculate the optimal K matrix for the system.

5. Plot the step response. Then, change the first value of the Q-matrix to 20. See what changes, and explain

why.

Refer to the student.mlx file for a detailed guide, and make use of MATLAB’s documentation to assist you as

needed. Upon finishing both of the tasks, the completed assignment should be submitted under the filename

your student number.mlx.
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4 In-lab Tasks for Proportional-Integral-Derivative (PID) Controller

4.1 Introduction

Figure 4 shows the Simulink model implementing a Proportional-Integral-Derivative (PID) controller. In the

default control scheme, the derivative filter block 100s
s+100 is disconnected. This is done on purpose, and it is going

to be part of the task.

Figure 4: Simulink model of the PID controller without derivative filter.

• HIL Initialize Block: Sets up initial communication with the QUBE-Servo 2 hardware, configuring the

USB connection and initializing sensors and actuators for operation. Please be sure that the block is in

qube servo2 usb-0 mode.

• Counts to Radians Block: Converts the position feedback from encoder counts into radians.

• Signal Generator: Creates a reference signal, it is position in radians in our case.

• Slider Gain: Adjusts the signal’s amplitude, typically used for manual tuning.

• Summation Block: Calculates the error by subtracting the feedback signal from the reference signal.

• PID Gains: Contains the proportional, integral, and derivative gain settings for the PID controller.

• +/- 10V Limit: Constrains the controller’s output signal to within the hardware’s acceptable voltage

range.

• HIL Write Analog Block: Sends control signals from the PID controller to the QUBE-Servo 2’s

actuators.

• HIL Read Encoder Timebase Block: Reads position feedback from the encoder and synchronizes it

with a timing source for regular sampling.

• Position (rad): The output of the system, indicating the position of the QUBE-Servo 2 in radians.
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4.2 Tasks

4.2.1 Running

1. Open the Simulink model, set the Signal Generator block such that the servo command (i.e., reference

angle in radians) is a square wave with an amplitude of π and at a frequency of 0.1Hz.

2. The Slider Gain block is responsible for adjusting the reference angle interval. Keep the default value of

0.25, the square pulses will alternate between −π
4 and π

4 radians.

3. Adjust the PID controller gains as follows: set the proportional gain (Kp) to 1.3V rad−1, the integral gain

(Ki) to 0V s rad−1, and the derivative gain (Kd) to 0V s rad−1.

4. Build and run the QUARC controller. After compiling, you will see the green lights on the hardware.

4.2.2 Effect of the P Gain in PID

5. Click the Proportional Gain block and set Kp to a value between 2 and 3.

(a) What did you observe, and what is the effect of proportional gain on your output signal?

4.2.3 Effect of the D Gain and Derivative Filter

6. Click the Derivative Gain block and set Kd to 0.01.

(a) Click to the Derivative Branch Scope and zoom into the measurements. What did you observe in

the measurements? After zooming in, you should have a similar graph as provided in Fig 5.

Figure 5: Derivative Branch scope output.

(b) Stop the QUARC controller. Disconnect the Derivative block. Then, connect the Derivative

Filter block. Build and run the QUARC controller. What did you observe in the measurements?

(c) Click the Derivative Gain block and try out different values. At the end, set Kd to a value between

0.05 and 0.1. How does the derivative gain affect the servo position control response?
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4.2.4 Trying Out the Values of Pre-Assignment

7. In the pre-assignment, you designed a PD controller for the provided Qube Servo 2 transfer function. This

design aimed to have 10% Overshoot and 0.35 Settling Time. Try out the values that you found in the

assignment.

(a) What did you observe? Comment on the differences and similarities of the responses.

4.2.5 Effect of the I Gain in PID

8. Click the Integral Gain block and set Ki to 0.5, 1, and 2 iteratively.

(a) How does the integral gain affect the servo position control response? What does the I controller

promise from the error perspective?

4.2.6 Observations

9. We have the Gain Contributions scope in the system, as shown in Figure 6. This will provide us

the possibility to investigate the contribution of each branch separately. (The values in the Figure 6 are

arbitrary; you should use the values of Section 4.2.4 and the Integral gain that you tuned.)

(a) Click the scope named Gain Contributions and report the contribution of the PID controller parts

to the control signal.

Figure 6: Scope named ’Gain Contributions’ in Simulink model.

10. We have the Derivative Branch scope, as shown in the Figure 7.

(a) Click the Derivative Branch. Compare the signals before and after the Derivative Gain. Report

them.

(b) What is the disadvantage of using the Derivative Filter block? Report at least one advantage and

disadvantage of it.

11. Click the 10 V Limit block and set the upper limit to +2 and the lower limit to -2.

(a) What did you observe after the new setup?
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Figure 7: Scope named ’Derivative Branch’ in Simulink nodel.

(b) What is the main role of the saturation block, especially when working on the actual hardware systems?

12. After you have completed your observations, please stop the QUARC controller.

13. As an optional task, we provided custom signals that you can uncomment and use instead of the Signal

Generator block. Before using these, you have to define a variable freq in the MATLAB Workspace that

tells the signals how often a change happens. For example, with freq = 1, the disc will make a move one

time each second. Additionally, freq = 0.5 will make the disc move once every 2 seconds.
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5 In-lab Tasks for Linear Quadratic Regulator (LQR) Controller

5.1 Introduction

Figure 8 presents the Simulink model configured to use a Linear Quadratic Regulator (LQR) controller. This

control scheme is for keeping a rotary inverted pendulum balanced in an upright position [1]. The model is

designed for simplicity, focusing solely on the LQR control method. It does not cover the process of swinging

the pendulum into the upright position. Therefore, you will need to manually position the pendulum upright

before running the Simulink model.

Figure 8: Simulink model of the LQR controller without switch tree [1].

Let’s define the responsibility of each Simulink block:

• Counts to Angles: Converts the positions from encoder to radians.

• Degrees to Radians: Converts radians to degrees before plotting.

• Radians to Degrees: Converts the signal in degrees to radians before calculations.

• State x: Takes the angle of the pendulum and the arm as inputs and outputs a matrix containing those

angles and their derivatives.

• |alpha|: Takes the absolute value of the angle of the pendulum.

• Enable Balance Control: Sends true signal to “Enable Balance Control Switch block if the angle

of the pendulum is +/- 10 degrees. If the pendulum is not close enough to target angle, the linearization

won’t work.

• Balance Control: Applies the control gain matrix K.

• Enable Balance Control Switch: Enables the LQR controller if the signal coming from Enable Balance

Control is true.
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• Switch: Switches 1, 2 and 3 are used to choose between the precalculated values for K matrix.

• For +ve CCW: The model is defined with the counterclockwise positive direction of rotation, which is

why there is a gain block to flip the sign.

The diagram in Figure 8 has been adjusted to make it easier for students to experiment with various LQR

controllers in lab sessions. In the Simulink model provided to you, the balance control gain matrix K has been

replaced with a switch tree seen in Figure 9 containing four different values for the K matrix. The switches

can be toggled while the system is running by double-clicking them. The switches indicate visually which K

matrix is currently in use. In the Figure 9 we can see that the gain second from the top labelled K theta low

is connected.

Figure 9: Switch tree for selecting the K matrix.

In the Simulink model, the input signal is provided as the sum of a square wave and a constant, as seen in

Figure 10. By using the slider gains, you can modify the input signal while the system is running. You can

control the position of the arm manually by making the gain on the square wave 0, and then, changing the gain

on the constant.

Figure 10: Input Signal blocks for the model.

Both inputs can be adjusted separately: the top input acts as a step function, and the bottom input is a square

wave, with each having its amplitude tuning with Slider Gain blocks of 0 and 30.
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5.2 Tasks

5.2.1 Running the Scripts and Simulink Model

1. Run the MATLAB script qube2 rotpen param.m to define the QUBE Servo 2 motor and pendulum pa-

rameters.

2. Run the MATLAB script rotpen ABCD eqns ip.m to introduce the state space representation of the lin-

earized model. This script will also calculate the four K matrices depending on the various Q matrices.

3. Open the lqr lab.slx Simulink model.

4. Set both gains of the Input Signal to 0.

5. Build and run the QUARC controller. After compiling, you will see the green lights on the hardware.

6. Manually rotate the pendulum in the upright position until the controller engages.

5.2.2 Observations and Understanding of LQR

7. Once the pendulum is balanced, set the gain of the square wave to 30. The arm should now alternate

between +30 and -30 degrees.

8. Try out the different K matrix values calculated in the rotpen ABCD eqns ip.m script by controlling the

switches in the Simulink model.

9. Look at the scopes for the rotary arm and pendulum angle and inspect the behavior of the system.

(a) How do the different K values affect the system?

(b) How do the changes relate to the Q matrix, and are the effects what you would expect?

10. Set the gain on the square wave to 0, and then manually control the position of the arm by changing the

gain of the constant. Try controlling the arm’s position while using different K matrix values.

(a) Do you see changes in the behavior depending on the used K value?

11. You can try out more values for K by changing the Q and R matrices in the MATLAB script and then

running the Simulink model again.

12. After you have completed your observations, please stop the QUARC controller.
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