
Condition and Stability

In Numerical Analysis there are always two fundamental questions we should consider when
solving a problem: how sensitive is the solution to the specific form of the problem we are
solving and how sensitive is the algorithm we use to solve the problem to the accuracy of
the values we use?

Condition of a Problem

Every problem that we try to solve is based on an expression of some form or another. To
have confidence in our solution we would first need to know that the expression is continuous
in its inputs, so that we would not get completely different results from slight changes in
the input. However, this is not enough. We also need to know that the expression is well-
conditioned. If it is well-conditioned, then small changes in the input to the expression, will
lead to small changes in the results. If small changes in the input lead to large changes in
the output, then we call the problem ill-conditioned. The exact cutoff between well- and
ill-conditioned depends on the context of the problem and the uses of the results.

Example: Suppose we want to evaluate the expression y = x/(1 − x). With x = 0.93
we get y = 13.28..., but with x = 0.94 we get y = 15.66.... So we would probably
say that this expression is ill-conditioned when evaluated for x near 0.93. On the
other hand, if we use x = −0.93 and x = −0.94, we get values of −0.4818... and
−0.4845... and we would say this it is well-conditioned for x near −0.93.

For many types of problems we can compute a condition number that indicates the
magnification of the changes. The condition number is defined by:

Relative error in the output ≈ Condition number× Relative error in the input.

For example, consider evaluating a function f(x) at a point x = x0. The input is x0 and
the output is f(x0). If we perturb the input to x = x0 + ε then the output is f(x0 + ε)
and by applying the Mean Value Theorem we get

f(x0 + ε)− f(x0)

f(x0)
=

εf ′(ξ)

f(x0)
≈

[
x0f

′(x0)

f(x0)

] (
ε

x0

)
,

where ξ is between x0 and x0+ε. So the condition number of f at x0, is given approximately
by

Cf (x0) =

∣∣∣∣∣x0f
′(x0)

f(x0)

∣∣∣∣∣ .
Applying this to f(x) = x/(1 − x) we get Cf (x) = 1

|1−x| . Then Cf (0.93) = 14.28... and

Cf (−0.93) = 0.5181.... This is consistent with what we saw in the example above.
With the condition number as defined above, we still have no sharp cutoff between

well- and ill-conditioned. We do know that if the condition number is less than 1 then it is
well-conditioned and if the condition number is arbitrarily large then it is ill-conditioned. We
usually study condition in limiting cases where these extremes are observed. For example,
f(x) = x/(1− x) is clearly ill-conditioned for x near 1 and well-conditioned for x < 0 and
x > 2.

Stability of an Algorithm

When we study an algorithm our interest is the same as for an expression: we want small
changes in the input to only produce small changes in the output. An algorithm or numerical
process is called stable if this is true and it is called unstable if large changes in the output
are produced. Analyzing an algorithm for stability is more complicated than determining
the condition of an expression, even if the algorithm simply evaluates the expression. This
is because an algorithm consists of many basic calculations and each one must be analyzed
and, due to roundoff error, we must consider the possibility of small errors being introduced
in every computed value. For example evaluating y = x/(1 − x) would be broken into 2
steps: t = 1− x and y = x/t. Also, we would consider both x and t to have small errors.

An algorithm is stable if every step is well-conditioned. It is unstable if any step is
ill-conditioned.

Example: Consider evaluating f(x) =
√

1 + x − 1 for x near 0. Cf (x) =
√

1+x+1
2
√

1+x
so

Cf (0) = 1 so it is not ill-conditioned. To compute this we would have the 3 steps:
(1) t1 = 1 + x, (2) t2 =

√
t1 and (3) f(x) = t2 − 1. Steps (1) and (2) are well-

conditioned (condition numbers 0 and 1/2), while Step (3) is ill-conditioned. Thus
we would say that this algorithm is unstable.

This last example is interesting because the problem is well-conditioned but the obvious
algorithm used to evaluate it is unstable. What this means is that there is a different
algorithm for evaluating the original expression which would be stable. In this case we can
re-formulate our function as f(x) = x√

1+x+1
by multiplying the original function by

√
1+x+1√
1+x+1

.
This new version is equivalent to the original function but by evaluating it in the obvious
way, we have a stable algorithm.

Summary

• Well-/Ill-Conditioned refers to the problem; Stable/Unstable refers to an algorithm
or numerical process.

• If the problem is well-conditioned then there is a stable way to solve it.

• If the problem is ill-conditioned then there is no reliable way to solve it in a stable
way.

• Mixing roundoff-error with an unstable process is a recipe for disaster.

• With exact arithmetic (no roundoff-error), stability is not a concern.

2

