
Floating Point Numbers and Round-off Error

Floating Point Numbers
Every real number x can be written in normalized form in base β as

x = ±r × βn, with
1

β
≤ r < 1, and n an integer

with the obvious exception for x = 0. r is called the mantissa and n the exponent or characteristic. In
shorthand, we can x = ±rEn, (π = 0.314159265E1)

A computer can only store a finite number of different mantissas and exponents so some mechanism
must be used to map the real numbers onto the computer numbers. This mechanism is called rounding.
We will discuss only one type of rounding called rounding (others are called chopping, symmetric rounding,
etc.). So, rounding means two things: it is the general process for mapping real numbers to computer
numbers and it is also the particular process we are about to discuss. First, let us describe two computers
which come in handy for examples.

DDC-k: (Decimal k-Digit Computer), Base β = 10, computer numbers are of the form

±0.d1d2 . . . dk × 10n

where 0 ≤ di ≤ 9, d1 ≥ 1 and −99 ≤ n ≤ 99. The average calculator is a DDC-10 or DDC-12.

SPC: (Single precision computer), Base β = 2, computer numbers are of the form

±0.b1b2 . . . b24 × 2n

where bi is either 0 or 1, b1 = 1 (and thus is not stored), and −126 ≤ n ≤ 127. This is essentially
standard single precision on a computer (REAL*4 in Fortran or float in C).

Rounding
First we take care of the sign and the exponent. The sign is stored as is (usually in 1 bit). The

exponent is stored as is, if it is within the given range, otherwise we have underflow if the exponent is
too small, or overflow if it is too big, these and other exceptions are dealt with differently on different
machines, sometimes underflow is set to 0.

For the mantissa we apply rounding. Rounding produces the computer number closest to the real
number. Notation: if x is a real number, fl(x) is the computer representation of that number. Assume
that the computer can store k digits (in base β) for the mantissa. Thus if

x = ±0.d1d2d3d4 . . .× βn

then with rounding
fl(x) = ±0.e1e2e3e4 . . . ek × βn

where ek = dk if dk+1 < β/2 or ek = dk + 1 if dk+1 ≥ β/2, and the rest of the digits e1, . . . , ek−1 are
the di appropriately adjusted, i.e. if dk = β − 1 and dk+1 > β/2, then ek = 0 and ek−1 = dk−1 + 1, etc.
In some cases the exponent could also change (and cause overflow).

1

For example, on a DDC-4, fl(0.49994E0) = 0.4999E0, fl(0.49995E2) = 0.5000E2,
fl(0.99995E2) = 0.1000E3.

Roundoff-Error
So, x ≈ fl(x), and our first Numerical Analysis result is to precisely understand this approximation.

Thus, we want to look at x− fl(x). Using the above notation and assuming x > 0 with rounding, we
have two cases to consider: (I) dk+1 < β/2 and (II) dk+1 ≥ β/2. In Case I: ei = di, i = 1, . . . , k, so

x− fl(x) = 0.0 . . . 0dk+1 . . .× βn = dk+1.dk+2 . . .× βn−k−1.

And, since dk+1 < β/2 we get x − fl(x) ≤ β/2 × βn−k−1 = 1
2
βn−k. In Case II: we can take ei = di,

i = 1, . . . , k − 1 and ek = dk + 1, so, with borrowing during the subtraction, we get

x− fl(x) = −0.0 . . . 0(β − dk+1)(β − dk+2) . . .× βn = −(β − dk+1). . . .× βn−k−1.

Now we have dk+1 ≥ β/2 so that β − dk+1 ≤ β/2 and we get x− fl(x) ≥ −β/2× βn−k−1 = −1
2
βn−k.

Thus, we get our first result

|x− fl(x)| ≤ 1

2
βn−k.

Next, if x 6= 0, then |x| ≥ β−1βn and so 1/|x| ≤ β1−n. So we get our second result

|x− fl(x)|
|x|

≤ 1

2
βn−kβ1−n =

1

2
β1−k.

This number εmach = 1
2
β1−k is called Machine Epsilon and is the primary constant for expressions of

machine accuracy. A useful expression involving εmach and derived from above, is

fl(x) = x(1 + δ), |δ| ≤ εmach

In words, this expression gives us the following guideline:

Don’t expect numbers on a computer to be what you think they are.

Note: on a DDC-4, εmach = 1
2
101−4 = 5 × 10−4, a DDC-k, εmach = 5 × 10−k, and on a

SPC, εmach = 1
2
21−24 = 2−24 = 5.96 × 10−8, so roughly speaking, a SPC is like a DDC-8.

Double precision is roughly like a DDC-16.

Operations
The rule a computer must follow for basic arithmetic operations is that result should be the (rounded)

same as exact arithmetic. So if x and y are two computer numbers, ◦ is the exact operation, and • the
computer version, we have

x • y = fl(x ◦ y).

Thus each operation generates some roundoff error, so x • y = (x ◦ y)(1 + δ), |δ| ≤ εmach.

2

