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Note: Readers may require stereoscopic viewers in order to obtain the

three-dimensional effects of the stereo images illustrated in this book. These

viewers may be ordered from the following companies; please write to request

current prices.

Hubbard Scientific Company

P.O. Box 104

Northbrook, Illinois 60062

Edmund Scientific Company

1776 Edscorp Building

Barrington, New Jersey 08007

The reader may be able to obtain the stereoscopic effect without an optical

device: Hold the stereo image about ten inches away from the eyes and relax the

eyes as if staring into the distance. Eventually the left-hand member of the pair

seen by the right eye and the right-hand member of the pair seen by the left eye

will merge to produce what will appear to be a three-dimensional image.

It will help to hold a fingertip about halfway between the stereo pair and

your eyes. Adjust the position of the finger so that when looking with only your

left eye, you see the finger in front of the right edge of the right-hand member of

the pair. At the same time, when looking with your right eye only, try to see the

finger in front of the right edge of the left-hand member of the pair. When your

finger is so positioned, look at the finger with both eyes. This procedure will

bring the two members of the stereo pair into registration, but they will be out

of focus. Now relax your eyes and try to focus the stereo pair without losing the

fixation on your finger. This trick seems to get easier as you get older.
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Preface

This book is meant to be enjoyed. It describes the adventures I have had

in the years since Marvin Minsky and Seymour Papert invited me to the

Artificial Intelligence Laboratory at the Massachusetts Institute of Technol-

ogy in 1973. Working conditions were ideal, thanks to Patrick Winston's

skillful administration, to the generosity of the Advanced Research Projects

Agency of the Department of Defense and of the National Science Foun-

dation, and to the freedom arranged for me by Whitman Richards, under

the benevolent eye of Richard Held. I was fortunate enough to meet and

collaborate with a remarkable collection ofpeople, most especially, Tomaso

Poggio. Included among these people were many erstwhile students who
became colleagues and from whom I learned much—Keith Nishihara, Shi-

mon Ullman, Ken Forbus, Kent Stevens, Eric Grimson, Ellen Hildreth,

Michael Riley, and John Batali. Berthold Horn kept us close to the physics

of light, and Whitman Richards, to the abilities and inabilities of people.

In December 1977, certain events occurred that forced me to write

this book a few years earlier than I had planned. Although the book has

important gaps, which I hope will soon be filled, a new framework for

studying vision is already clear and supported by enough solid results to

be worth setting down as a coherent whole.

Many people have helped me to live through this somewhat difficult

period. Particularly, my parents, my sister, my wife Lucia, and Jennifer,

Tomaso, Shimon, Whitman, and Inge gave to me more than I often

deserved; although mere thanks are inadequate, I thank them. William

Prince steered me to Professor F. G. Hayhoe and Dr. John Rees at Adden-

brooke s Hospital in Cambridge, and them I thank for giving me time.

Summer 1979 David Marr



We should like to express our gratitude to those who helped us bring

David Marr's Vision to fulfillment.

We thank Gunther Stent, whose friendship brought David Marr andW H.

Freeman and Company together and whose sound guidance helped us

prepare the book for publication.

We thank David Marr's colleague, Keith Nishihara, for his skill and great

effort; the work could not have been finished without him.

We thank David Marr's assistant, Carol Papineau, for attending so well to

the needs of the manuscript and the publisher.

We thank the vision group at the MIT Artificial Intelligence Laboratory,

especially Ellen Hildreth and Eric Grimson, who participated in ways large

and small to bring this book to life.

The Publisher



PART I

Introduction and

Philosophical

Preliminaries





General

Introduction

What does it mean, to see? The plain man's answer (and Aristotle's, too)

would be, to know what is where by looking. In other words, vision is the

process of discovering from images what is present in the world, and where

it is.

Vision is therefore, first and foremost, an information-processing task,

but we cannot think of it just as a process. For ifwe are capable of knowing

what is where in the world, our brains must somehow be capable of rep-

resenting this information—in all its profusion of color and form, beauty,

motion, and detail. The study of vision must therefore include not only the

study of how to extract from images the various aspects of the world that

are useful to us, but also an inquiry into the nature of the internal rep-

resentations by which we capture this information and thus make it avail-

able as a basis for decisions about our thoughts and actions. This duality

—

the representation and the processing of information—lies at the heart of

most information-processing tasks and will profoundly shape our investi-

gation of the particular problems posed by vision.

The need to understand information-processing tasks and machines

has arisen only quite recently Until people began to dream of and then to

build such machines, there was no very pressing need to think deeply
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about them. Once people did begin to speculate about such tasks and

machines, however, it soon became clear that many aspects of the world

around us could benefit from an information-processing point of view.

Most of the phenomena that are central to us as human beings—the

mysteries of life and evolution, of perception and feeling and thought

—

are primarily phenomena of information processing, and if we are ever to

understand them fully, our thinking about them must include this per-

spective.

The next point—which has to be made rather quickly to those who

inhabit a world in which the local utility's billing computer is still capable

of sending a final demand for $0.00—is to emphasize that saying that a job

is "only" an information-processing task or that an organism is "only" an

information-processing machine is not a limiting or a pejorative descrip-

tion. Even more importantly, I shall in no way use such a description to try

to limit the kind of explanations that are necessary. Quite the contrary, in

fact. One of the fascinating features of information-processing machines is

that in order to understand them completely, one has to be satisfied with

one's explanations at many different levels.

For example, let us look at the range of perspectives that must be

satisfied before one can be said, from a human and scientific point of view,

to have understood visual perception. First, and I think foremost, there is

the perspective of the plain man. He knows what it is like to see, and unless

the bones of one's arguments and theories roughly correspond to what

this person knows to be true at first hand, one will probably be wrong (a

point made with force and elegance by Austin, 1962). Second, there is the

perspective of the brain scientists, the physiologists and anatomists who

know a great deal about how the nervous system is built and how parts of

it behave. The issues that concern them—how the cells are connected, why

they respond as they do, the neuronal dogmas of Barlow (1972)—must be

resolved and addressed in any full account of perception. And the same

argument applies to the perspective of the experimental psychologists.

On the other hand, someone who has bought and played with a small

home computer may make quite different demands. "If," he might say,

"vision really is an information-processing task, then I should be able to

make my computer do it, provided that it has sufficient power, memory,

and some way of being connected to a home television camera." The

explanation he wants is therefore a rather abstract one, telling him what to

program and, if possible, a hint about the best algorithms for doing so. He

doesn't want to know about rhodopsin, or the lateral geniculate nucleus,

or inhibitory interneurons. He wants to know how to program vision.

The fundamental point is that in order to understand a device that

performs an information-processing task, one needs many different kinds
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of explanations. Part I of this book is concerned with this point, and it plays

a prominent role because one of the keystones of the book is the realization

that we have had to be more careful about what constitutes an explanation

than has been necessary in other recent scientific developments, like those

in molecular biology For the subject of vision, there is no single equation

or view that explains everything. Each problem has to be addressed from

several points of view—as a problem in representing information, as a

computation capable of deriving that representation, and as a problem in

the architecture of a computer capable of carrying out both things quickly

and reliably.

If one keeps strongly in mind this necessarily rather broad aspect of

the nature of explanation, one can avoid a number of pitfalls. One conse-

quence of an emphasis on information processing might be, for example,

to introduce a comparison between the human brain and a computer. In

a sense, of course, the brain is a computer, but to say this without qualifi-

cation is misleading, because the essence of the brain is not simply that it

is a computer but that it is a computer which is in the habit of performing

some rather particular computations. The term computer usually refers to

a machine with a rather standard type of instruction set that usually runs

serially but nowadays sometimes in parallel, under the control of programs

that have been stored in a memory. In order to understand such a computer,

one needs to understand what it is made of, how it is put together, what its

instruction set is, how much memory it has and how it is accessed, and

how the machine may be made to run. But this forms only a small part of

understanding a computer that is performing an information-processing

task.

This point bears reflection, because it is central to why most analogies

between brains and computers are too superficial to be useful. Think, for

example, of the international network of airline reservation computers,

which performs the task of assigning flights for millions of passengers all

over the world. To understand this system it is not enough to know how
a modern computer works. One also has to understand a little about what

aircraft are and what they do; about geography, time zones, fares, exchange

rates, and connections; and something about politics, diets, and the various

other aspects of human nature that happen to be relevant to this particular

task.

Thus the critical point is that understanding computers is different

from understanding computations. To understand a computer, one has to

study that computer. To understand an information-processing task, one

has to study that information-processing task. To understand fully a partic-

ular machine carrying out a particular information-processing task, one has

to do both things. Neither alone will suffice.
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From a philosophical point of view, the approach that I describe is an

extension of what have sometimes been called representational theories

of mind. On the whole, it rejects the more recent excursions into the

philosophy of perception, with their arguments about sense-data, the mol-

ecules of perception, and the validity of what the senses tell us; instead,

this approach looks back to an older view, according to which the senses

are for the most part concerned with telling one what is there. Modern

representational theories conceive of the mind as having access to systems

of internal representations; mental states are characterized by asserting

what the internal representations currently specify, and mental processes

by how such internal representations are obtained and how they interact.

This scheme affords a comfortable framework for our study of visual

perception, and I am content to let it form the point of departure for our

inquiry. As we shall see, pursuing this approach will lead us away from

traditional avenues into what is almost a new intellectual landscape. Some

of the things we find will seem strange, and it will be hard to reconcile

subjectively some of the ideas and theories that are forced on us with what

actually goes on inside ourselves when we open our eyes and look at

things. Even the basic notion of what constitutes an explanation will have

to be developed and broadened a little, to ensure that we do not leave

anything out and that every important perspective on the problem is sat-

isfied or satisfiable.

The book itself is divided into three parts. In the first are contained

the philosophical preliminaries, a description of the approach, the repre-

sentational framework that is proposed for the overall process of visual

perception, and the way that led to it. I have adopted a fairly personal style

in the hope that if the reader understands why particular directions were

taken at each point, the reasons for the overall approach will be clearer.

The second part of the book, Chapters 2 to 6, contains the real analysis.

It describes informally, but in some detail, how the approach and frame-

work are actually realized, and the results that have been achieved.

The third part is somewhat unorthodox and consists of a set of ques-

tions and answers that are designed to help the reader to understand the

way of thinking behind the approach—to help him acquire the right prej-

udices, if you like—and to relate these explanations to his personal expe-

rience of seeing. I have often found that one or two of the remarks set out

in Part III have helped a person to see the point of part of the theory or to

circumvent some private difficulty with it, and I hope they may serve a

similar purpose here. The reader may find this section means more after

having read the first two parts of the book, but an early glance at it may

provide the motivation to take the trouble.
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The detailed exposition comes, then, in Part II. Of course, the subject

of human visual perception is not solved here by a long way. But over the

last six years, my colleagues and I have been fortunate enough to see the

establishment of an overall theoretical framework as well as the solution

of several rather central problems in visual perception. We feel that the

combination amounts to a reasonably strong case that the representational

approach is a useful one, and the point of this book is to make that case.

How far this approach can be pursued, of course, remains to be seen.



CHAPTER 1

The Philosophy

and the Approach

1.1 BACKGROUND

The problems of visual perception have attracted the curiosity of scientists

for many centuries. Important early contributions were made by Newton

(1704), who laid the foundations for modern work on color vision, and

Helmholtz (1910), whose treatise on physiological optics generates interest

even today. Early in this century, Wertheimer (1912, 1923) noticed the

apparent motion not of individual dots but of wholes, or "fields," in images

presented sequentially as in a movie. In much the same way we perceive

the migration across the sky of a flock of geese: the flock somehow con-

stitutes a single entity, and is not seen as individual birds. This observation

started the Gestalt school of psychology, which was concerned with describ-

ing the qualities of wholes by using terms like solidarity and distinctness,

and with trying to formulate the "laws" that governed the creation of these

wholes. The attempt failed for various reasons, and the Gestalt school

dissolved into the fog of subjectivism. With the death of the school, many
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Figure 1—1. A random-dot stereogram of the type used extensively by BelaJulesz.

The left and right images are identical except for a central square region that is

displaced slightly in one image. When fused binocularly, the images yield the

impression of the central square floating in front of the background.

of its early and genuine insights were unfortunately lost to the mainstream

of experimental psychology.

Since then, students of the psychology of perception have made no

serious attempts at an overall understanding of what perception is, con-

centrating instead on the analysis of properties and performance. The tri-

chromatism of color vision was firmly established (see Brindley, 1970), and

the preoccupation with motion continued, with the most interesting devel-

opments perhaps being the experiments of Miles (1931) and of Wallach

and O'Connell (1953), which established that under suitable conditions an

unfamiliar three-dimensional shape can be correctly perceived from only

its changing monocular projection.*

The development of the digital electronic computer made possible

a similar discovery for binocular vision. In I960 Bela Julesz devised

computer-generated random-dot stereograms, which are image pairs con-

structed of dot patterns that appear random when viewed monocularly but

fuse when viewed one through each eye to give a percept of shapes and

surfaces with a clear three-dimensional structure. An example is shown in

Figure 1-1. Here the image for the left eye is a matrix of black and white

squares generated at random by a computer program. The image for the

*The two dimensional image seen by a single eye.
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right eye is made by copying the left image, shifting a square-shaped region

at its center slightly to the left, and then providing a new random pattern

to fill the gap that the shift creates. If each of the eyes sees only one matrix,

as if the matrices were both in the same physical place, the result is the

sensation of a square floating in space. Plainly, such percepts are caused

solely by the stereo disparity between matching elements in the images

presented to each eye; from such experiments, we know that the analysis

of stereoscopic information, like the analysis of motion, can proceed inde-

pendently in the absence of other information. Such findings are of critical

importance because they help us to subdivide our study of perception into

more specialized parts which can be treated separately I shall refer to these

as independent modules of perception.

The most recent contribution of psychophysics has been of a different

kind but of equal importance. It arose from a combination of adaptation

and threshold detection studies and originated from the demonstration

by Campbell and Robson (1968) of the existence of independent, spatial-

frequency-tuned channels—that is, channels sensitive to intensity variations

in the image occurring at a particular scale or spatial interval—in the early

stages of our perceptual apparatus. This paper led to an explosion of arti-

cles on various aspects of these channels, which culminated ten years later

with quite satisfactory quantitative accounts of the characteristics of the first

stages of visual perception (Wilson and Bergen, 1979). I shall discuss this

in detail later on.

Recently a rather different approach has attracted considerable at-

tention. In 1971, Roger N. Shepard andJacqueline Metzler made line draw-

ings of simple objects that differed from one another either by a three-

dimensional rotation or by a rotation plus a reflection (see Figure 1-2).

They asked how long it took to decide whether two depicted objects dif-

fered by a rotation and a reflection or merely a rotation. They found that

the time taken depended on the three-dimensional angle of rotation nec-

essary to bring the two objects into correspondence. Indeed, the time

varied linearly with this angle. One is led thereby to the notion that a

mental rotation of sorts is actually being performed—that a mental descrip-

tion of the first shape in a pair is being adjusted incrementally in orientation

until it matches the second, such adjustment requiring greater time when

greater angles are involved.

The significance of this approach lies not so much in its results, whose

interpretation is controversial, as in the type of questions it raised. For until

then, the notion of a representation was not one that visual psychologists

took' seriously. This type of experiment meant that the notion had to be

considered. Although the early thoughts of visual psychologists were naive

compared with those of the computer vision community, which had had
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(a)

Figure 1-2. Some drawings similar to those used in Shepard and Metzler s exper-

iments on mental rotation. The ones shown in (a) are identical, as a clockwise

turning of this page by 80° will readily prove. Those in (b) are also identical, and

again the relative angle between the two is 80° Here, however, a rotation in depth

will make the first coincide with the second. Finally, those in (c) are not at all

identical, for no rotation will bring them into congruence. The time taken to decide

whether a pair is the same was found to vary linearly with the angle through which

one figure must be rotated to be brought into correspondence with the other. This

suggested to the investigators that a stepwise mental rotation was in fact being

performed by the subjects of their experiments.

to face the problem of representation from the beginning, it was not

long before the thinking of psychologists became more sophisticated (see

Shepard, 1979).

But what of explanation? For a long time, the best hope seemed to lie

along another line of investigation, that of electrophysiology. The devel-

opment of amplifiers allowed Adrian (1928) and his colleagues to record

the minute voltage changes that accompanied the transmission of nerve

signals. Their investigations showed that the character of the sensation so

produced depended on which fiber carried the message, not how the fiber
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was stimulated—as one might have expected from anatomical studies. This

led to the view that the peripheral nerve fibers could be thought of as a

simple mapping supplying the sensorium with a copy ofthe physical events

at the body surface (Adrian, 1947). The rest of the explanation, it was

thought, could 'safely be left to the psychologists.

The next development was the technical improvement in amplification

that made possible the recording of single neurons (Granit and Svaetichin,

1939; Hartline, 1938; Galambos and Davis, 1943). This led to the notion of

a cell's "receptive field" (Hartline, 1940) and to the Harvard School's famous

series of studies of the behavior of neurons at successively deeper levels

of the visual pathway (Kuffler, 1953; Hubel and Wiesel, 1962, 1968). But

perhaps the most exciting development was the new view that questions

of psychological interest could be illuminated and perhaps even explained

by neurophysiological experiments. The clearest early example of this was

Barlow's (1953) study of ganglion cells in the frog retina, and I cannot put

it better than he did:

If one explores the responsiveness of single ganglion cells in the frog's retina

using handheld targets, one finds that one particular type of ganglion cell is

most effectively driven by something like a black disc subtending a degree or

so moved rapidly to and fro within the unit's receptive field. This causes a

vigorous discharge which can be maintained without much decrement as long

as the movement is continued. Now, if the stimulus which is optimal for this

class of cells is presented to intact frogs, the behavioural response is often

dramatic; they turn towards the target and make repeated feeding responses

consisting of a jump and snap. The selectivity of the retinal neurons and the

frog's reaction when they are selectively stimulated, suggest that they are "bug

detectors" (Barlow 1953) performing a primitive but vitally important form

of recognition.

The result makes one suddenly realize that a large part of the sensory

machinery involved in a frog's feeding responses may actually reside in the

retina rather than in mysterious "centres" that would be too difficult to under-

stand by physiological methods. The essential lock-like property resides in

each member of a whole class of neurons and allows the cell to discharge

only to the appropriate key pattern of sensory stimulation. Lettvin etal. (1959)

suggested that there were five different classes of cell in the frog, and Barlow,

Hill andLevick (1964) found an even larger number of categories in the rabbit.

[Barlow et al. ] called these key patterns "trigger features," and Maturana et al.

(1960) emphasized another important aspect of the behaviour of these gan-

glion cells; a cell continues to respond to the same trigger feature in spite of

changes in light intensity over many decades. The properties of the retina are

such that a ganglion cell can, figuratively speaking, reach out and determine

that something specific is happening in front of the eye. Light is the agent by
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which it does this, but it is the detailed pattern of the light that carries the

information, and the overall level of illumination prevailing at the time is

almost totally disregarded, (p. 373)

Barlow (1972) then goes on to summarize these findings in the fol-

lowing way:

The cumulative effect of all the changes I have tried to outline above has been

to make us realise that each single neuron canperform a much more complex

and subtle task than hadpreviously been thought (emphasis added). Neurons

do not loosely and unreliably remap the luminous intensities of the visual

image onto our sensorium, but instead they detect pattern elements, discrim-

inate the depth of objects, ignore irrelevant causes of variation and are

arranged in an intriguing hierarchy. Furthermore, there is evidence that they

give prominence to what is informationally important, can respond with great

reliability, and can have their pattern selectivity permanently modified by early

visual experience. This amounts to a revolution in our outlook. It is now quite

inappropriate to regard unit activity as a noisy indication of more basic and

reliable processes involved in mental operations: instead, we must regard

single neurons as the prime movers of these mechanisms. Thinking is brought

about by neurons and we should not use phrases like "unit activity reflects,

reveals, or monitors thought processes," because the activities of neurons,

quite simply, are thought processes.

This revolution stemmed from physiological work and makes us realize

that the activity of each single neuron may play a significant role in perception,

(p. 380)

This aspect of his thinking led Barlow to formulate the first and most

important of his five dogmas: 'A description of that activity of a single nerve

cell which is transmitted to and influences other nerve cells and of a nerve

cell's response to such influences from other cells, is a complete enough

description for functional understanding of the nervous system. There is

nothing else "looking at" or controlling this activity, which must therefore

provide a basis for understanding how the brain controls behaviour' (Bar-

low, 1972, p. 380).

I shall return later on to more carefully examine the validity of this

point of view, but for now let us just enjoy it. The vigor and excitement of

these ideas need no emphasis. At the time the eventual success of a reduc-

tionist approach seemed likely. Hubel and Wiesel's (1962, 1968) pioneer-

ing studies had shown the way; single-unit studies on stereopsis (Barlow,

Blakemore, and Pettigrew, 1967) and on color (DeValois, Abramov, and

Mead, 1967; Gouras, 1968) seemed to confirm the close links between

perception and single-cell recordings, and the intriguing results of Gross,
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Rocha-Miranda, and Bender (1972), who found "hand-detectors" in the

inferotemporal cortex, seemed to show that the application of the reduc-

tionist approach would not be limited just to the early parts of the visual

pathway.

It was, of course, recognized that physiologists had been lucky: If one

probes around in a conventional electronic computer and records the

behavior of single elements within it, one is unlikely to be able to discern

what a given element is doing. But the brain, thanks to Barlow's first dogma,

seemed to be built along more accommodating lines—people were able

to determine the functions of single elements of the brain. There seemed

no reason why the reductionist approach could not be taken all the way.

I was myself fully caught up in this excitement. Truth, I also believed,

was basically neural, and the central aim of all research was a thorough

functional analysis of the structure of the central nervous system. My enthu-

siasm found expression in a theory of the cerebellar cortex (Marr, 1969).

According to this theory, the simple and regular cortical structure is inter-

preted as a simple but powerful memorizing device for learning motor

skills; because of a simple combinatorial trick, each of the 15 million Pur-

kinje cells in the cerebellum is capable of learning over 200 different

patterns and discriminating them from unlearned patterns. Evidence is

gradually accumulating that the cerebellum is involved in learning motor

skills (Ito, 1978), so that something like this theory may in fact be correct.

The way seemed clear. On the one hand we had new experimental

techniques of proven power, and on the other, the beginnings of a theo-

retical approach that could back them up with a fine analysis of cortical

structure. Psychophysics could tell us what needed explaining, and the

recent advances in anatomy—the Fink-Heimer technique from Nauta's lab-

oratory and the recent successful deployment by Szentagothai and others

of the electron microscope—could provide the necessary information

about the structure of the cerebral cortex.

But somewhere underneath, something was going wrong. The initial

discoveries of the 1950s and 1960s were not being followed by equally

dramatic discoveries in the 1970s. No neurophysiologists had recorded

new and clear high-level correlates of perception. The leaders of the 1960s

had turned away from what they had been doing—Hubel and Wiesel con-

centrated on anatomy, Barlow turned to psychophysics, and the mainstream

of neurophysiology concentrated on development and plasticity (the con-

cept that neural connections are not fixed) or on a more thorough analysis

of the cells that had already been discovered (for example, Bishop,

Coombs, and Henry, 1971; Schiller, Finlay and Volman, 1976a, 1976b), or

on cells in species like the owl (for example, Pettigrew and Konishi, 1976).
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None of the new studies succeeded in elucidating thefunction of the visual

cortex.

It is difficult to say preciselywhy this happened, because the reasoning

was never made explicit and was probably largely unconscious. However,

various factors are identifiable. In my own case, the cerebellar study had

two effects. On the one hand, it suggested that one could eventually hope

to understand cortical structure in functional terms, and this was exciting.

But at the same time the study has disappointed me, because even if the

theory was correct, it did not much enlighten one about the motor sys-

tem—it did not, for example, tell one how to go about programming a

mechanical arm. It suggested that if one wishes to program a mechanical

arm so that it operates in a versatile way, then at some point a very large

and rather simple type of memory will prove indispensable. But it did not

say why, nor what that memory should contain.

The discoveries of the visual neurophysiologists left one in a similar

situation. Suppose, for example, that one actually found the apocryphal

grandmother cell.* Would that really tell us anything much at all? It would

tell us that it existed—Gross's hand-detectors tell us almost that—but not

why or even how such a thing may be constructed from the outputs of

previously discovered cells. Do the single-unit recordings—the simple and

complex cells—tell us much about how to detect edges or why one would

want to, except in a rather general way through arguments based on econ-

omy and redundancy? If we really knew the answers, for example, we
should be able to program them on a computer. But rinding a hand-

detector certainly did not allow us to program one.

As one reflected on these sorts of issues in the early 1970s, it gradually

became clear that something important was missing that was not present

in either of the disciplines of neurophysiology or psychophysics. The key

observation is that neurophysiology and psychophysics have as their busi-

ness to describe the behavior of cells or of subjects but not to explain such

behavior. What are the visual areas of the cerebral cortex actually doing?

What are the problems in doing it that need explaining, and at what level

of description should such explanations be sought?

The best way of finding out the difficulties of doing something is to

try to do it, so at this point I moved to the Artificial Intelligence Laboratory

at MIT, where Marvin Minsky had collected a group of people and a power-

ful computer for the express purpose of addressing these questions.

*A cell that fires only when one's grandmother comes into view.
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The first great revelation was that the problems are difficult. Of course,

these days this fact is a commonplace. But in the 1960s almost no one

realized that machine vision was difficult. The field had to go through the

same experience as the machine translation field did in its fiascoes of the

1950s before it was at last realized that here were some problems that had

to be taken seriously. The reason for this misperception is that we humans

are ourselves so good at vision. The notion of a feature detector was well

established by Barlow and by Hubel and Wiesel, and the idea that extracting

edges and lines from images might be at all difficult simply did not occur

to those who had not tried to do it. It turned out to be an elusive problem:

Edges that are of critical importance from a three-dimensional point of

view often cannot be found at all by looking at the intensity changes in an

image. Any kind of textured image gives a multitude of noisy edge seg-

ments; variations in reflectance and illumination cause no end of trouble;

and even if an edge has a clear existence at one point, it is as likely as not

to fade out quite soon, appearing only in patches along its length in the

image. The common and almost despairing feeling of the early investigators

like B.K.P. Horn and TO. Binford was that practically anything could happen

in an image and furthermore that practically everything did.

Three types of approach were taken to try to come to grips with these

phenomena. The first was unashamedly empirical, associated most with

Azriel Rosenfeld. His style was to take some new trick for edge detection,

texture discrimination, or something similar, run it on images, and

observe the result. Although several interesting ideas emerged in this way,

including the simultaneous use of operators* of different sizes as an

approach to increasing sensitivity and reducing noise (Rosenfeld and

Thurston, 1971), these studies were not as useful as they could have been

because they were never accompanied by any serious assessment of how

well the different algorithms performed. Few attempts were made to com-

pare the merits of different operators (although Fram and Deutsch, 1975,

did try), and an approach like trying to prove mathematically which oper-

ator was optimal was not even attempted. Indeed, it could not be, because

no one had yet formulated precisely what these operators should be trying

to do. Nevertheless, considerable ingenuity was shown. The most clever

was probably Hueckel's (1973) operator, which solved in an ingenious way

the problem of finding the edge orientation that best fit a given intensity

change in a small neighborhood of an image.

*Operator refers to a local calculation to be applied at each location in the image, making

use of the intensity there and in the immediate vicinity.
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The second approach was to try for depth of analysis by restricting the

scope to a world of single, illuminated, matte white toy blocks set against

a black background. The blocks could occur in any shapes provided only

that all faces were planar and all edges were straight. This restriction

allowed more specialized techniques to be used, but it still did not make

the problem easy The Binford-Horn line finder (Horn, 1973) was used to

find edges, and both it and its sequel (described in Shirai, 1973) made use

of the special circumstances of the environment, such as the fact that all

edges there were straight.

These techniques did work reasonably well, however, and they allowed

a preliminary analysis of later problems to emerge—roughly, what does

one do once a complete line drawing has been extracted from a scene?

Studies of this had begun sometime before with Roberts (1965) and Guz-

man (1968), and they culminated in the works of Waltz (1975) and Mack-

worth (1973), which essentially solved the interpretation problem for line

drawings derived from images of prismatic solids. Waltz's work had a par-

ticularly dramatic impact, because it was the first to show explicitly that an

exhaustive analysis of all possible local physical arrangements of surfaces,

edges, and shadows could lead to an effective and efficient algorithm for

interpreting an actual image. Figure 1-3 and its legend convey the main

ideas behind Waltz's theory.

The hope that lay behind this work was, of course, that once the toy

world of white blocks had been understood, the solutions found there

could be generalized, providing the basis for attacking the more complex

problems posed by a richer visual environment. Unfortunately, this turned

out not to be so. For the roots of the approach that was eventually suc-

cessful, we have to look at the third kind of development that was taking

place then.

Two pieces of work were important here. Neither is probably of very

great significance to human perception for what it actually accomplished

—

in the end, it is likely that neither will particularly reflect human visual

processes—but they are both of importance because of the way in which

they were formulated. The first was Land and McCann's (1971) work on the

retinex theory of color vision, as developed by them and subsequently by

Horn (1974). The starting point is the traditional one of regarding color as

a perceptual approximation to reflectance. This allows the formulation of

a clear computational question, namely, How can the effects of reflectance

changes be separated from the vagaries of the prevailing illumination? Land

and McCann suggested using the fact that changes in illumination are usu-

ally gradual, whereas changes in reflectance of a surface or of an object

boundary are often quite sharp. Hence by filtering out slow changes, those

changes due to the reflectance alone could be isolated. Horn devised a
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(b) (c)

+ Convex

— Concave

A Occluding

Figure 1-3. Some configurations of edges are physically realizable, and some are

not. The trihedral junctions of three convex edges (a) or of three concave edges

(b) are realizable, whereas the configuration (c) is impossible. Waltz cataloged all

the possible junctions, including shadow edges, for up to four coincident edges.

He then found that by using this catalog to implement consistency relations [requir-

ing, for example, that an edge be of the same type all along its length like edge E

in (d)], the solution to the labeling of a line drawing that included shadows was

often uniquely determined.

clever parallel algorithm for this, and I suggested how it might be imple-

mented by neurons in the retina (Marr, 1974a).

I do not now believe that this is at all a correct analysis of color vision

or of the retina, but it showed the possible style of a correct analysis. Gone

are the ad hoc programs of computer vision; gone is the restriction to a

special visual miniworld; gone is any explanation in terms of neurons

—

except as a way of implementing a method. And present is a clear under-

standing of what is to be computed, how it is to be done, the physical

assumptions on which the method is based, and some kind of analysis of

algorithms that are capable of carrying it out.
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The other piece of work was Horn's (1975) analysis of shape from

shading, which was the first in what was to become a distinguished series

of articles on the formation of images. By carefully analyzing the way in

which the illumination, surface geometry, surface reflectance, and view-

point conspired to create the measured intensity values in an image, Horn

formulated a differential equation that related the image intensity values

to the surface geometry If the surface reflectance and illumination are

known, one can solve for the surface geometry (see also Horn, 1977). Thus

from shading one can derive shape.

The message was plain. There must exist an additional level of under-

standing at which the character of the information-processing tasks carried

out during perception are analyzed and understood in a way that is inde-

pendent of the particular mechanisms and structures that implement them

in our heads. This was what was missing—the analysis of the problem as

an information-processing task. Such analysis does not usurp an under-

standing at the other levels—of neurons or of computer programs—but

it is a necessary complement to them, since without it there can be no real

understanding of the function of all those neurons.

This realization was arrived at independently and formulated together

by Tomaso Poggio in Tubingen and myself (Marr and Poggio, 1977; Marr,

1977b). It was not even quite new—Leon D. Harmon was saying something

similar at about the same time, and others had paid lip service to a similar

distinction. But the important point is that if the notion of different types

of understanding is taken very seriously, it allows the study of the infor-

mation-processing basis of perception to be made rigorous. It becomes

possible, by separating explanations into different levels, to make explicit

statements about what is being computed and why and to construct theo-

ries stating that what is being computed is optimal in some sense or is

guaranteed to function correctly. The ad hoc element is removed, and

heuristic computer programs are replaced by solid foundations on which

a real subject can be built. This realization—the formulation of what was

missing, together with a clear idea of how to supply it—formed the basic

foundation for a new integrated approach, which it is the purpose of this

book to describe.

1 .2 UNDERSTANDING COMPLEX
INFORMATION-PROCESSING SYSTEMS

Almost never can a complex system of any kind be understood as a simple

extrapolation from the properties of its elementary components. Consider,

for example, some gas in a bottle. A description ofthermodynamic effects

—
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temperature, pressure, density, and the relationships among these fac-

tors—is not formulated by using a large set of equations, one for each of

the particles involved. Such effects are described at their own level, that of

an enormous collection of particles; the effort is to show that in principle

the microscopic and macroscopic descriptions are consistent with one

another. If one hopes to achieve a full understanding of a system as com-

plicated as a nervous system, a developing embryo, a set of metabolic

pathways, a bottle of gas, or even a large computer program, then one must

be prepared to contemplate different kinds of explanation at different lev-

els of description that are linked, at least in principle, into a cohesive whole,

even if linking the levels in complete detail is impractical. For the specific

case of a system that solves an information-processing problem, there are

in addition the twin strands of process and representation, and both these

ideas need some discussion.

Representation and Description

A representation is a formal system for making explicit certain entities or

types of information, together with a specification of how the system does

this. And I shall call the result of using a representation to describe a given

entity a description of the entity in that representation (Marr and Nishihara,

1978).

For example, the Arabic, Roman, and binary numeral systems are all

formal systems for representing numbers. The Arabic representation con-

sists of a string of symbols drawn from the set (0, 1, 2, 3, 4, 5, 6, 7, 8, 9),

and the rule for constructing the description of a particular integer n is

that one decomposes n into a sum of multiples of powers of 10 and unites

these multiples into a string with the largest powers on the left and the

smallest on the right. Thus, thirty-seven equals 3 x 10
1

+ 7 X 10°, which

becomes 37, the Arabic numeral system's description of the number. What

this description makes explicit is the number's decomposition into powers

of 10. The binary numeral system's description of the number thirty-seven

is 100101, and this description makes explicit the number's decomposition

into powers of 2. In the Roman numeral system, thirty-seven is represented

as XXXVII.

This definition of a representation is quite general. For example, a

representation for shape would be a formal scheme for describing some

aspects of shape, together with rules that specify how the scheme is applied

to any particular shape. A musical score provides a way of representing a

symphony; the alphabet allows the construction of a written representation
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of words; and so forth. The phrase "formal scheme" is critical to the defi-

nition, but the reader should not be frightened by it. The reason is simply

that we are dealing with information-processing machines, and the way

such machines work is by using symbols to stand for things—to represent

things, in our terminology. To say that something is a formal scheme means

only that it is a set of symbols with rules for putting them together—no

more and no less.

A representation, therefore, is not a foreign idea at all—we all use

representations all the time. However, the notion that one can capture

some aspect of reality by making a description of it using a symbol and

that to do so can be useful seems to me a fascinating and powerful idea.

But even the simple examples we have discussed introduce some rather

general and important issues that arise whenever one chooses to use one

particular representation. For example, if one chooses the Arabic numeral

representation, it is easy to discover whether a number is a power of 10

but difficult to discover whether it is a power of 2. If one chooses the binary

representation, the situation is reversed. Thus, there is a trade-off; any

particular representation makes certain information explicit at the expense

of information that is pushed into the background and may be quite hard

to recover.

This issue is important, because how information is represented can

greatly affect how easy it is to do different things with it. This is evident

even from our numbers example: It is easy to add, to subtract, and even to

multiply if the Arabic or binary representations are used, but it is not at all

easy to do these things—especially multiplication—with Roman numerals.

This is a key reason why the Roman culture failed to develop mathematics

in the way the earlier Arabic cultures had.

An analogous problem faces computer engineers today. Electronic

technology is much more suited to a binary number system than to the

conventional base 10 system, yet humans supply their data and require the

results in base 10. The design decision facing the engineer, therefore, is,

Should one pay the cost of conversion into base 2, carry out the arithmetic

in a binary representation, and then convert back into decimal numbers

on output; or should one sacrifice efficiency of circuitry to carry out oper-

ations directly in a decimal representation? On the whole, business com-

puters and pocket calculators take the second approach, and general pur-

pose computers take the first. But even though one is not restricted to

using just one representation system for a given type of information, the

choice of which to use is important and cannot be taken lightly. It deter-

mines what information is made explicit and hence what is pushed further

into the background, and it has a far-reaching effect on the ease and
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difficulty with which operations may subsequently be carried out on that

information.

Process

The term process is very broad. For example, addition is a process, and so

is taking a Fourier transform. But so is making a cup of tea, or going

shopping. For the purposes of this book, I want to restrict our attention to

the meanings associated with machines that are carrying out information-

processing tasks. So let us examine in depth the notions behind one simple

such device, a cash register at the checkout counter of a supermarket.

There are several levels at which one needs to understand such a

device, and it is perhaps most useful to think in terms of three of them.

The most abstract is the level of what the device does and why. What it

does is arithmetic, so our first task is to master the theory of addition.

Addition is a mapping, usually denoted by + , from pairs of numbers into

single numbers; for example, + maps the pair (3, 4) to 7, and I shall write

this in the form (3 + 4) -> 7. Addition has a number of abstract properties,

however. It is commutative: both (3 + 4) and (4 + 3) are equal to 7; and

associative: the sum of 3 + (4 + 5) is the same as the sum of (3 + 4)

+ 5. Then there is the unique distinguished element, zero, the adding of

which has no effect: (4 + 0) -> 4. Also, for every number there is a unique

"inverse," written ( - 4) in the case of 4, which when added to the number

gives zero: [4 + ( - 4)] -» 0.

Notice that these properties are part of the fundamental theory of

addition. They are true no matter how the numbers are written—whether

in binary, Arabic, or Roman representation—and no matter how the addi-

tion is executed. Thus part of this first level is something that might be

characterized as what is being computed.

The other half of this level of explanation has to do with the question

of why the cash register performs addition and not, for instance, multipli-

cation when combining the prices of the purchased items to arrive at a

final bill. The reason is that the rules we intuitively feel to be appropriate

for combining the individual prices in fact define the mathematical oper-

ation of addition. These can be formulated as constraints in the following

way:

1. If you buy nothing, it should cost you nothing; and buying nothing

and something should cost the same as buying just the something. (The

rules for zero.)
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2. The order in which goods are presented to the cashier should not

affect the total. (Commutativity.)

3. Arranging the goods into two piles and paying for each pile sepa-

rately should not affect the total amount you pay (Associativity; the basic

operation for combining prices.)

4. If you buy an item and then return it for a refund, your total expen-

diture should be zero. (Inverses.)

It is a mathematical theorem that these conditions define the operation of

addition, which is therefore the appropriate computation to use.

This whole argument is what I call the computational theory of the

cash register. Its important features are (1) that it contains separate argu-

ments about what is computed and why and (2) that the resulting operation

is defined uniquely by the constraints it has to satisfy. In the theory of visual

processes, the underlying task is to reliably derive properties of the world

from images of it; the business of isolating constraints that are both pow-

erful enough to allow a process to be defined and generally true of the

world is a central theme of our inquiry.

In order that a process shall actually run, however, one has to realize

it in some way and therefore choose a representation for the entities that

the process manipulates. The second level of the analysis of a process,

therefore, involves choosing two things: (1) a representation for the input

and for the output of the process and (2) an algorithm by which the

transformation may actually be accomplished. For addition, of course, the

input and output representations can both be the same, because they both

consist of numbers. However this is not true in general. In the case of a

Fourier transform, for example, the input representation may be the time

domain, and the output, the frequency domain. If the first of our levels

specifies what and why, this second level specifies how. For addition, we
might choose Arabic numerals for the representations, and for the algo-

rithm we could follow the usual rules about adding the least significant

digits first and "carrying" if the sum exceeds 9. Cash registers, whether

mechanical or electronic, usually use this type of representation and algo-

rithm.

There are three important points here. First, there is usually a wide

choice of representation. Second, the choice of algorithm often depends
rather critically on the particular representation that is employed. And
third, even for a given fixed representation, there are often several possible

algorithms for carrying out the same process. Which one is chosen will

usually depend on any particularly desirable or undesirable characteristics

that the algorithms may have; for example, one algorithm may be much
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more efficient than another, or another may be slightly less efficient but

more robust (that is, less sensitive to slight inaccuracies in the data on

which it must run). Or again, one algorithm may be parallel, and another,

serial. The choice, then, may depend on the type of hardware or machinery

in which the algorithm is to be embodied physically.

This brings us to the third level, that of the device in which the process

is to be realized physically. The important point here is that, once again,

the same algorithm may be implemented in quite different technologies.

The child who methodically adds two numbers from right to left, carrying

a digit when necessary, may be using the same algorithm that is imple-

mented by the wires and transistors of the cash register in the neighbor-

hood supermarket, but the physical realization of the algorithm is quite

different in these two cases. Another example: Many people have written

computer programs to play tic-tac-toe, and there is a more or less standard

algorithm that cannot lose. This algorithm has in fact been implemented

by W. D. Hillis and B. Silverman in a quite different technology, in a com-

puter made out of Tinkertoys, a children's wooden building set. The whole

monstrously ungainly engine, which actually works, currently resides in a

museum at the University of Missouri in St. Louis.

Some styles of algorithm will suit some physical substrates better than

others. For example, in conventional digital computers, the number of

connections is comparable to the number of gates, while in a brain, the

number of connections is much larger ( x 10
4
) than the number of nerve

cells. The underlying reason is that wires are rather cheap in biological

architecture, because they can grow individually and in three dimensions.

In conventional technology, wire laying is more or less restricted to two

dimensions, which quite severely restricts the scope for using parallel

techniques and algorithms; the same operations are often better carried

out serially.

The Three Levels

We can summarize our discussion in something like the manner shown in

Figure 1-4, which illustrates the different levels at which an information-

processing device must be understood before one can be said to have

understood it completely. At one extreme, the top level, is the abstract

computational theory of the device, in which the performance of the device

is characterized as a mapping from one kind of information to another, the

abstract properties of this mapping are defined precisely, and its appro-

priateness and adequacy for the task at hand are demonstrated. In the

center is the choice of representation for the input and output and the
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Computational theory

Representation and

algorithm

Hardware

implementation

What is the goal of the

computation, why is it

appropriate, and what

is the logic of the strat-

egy by which it can be

carried out?

How can this computa-

tional theory be imple-

mented? In particular,

what is the representa-

tion for the input and

output, and what is the

algorithm for the trans-

formation?

How can the represen-

tation and algorithm be

realized physically?

Figure 1-4. The three levels at which any machine carrying out an information-

processing task must be understood.

algorithm to be used to transform one into the other. And at the other

extreme are the details of how the algorithm and representation are real-

ized physically—the detailed computer architecture, so to speak. These

three levels are coupled, but only loosely. The choice of an algorithm is

influenced for example, by what it has to do and by the hardware in which

it must run. But there is a wide choice available at each level, and the

explication of each level involves issues that are rather independent of the

other two.

Each of the three levels of description will have its place in the eventual

understanding of perceptual information processing, and of course they

are logically and causally related. But an important point to note is that

since the three levels are only rather loosely related, some phenomena

may be explained at only one or two of them. This means, for example,

that a correct explanation of some psychophysical observation must be

formulated at the appropriate level. In attempts to relate psychophysical

problems to physiology, too often there is confusion about the level at

which problems should be addressed. For instance, some are related

mainly to the physical mechanisms of vision—such as afterimages (for

example, the one you see after staring at a light bulb) or such as the fact

that any color can be matched by a suitable mixture of the three primaries

(a consequence principally of the fact that we humans have three types of

cones). On the other hand, the ambiguity of the Necker cube (Figure 1-5)

seems to demand a different kind of explanation. To be sure, part of the

explanation of its perceptual reversal must have to do with a bistable neural

network (that is, one with two distinct stable states) somewhere inside the
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(a) (b) (c)

Figure 1-5. The so-called Necker illusion, named after L. A. Necker, the Swiss

naturalist who developed it in 1832. The essence of the matter is that the two-

dimensional representation (a) has collapsed the depth out of a cube and that a

certain aspect of human vision is to recover this missing third dimension. The

depth of the cube can indeed be perceived, but two interpretations are possible,

(b) and (c). A person's perception characteristically flips from one to the other.

brain, but few would feel satisfied by an account that failed to mention the

existence of two different but perfectly plausible three-dimensional inter-

pretations of this two-dimensional image.

For some phenomena, the type of explanation required is fairly

obvious. Neuroanatomy, for example, is clearly tied principally to the third

level, the physical realization of the computation. The same holds for syn-

aptic mechanisms, action potentials, inhibitory interactions, and so forth.

Neurophysiology, too, is related mostly to this level, but it can also help us

to understand the type of representations being used, particularly if one

accepts something along the lines of Barlow's views that I quoted earlier.

But one has to exercise extreme caution in making inferences from neu-

rophysiological findings about the algorithms and representations being

used, particularly until one has a clear idea about what information needs

to be represented and what processes need to be implemented.

Psychophysics, on the other hand, is related more directly to the level

of algorithm and representation. Different algorithms tend to fail in radi-

cally different ways as they are pushed to the limits of their performance

or are deprived of critical information. As we shall see, primarily psycho-

physical evidence proved to Poggio and myself that our first stereo-match-

ing algorithm (Marr and Poggio, 1976) was not the one that is used by the

brain, and the best evidence that our second algorithm (Marr and Poggio,

1979) is roughly the one that is used also comes from psychophysics. Of

course, the underlying computational theory remained the same in both

cases, only the algorithms were different.
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Psychophysics can also help to determine the nature of a represen-

tation. The work of Roger Shepard (1975), Eleanor Rosch (1978), or Eliz-

abeth Warrington (1975) provides some interesting hints in this direction.

More specifically, Stevens (1979) argued from psychophysical experi-

ments that surface orientation is represented by the coordinates of slant

and tilt, rather than (for example) the more traditional (p, q) of gradient

space (see Chapter 3). He also deduced from the uniformity of the size of

errors made by subjects judging surface orientation over a wide range of

orientations that the representational quantities used for slant and tilt are

pure angles and not, for example, their cosines, sines, or tangents.

More generally, if the idea that different phenomena need to be

explained at different levels is kept clearly in mind, it often helps in the

assessment of the validity of the different kinds of objections that are raised

from time to time. For example, one favorite is that the brain is quite

different from a computer because one is parallel and the other serial. The

answer to this, of course, is that the distinction between serial and parallel

is a distinction at the level of algorithm; it is not fundamental at all

—

anything programmed in parallel can be rewritten serially (though not

necessarily vice versa). The distinction, therefore, provides no grounds for

arguing that the brain operates so differently from a computer that a com-

puter could not be programmed to perform the same tasks.

Importance of Computational Theory

Although algorithms and mechanisms are empirically more accessible, it

is the top level, the level of computational theory, which is critically impor-

tant from an information-processing point of view. The reason for this is

that the nature of the computations that underlie perception depends more

upon the computational problems that have to be solved than upon the

particular hardware in which their solutions are implemented. To phrase

the matter another way, an algorithm is likely to be understood more

readily by understanding the nature of the problem being solved than by

examining the mechanism (and the hardware) in which it is embodied.

In a similar vein, trying to understand perception by studying only

neurons is like trying to understand bird flight by studying only feathers:

It just cannot be done. In order to understand bird flight, we have to

understand aerodynamics; only then do the structure of feathers and the

different shapes of birds' wings make sense. More to the point, as we shall

see, we cannot understand why retinal ganglion cells and lateral geniculate

neurons have the receptive fields they do just by studying their anatomy

and physiology. We can understand how these cells and neurons behave
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as they do by studying their wiring and interactions, but in order to under-

stand why the receptive fields are as they are—why they are circularly

symmetrical and why their excitatory and inhibitory regions have charac-

teristic shapes and distributions—we have to know a little of the theory of

differential operators, band-pass channels, and the mathematics of the

uncertainty principle (see Chapter 2).

Perhaps it is not surprising that the very specialized empirical disci-

plines of the neurosciences failed to appreciate fully the absence of com-

putational theory; but it is surprising that this level of approach did not

play a more forceful role in the early development of artificial intelligence.

For far too long, a heuristic program for carrying out some task was held

to be a theory of that task, and the distinction between what a program did

and how it did it was not taken seriously. As a result, (1) a style of expla-

nation evolved that invoked the use of special mechanisms to solve partic-

ular problems, (2) particular data structures, such as the lists of attribute

value pairs called property lists in the LISP programing language, were

held to amount to theories of the representation of knowledge, and (3)

there was frequently no way to determine whether a program would deal

with a particular case other than by running the program.

Failure to recognize this theoretical distinction between what andhow

also greatly hampered communication between the fields of artificial intel-

ligence and linguistics. Chomsky's (1965) theory of transformational gram-

mar is a true computational theory in the sense defined earlier. It is con-

cerned solely with specifying what the syntactic decomposition of an

English sentence should be, and not at all with how that decomposition

should be achieved. Chomsky himself was very clear about this—it is

roughly his distinction between competence and performance, though his

idea of performance did include other factors, like stopping in midutter-

ance_but the fact that his theory was defined by transformations, which

look like computations, seems to have confused many people. Winograd

(1972), for example, felt able to criticize Chomsky's theory on the grounds

that it cannot be inverted and so cannot be made to run on a computer; I

had heard reflections of the same argument made by Chomsky's colleagues

in linguistics as they turn their attention to how grammatical structure

might actually be computed from a real English sentence.

The explanation is simply that finding algorithms by which Chomsky's

theory may be implemented is a completely different endeavor from for-

mulating the theory itself. In our terms, it is a study at a different level, and

both tasks have to be done. This point was appreciated by Marcus (1980),

who was concerned precisely with how Chomsky's theory can be realized

and with the kinds of constraints on the power of the human grammatical

processor that might give rise to the structural constraints in syntax that
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Chomsky found. It even appears that the emerging "trace" theory of gram-

mar (Chomsky and Lasnik, 1977) may provide a way of synthesizing the

two approaches—showing that, for example, some of the rather ad hoc

restrictions that form part of the computational theory may be conse-

quences of weaknesses in the computational power that is available for

implementing syntactical decoding.

The Approach of J. J. Gibson

In perception, perhaps the nearest anyone came to the level of computa-

tional theory was Gibson (1966). However, although some aspects of his

thinking were on the right lines, he did not understand properly what

information processing was, which led him to seriously underestimate the

complexity of the information-processing problems involved in vision and

the consequent subtlety that is necessary in approaching them.

Gibson's important contribution was to take the debate away from the

philosophical considerations of sense-data and the affective qualities of

sensation and to note instead that the important thing about the senses is

that they are channels for perception of the real world outside or, in the

case of vision, of the visible surfaces. He therefore asked the critically

important question, How does one obtain constant perceptions in everyday

life on the basis of continually changing sensations? This is exactly the right

question, showing that Gibson correctly regarded the problem of percep-

tion as that of recovering from sensory information "valid
,,

properties of

the external world. His problem was that he had a much oversimplified

view of how this should be done. His approach led him to consider higher-

order variables—stimulus energy, ratios, proportions, and so on—as

"invariants" of the movement of an observer and of changes in stimulation

intensity.

"These invariants," he wrote, "correspond to permanent properties of

the environment. They constitute, therefore, information about the per-

manent environment." This led him to a view in which the function of the

brain was to "detect invariants" despite changes in "sensations" of light,

pressure, or loudness of sound. Thus, he says that the "function of the

brain, when looped with its perceptual organs, is not to decode signals,

nor to interpret messages, nor to accept images, nor to organize the sen-

sory input or to process the data, in modern terminology. It is to seek and

extract information about the environment from the flowing array of

ambient energy," and he thought of the nervous system as in some way

"resonating" to these invariants. He then embarked on a broad study of

animals in their environments, looking for invariants to which they might
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resonate. This was the basic idea behind the notion of ecological optics

(Gibson, 1966, 1979).

Although one can criticize certain shortcomings in the quality of Gib-

son's analysis, its major and, in my view, fatal shortcoming lies at a deeper

level and results from a failure to realize two things. First, the detection of

physical invariants, like image surfaces, is exactly and precisely an infor-

mation-processing problem, in modern terminology. And second, he vastly

underrated the sheer difficulty of such detection. In discussing the recovery

of three-dimensional information from the movement of an observer, he

says that "in motion, perspective information alone can be used" (Gibson,

1966, p. 202). And perhaps the key to Gibson is the following:

The detection of non-change when an object moves in the world is not as

difficult as it might appear. It is only made to seem difficult when we assume

that the perception of constant dimensions of the object must depend on the

correcting of sensations of inconstant form and size. The information for the

constant dimension of an object is normally carried by invariant relations in

an optic array. Rigidity is specified, (emphasis added)

Yes, to be sure, but how? Detecting physical invariants is just as difficult as

Gibson feared, but nevertheless we can do it. And the only way to under-

stand how is to treat it as an information-processing problem.

The underlying point is that visual information processing is actually

very complicated, and Gibson was not the only thinker who was misled by

the apparent simplicity of the act of seeing. The whole tradition of philo-

sophical inquiry into the nature of perception seems not to have taken

seriously enough the complexity of the information processing involved.

For example, Austin's (1962) Sense and Sensibilia entertainingly demo-

lishes the argument, apparently favored by earlier philosophers, that since

we are sometimes deluded by illusions (for example, a straight stick

appears bent if it is partly submerged in water), we see sense-data rather

than material things. The answer is simply that usually our perceptual

processing does run correctly (it delivers a true description of what is

there), but although evolution has seen to it that our processing allows for

many changes (like inconstant illumination), the perturbation due to the

refraction of light by water is not one of them. And incidentally, although

the example of the bent stick has been discussed since Aristotle, I have

seen no philosphical inquiry into the nature of the perceptions of, for

instance, a heron, which is a bird that feeds by pecking up fish first seen

from above the water surface. For such birds the visual correction might

be present.

Anyway, my main point here is another one. Austin (1962) spends

much time on the idea that perception tells one about real properties of
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the external world, and one thing he considers is "real shape," (p. 66), a

notion which had cropped up earlier in his discussion of a coin that

"looked elliptical" from some points of view. Even so,

it had a real shape which remained unchanged. But coins in fact are rather

special cases. For one thing their outlines are well denned and very highly

stable, and for another they have a known and a nameable shape. But there

are plenty of things of which this is not true. What is the real shape of a

cloud? ... or of a cat? Does its real shape change whenever it moves? If not,

in what posture is its real shape on display? Furthermore, is its real shape such

as to be fairly smooth outlines, or must it be finely enough serrated to take

account of each hair? It is pretty obvious that there is no answer to these

questions—no rules according to which, noprocedure by which, answers are

to be determined, (emphasis added), (p. 67)

But there are answers to these questions. There are ways of describing

the shape of a cat to an arbitrary level of precision (see Chapter 5), and
there are rules and procedures for arriving at such descriptions. That is

exactly what vision is about, and precisely what makes it complicated.

1.3 A REPRESENTATIONAL FRAMEWORK
FOR VISION

Vision is a process that produces from images of the external world a

description that is useful to the viewer and not cluttered with irrelevant

information (Marr, 1976; Marr and Nishihara, 1978). We have already seen

that a process may be thought of as a mapping from one representation to

another, and in the case of human vision, the initial representation is in no
doubt—it consists of arrays of image intensity values as detected by the

photoreceptors in the retina.

It is quite proper to think of an image as a representation; the items

that are made explicit are the image intensity values at each point in the

array, which we can conveniently denote by / (x,y) at coordinate (x,y). In

order to simplify our discussion, we shall neglect for the moment the fact

that there are several different types of receptor, and imagine instead that

there is just one, so that the image is black-and-white. Each value of I (x,y)

thus specifies a particular level of gray; we shall refer to each detector as

a picture element orpixel and to the whole array / as an image.

But what ofthe output ofthe process ofvision?We have already agreed
that it must consist of a useful description of the world, but that require-

ment is rather nebulous. Can we not do better? Well, it is perfectly true

that, unlike the input, the result of vision is much harder to discern, let
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alone specify precisely, and an important aspect of this new approach is

that it makes quite concrete proposals about what that end is. But before

we begin that discussion, let us step back a little and spend a little time

formulating the more general issues that are raised by these questions.

The Purpose of Vision

The usefulness of a representation depends upon how well suited it is to

the purpose for which it is used. A pigeon uses vision to help it navigate,

fly, and seek out food. Many types of jumping spider use vision to tell the

difference between a potential meal and a potential mate. One type, for

example, has a curious retina formed of two diagonal strips arranged in a

V If it detects a red V on the back of an object lying in front of it, the

spider has found a mate. Otherwise, maybe a meal. The frog, as we have

seen, detects bugs with its retina; and the rabbit retina is full of special

gadgets, including what is apparently a hawk detector, since it responds

well to the pattern made by a preying hawk hovering overhead. Human

vision, on the other hand, seems to be very much more general, although

it clearly contains a variety of special-purpose mechanisms that can, for

example direct the eye toward an unexpected movement in the visual field

or cause one to blink or otherwise avoid something that approaches one's

head too quickly.

Vision, in short, is used in such a bewildering variety of ways that the

visual systems of different animals must differ significantly from one

another Can the type of formulation that I have been advocating, in terms

of representations and processes, possibly prove adequate for them all? I

think so The general point here is that because vision is used by different

animals for such a wide variety of purposes, it is inconceivable that all

seeing animals use the same representations; each can confidently be

expected to use one or more representations that are nicely tailored to the

owner's purposes. .

As an example, let us consider briefly a primitive but highly efficient

visual system that has the added virtue of being well understood. Werner

Reichardt's group in Tubingen has spent the last 14 years patiently unrav-

eling the visual flight-control system of the housefly, and in a famous col-

laboration, Reichardt and Tomaso Poggio have gone far toward solving

the problem (Reichardt and Poggio, 1976, 1979; Poggio and Reichardt,

1976) Roughly speaking, the fly's visual apparatus controls its flight through

a collection of about five independent, rigidly inflexible, very fast respond-

ing systems (the time from visual stimulus to change of torque is only 21

ms) For example, one of these systems is the landing system; if the visual
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field "explodes" fast enough (because a surface looms nearby), the fly

automatically "lands" toward its center. If this center is above the fly, the fly

automatically inverts to land upside down. When the feet touch, power to

the wings is cut off. Conversely, to take off, the fly jumps; when the feet no

longer touch the ground, power is restored to the wings, and the insect

flies again.

In-flight control is achieved by independent systems controlling the

fly's vertical velocity (through control of the lift generated by the wings)

and horizontal direction (determined by the torque produced by the asym-

metry of the horizontal thrust from the left and right wings). The visual

input to the horizontal control system, for example, is completely

described by the two terms

r(i|/>ji + £>(«

where r and£> have the form illustrated in Figure 1-6. This input describes

how the fly tracks an object that is present at angle \\i in the visual field and

has angular velocity *(/. This system is triggered to track objects of a certain

angular dimension in the visual field, and the motor strategy is such that

if the visible object was another fly a few inches away, then it would be

(a) .Af\^
V\

•+•+/*****/+*

(b)

+ 7T

Figure 1-6. The horizontal component of the visual input R to the

fly's flight system is described by the formula R = £>(i|/) - K*!>) *K

where i[> is the direction of the stimulus and if is its angular velocity

in the fly's visual field. D(ty) is an odd function, as shown in (a), which

has the effect of keeping the target centered in the fly's visual field;

r(i|/) is essentially constant as shown in (b).
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intercepted successfully. If the target was an elephant 100 yd away, inter-

ception would fail because the fly's built-in parameters are for another fly

nearby, not an elephant far away.

Thus, fly vision delivers a representation in which at least these three

things are specified: (1) whether the visual field is looming sufficiently fast

that the fly should contemplate landing; (2) whether there is a small

patch—it could be a black speck or, it turns out, a textured figure in front

of a textured ground—having some kind of motion relative to its back-

ground; and if there is such a patch, (3) i|> and \j/ for this patch are delivered

to the motor system. And that is probably about 60% of fly vision. In par-

ticular, it is extremely unlikely that the fly has any explicit representation

of the visual world around him—no true conception of a surface, for

example, but just a few triggers and some specifically fly-centered param-

eters like iJj and ij/.

It is clear that human vision is much more complex than this, although

it may well incorporate subsystems not unlike the fly's to help with specific

and rather low-level tasks like the control of pursuit eye movements. Never-

theless, as Poggio and Reichardt have shown, even these simple systems

can be understood in the same sort ofway, as information-processing tasks.

And one of the fascinating aspects of their work is how they have managed

not only to formulate the differential equations that accurately describe the

visual control system of the fly but also to express these equations, using

the Volterra series expansion, in a way that gives direct information about

the minimum possible complexity of connections of the underlying neu-

ronal networks.

Advanced Vision

Visual systems like the fly's serve adequately and with speed and precision

the needs of their owners, but they are not very complicated; very little

objective information about the world is obtained. The information is all

very much subjective—the angular size of the stimulus as the fly sees it

rather than the objective size of the object out there, the angle that the

object has in the fly's visual field rather than its position relative to the fly

or to some external reference, and the object's angular velocity, again in

the fly's visual field, rather than any assessment of its true velocity relative

to the fly or to some stationary reference point.

One reason for this simplicity must be that these facts provide the fly

with sufficient information for it to survive. Of course, the information is

not optimal and from time to time the fly will fritter away its energy chasing

a falling leaf a medium distance away or an elephant a long way away as a

direct consequence of the inadequacies of its perceptual system. But this
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apparently does not matter very much—the fly has sufficient excess energy

for it to be able to absorb these extra costs. Another reason is certainly that

translating these rather subjective measurements into more objective qual-

ities involves much more computation. How, then, should one think about

more advanced visual systems—human vision, for example. What are the

issues? What kind of information is vision really delivering, and what are

the representational issues involved?

My approach to these problems was very much influenced by the

fascinating accounts of clinical neurology, such as Critchley (1953) and

Warrington and Taylor (1973). Particularly important was a lecture that

Elizabeth Warrington gave at MIT in October 1973, in which she described

the capacities and limitations of patients who had suffered left or right

parietal lesions. For me, the most important thing that she did was to draw

a distinction between the two classes of patient (see Warrington and Taylor,

1978). For those with lesions on the right side, recognition of a common
object was possibleprovided that the patient's view of it was in some sense

straightforward. She used the words conventional and unconventional—
a water pail or a clarinet seen from the side gave "conventional" views but

seen end-on gave "unconventional" views. If these patients recognized the

object at all, they knew its name and its semantics—that is, its use and

purpose, how big it was, how much it weighed, what it was made of, and

so forth. If their view was unconventional—a pail seen from above, for

example—not only would the patients fail to recognize it, but they would

vehemently deny that it could be a view of a pail. Patients with left parietal

lesions behaved completely differently. Often these patients had no lan-

guage, so they were unable to name the viewed object or state its purpose

and semantics. But they could convey that they correctly perceived its

geometry—that is, its shape—even from the unconventional view

Warrington's talk suggested two things. First, the representation of the

shape of an object is stored in a different place and is therefore a quite

different kind of thing from the representation of its use and purpose. And
second, vision alone can deliver an internal description of the shape of a

viewed object, evenwhen the object was not recognized in the conventional

sense of understanding its use and purpose.

This was an important moment for me for two reasons. The general

trend in the computer vision community was to believe that recognition

was so difficult that it required every possible kind of information. The

results of this point of view duly appeared a few years later in programs

like Freuder's (1974) and Tenenbaum and Barrow's (1976). In the latter

program, knowledge about offices—for example, that desks have tele-

phones on them and that telephones are black—was used to help "seg-

ment" out a black blob halfway up an image and "recognize" it as a tele-

phone. Freuder's program used a similar approach to "segment" and
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"recognize" a hammer in a scene. Clearly, we do use such knowledge in

real life; I once saw a brown blob quivering amongst the lettuce in my

garden and correctly identified it as a rabbit, even though the visual infor-

mation alone was inadequate. And yet here was this young woman calmly

telling us not only that her patients could convey to her that they had

grasped the shapes of things that she had shown them, even though they

could not name the objects or say how they were used, but also that they

could happily continue to do so even if she made the task extremely difficult

visually by showing them peculiar views or by illuminating the objects in

peculiar ways. It seemed clear that the intuitions of the computer vision

people were completely wrong and that even in difficult circumstances

shapes could be determined by vision alone.

The second important thing, I thought, was that Elizabeth Warrington

had put her finger on what was somehow the quintessential fact of human

vision—that it tells about shape and space and spatial arrangement. Here

lay a way to formulate its purpose—building a description of the shapes

and positions of things from images. Of course, that is by no means all that

vision can do; it also tells about the illumination and about the reflectances

of the surfaces that make the shapes—their brightnesses and colors and

visual textures—and about their motion. But these things seemed second-

ary; they could be hung off a theory in which the main job of vision was

to derive a representation of shape.

To the Desirable via the Possible

Finally, one has to come to terms with cold reality. Desirable as it may be

to have vision deliver a completely invariant shape description from an

image (whatever that may mean in detail), it is almost certainly impossible

in only one step. We can only do what is possible and proceed from there

toward what is desirable. Thus we arrived at the idea of a sequence of

representations, starting with descriptions that could be obtained straight

from an image but that are carefully designed to facilitate the subsequent

recovery of gradually more objective, physical properties about an object's

shape. The main stepping stone toward this goal is describing the geometry

of the visible surfaces, since the information encoded in images, for exam-

ple by stereopsis, shading, texture, contours, or visual motion, is due to a

shape's local surface properties. The objective of many early visual com-

putations is to extract this information.

However, this description of the visible surfaces turns out to be unsuit-

able for recognition tasks. There are several reasons why, perhaps the most

prominent being that like all early visual processes, it depends critically



1.3 A Representational Frameworkfor Vision 37

on the vantage point. The final step therefore consists of transforming the

viewer-centered surface description into a representation of the three-

dimensional shape and spatial arrangement of an object that does not

depend upon the direction from which the object is being viewed. This

final description is object centered rather than viewer centered.

The overall framework described here therefore divides the derivation

of shape information from images into three representational stages: (Table

1-1): (1) the representation of properties of the two-dimensional image,

Table 1-1. Representational framework for deriving shape information from

images.

Name Purpose Primitives

Image(s)

Primal sketch

2V2-D sketch

3-D model rep-

resentation

Represents intensity.

Makes explicit important

information about the two-

dimensional image, primar-

ily the intensity changes

there and their geometrical

distribution and organiza-

tion.

Makes explicit the orienta-

tion and rough depth of the

visible surfaces, and con-

tours of discontinuities in

these quantities in a viewer-

centered coordinate frame.

Describes shapes and their

spatial organization in an

object-centered coordinate

frame, using a modular

hierarchical representation

that includes volumetric

primitives (i.e., primitives

that represent the volume

of space that a shape occu-

pies) as well as surface

primitives.

Intensity value at each point

in the image

Zero-crossings

Blobs

Terminations and discontin-

uities

Edge segments

Virtual lines

Groups

Curvilinear organization

Boundaries

Local surface orientation

(the "needles" primitives)

Distance from viewer

Discontinuities in depth

Discontinuities in surface

orientation

3-D models arranged hier-

archically, each one based

on a spatial configuration of

a few sticks or axes, to

which volumetric or surface

shape primitives are

attached
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such as intensity changes and local two-dimensional geometry; (2) the

representation of properties of the visible surfaces in a viewer-centered

coordinate system, such as surface orientation, distance from the viewer,

and discontinuities in these quantities; surface reflectance; and some coarse

description of the prevailing illumination; and (3) an object-centered rep-

resentation of the three-dimensional structure and of the organization of

the viewed shape, together with some description of its surface properties.

This framework is summarized in Table 1-1 . Chapters 2 through 5 give

a more detailed account.
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Vision





CHAPTER 2

Representing

the Image

2.1 PHYSICAL BACKGROUND
OF EARLY VISION

We cannot develop a rigorous theory of early vision—the first stages of the

vision process—unless we know what the theory is for. We have already

seen that, in general terms, the aim is to develop useful canonical descrip-

tions of the shapes and surfaces that form the image. It is now time to state

the goals more boldly (Marr 1976, 1978).

There are four main factors responsible for the intensity values in an

image. They are (1) the geometry and (2) the reflectances of the visible

surfaces, (3) the illumination of the scene, and (4) the viewpoint. In an

image, all these factors are muddled up, some intensity changes being due

to one cause, others to another, and some to a combination. The purpose

of early visual processing is to sort out which changes are due to what

factors and hence to create representations in which the four factors are

separated.

41
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Roughly speaking, it is proposed that this goal is reached in two stages.

First, suitable representations are obtained of the changes and structures

in the image. This involves things like the detection of intensity changes,

the representation and analysis of local geometrical structure, and the

detection of illumination effects like light sources, highlights, and trans-

parency. The result of this first stage is a representation called the primal

sketch. Second, a number of processes operate on the primal sketch to

derive a representation—still retinocentric—of the geometry of the visible

surfaces. This second representation, that of the visible surfaces, is called

the 2V2-dimensional (2V2-D) sketch. Both the primal sketch and the 2 1/2-D

sketch are constructed in a viewer-centered coordinate frame, and this is

the aspect of their structures denoted by the term sketch.

The necessity for representing spatial relations, with its attendant com-

plexities of how much should be made explicit and how much can safely

be left implicit, raises problems that are typical of and rather special to

vision. For example, the reader, especially if from a nonmathematical back-

ground, should not be put off by the notion of a coordinate frame, because

it is probably a much more general notion than the reader thinks. To say

that early visual representations are retinocentric does not literally imply

that a Cartesian coordinate system, marked out in minutes of arc, is some-

how laid out across the striate cortex, and that whenever some line or edge

is noticed it is somehow associated with its particular*- and^-coordinates,

whose values are somehow carried around by the neural machinery. This

process would be one way of making the representations, to be sure, but

no one would seriously propose it for human vision. There are many other

ways in which this scheme can be realized in humans—for example, an

(implicit) anatomical mapping that roughly preserves the spatial organi-

zation of the retina together with a representation that makes local relations

explicit (point A is 5' from points in direction 35°) would seem plausible.

The important point about a retinocentric frame is that the spatial

relations represented refer to two-dimensional relations on the viewer's

retina, not three-dimensional relations relative to the viewer in the world

around him, nor two-dimensional relations on another viewer's retina, nor

three-dimensional relations relative to an external reference point like the

top of a mountain. To say that image point A is below image point B is a

remark in a retinocentric frame. To say one's hand is to the left of and

below one's chest is a remark in one's own three-dimensional, viewer-

centered frame. To say that the tip of a certain cat's tail is above and to the

left of its body is a remark in a coordinate frame that is centered on the

cat. They are all perfectly good ways of specifying rough spatial relation-

ships, yet none uses sets of numbers. One can speak of each of these frames

in terms of numbers—as if one was using (x,y, z), for example—but that
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does not mean that they have to be implemented this way, and it is impor-

tant to bear this in mind.

Although it helps a great deal to formulate the purpose of early vision

in the rather straightforward terms of separating out the four factors of

geometry, reflectance, illumination, and viewpoint, it is important to be

aware of the simplifications that are involved in doing so. Perhaps the most

important simplification is the rather rigid distinction between surface

reflectance and surface geometry. In fact, these two notions are linked, and

the distinction between them can be rather imprecise, so that one must be

a little cautious when using them. A field of ripening wheat provides a

convenient illustration of some of the difficulties. When seen from close

by, the individual wheat stems form the reflecting surfaces, and the situation

is relatively straightforward. When viewed from afar, however, image res-

olution is insufficient to distinguish the stems; the field as a whole forms

the visible surface, and its reflectance function may now be very complex,

since it incorporates considerable variation that should more properly be

viewed as spatial (see, for example, Bouguer, 1957; Trowbridge and Reitz,

1975). Thinking of a distant wheat field or the coat of a cat as a surface is

probably not too unrealistic an approximation for the theory of perception.

We do see surfaces smoothed out. Tyler (1973), for example, found that

we cannot see surface corrugations in stereograms if their spatial fre-

quency is higher than about 4 cycles per degree.

In addition to these complexities, the illumination of a scene can only

rarely be described in simple terms: Diffuse illumination, reflections, mul-

tiple light sources (only some of which are visible), and illumination

between surfaces often conspire to create very complex illumination con-

ditions, which will probably never be solved analytically. Nevertheless, our

crude division into four categories has its uses. Provided that the variation

in depth from the viewer of the surface from which light is reflected is

small compared with the viewing distance, I shall assume that what is

viewed can be regarded as a reflecting surface, and that the relation

between its incident and reflected light may be described by a reflectance

function p that, for a given illumination and viewpoint, may have a complex

spatial structure.

Finally, a general point about the exposition. The purpose of these

representations is to provide useful descriptions of aspects of the real

world. The structure of the real world therefore plays an important role in

determining both the nature of the representations that are used and the

nature of the processes that derive and maintain them. An important part

of the theoretical analysis is to make explicit the physical constraints and

assumptions that have been used in the design of the representations and

processes, and I shall be quite careful to do this.
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Representing the Image

From an information-processing point of view, our primary purpose now

is to define a representation of the image of reflectance changes on a

surface that is suitable for detecting changes in the image's geometrical

organization that are due to changes in the reflectance of the surface itself

or to changes in the surface's orientation or distance from the viewer. If

one thinks for a minute about a smooth surface, then changes in orientation

and perhaps also in distance are likely to give rise to a change in image

intensity. If the surface is textured, then quantities like the orientation or

size of tiny elements on the surface—perhaps rough length and width—

and measures taken over a small area reflecting the density and spacing of

these elements yield the important clues in an image.

Hence we can see in a general way what our representation should

contain. It should include some type of "tokens" that can be derived reliably

and repeatedly from images and to which can be assigned values of attri-

butes like orientation, brightness, size (length and width), and position

(for density and spacing measurements). It is of critical importance that

the tokens one obtains correspond to real physical changes on the viewed

surface; the blobs, lines, edges, groups, and so forth that we shall use must

not be artifacts of the imaging process, or else inferences made from their

structure backwards to the structure of the surface will be meaningless. Let

us therefore take a look at the general nature of surface reflectance func-

tions, for this will give us important clues as to how we should structure

our early representations.

Underlying Physical Assumptions

Existence ofsurfaces

Our first assumption is that it is proper to speak of surfaces at all, and it

refers to the discussion that we had earlier about wheat fields and cats'

coats. Stated precisely, it is that the visible world can be regarded as being

composed of smooth surfaces having reflectance functions whose spatial

structure may be elaborate.

Hierarchical organization

The second assumption has to do with the organization of this spatial

structure, and it may help to introduce the topic with some examples. As
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Figure 2-1. Some images of surfaces. Notice how different types of spatial organization occur

almost independently at different scales. An important aspect of early vision is concerned with

capturing these different organizations. (Reprinted by permission from Phil Brodatz, Textures. A
Photographic Albumfor Artists and Designers, Dover, 1966, pi. Dll.)

we have already seen, the coat of a cat is composed at the finest level of

single hairs, each of which has its own reflectance function. At the next

level up, these are organized into a surface by being placed close and

parallel to one another. Then, over the coat so formed is the still higher-

level organization of surface markings and coloration. The surface of a

river has an analogous organization. At the basic level there is the flat water,

randomly perturbed by protrusions like rocks or prominences. Superim-

posed on this surface are ripples oriented by gusts of wind and patches of

weed and vegetation oriented by the flow of the river. There are analogous

levels of structure in many surfaces—a hedgerow, a fabric, a rush weave,

the bark of a tree, the grain of wood, a rock face, and so on (examine for

a moment the surfaces illustrated in Figure 2-1).
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Figure 2-2. In a herringbone pattern such as this, a clear part of the spatial orga-

nization consists of the vertical stripes. These cannot be recovered by Fourier

techniques such as band-pass filtering the images, but yield easily to grouping

processes. (Reprinted by permission from Phil Brodatz, Textures.- A Photographic

Albumfor Artists and Designers, Dover, 1966, pi. 16, 17.)

From these examples, we see that the attributes carrying the valuable

information may emerge at any of a range of scales in the real world, and

hence even more so in images because of the additional transformations

introduced by the imaging process. Whatever tokens are, we must therefore

expect them to be capable of making image features explicit over a wide

range of sizes. Furthermore, it is important to realize that these different

levels of organization do not correspond simply to what would be seen

through medium band-pass spatial-frequency filters* centered on different

frequencies. Although several types of organization can be detected in

this way, many cannot—for example, the vertical stripes in the pattern of

Figure 2-2.

We can therefore formulate our second physical assumption: The spa-

tial organization ofa surface's reflectancefunction is often generated by

a number of different processes, each operating at a different scale. Con-

sequently, a representation that uses changes in the image of such surfaces

to find changes in depth and surface orientation must be capable of cap-

turing changes in attribute values applied to tokens that span a wide range

of sizes in the image. In other words, the primitives of our representation

must work at a number of different scales.

Such filters eliminate all spatial frequency components in the image outside a fixed range

of frequencies.
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Similarity

Our third assumption is of a rather different kind. Suppose that we already

had a representation containing primitives of various sizes. It seems intu-

itively obvious that they should be kept separate in some way—that a given

large-scale descriptor should be compared with other large-scale descrip-

tors much more readily than with small-scale ones. And perhaps it also

seems obvious that tokens or descriptors having other extreme dissimilar-

ities—very different or even opposite-signed contrasts, for example

—

should somehow be kept rather separate.

We can, in fact, find a physical basis for why this should be so, and it

is apparent in our earlier examples. Recall that among the various levels

of organization present in an animal's coat, on the surface of a river, on the

bark of a tree, in woven fabric, and so forth, the processes that operated to

generate the reflectance function are relatively independent at each scale,

but the items for which each process is responsible are visually much more

similar to one another than to other things on the same surface. For exam-

ple, a given hair in a cat's coat is much more similar to neighboring hairs

than to the stripes formed by the arrangement of thousands of hairs. Sim-

ilarity here may be measured in several ways, but a straightforward measure

based on local contrast, size (length and width), orientation, and color

would suffice (compare Jardine and Sibson, 1971, for a general discussion

of dissimilarity measures).

This observation gives us the means for selecting items from an image

during the assignment of primitives in its representation. It is important,

and may be formulated as our third physical assumption that the items

generated on a given surface by a reflectance-generatingprocess acting at

a given scale tend to be more similar to one another in their size, local

contrast, color, and spatial organization than to other items on that sur-

face.

The importance of this type of similarity is illustrated by Figure 2-3.

Following Glass (1969), these patterns are created by superimposing on a

set of random dots the same set of dots but rotated or expanded a little

(Figure 2-3a). The effect works for tokens made of squares (Figure 2-3b)

or for pairs of tokens made in quite different ways (Figure 2-3c). If the

tokens are too different (Figure 2-3d), however, no pattern is seen. Glass

and Switkes (1976) showed that the effect fails if the dots have opposite

contrast or opponent colors. Stevens (1978, fig 51a) showed that if three

sets of dots are superimposed—the original, a rotated, and an expanded

set—no organization is visible. If, say, the rotated set is made much brighter

than the other two, then one sees the organization present in the dimmer

pairs. This proves that the effect is based on a symbolic comparison of the
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Figure 2-3. These displays are made by superimposing a random pattern of

tokens on a slightly rotated or expanded copy of the same pattern. The tokens can

be points or small squares (a) or larger squares (b). They do not have to be the

same—in (c) one set consists of squares and the other set of four dots—but they

do have to be similar In (d), one set consists of quite large squares, and the other

of small dots. These are apparently too dissimilar for us to discern the expanding

structure there.
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Figure 2-4. More evidence for place tokens. In this diagram every subgroup is

defined differently, yet the collinearity of all of them is immediately apparent. This

suggests that each group causes a place token to be created, whose collinearity is

detected almost independently of the way the token is defined, provided that the

tokens represent sufficiently similar items (compare Fig. 2-3d). (Reprinted by per-

mission from D. Marr "Early processing of visual information," Phil. Trans. R. Soc.

Lond. B 275 1976, fig. 10.)

properties of the local tokens and not, for example, on Hubel and Wiesel

simple-cell-like measurements acting directly on the images.

Spatial continuity

In addition to their intrinsic similarity, markings generated on a surface

by a single process are often spatially organized—they are arranged in

curves or linesandpossibly create more complexpatterns. The basic feature

is that markings often form smooth contours on a surface, and hence tokens

will do so in an image. We are ourselves very sensitive to spatial continuity.

We immediately see the items in Figure 2-4 (from Marr, 1976, fig. 10) as

being collinear, despite the fact that every item along the line is defined in

a different way: One is a blob, one is a small group of dots, one is the end

of a bar, and so forth. They are, however, all about the same size. Figure

2-5 (from Marroquin, 1976, fig. 7) provides another fascinating example.

There are very many continuous organizations buried in this pattern, and

each one seems to be trying to jump out and dominate the others.

Continuity of discontinuities

One consequence of the cohesiveness of matter is that objects exist in the

world and have boundaries. These give rise to the discontinuities in depth

or surface orientation with whose detection we are concerned, and an

important feature of such boundaries is that they often progress smoothly
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Fzgwre 2-5. Evidence for the existence of active grouping processes. This pattern

apparently seethes with activity as the rival organizations seem to compete with

one another. (Reprinted by permission from J. L. Marroquin, "Human visual per-

ception of structure," Master's thesis, Department of Electrical Engineering and

Computer Science, Massachusetts Institute of Technology, 1976.)

across an image. We can assume, in fact, that the loci of discontinuities in

depth or in surface orientation are smooth almost everywhere. This is

probably the physical constraint that makes the mechanism of smooth

subjective contours a useful one (see Figure 2-6 and Section 4.8).

Continuity offlow

Finally, we must not forget that motion is extremely important for vision

—

it is ubiquitous. Motion of the viewer or of a physical object can cause
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(a) (b)

Figure 2-6. Subjective contours. The visual system apparently regards changes in

depth as so important that they must be made explicit everywhere, including places

where there is no direct visual evidence for them.

movements in the images of that object. If the object is rigid, the motions

of the images of nearby portions of the object's surface are similar. Hence,

the motions of portions of the object that are close to one another in the

image are usually similar. In particular, the velocity field of motion in the

image varies continuously almost everywhere, and if it is ever discontin-

uous at more than an isolated point, then a failure of rigidity (like an object

boundary) is present in the outside world. In particular, // direction of

motion is ever discontinuous at more than one point—along a line, for

example,—then an object boundary is present.

General Nature of the Representation

The important message of these physical constraints is that although the

basic elements in our image are the intensity changes, the physical world

imposes on these raw intensity changes a wide variety of spatial organi-

zations, roughly independently at different scales. This organization is

reflected in the structure of images, and since it yields important clues

about the structure of the visible surfaces, it needs to be captured by the

early representations of the image. Specifically, I propose doing this by a

set of "place tokens" that roughly correspond to oriented edge or boundary

segments or to points of discontinuity in their orientations, to bars (roughly

parallel edge pairs) or to their terminations; or to blobs—roughly, doubly

terminated bars. These primitives can be defined in very concrete ways

—

from pure discontinuities in intensity—or in rather abstract ways. A blob
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can be defined from a cloud of dots, for example, or a boundary from

certain (but not all) kinds of texture change or from the lining up of a set

of tokens that are themselves defined in quite complex ways, as in the

example of Figure 2-4.

A rough illustration of the general idea appears in Figure 2-7; this

representational scheme is called theprimal sketch (Marr, 1976). The crit-

ical ideas behind it are the following:

1. The primal sketch consists of primitives of the same general kind

at different scales—a blob has a rough position, length, width, and orien-

tation at whatever scale it is defined—but the primitives can be defined

from an image in a variety of ways, from the very concrete (a black ink

mark) to the very abstract (a cloud of dots).

2. These primitives are built up in stages in a constructive way, first

by analyzing and representing the intensity changes and forming tokens

directly from them, then by adding representations of the local geometrical

structure of their arrangement, and then by operating on these things with

active selection and grouping processes to form larger-scale tokens that

reflect larger-scale structures in the image, and so forth.

3. On the whole, the primitives that are obtained, the parameters

associated with them, and the accuracy with which they are measured are

designed to capture and to match the structure in an image so as to facilitate

the recovery of information about the underlying geometry of the visible

surfaces. This gives rise to a complex trade-off between the accuracy of the

discriminations that can be made and the value of making them. For exam-

ple, projected orientations in the image do change if the surface orientation

changes, but on the whole by only a rather small amount and probably

usually less than the typical variation in orientation to be found in the

objective distribution of markings on a surface. This means that except in

special situations, it is not worth having a very powerful apparatus for

making subtle orientation discriminations. On the other hand, because

only a very small relative movement is compelling evidence that two sur-

faces are separate, it is worth being very sensitive to relative movement.

The three main stages in the processes that derive the primal sketch

are (1) the detection of zero-crossings (Marr and Poggio, 1979; Marr, Pog-

gio, and Ullman, 1979; Marr and Hildreth, 1980); (2) the formation of the

raw primal sketch (Marr, 1976; Marr and Hildreth, 1980; Hildreth 1980);

and (3) the creation of the full primal sketch (Marr, 1976).
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Fzg«r<? 2-7. A diagrammatic representation of the descriptions of an image at

different scales which together constitute the primal sketch. At the lowest level, the

raw primal sketch faithfully follows the intensity changes and also represents ter-

minations, denoted here by filled circles. At the next level, oriented tokens are

formed for the groups in the image. At the next level, the difference in orientations

of the groups in the two halves of the image causes a boundary to be constructed

between them. The complexity of the primal sketch depends upon the degree to

which the image is organized at the different scales.
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2.2 ZERO-CROSSINGS AND
THE RAW PRIMAL SKETCH

Zero-Crossings

The first of the three stages described above concerns the detection of

intensity changes. The two ideas underlying their detection are (1) that

intensity changes occur at different scales in an image, and so their optimal

detection requires the use of operators of different sizes; and (2) that a

sudden intensity change will give rise to a peak or trough in the first

derivative or, equivalently, to a zero-crossing in the second derivative, as

illustrated in Figure 2-8. (A zero-crossing is a place where the value of a

function passes from positive to negative).

These ideas suggest that in order to detect intensity changes efficiently,

one should search for a filter that has two salient characteristics. First and

foremost, it should be a differential operator, taking either a first or second

spatial derivative of the image. Second, it should be capable of being tuned

to act at any desired scale, so that large filters can be used to detect blurry

shadow edges, and small ones to detect sharply focused fine detail in the

image.

Marr and Hildreth (1980) argued that the most satisfactory operator

fulfilling these conditions is the filter V 2
G, where V 2

is the Laplacian

operator (d
2
/dx

2 + d
2
/dy

2

) and G stands for the two-dimensional Gaussian

distribution

G{x,y) = e z**1

J
(a) (b) (c)

Figure 2-8. The notion of a zero-crossing. The intensity change (a) gives rise to

a peak (b) in its first derivative and to a (steep) zero-crossing Z (c) in its second

derivative.
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Figure 2-9. V 2G is shown as a one-dimensional function (a) and in two-dimen-

sions (b) using intensity to indicate the value of the function at each point, (c) and

(d) show the Fourier transforms for the one- and two-dimensional cases respec-

tively. (Reprinted by permission from D. Marr and E. Hildreth, "Theory of edge

detection," Proc. R. Soc. Lond. B 207, pp. 187-217.)

which has standard deviation o\ V 2G is a circularly symmetric Mexican-

hat-shaped operator whose distribution in two dimensions may be

expressed in terms of the radial distance r from the origin by the formula

V2
G(r) = -^(l-^)^^

ttct \ 2ct /

Figure 2-9 illustrates the one- and two-dimensional forms of this operator,

as well as their Fourier transforms.
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(a) (b) (c)

Figure 2-10. Blurring images is the first step in detecting intensity changes in them, (a) In the

original image, intensity changes can take place over a wide range of scales, and no single operator

will be very efficient at detecting all of them. The problem is much simplified in an image that has

been blurred with a Gaussian filter, because there is, in effect, an upper limit to the rate at which

changes can take place. The first part of the edge detection process can be thought of as decom-

posing the original image into a set of copies, each filtered with a different-sized Gaussian, and

then detecting the intensity changes separately in each, (b) The image filtered with a Gaussian

having ct = 8 pixels; in (c), a = 4. The image is 320 by 320 elements. (Reprinted by permission

from D. Marr and E. Hildreth, "Theory of edge detection," Proc. R. Soc. Lond. B 207, pp. 187-217.)

There are two basic ideas behind the choice of the filter V 2
G. The first

is that the Gaussian part of it, G, blurs the image, effectively wiping out all

structure at scales much smaller than the space constant a of the Gaussian.

To illustrate this, Figure 2-10 shows an image that has been convolved with

two different-sized Gaussians whose space constants a were 8 pixels (Fig-

ure 2-10b) and 4 pixels (Figure 2-10c). The reason why one chooses the

Gaussian for this purpose, rather than blurring with a cylindrical pillbox

function (for instance), is that the Gaussian distribution has the desirable

characteristic of being smooth and localized in both the spatial and fre-

quency domains and, in a strict sense, being the unique distribution that

is simultaneously optimally localized in both domains. And the reason, in

turn, why this should be a desirable property of our blurring function is

that if the blurring is as smooth as possible, both spatially and in the

frequency domain, it is least likely to introduce any changes that were not

present in the original image.

The second idea concerns the derivative part of the filter, V 2

.
The

great advantage of using it is economy of computation. First-order direc-

tional derivatives, like d/dx or B/dy, could be used, in which case one would

subsequently have to search for their peaks or troughs at each orientation

(as illustrated in Figure 2-8b); or, second-order directional derivatives, like

d
2
/dx

2
or d

2
/dy

2
, could be used, in which case intensity changes would



2.2 Zero-Crossings and the Raw Primal Sketch 57

-1 + 1

(a)

+ 1

-2

+ 1

+ 1

+ 1 -2 + 1

(b) (c)

-1 + 1

+ 1 -1

(d) (e)

Figure 2-11. The spatial configuration of low-order differential operators. Oper-

ators like d/dx can be roughly realized by filters with the receptive fields illustrated

in the figure, (a) d/dx can be thought of as measuring the difference between the

values at two neighboring points along the x-axis. Similarly, (b) shows d/dy. The

operator d
2
/dx

2
can be thought of as the difference between two neighboring values

of d/dx, and so it takes the form shown in (c). The other two second-order operators,

d
2
/dy

2
and d

2
/dxdy, appear in (d) and (e), respectively. Finally, the lowest-order

isotropic operator, the Laplacian (d
2
/dx

2
+ d

2
/dy

2

), which we denote by V 2

,
has the

circularly symmetric form shown in (f).

correspond to their zero-crossings (see Figure 2-8c). However, the dis-

advantage of all these operators is that they are directional; they all involve

an orientation (see Figure 2-11, which illustrates the spatial organizations,

or "receptive fields," in neurophysiological terms of the various first- and

second-order differential operators). In order to use the first derivatives,

for example, both dl/dx and dl/dy have to be measured, and the peaks and

troughs in the overall amplitude have to be found. This means that the

signed quantity [(dl/dxf + (d//dy)
2

]

-
^ must also be computed.

Using second-order directional derivative operators involves prob-

lems that are even worse than the ones involved in using first-order deriv-

atives. The only way of avoiding these extra computational burdens is to

try to choose an orientation-independent operator. The lowest-order iso-

tropic differential operator is the Laplacian V 2
, and fortunately it so hap-

pens that this operator can be used to detect intensity changes provided

the blurred image satisfies some quite weak requirements (Marr and Hil-

dreth, 1980).* Images on the whole do satisfy these requirements locally,

*The mathematical notation for blurring an image intensity function I(x, y) with a Gaussian

function G is G * I which is read G convolved with /. The Laplacian of this is denoted by

V 2
(G * /) and a mathematical identity allows us to move the V 2

operator inside the convo-

lution giving V 2
(G * /) = (V 2

G) */.
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Figures 2-12, 13, 14. These three figures show examples of zero-crossing detec-

tion using V 2
G. In each figure, (a) shows the image (320 x 320 pixels); (b) shows

the image's convolution with V 2
G, with w

2 _ D = 8 (zero is represented by gray);

(c) shows the positive values in white and the negative in black; (d) shows only the

zero-crossings.

so in practice one can use the Laplacian. Hence, in practice, the most

satisfactory way of finding the intensity changes at a given scale in an image

is first to filter it with the operator V 2
G, where the space constant of G is

chosen to reflect the scale at which the changes are to be detected, and

then to locate the zero-crossings in the filtered image.

Figures 2-12 to 2-14 show what an image looks like when processed

in this way. The numerical values in the V 2
G-filtered image are both positive
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(c)

Figure 2-13-

and negative, the overall average being zero. Positive values are repre-

sented here by whites, negative by blacks, and the value zero by an inter-

mediate gray. As we have seen, the critical fact about the operator V G is

that its zero-crossings mark the intensity changes, as seen at the Gaussian's

particular scale. The figures show this well. In Figure 2-1 2(c), for instance,

the filtered image has been "binarized"—that is, positive values were all

set to +1 and negative values to -1, and in Figure 2-12(d) the zero-

crossings alone are shown. The advantage of the binarized representation

is that it also shows the sign of the zero-crossing—which side in the image

is the darker.
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(b)

(c)

Figure 2-14.

In addition, the slope of the zero-crossing depends on the contrast of

the intensity change, though not in a very straightforward way. This is

illustrated by Figure 2-15, which shows an original image together with

zero-crossings that have been marked with curves of varying intensity. The

more contrasty the curve, the greater the slope of the zero-crossing at that

point, measured perpendicularly to its local orientation.

Zero-crossings like those of Figures 2-12 to 2-15 can be represented

symbolically in various ways. I choose to represent them by a set oforiented

primitives called zero-crossing segments, each describing a piece of the

contour whose intensity slope (rate at which the convolution changes

across the segment) and local orientation are roughly uniform. Because of

their eventual physical significance, it is also important to make explicit
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Figure 2-15. Another example of zero-crossings; here, the intensity of the lines has been made

to vary with the slope of the zero-crossing, so that it is easier to see which lines correspond to the

greater contrast. (Courtesy BBC Horizon.)

those places at which the orientation of a zero-crossing changes "discon-

tinuously." The quotation marks are necessary because one can in fact prove

that the zero-crossings of V 2
6" * / can never change orientation discontin-

uous^ but one can nevertheless construct a practical definition of discon-

tinuity. In addition, small, closed contours are represented as blobs, each

also with an associated orientation, average intensity slope, and size defined

by its extent along a major and minor axis. Finally, in keeping with the

overall plan, several sizes of operator will be needed to cover the range of

scales over which intensity changes occur.

Biological Implications

This computational scheme for the very first stages in visual processing

leads to an interpretation of many results from the psychophysical and

neurophysiological investigations into early vision and to a proposal for

the overall strategy behind the design of the first part of the visual pathway.

The psychophysics of early vision

In 1968, Campbell and Robson carried out some adaptation experiments.

They found that the sensitivity of subjects to high-contrast gratings was
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temporarily reduced after exposure to such gratings and this desensitiza-

tion was specific to the orientation and spatial frequency of the gratings.

The experimenters concluded that the visual pathway included a set of

"channels" that are orientation and spatial frequency selective.

This finding provided an explosion of articles investigating various

aspects of the detailed structure of these channels, culminating recently in

an elegant quantitative model for their structure in humans, constructed

on the basis of data from threshold detection studies by Wilson and Giese

(1977) and Wilson and Bergen (1979). The model is quite easy to under-

stand. The basic idea is that at each point in the visual field, there are four

size-tuned filters or masks analyzing the image. The spatial receptive fields

of these filters all have approximately the shape of a DOG, that is, of the

difference of two Gaussian distributions, but the smaller two filters exhibit

relatively sustained temporal properties, whereas the larger two are rela-

tively transient. The channels are labeled N, S, T, and U, in order of increas-

ing size, and their dimensions scale linearly with increasing eccentricity

(angular distance from the fovea). The S channel is the most sensitive under

both sustained and transient stimulation; the U channel is the least, having

only one-fourth to one-eleventh the sensitivity of the S channel. Wilson

himself made no statement about whether the filters were oriented, but

he measured their dimensions using light and dark lines. With these one-

dimensional stimuli, the widths of the central part of the receptive fields,

which I shall denote by the symbol w
x _^ had the following values: N

channel, 3.1'; S channel, 6.2'; T channel, 11.7'; and U channel, 21'. The

receptive field sizes increase linearly with eccentricity, being about doubled

at 4° eccentricity. Essentially all of the psychophysical data on the detection

of spatial patterns below 16 cycles per degree at contrast threshold can be

explained by this model, together with the hypothesis that the detection

process is based on a form of spatial probability summation in the channels.

It is the V 2G filters, I think, that form the basis for these psychophys-

ical^ determined channels. The V 2G operator approximates a band-pass

filter with a bandwidth at halfpower of 1 .25 octaves. It can be approximated

closely by a DOG, the best approximation from an engineering point of

view being achieved when the two Gaussians that form the DOG have

space constants in the ratio 1:1.6. Figure 2-16 shows how good this approx-

imation is. Wilson's estimate of the ratio for his sustained channels was

1:1.75.

In order to relate the numerical values of w
1 _ D measured by Wilson

and Bergen to the values of the diameter w2 _ D of the central part of the

receptive fields of the underlying V 2G operators, one must remember to

multiply their values by V2, since all the measurements Wilson made

correspond to a linear projection of the circularly symmetric receptive
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Figure 2-16. The best engineering approximation to V 2G (shown by the contin-

uous line), obtained by using the difference of two Gaussians (DOG), occurs when
the ratio of the inhibitory to excitatory space constraints is about 1:1.6. The DOG
is shown here dotted. The two profiles are very similar. (Reprinted by permission

from D. Marr and E. Hildreth, "Theory of edge detection," Proc. R. Soc. Lond. B
207, pp. 187-217.)

fields. Hence Wilson's N channel would correspond to a V 2G filter with

w
2 -d

= 3.1 V2 = 4.38', which corresponds to the diameter of about nine

foveal cones. This seems rather large for the smallest channel, and argu-

ments based on a theoretical analysis of acuity and resolution suggest that

a smaller one exists. The diameter w
2 _ D of the central part of its receptive

field should be about 1' 20", and because of diffraction in the eye, it could

correspond to the midget ganglion cells, whose receptive field centers are

driven by a single cone (see Marr, Poggio, and Hildreth, 1980).

Thus ifWilson s figures are correct, they tell us the sizes that the initial

center-surround operators should have in order to produce the observed

psychophysical adaptation and other effects. These numbers can then in

principle be related to the measurements made by physiologists, in the

manner that we shall derive in the next section. The final point to note

here is that Campbell also found the adaptation to be orientation specific

(and it may also be specific for the direction of movement). This we attri-

bute to the stage at which zero-crossings are detected, which is best

explained by looking at the neurophysiology.
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The physiological realization of the V 2Gfilters

It has been known since Kuffler (1953) that the spatial organization of the

receptive fields of the retinal ganglion cells is circularly symmetric, with a

central excitatory region and an inhibitory surround. Some cells, called

on-center cells, are excited by a small spot of light shone on the center of

their receptive fields, and others are inhibited. Rodieck and Stone (1965)

suggested that this organization was the result of superimposing a small

central excitatory region on a larger inhibitory "dome" that extends over

the entire receptive field. Enroth-Cugell and Robson (1966) described the

two domes as Gaussians, thus describing the receptive field as a difference

of two Gaussians (a DOG). In addition, Enroth-Cugell and Robson divided

the larger retinal ganglion cells into two classes, X and Y, on the basis of

their temporal response properties. X cells show a fairly sustained

response, whereas the Y cells show a relatively transient one—a distinction

that is preserved at the lateral geniculate nucleus. Wilson's sustained chan-

nels probably correspond to the physiological X cells, and the transient, to

the Y cells (Tolhurst, 1975).

Thus it is not too unreasonable to propose that the V 2G function is

what is carried by the X cells of the retina and lateral geniculate body,

positive values being carried by the on-center X cells, and negative values

by the off-center X cells. To illustrate the physiological point, Figure 2-17

compares the predicted X-cell responses, using V 2
G, against actual pub-

lished records of retinal and lateral geniculate cells, which we identified

as X cells, for three stimuli—an edge, a thin bar, and a wide bar. As we can

see, the qualitative agreement is very good. I shall discuss the function of

the Y cells in Section 3.4.

The physiological detection ofzero-crossings

From a physiological point of view, zero-crossing segments are easy to

detect without relying on the detection of zero values, which would be a

physiologically implausible idea. The reason is that just to one side of the

zero-crossing will lie a peak positive value of the filtered image V 2G * /,

and just to the other side, a peak negative value. These peaks will be roughly

w
2 _ D /V2 apart, where w2 _ D is the width of the receptive field center of

the underlying filter V 2
G. Hence, just to one side, an on-center X cell will

be firing strongly, and just to the other side, an off-center X cell will be

firing strongly; the sum of their firings will correspond to the slope of the

zero-crossing—a high-contrast intensity change producing stronger firing

than a low-contrast change. The existence of a zero-crossing can therefore
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Figure 2-1 7. Comparison of the predicted responses of on- and off-center X cells with electro-

physiological recordings. The first row shows the response to V G * / for an isolated edge, a thin

D is the width of the central excitatory region of the receptivebar (bar width = 0.5^ _ D , where
j

field projected onto a line), and a wide bar (bar width = 2.5^ _ D ). The predicted traces are

calculated by superimposing the positive (in the second row) or the negative (in the fourth row)

parts of V G * I on a small resting or background discharge. The corresponding physiological

responses (third and fifth rows) are taken from Dreher and Sanderson (1973, figs. 6d and 6e) for

the responses to an edge and from Rodieck and Stone (1965, figs. 1 and 2), using traces from bars

1° and 5° wide. (Reprinted by permission from D. Marr and S. Ullman, "Directional selectivity and

its use in early visual processing," Phil. Trans. R. Soc. B 275, pp. 483-524.)
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Figure 2-18 A mechanism for detecting oriented zero-crossing segments. In (a),

if P represents an on-center geniculate X-cell receptive field, and Q an off-center,

then a zero-crossing must pass between them if both are active. Hence, if they are

connected to a logical AND gate as shown, the gate will detect the presence of the

zero-crossing. If several are arranged in tandem as in (b) and are also connected

by logical AND's, the resulting mechanism will detect an oriented zero-crossing

segment within the orientation bounds given roughly by the dotted lines. Ideally,

we would use gates that responded by signaling their sum only when all their P

and Q inputs were active. (Reprinted, by permission, by D. Marr and E. Hildreth,

"Theory of edge detection," Proc. R. Soc. Lond. B 207, pp. 187-217.)

be detected by a mechanism that connects an on-center cell and an off-

center cell to an AND gate,* as illustrated in Figure 2-18(a).

It is a simple matter to adapt this idea to create an oriented zero-

crossing segment detector: simply arrange on- and off-center X cells into

two columns, as illustrated in Figure 2-18(b). If these units are all con-

nected by AND gates or some suitable approximation to them, the result

will be a unit that detects a zero-crossing segment whose orientation lies

roughly between the dotted lines of Figure 2-18(b). This idea provides the

basis for the model of cortical simple cells, which we shall derive in Section

3 4 It is enough to note here that such units would be orientation depen-

dent and spatial-frequency-tuned (as well as directionally selective, after

the modifications of Section 3.4). These are the units, I believe, that Camp-

bell and Robson found that they could adapt in their 1968 experiments.

*A simple logical device that produces a positive output only when all of its inputs are positive.
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Figure 2-19. The meaning of Logan's theorem, (a) A stochastic, band-limited

Gaussian signal fix), (b) The passband—in the frequency domain—of an ideal

one-octave band-pass filter, (c) The result fb(x) of filtering (a) with the filter

described by (b). Provided that (c) has no zeros in common with its Hilbert trans-

form, Logan's theorem tells us that (c) is determined, up to a multiplicative constant,

by the positions of its zero-crossings alone. The aspect of Logan's result that is

important for early visual processing is that, under the right conditions, the zero-

crossings alone are very rich in information. (Reprinted by permission from D.

Marr, T Poggio, and S. Ullman, "Bandpass channels, zero-crossings, and early visual

information processing,"/. Opt. Soc. Am. 69, 1979, fig. 1.)

Thefirst complete symbolic representation of the image

Zero-crossings provide a natural way of moving from an analogue or con-

tinuous representation like the two-dimensional image intensity values

l{xy) to a discrete, symbolic representation. A fascinating thing about this

transformation is that it probably incurs no loss of information. The argu-

ments supporting this are not yet secure (Marr, Poggio, and Ullman, 1979)

and rest on a recent theorem of B. F. Logan (1977). This theorem states

that provided certain technical conditions are satisfied, a one-octave band-

pass signal can be completely reconstructed (up to an overall multiplicative

constant) from its zero-crossings. Figure 2-19 illustrates the idea; the proof

of the theorem is difficult, but consists essentially of showing that if the

signal is less than an octave in bandwidth, then it must cross the .xr-axis at

least as often as the standard sampling theorem requires.

Unfortunately, Logan's theorem is not quite strong enough for us to

be able to make any direct claims about vision from it. The problems are
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twofold. First, the zero-crossings in the visual application lie in two dimen-

sions and not one, and it is often difficult to extend sampling arguments

from one dimension to two. Second, the operator V 2G is not a pure one-

octave band-pass filter; its bandwidth at half power is 1.25 octaves, and at

half sensitivity, 1.8 octaves. On the other hand, we do have extra informa-

tion, namely, the values of the slopes of the curves as they cross zero, since

this corresponds roughly to the contrast of the underlying edge in the

image. An analytical approach to the problem seems to be very difficult,

but in an empirical investigation, Nishihara (1981) found encouraging evi-

dence supporting the view that a two-dimensional filtered image can be

reconstructed from its zero-crossings and their slopes.

Figure 2-20 summarizes pictorially the point we have now reached.

It shows the image, of a sculpture by Henry Moore, as seen through three

different-sized channels; that is, it shows the zero-crossings of the image

after filtering it through V 2G filters where the Gaussians, G, have three

different space constants. The next question is, What should we do with

this information?

The Raw Primal Sketch

Up to now I have studiously avoided using the word edge, preferring

instead to discuss the detection of intensity changes and their representa-

tion by using oriented zero-crossing segments. The reason for this is that

the term edge has a partly physical meaning—it makes us think of a real

physical boundary, for example—and all we have discussed so far are the

zero values of a set of roughly band-pass second-derivative filters. We have

no right to call these edges, or, if we do have a right, then we must say so

and why. This kind of distinction is vital to the theory of vision and probably

to the theories of other perceptual systems, because the true heart of visual

perception is the inference from the structure of an image about the struc-

ture of the real world outside. The theory of vision is exactly the theory of

how to do this, and its central concern is with the physical constraints and

assumptions that make this inference possible.

We meet this for the first time now, as we address the problem posed

by Figure 2-20—namely, How do we combine information from the dif-

ferent channels? The V 2G filters that are actually used by the visual system

are an octave or more apart, so there is no priori reason why the zero-

crossings obtained from the different-sized filters should be related. There

is, however, a physical reason why they often should be. It is a consequence

of the first of our physical assumptions of the last chapter, and it is called

the constraint ofspatial localization (Marr and Hildreth, 1980). The things
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(a) (b)

(d)

Figure 2-20. The image (a) has been convolved with V 2G having w
2 _ D =

2V2 a = 6, 12, and 24 pixels. These filters span approximately the range of filters

that operate in the human fovea, (b), (c), and (d) show the zero-crossings thus

obtained. Notice the fine detail picked up by the smallest. This set of figures neatly

poses the next problem—How do we combine all this information into a single

description? (Reprinted by permission from D. Marr and E. Hildreth, "Theory of

edge detection," Proc. R. Soc. Lond. B 204, pp. 301-328.)

in the world that give rise to intensity changes in an image are (1) illumi-

nation changes, which include shadows, visible light sources, and illumi-

nation gradients; (2) changes in the orientation or distance from the viewer

of the visible surfaces; and (3) changes in surface reflectance.

The critical observation here is that, at their own scale, these things

can all be thought of as spatially localized. Apart from the occasional dif-

fraction pattern, the visual world is not constructed of ripply, wavelike

primitives that extend over an area and that add together over it (compare

Marr, 1970, p. 169). By and large, the visual world is made of contours,

creases, scratches, marks, shadows, and shading, and these are spatially

localized. Hence, it follows that if a discernable zero-crossing is present in
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an image filtered through V 2G at one size, then it should be present at the

same location for all larger sizes. If this ceases to be so at some larger size,

it will be for one of two reasons: Either two or more local intensity changes

are interfering—being averaged together—in the larger channel, or two

independent physical phenomena are operating to produce intensity

changes in the same region of the image but at different scales. An example

of the first situation is a thin bar, whose edges would be accurately located

by small channels but not by large ones. Situations of this kind can be

recognized by the presence of two nearby zero-crossings in the small

channels. An example of the second situation is a shadow superimposed

on a sharp reflectance change, which can be recognized if the zero-cross-

ings in the large channels are displaced relative to those in the smaller

ones. If the shadow has exactly the correct position and orientation, the

locations of the zero-crossings may not contain enough information to

separate the two physical phenomena, but in practice this situation will

be rare.

Thus, the physical world constrains the geometry of the zero-crossings

from the different-sized channels. We can exploit this by using it to for-

mulate the spatial coincidence assumption:

If a zero-crossing segment is present in a set of independent V G

channels over a contiguous range ofsizes, and the segment has the same

position and orientation in each channel, then the set ofsuch zero-crossing

segments indicates thepresence ofan intensity change in the image that is

due to a single physicalphenomenon (a change in reflectance, illumina-

tion, depth, or surface orientation).

In other words, provided that the zero-crossings from independent

channels of adjacent sizes coincide, they can be taken together. If the zero-

crossings do not coincide, they probably arise from distinct surfaces or

physical phenomena. It follows (1) that the minimum number of V 2G

channels required to establish physical reality is two and (2) that if there

is a range of channel sizes, reasonably well separated in the frequency

domain and covering an adequate range of the frequency spectrum, rules

can be derived for combining their zero-crossings into a description whose

primitives are physically meaningful (Marr and Hildreth, 1980).

The actual details of the rules are quite complicated because a number

of special cases have to be taken into account, but the general idea is

straightforward. Provided the zero-crossings in the larger channels are

"accounted for" by what the smaller channels are seeing, either because

they are in one-to-one correspondence with the zero-crossings in the
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smaller channels or because they are blurred, averaged copies of them,

then all the evidence points to a physical reality that is roughly what the

smaller channels are seeing, perhaps modified and smoothed a little by

the noise-reducing, averaging effects of the larger ones. In order to deter-

mine whether this accountability holds, configurations in which the zero-

crossings of the smaller channels lie close to one another have to be

detected explicitly, because it is these situations that can "fool" the larger

channels. Hence the need for the explicit detection of spatial configurations

such as thin bars and blobs.

If the larger channels' zero-crossings cannot be accounted for by what

the smaller channels are seeing, then new descriptive elements must be

developed, because the larger channels are recording different physical

phenomena. This can happen in many ways: There may be a soft shadow,

for example, or a wire grid in focus with an out-of-focus landscape behind;

or a water beetle scurrying along the ripply surface of a pond with the

weeds at the bottom forming a defocused background.

The description of the image to which these ideas lead is called the

rawprimal sketch (Marr and Hildreth 1980; Hildreth, 1980). Its primitives

are edges, bars, blobs, and terminations, and these have attributes of ori-

entation, contrast, length, width, and position. An example appears in Fig-

ure 2-21. It can be thought of as a binary map (Figure 2-2 la) specifying

the precise positions of the edge segments, together with the specifications

at each point along them of the local orientation and of the type and extent

of the intensity change (Figure 2-2 Id). Blob (Figure 2-2 lc), bar (Figure

2-2 le), and discontinuity (termination) primitives can be made explicit in

the same way. The representation of a long straight line, for example,

consists of a termination, several segments having the same orientation,

followed by a termination at the other end, as shown in Figure 2-22(a).

The width, contrast, and orientation are in principle specified all along the

way, although in practice it would be enough to provide this information

at an adequate sampling interval. If the line is thicker than about the value

ofw for the smallest available channel, independent edge descriptions for

its two sides would also be available. If the line curves, the orientation

would gradually change along it (Figure 2-22b). If a discontinuity in ori-

entation exists at some point along the line, then its location will be iden-

tified with a termination or discontinuity assertion (Figure 2-22c).

The raw primal sketch is a very rich description of an image, since it

contains virtually all the information in the zero-crossings from several

channels (two in the example of Figure 2-21). Its importance is that it is

the first representation derived from an image whose primitives have a

high probability of reflecting physical reality directly.
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Figure 2-21. (opposite) The raw primal sketch as computed from two channels,

(a), (b) The zero-crossings obtained from the image of Figure 2-12 by using masks

with w
2 _ D

= 9 and 18 pixels. Because there are no zero-crossings in the larger

channel that do not correspond to zero-crossings in the smaller channel, the loca-

tions of the edges in the combined description also correspond to (a), (c), (d), and

(e) Symbolic representations of the descriptors attached to the zero-crossing loca-

tions shown in (a), (c) Blobs, (d) Local orientations assigned to the edge segments,

(e) Bars. The diagrams show only the spatial information contained in the descrip-

tors. Typical examples of the full descriptors are:

BLOB EDGE BAR

(POSITION 146 21) (POSITION 184 23) (POSITION 118 134)

(ORIENTATION 105) (ORIENTATION 128) (ORIENTATION 128)

(CONTRAST 76) (CONTRAST - 25) (CONTRAST - 25)

(LENGTH 16) (LENGTH 25) (LENGTH 25)

(WIDTH 6) (WIDTH 4) (WIDTH 4)

The descriptors to which these correspond are marked with arrows. The resolution

of this analysis of the image of Figure 2-12 roughly corresponds to what a human

would see when viewing it from a distance of about 6 ft. (Reprinted, by permission,

from D. Marr and E. Hildreth, "Theory of edge detection," Proc. R. Soc. Lond. B

204, pp. 301-328.)

Subjectively, you are aware of the raw primal sketch—and of the full

primal sketch of Section 2.5—but you are not aware of the zero-crossings

from which it is made. In order to see what the larger channels are telling

your brain, you have to screw up your eyes or defocus the image somehow.

Only by doing so, for example, can you see Abraham Lincoln in L. D.

Harman's discretely sampled and quantized picture of him (Figure 2-23),

and only by doing so can you see lines running diagonally down a chess-

board (Figure 2-24). Although the larger channels are "seeing" these things

all the time, as shown in Figure 2-23, what they see is adequately accounted

for by the zero-crossings that occur in the smaller channels. If the middle

spectral frequencies are removed from the picture of Lincoln, this is no

longer the case. The processes that combine zero-crossings now find no

relation between what the smaller channels see and what the larger ones

see, so they both give rise to primitives in the raw primal sketch. The result,

as Harmon and Julesz (1973) found, is that one sees Abraham Lincoln

behind a visible graticule. The primal sketch machinery assumes that the

two different kinds of information are due to different physical phenomena,

so we see both.
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(a)

// °\

(b)

Vs
\s

\X
(C)

Figure 2-22. The raw primal sketch represents a straight line as a termination,

several oriented segments, and a second termination (a). If the line is replaced by

a smooth curve, the orientations of the inner segments will gradually change (b).

If the line changes its orientation suddenly in the middle (c), its representation will

include an explicit pointer to this discontinuity. Thus in this representation, smooth-

ness and continuity are assumed to hold unless explicitly negated by an assertion.
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Figure 2-23. We cannot sense the primitive zero-crossings, only the description to which they

give rise in the raw primal sketch. This can be seen in L. D. Harmon's discretely sampled and

quantized image of Abraham Lincoln (a). No amount of voluntary effort allows us to see Lincoln

without defocusing the image or squinting the eyes, despite the fact that the zero-crossings in the

larger channels are producing an approximate representation of Lincoln's face, (b), (c), (d) The

zero-crossings from the three sizes of the V 2G operator used in Figure 2-20.
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Philosophical Aside

It is interesting that the visual system takes this spatial, physical approach

so seriously. It apparently does not allow the perception of a raw zero-

crossing just on its own. Additional evidence, like a coincident zero-cross-

ing from another channel seems to be required. Zero-crossings are also

thought to form the input for the stereo matching process (see Chapter 3).

Here again the input from two channels is combined, but this time from

different eyes. Similar arguments hold for analyses based on directional

selectivity, which is probably detected at the level of zero-crossings (see

Section 3.4). However, once more, additional information is probably

required before it is used, in this case an analysis of the coherence of the

local motions in the visual field. The conclusion is that zero-crossings alone

are insufficient, and this has a deep message for the whole approach,

namely, that the visual system tries to deal only with physical things, using

rules based on constraints supplied by the physical structure of the world

to build up other descriptions that again have physical meanings.

This means that extreme care is required in the formulation of theories

because nature seems to have been very careful and exact in evolving our

visual systems. In this respect it is a great help to have the framework of

the three levels explicitly available. Having to formulate the computational

theory of a process introduces a great and useful discipline into the subject.

No longer are we allowed to invoke a mechanism that seems to have some

features in common with the problem and to assert that the mechanism

works like the process. Instead, we have to analyze exactly what will work

and be prepared to prove it. Stereo matching, for example, is like a lot of

other things, but it is not the same as any of them. It is like a correlation,

but it is not a correlation, and if it is treated like a correlation, the methods

chosen will be unreliable. The job of stereo fusion is to match items that

have definite physical correlates, because the laws of physics can guarantee

only that items will be matchable if they correspond to things in space that

have a well-defined physical location. Gray-level pixel values do not. Hence,

gray-level correlation fails.

Again, the enterprise of looking for structure at different scales in an

image, as illustrated by Figure 2-7 and developed in the next section, is

reminiscent of ideas like filtering the image with different band-pass filters.

Campbell (1977), for example, explicitly suggested that the fine details of

a tank, like its registration number, might be explored using a high-pass

filter, whereas the overall outline, which indicates that it is a tank, may be

derived from a low-pass-filtered image. The point is once again that, just

as for gray-level correlation and stereopsis, these ideas based on Fourier

theory are like what is wanted, but they are not what is wanted; the structure
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of the physical world does not allow us to deduce, for example, that a low-

pass-filtered image contains the important information about how the

world is physically and spatially arranged at that scale. We can see how this

could be so from the chessboard of Figure 2-24. One important aspect of

the organization of this image is that the black and white squares line up

horizontally and vertically as well as diagonally. To be sure, the approach

of low-pass spectral filtering can tell us about the diagonal organization

but not about the horizontal and vertical, and mechanisms for detecting

the horizontal and vertical arrangements (making tokens for the squares

and noticing how they group) will also find the diagonal organization. So

the filtering approach is both unnecessary and deficient.

Another example is provided by the herringbone pattern of Figure

2-2. The vertical organization of the stripes is a clear example of an impor-

tant spatial organization, yet it cannot be detected by Fourier methods be-

cause there is no power in the vertical orientation. However, such orga-

nization is easily detectable by methods that take a spatial, physical

approach, starting with a representation of the basic intensity changes and

then using grouping procedures based on similarity, spatial proximity, and

arrangement to work up from there (Marr, 1976). Mayhew and Frisby

(1978b) were among the first to appreciate the importance of this point,

and they adduced further evidence in its support in experiments that

explored our ability to perform texture discrimination tasks. I shall return

to their work later on.

Finally, let us consider some evidence that terminations are made

explicit at this stage and that they are important. I feel that it is a good thing

Figure 2-24. (opposite) The Fourier spectrum of a chessboard pattern (of infinite

size) has all its power in the diagonal directions, and none in the horizontal or

vertical. Yet in (a) we can see that the vertical, horizontal, and diagonal spatial

organizations are all equally visible while in (b) the diagonal organizations are

slightly more prominent, (c), (d), and (e) show the analyses of zero-crossings from

V 2G operators of sizes w
2 _ D

= 12, 24, and 48 pixels, respectively, on a pattern

whose block size is 24 pixels, thus giving a range ofw values from half to twice the

size of the squares. In the first column are the convolution outputs. The second

column shows the zero-crossings, with slope displayed as intensity (light and dark

intensities representing positive and negative contrasts). In the third column, all

the zero-crossings are displayed at uniform intensity; finally, the fourth column

provides a cross-section of the convolution output near the zero-crossing contours,

(f) and (g) illustrate symbolically the description obtained by channels much

smaller and much larger, respectively, than the block size and should be compared

with the perceptions one obtains from the chessboards in (a) and (b)—notice, for

example, the roughly diagonal organization we see in looking at (b).
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(a)

(d)

Figure 2-25. Examples of terminations being made explicit. In (a) and (b) subjective contours

are constructed by joining termination points. In (c), points of discontinuity in orientation are seen

to have a linear arrangement. In the stereogram (d), terminations or discontinuities in the small

horizontal lines are probably being matched between the images to yield a square in depth. (Figs,

(a), (b) reprinted by permission from D. Marr, "Early processing of visual information," Phil. Trans.

R. Soc. Lond.B275, 1976, figs. 9(a)(d). Fig. (d) reprinted by permission from B. Julesz, Foundations

of cyclopean perception, University of Chicago Press, 1971, fig. 3-6-3.)

to give this information here because although edges, bars, and blobs are

rather obvious things, terminations are much more symbolic and abstract.

The reader may therefore need some additional persuasion that these

things are indeed created and at a rather low level.

Figure 2-25 provides some examples on this point. We have defined

a termination as a discontinuity in the zero-crossing orientation or as the

termination point of a bar. Figures 2-25(a)-(c) show clear examples

where such terminations line up and where it is difficult to think of meth-

ods for detecting this fact that do not make the actual positions of the

discontinuities explicit. Figure 2-25(d), from Julesz (1971, fig. 3.6-3), is

even more interesting, because the things that are being matched in this

stereo pair are probably the small discontinuities in the horizontal lines,



2.2 Zero-Crossings and the Raw Primal Sketch 79

and these images can be seen in stereo even when the discontinuities are

tiny—less than 20 seconds of arc. Thus not only are such terminations used

by stereopsis (as well as our being subjectively aware of them), but they

are apparently used quite routinely even when the discontinuities are in

the range of hyperacuity (smaller than a retinal receptor). The human

visual system is an amazing machine!

2.3 SPATIAL ARRANGEMENT
OF AN IMAGE

We come now to the question of representing spatial relations. Up to now,

I have been content to assume that each item—each zero-crossing or each

descriptive element of the raw primal sketch—has a coordinate in the

image that determines its position there. This is reflected in our computer

implementation by our use of a bit map of the image to represent basic

positional information. That is, as in Figure 2-2 1(a), whenever there is a

descriptive element, a two-dimensional array the size of the image has a 1

at the corresponding position. This 1 is also associated with a pointer to

the element's actual description, which has the form shown in the legend

to Figure 2-21. Like others before me, I have found that this rather literal

representation, which is reminiscent of the topographically organized pro-

jections found in the early visual pathways, provides the most convenient

starting point for examining geometrical relations in the image.

The reason for this is that there is quite a wide range of spatial rela-

tionships that needs to be made explicit in order to get at the useful infor-

mation in an image. Once again we have the general point that these spatial

relationships—things like density, collinearity and local parallelism—are

all implicit in the positions of each item, just as the binary decomposition

of thirty-seven is implicit in its representation as XXXVII. But if that num-

ber's binary coefficients are necessary for some purpose, they must be

made explicit at some point, so it would be advantageous to use the rep-

resentation 100101.

A bit map is a good representation from which to start because it

makes it relatively easy to limit the search of, for example, the raw primal

sketch to just those elements in the local neighborhood of interest. Thus

if we wish to know the density of certain elements in a circular neighbor-

hood, we simply search that neighborhood in the bit map. When looking

for collinear arrangements, we take a pair and search outward in the bit

map along the two directions at roughly the specified orientation. The

important point is that the bit map saves the trouble of searching through

the whole list of primal sketch descriptors checking each coordinate to see
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whether it falls within the specified neighborhood. The underlying reason

why using a literal bit map representation of an image is more efficient is

that most of the spatial relationships that must be examined early on are

rather local. If we had to examine arbitrary, scattered, pepper-and-salt-like

configurations, then a bit map would probably be no more efficient than

a list.

It is not too hard to see the consequences of the bit map representation

in terms of nerve cells. If a neuron is to measure the density of a particular

type of token in a neighborhood of some fixed size, then provided that the

neurons representing the tokens are roughly topographically organized,

all our density neuron has to do is count how many of the token neurons

are active. Similarly, if a neuron is to measure how much local activity is

present at a particular orientation, then provided that the neural represen-

tation has a roughly topographical organization, the "oriented-activity neu-

ron" need only count how many neurons tuned to approximately the ori-

entation in question are active within a particular physical neighborhood

of the cortex. Of course, if this physical neighborhood is circular, then the

neighborhood in image coordinates will not be exactly circular, but it will

be roughly so, which is usually good enough.

The reason for laboring this point is that many people have difficulty

relating the idea of an .^-coordinate system of the type that might be used

in a computer program to the sort of thinking that must be employed for

neurons. I suggested earlier that relating this idea need not be too much

of a problem, and I hope it is now clear that at least for certain aspects of

local geometry, notions based on rough topographical representation and

locally connected receptive fields can provide machinery of adequate

power. The other half of the game, the rather precise representation of

particular local geometrical relations, is something we turn to now.

The critical question is, What spatial relations are important to make

explicit now, and why? The answer to this, of course, depends on the

purpose for which the representation is to be used. For us, the purpose is

to infer the geometry of the underlying surfaces, and we can use the phys-

ical assumptions formulated in Section 2.1, together with the natural con-

sequences for an image of changes in depth and surface orientation. This

leads us to the following list of image properties, whose detection will aid

the task of decoding surface geometry:

1. Average local intensity, from the first physical assumption (changes

in average intensity can be caused by changes in illumination, perhaps due

to changes in depth, and by changes in surface orientation or surface

reflectance).
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2. Average size of items on a surface that are similar to one another,

in the sense of the second and third physical assumptions (the term size

includes the concepts of length and width).

3. Local density of the items defined in image property 2.

4. Local orientation, if such exists, of the items defined in image

property 2.

5. Local distances associated with the spatial arrangement of similar

items (the third and fourth physical assumptions), that is, the distance

between neighboring pairs of similar items.

6. Local orientation associated with the spatial arrangement of similar

items (the third, fourth, and fifth physical assumptions), that is, the orien-

tation of the line joining neighboring pairs of similar items.

From a representational point of view, the three broad ideas that we

need here are (1) tokens to represent items, and we have already seen that

they form one of the pillars of the primal sketch; (2) the notion of similarity

between these tokens, and this we have also already encountered (in Figure

2-3 for instance); and (3) spatial arrangement. This last idea has two parts.

The one that we have encountered already has to do with density measures

of various kinds, and these can be made by counting things in neighbor-

hoods; this gives us image properties 3 and 4 above. But image properties

5 and 6 require a new idea, a new representational primitive on which we

can base the analysis of the local configurations of tokens. The information

that needs to be made explicit here is the distance between and relative

orientation of two similar tokens. To do this, I propose a primitive called

the virtual line, which is constructed between neighboring similar tokens

and has the properties of orientation and length. It also indicates somewhat

the way in which the two tokens it joins are similar, so that virtual lines

joining two pairs of dissimilar tokens are treated as dissimilar (in the sense

of the third physical assumption).

Perceptually, virtual lines are not meant to correspond to subjective

contours, although they may be their precursors. Subjective contours, in

this theory, are a later construct. They are made in the 2V2-D sketch, part

of whose business it is to make explicit discontinuities in the distance of

visible surfaces from the viewer. Virtual lines, on the other hand, are con-

cerned with representing the organization of images, not surfaces. They

are what enables us to see the flow in the Glass patterns (see Figure 2-3)

or to see the different rivalrous organizations of Figure 2-5.

The notion of a virtual line is very attractive from a computational

point of view, and Stevens (1978) undertook his study of Glass patterns to

try to acquire some evidence for the psychophysical existence of such lines
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and also to explore the idea of tokens in the images—the supposed entities

that virtual lines were thought to connect.

Stevens' study was extremely interesting, for in the space of one short

experimental investigation he was able to make seven fascinating points,

several of them quite unexpected:

1. The local orientation organization in a Glass pattern can be

recovered by a purely local algorithm, illustrated in Figure 2-26. The basic

idea is to connect neighboring points with virtual lines and then to search

locally among these virtual lines for the predominant orientation. By split-

ting patterns into several portions, each having a different transformation

(see Figure 2-27), Stevens showed that perception of the global gestalt,

contrary to Glass' (1969) suggestion, is not necessary for recovery of the

local orientation.

2. If our perceptual analysis depends, like Stevens' algorithm, on the

analysis of the distribution of orientations of virtual lines joining together

dots in the pattern, the virtual lines are created between only nearby dots.

The reasons for this are twofold; first and more obvious, the predominant

local orientation changes as one moves globally over the pattern; second

and not quite so obvious, the more virtual lines one creates from each dot,

the more random the orientation distribution becomes locally and the

finer must be the buckets in the histogram of the local orientation distri-

bution that is being used to discover the predominant local orientation. If

Figure 2-26. (opposite) (a) Stevens' algorithm for recovering the local orientation

organization in a Glass pattern has three fundamental steps. Place tokens that are

defined in the image are the input to the algorithm, which is applied in parallel to

each token. Since, in the case of the Glass dot patterns, each dot contributes a place

token, the first step is to construct a virtual line from a given dot to each neighboring

dot (within some neighborhood centered on the dot). A virtual line represents the

position, separation, and orientation between a pair of neighboring dots. To favor

relatively nearer neighbors, relatively short virtual lines are emphasized by means

of a simple weighting function. The second step is to make a histogram of the

orientations of the virtual lines that were constructed for each of the neighbors.

For example, the neighbor D would contribute orientations AD, DF, DG, and DH
to the histogram. The final step (after smoothing the histogram) is to determine

the orientation at which the histogram peaks and to select the virtual line (AB)

closest to that orientation as the solution, (b) The results (on the right) of applying

the algorithm to the patterns on the left. (Reprinted by permission from K. A.

Stevens, "Computation of locally parallel structure," Biol. Cybernetics 29 (1978),

19-28, figs. 4, 5.)
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Figure 2-27. The algorithm used by our

visual systems for detecting the local ori-

entation structure is also a local one, as one

can see from this pattern. Different por-

tions of this pattern have different local

orientation structures, and this can easily

be discerned. (Reprinted by permission

from K. A. Stevens, "Computation of locally

parallel structure," Biol. Cybernetics 29

(1978), 19-28.)

the orientation is analyzed to an accuracy of 10°-15°, then not more than

about four virtual lines can be made, on the average, from each dot. Stevens

also established that more than one virtual line is made. In a personal

communication, he showed that only two have to be made.

3. The phenomenon scales linearly over a range of densities covering

two orders of magnitude.

4. The idea that virtual lines join abstract tokens which can be defined

in several ways is supported by examples like Figure 2-28, in which one

of the sets of dots is replaced by small lines having randomly chosen

orientations.

5. The tokens do, however, have to be reasonably similar in order for

the analysis to succeed—in our terms, in order for the virtual lines to be

inserted (Figure 2-3; Glass and Switkes, 1976). Stevens' own example of

this, which I described in Section 2.1, consisted of three superimposed dot

patterns, two dim and one bright. We see only the organization inherent

in the dim dots. This is evidence both for the idea of tokens and for the

notion of similarity. It proves that even at this early stage (Glass patterns

can be seen in under 80 ms even with random-dot presentations imme-

diately before and after), the analysis of the image is being carried out in

quite abstract terms.

6. Interestingly, if the short lines at the random orientations shown in

Figure 2-28 are replaced by short lines having a common orientation, as

in Figure 2-29, rivalry appears between the overall orientations due to the

short lines and due to the structure of the Glass pattern—in our terms,

between the orientations of the real and the virtual lines. This bears upon

how more global analysis of the image is implemented and controlled.
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- Figure 2—28. As we saw in Figure 2-3, the

tokens in the two patterns do not have to

be identical in order for their spatial orga-

nization to be apparent. They do, however,

have to be similar. (Reprinted by permis-

sion from K. A. Stevens, "Computation of

locally parallel structure," Biol. Cybernetics

29, 1978, 19-28).

Figure 2—29. Here the superimposed

pattern consists of small lines all having the

same orientation. Interestingly, we perceive

a kind of rivalry between this orientation

and the orientation due to the spatial orga-

nization of the pattern. (Reprinted by per-

mission from K. A. Stevens, "Computation

of locally parallel structure," Biol. Cyber-

netics 29, 1978, 19-28.)

7. Finally, Stevens showed that there is little or no hysteresis in our

perception of these patterns. The point at which the organization seems to

disappear as the dot patterns are separated is very nearly the point at which

the organization reappears as the patterns are brought together again. We
were surprised by this. The reason we looked for it was Fender andJulesz s

(1967) demonstration of a strong hysteresis effect in stereopsis. This had

led Poggio and me to formulate a cooperative algorithm for the stereo

matching problem, and the idea of cooperative processes as a way of writ-

ing an algorithm directly from constraints was an exciting one that was just

emerging then (see also Zucker, 1976). The Glass pattern problem looked

very well suited to a cooperative approach based on the constraints of the

uniqueness and continuity of local orientation. Stevens' finding, however,

showed that our perceptual systems probably do not employ a cooperative

algorithm for this problem. Quite soon afterwards, we also realized that
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our cooperative stereo algorithm was not the one used by our own visual

systems and that matching was probably achieved by an algorithm involving

very little cooperativity Thus the opinion gradually formed that our visual

systems do not use cooperative or purely iterative algorithms if it is possible

to avoid them. I shall discuss some possible reasons for this later on.

Stevens' study left us somewhat more confident both about the ques-

tions we were asking and about some of the details of the primal sketch.

At about that time Schatz (1977) argued that the raw primal sketch and

virtual lines were by themselves sufficient to explain texture discrimination.

The argument did not succeed, however, and to see why, we need to turn

our attention to the more complicated levels of image representation that

we call the full primal sketch.

2.4 LIGHT SOURCES AND TRANSPARENCY

Although the main stream of our account is concerned with spatial aspects

of the image and visible surfaces, it is important not to forget that we are

sensitive to other useful physical qualities of the visual world as well. One

of these has to do with the detection of light sources—the subjective quality

of fluorescence.

An important contribution to the visual detection of light sources was

made by Ullman (1976b) in an article of characteristic elegance. He dis-

cussed six methods that the visual system might possibly use to help it

detect light sources and then explored them empirically using achromatic

"Mondrian" stimuli of the type introduced by Land and McCann (1971) in

their study of lightness. These stimuli, named after the painter Piet Mon-

drian, consist of an array of rectangular shapes of black, gray, or white (as

in Figure 2-30). In Ullman's display, one of these rectangles was sometimes

a light source.

Ullman discussed light-source-detection methods based on the high-

est intensity in a field, high absolute intensity, high intensity compared with

the average in the field, high contrast, and some other parameters. He

found that none of these factors defined necessary conditions for the per-

ception of a light source, though a contrast ratio of about 30:1 does provide

a sufficient condition. High contrast is not, however, necessary; for example,

a light source was perceived in a Mondrian where the ratio of intensities

in no place exceeded 3:1.

Ullman then proposed a method based on the idea illustrated in Fig-
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Figure 2-30. A Mondrian stimulus of the sort introduced by Land and McCann

and used by Ullman in his study of fluorescence.

ure 2-31. In this figure, the x-axis represents distance along a surface

illuminated from the right and which consists of three regions, A, B, and

C. In A, the surface has reflectance rv and in B and C it has reflectance r
2

< r
2 ; in C there is also a source present underneath the surface. A camera

looks down at the surface and records the intensity / at different points in

the image, and the values of / have been plotted in the figure.

The idea behind Ullman s method is this: At the border betweenA and

B, the intensity / changes and so does the intensity gradient V/, but they

both change by the same amount so that the ratio V/// remains constant.
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Figure 2-31. The idea behind the visual detection of light sources. RegionsA and

B have reflectances r
r
and r

2 , and give rise to intensities / as shown. The value of

/ and of its gradient V/ change together between A and B, so that V/// remains

constant. At C, however, a source S is added. This changes / but not V/, as shown.

Hence the value of V/// changes at a source boundary. This fact can be used to

detect light sources in Mondrian images.

This is not so at the boundary betweenB and C, however, because here all

that happens is that the constant-source value S is added to /. So / changes,

V/ does not, and hence V/// does. So the ratio V/// changes across a light-

source boundary but not across a reflectance boundary.

This idea can be turned into a method for detecting light sources in

the simplified Mondrian world, and Ullman satisfied himself that some

such algorithm accounted for the perception of light sources in this envi-

ronment.

Other Light-Source Effects

Forbus (1977) suggested that the operator V//7 could be applied to other

illumination effects, including the detection of shadows and the various

effects of surface wetness, luster, and glossiness that had so intrigued Beck

(1972) and Evans (1974). For example, shadow boundaries behave like

light-source boundaries with respect to the measure V///. In addition, they

are often, but not always, somewhat fuzzier than surface or reflectance
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boundaries, since the intensity change at a shadow is rarely sharp. This can

be detected by comparing the slopes of the corresponding zero-crossings

from the different-sized V 2G filters, and a measure of the spatial extent of

an intensity change is in fact incorporated into the raw primal sketch as

the width parameter associated with an edge.

Glossiness is due to the specular or mirrorlike component of a surface

reflectance function, so that one can treat the detection of gloss as essen-

tially the detection of light sources that appear reflected in a surface (see

Beck, 1972), and this depends ultimately on the ability to detect light

sources. Forbus divided the problem into three categories: (1) the spec-

ularity is too small to allow gradient measurements; (2) both intensity and

gradient measurements are available, but the specularity is local (as it is

for a curved surface or a point source); and (3) the surface is planar and

the source is extended. He derived diagnostic criteria for each case.

This topic, like the detection of shadows and light sources themselves,

needs further study. The reason is that changes in surface orientation alone

can also cause changes in V///, although the orientation must usually

change substantially in order to produce noticeable changes in V///. This

means that V/// cannot be used as a pure diagnostic for illumination effects

without taking changes in surface orientation into account. In preliminary

studies we found that although in natural images one can find measurable

changes in V/// that are due to changes in surface orientation alone, most

of these changes are small. And if one constructs an artificial image in

which V/// changes by a small amount across a boundary, one does not

see it as a change in orientation. In fact, one sees nothing special until the

change is quite large, at which point one begins to see one region as a light

source.

Transparency

Another interesting phenomenon is transparency, which has attracted con-

siderable popular attention. An example is the Scientific American article

by Metelli (1974), in which he showed that one has the perception of

transparency when a variety of inequalities hold in image intensities.

As one might expect, Metelli's inequalities might be deduced from the

physics of the situation. Suppose a surface's reflectance changes from r
x
to

r
2
along a boundary and that a sheet is overlaid in the manner shown in

Figure 2-32. The effective illumination without the sheet is Z
2 , and with it

(after being attenuated twice) L v Plainly, if the intensities in each quadrant

are ilv i12 , i2V and i22 , as shown, we have
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Figure 2-32. Boundary a represents a reflectance boundary, and a transparency

boundary. The quantities r, represent reflectances; Lp
luminances; and i

tj
are mea-

sured intensity values (for i,j= 1,2).

and

hi

U

These relations between the intensity values hold at transparency bound-

aries and at shadow boundaries; they do not hold at general four-way

reflectance changes. Unlike shadow boundaries, however, transparency

boundaries are almost always sharp (having a "width" of zero), and they

do not cause a change in V//7.

Conclusions

Although these studies are incomplete, they suggest that even quite abstract

qualities of the physical world, like fluorescence and transparency, can be
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detected by early autonomous processes. From a representational point of

view, this means that one can hope to include these qualities at an early

stage, such as in the primal sketch boundaries. Additional primitives will

be necessary to represent them, but this poses no great problem. It will be

interesting to see what other qualities of the visual world can be detected

at the same rather early level of processing.

2.5 GROUPING PROCESSES

AND THE FULL PRIMAL SKETCH

Let us now resume our analysis of the spatial organization of images. There

are two main goals to the analysis now; (1) to construct tokens that capture

the larger scale structure of the surface reflectance function and (2) to

detect various types of change in the measured parameters associated with

these tokens that could be of help in detecting changes in the orientation

and distance from the viewer of the visible surfaces. Roughly speaking, the

goals are to make tokens and to find boundaries. Both tasks require selec-

tion processes whose function it is to forbid the combination of very dis-

similar types of token, and both tasks require grouping and discrimination

processes whose function is to combine roughly similar types of tokens

into larger tokens or to construct boundaries between sets of tokens that

differ in certain ways.

In general terms, then, the approach is to build up descriptive prim-

itives in almost a recursive manner. The raw material from which everything

starts is the primitive description obtained from the image that we called

the raw primal sketch. One initially selects roughly similar elements from

it and groups and clusters them together, forming lines, curves, larger

blobs, groups, and small patches to the extent allowed by the inherent

structure of the image. By doing this again and again, one builds up tokens

or primitives at each scale that capture the spatial structure at that scale.

Thus if the image was a close-up view of a cat, the raw primal sketch might

yield descriptions mostly at the scale of the cat's hairs. At the next level the

markings on its coat may appear—which may also be detected directly by

intensity changes—and at a yet higher level there is the parallel-stripe

structure of these markings. The whole description would then be orga-

nized somewhat as shown in Figure 2-7. At each step the primitives used

are qualitatively similar symbols—edges, bars, blobs, and terminations or

discontinuities—but they refer to increasingly abstract properties of the

image.

Some examples of these primitives appear in Figure 2-7. Other exam-

ples are the bloblike groups in the centers of Figures 2-33(a),(b), the small
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Figure 2-33. The essence of the higher primitives in the primal sketch is their ability to capture

a wide range of image items as a group or token and their ability to be arranged into groups and

boundaries. These diagrams show some examples of the different ways of defining place tokens

and of grouping them. In each one a small line, a group of lines, or a group of dots is being

combined and treated as a single unit.
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clusters in Figures 2-33(c), (d), the rather heterogeneous collection of

items that make up the groups in Figure 2-33(e), the sides of the squares

in Figures 2-33(0, (g), and the central line in Figure 2-33(h). Any kind of

local cluster or blob or group, the ability to treat it as a single item—these

are the fruits of this class of processes, the processes responsible for token

formation. The representation of the three-dimensional angles between

two lines or the notions of a square or triangle, for example, are not

included in the repertoire of the primal sketch, since they concern prop-

erties of the real world that form the image, not of the image itself.

Once these primitives have been constructed, they can tell us about

the geometry of the visible surfaces—either through the detection of

changes in surface reflectance or through the detection of changes that

could be due to discontinuities in surface orientation or depth. About the

first type of detection, one can say virtually nothing, except to remark that

at a change in the surface, the change in the reflectance function is usually

so great that almost any measure will detect it. I shall therefore restrict

attention here to the second—the detection of boundaries that might be

caused by surface discontinuities. There are two rather different ways in

which these boundaries can be detected; one is by finding sets of tokens

that owe their existence to the physical discontinuity and are therefore

organized geometrically along it. An example of this is the lining up of

terminations or of discontinuities, as illustrated in Figures 2-25(a), (b).

The machinery for finding such things, I think, is also responsible for the

circles in Figures 2-33(a) through (d) or the line in Figure 2-33(e).

The second type of clue to surface discontinuity consists of discontin-

uities in various parameters that describe the spatial organization of an

image. In the section before last, we isolated six image properties that are

useful to measure, three of them intrinsic to a token—average brightness,

size (perhaps length and width), and orientation—and three pertaining to

the spatial arrangement of tokens—their local density, distance apart, and

the orientation structure, if any, of their spatial arrangement. Changes in

any of these will help us to infer the geometry of the visible surfaces, and

by our second physical assumption, we shall want to measure such changes

at a variety of scales.

Examples of this type of clue appear in Figure 2-34. Figure 2-34(a)

shows a boundary that is due to a change in dot density. In Figure 2-34(b)

it is due to the change in average size of the squares. In Figure 2-34(c) it

is due to a change of 45° in orientation, and in Figure 2-34(d) several of

these factors change.

Thus the point of the second type of task is to measure locally (at

different scales) the six quantities we defined above and to make explicit,

by means of a set of boundary or edge primitives, places where discontin-
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rtgwre 2-34. Another important aspect of the primal sketch is the construction of boundaries

between regions on the basis of cues that could be caused by discontinuities in surface orientation

or distance from the viewer. All examples in this figure are due to M. Riley, and they give rise

psychophysical^ to boundaries in the sense defined in the text. The boundaries in (a) to (c) could

be of geometric origin, but not in (d). Motion correspondence can be obtained between the

boundaries in (e) and (f).

uities occur in these measures. The reason for adding such boundaries to

the representation of the image is that they may provide important evidence

about the location of surface discontinuities. This point of view has the

important consequence that parameter changes likely to have arisen

because of discontinuities in the surface ought to be those that give rise to

perceptual boundaries, whereas those that probably could not have their

origins traced to geometrical causes should be much less likely to produce

perceptual boundaries. I call this the hypothesis ofgeometrical origin for

perceptual texture boundaries. The principal limitations on its usefulness

come from the fact that reflectance functions seldom have a precise geo-

metrical structure. For example, if there is an oriented component to the

surface structure, it is usually not very exact. Hence small changes in ori-

entation in an image that may be produced by small changes in surface
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(c) (d)

Figure 2-35. These examples, also provided by M. Riley, show texture differences that could not

be of purely geometrical origin. They do not give rise psychophysical^/ to boundaries in the sense

defined in the text, even though we are sometimes able to say that one region differs from another

in some way. In example (d), the inner region contains lines of just two orientations, whereas the

outer region contains lines of all orientations. It is interesting to contrast these examples with those

of Figure 2-34.

orientation will not usually produce a clear signal. The same applies to

changes in apparent size in an image, although density allows a more
sensitive discriminant. Hence, only when an image structure is extremely

regular would one expect to find high perceptual acuity for these discrim-

inations. On the whole, we should be pretty bad at them—as indeed we
are (see Figure 2-35).

Before summarizing this line of argument, I should perhaps make a

final point. Although it is convenient to separate grouping processes into

the two categories of token formation and boundary formation, they are

not, in fact, quite separate, and the two categories can overlap. In Figure

2-7, for example, some of the dot-density boundaries are boundaries of

tokens. The tokens could be constructed either from such boundaries or

from the cluster of the cloud of dots there, or, of course, in both ways. In
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Figure 2-34(a), the triangle could be made by the linear grouping of nearby

dots, by finding a local increase in dot density or even by a local decrease

in average brightness. A single boundary is often defined in many ways, a

fact of life that aids its recovery by the visual system but raises difficulties

for the experimental psychophysicist.

Main Points in the Argument

The idea, then, is to start with the raw primal sketch and operate on it with

processes of selection, grouping, and the discrimination to form tokens,

virtual lines, and boundaries at different scales. The approach I have out-

lined gives the reasons for doing this: It enables us to deduce what types

of tokens should be made, what types of selection and grouping should be

available, which circumstances should give rise to perceptual boundaries

and which should not, and perhaps even how to compare differences in

acuity due to different discriminants. For example, when token size is

viewed as a discriminant that indicates a change in surface orientation, the

resolution of the analysis of token size should be comparable to the res-

olution of the analysis of token orientation. These arguments provide a

physical basis for the suggestion that some types of visual discrimination

of texture rest on first-order discriminations acting on the primal sketch

(Marr, 1976). We now explore this question in more detail.

The Computational Approach and the

Psychophysics of Texture Discrimination

From a purely psychophysical point of view, it has been difficult to define

exactly what is meant by the phrase texture discrimination. In his well-

known series of articles on the subject, Belajulesz (for example, seejulesz,

1975) distinguishes between textures that can be immediately distin-

guished (so-called preattentive perception) and those that cannot be dis-

tinguished without close and often prolonged study (so-called scrutiny).

He limited his investigations to discriminations of the first kind, those that

can be distinguished in under 200 ms—roughly, those that can be distin-

guished without eye movements.

I should perhaps point out that the approach I have suggested to the

problem is somewhat more restrictive, for it also requires that perceptual

boundaries be formed at the borders between the textures. Not all of the

textures devised by Julesz have this property. None of the examples in
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Figure 2-35 do, for instance, whereas all the examples in Figure 2-34 do.

Psychophysical^, then, our approach requires that the discrimination be
made quickly—to be safe, in less than 160 ms—and that a clear psycho-

physical boundary be present. There are various criteria for this second

requirement. One is that, in addition to being able to state that two textures

are present in a Julesz display like those in Figure 2-34, one should also

be able to give information about the shape of the distinguished region.

Schatz (1977), for example, included this condition as one of his experi-

mental criteria.

Another possibility, suggested to me by Shimon Ullman, is to try to

obtain apparent motion between texture boundaries that have been gen-

erated in different ways in two frames. Frame 1, for example, might consist

of Figure 2-34(e), and frame 2, presented after an interstimulus interval

of, say, 100 ms, of Figure 2-34(f). If the boundaries appear to move in the

obvious way, this is corroborating evidence that they are in fact constructed.

If the boundaries obey the same local correspondence rules that are

obeyed by intensity boundaries (Ullman, 1979b), this is then very strong

evidence that the boundaries are being made explicit. The examples illus-

trated in Figure 2-34 all pass both the shape and apparent-motion tests.

A third criterion for when a boundary is being constructed percep-

tually may perhaps be developed from a finding by Kidd, Frisby, and May-

hew (1979). They found, using suitably constructed stereograms, that cer-

tain kinds of texture boundary are capable of initiating disjunctive eye

movements, which are eye movements that cause the two lines of sight to

converge or diverge.

If all these criteria succeed or fail together at the different types of

boundary, we shall have a powerful technique for saying when a perceptual

boundary is created from a change in visual texture. Similar combined
approaches may also help us to determine whether something like the full

primal sketch is in fact obtained from the image by telling us what types

of tokens are made explicit in preattentive perception.

Finally, it seems to me that psychophysical studies of the relative power
of the different discrimination processes can be most convincing if some-
thing like Barlows (1978) absolute measures of efficiency are used. In this

study, Barlow asked how sensitively humans could detect targets of greater

dot density embedded in backgrounds of random dots. He found that his

subjects were able to use about two-thirds of the objective signal-to-noise

ratio of the displays, which corresponds to about 50% of the statistical

information available. He also suggested an interesting, economical model
to explain his results, consisting of "dot-number estimating" elements that

are roughly circular and of variable size. They are sufficient in number to
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cover the central area of vision with neighborhoods l°-4° in diameter, and

with an average mismatch and overlap of 50%. They integrate temporally

for about 0.1 s. I hope that studies like this can be extended to other

discrimination tasks.

That ends our discussion of how to represent an image. We now turn

to the use of these representations in deriving surface information.



CHAPTER 3

From Images

to Surfaces

3.1 MODULAR ORGANIZATION OF
THE HUMAN VISUAL PROCESSOR

Our overall goal is to understand vision completely, that is, to understand

how descriptions of the world may efficiently and reliably be obtained

from images of it. The human system is a working example of a machine

that can make such descriptions, and as we have seen, one of our aims is

to understand it thoroughly, at all levels: What kind of information does the

human visual system represent, what kind of computations does it perform

to obtain this information, and why? How does it represent this information,

and how are the computations performed and with what algorithms? Once

these questions have been answered, we can finally ask, How are these

specific representations and algorithms implemented in neural machinery?

The study of working visual systems can help us in this endeavor,

and nowhere is this clearer than in the study of visual processes. At the

level of computational theory, the investigator s first question is, What com-

putational problems are being solved, and what information is needed to

solve them?

99
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As usual, the point is best made with an example. Because of how our

eyes are positioned and controlled, our brains usually receive similar

images of a scene from two nearby points at the same horizontal level. If

two objects are separated in depth from the viewer, the relative positions

of their images will differ in the two eyes. You can see that this is so by

holding your thumb at various distances from your eyes against a back-

ground. Closing first one eye and then the other will then convince you

that objects in the world have somewhat different positions in the images

cast upon each of your retinas. The relative difference in position is called

disparity] it is usually measured in minutes of arc, and the disparity between

the images of your thumb and the background in your two eyes increases

as you move your thumb nearer to you. One minute of disparity roughly

corresponds to a depth difference of 1 in. for an object 5 ft away.

The brain is capable of measuring disparity and using it to create the

sensation of depth. For purposes of demonstration, a stereoscope from a

souvenir shop will do: When individual views are seen with just one eye

at a time, they look flat. However, if you have good stereo vision and look

with both eyes, the situation is quite different. The view is no longer flat:

The landscape jumps sharply into relief, and your perceptions are clearly

and vividly three-dimensional.

How does stereo vision work? Unfortunately, we cannot even begin to

ask the right questions from just the evidence described above. The reason

is that from the experience of everyday life or even from the small exper-

iment with the stereoscope, it is not at all clear how separate stereoscopic

processing is from the more familiar, monocular analysis of each image. If

stereo processing were an isolated module, so to speak, then one could

tackle it on its own. But it may not be isolated—for example, stereo vision

could involve a complicated and gradually increasing interaction between

the individual processings of each eye and a comparison of the results

between the two eyes. This is not as absurd as it seems. It does not take

much imagination to see how such a scheme might work. We could start

by finding, for example, the images of an oak tree as seen independently

by the left and right eyes. Then we could find the trunk in each image and

then, perhaps, the lowest branch on the right hand side of the trunk. Pretty

soon we would have correspondences between the small details of the left

and right images whose disparity could be measured accurately And

because the match has been obtained in this general-to-specific way, there

is never any real problem in deciding what should match what.

This type of approach, incidentally, is typical of the so-called top-down

school of thought, which was prevalent in machine vision in the 1960s and

early 1970s, and our present approach was developed largely in reaction

to it. Our general view is that although some top-down information is
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Figure 3-1. The interpretation of some images involves more complex factors as

well as more straightforward visual skills. This image devised by R. C. James may

be one example. Such images are not considered here.

sometimes used and necessary (see Figure 3-1 and Marr, 1976, fig. 14), it

is of only secondary importance in early visual processing. The evidence

for this comes from psychophysics and for some reason was willfully

ignored by the computer vision community. The argument suggested by

this evidence is a simple one. If, using the human visual processor, we can

experimentally isolate a process and show that it can still work well, then

it cannot require complex interactions with other parts of vision and can

therefore be understood relatively well on its own.

One way of isolating a visual process is to provide images in which,

as much as possible, all kinds of information except one have been

removed and then to see whether we can make use of just that one kind.

Bela Julesz did this for stereopsis by inventing the computer-generated

random-dot stereogram, which we met in Figure 1-1. Both the left and

right images shown there are computer-generated assemblies of black and

white squares that are identical except for a centrally located, square-

shaped region shifted horizontally in one image relative to the other. That
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is, it has a different disparity. The stereo pair contains no information

whatever about visible surfaces except for this disparity.

When the pair is viewed stereoscopically and fused, one vividly and

unmistakably perceives a square floating in space above the plane of the

background. This proves two things: (1) Disparity alone can cause the

sensation of depth, and (2) if there is any top-down component to the

processing (and, in fact, we think that there probably is a little), it must be

of a very limited kind, because neither image contains any recognizable

large-scale monocular organization.

This observation—which is qualitative rather than quantitative, not at

all technical, and, like many of Julesz's demonstrations, absolutely and

strikingly convincing to behold—is fundamental to our approach, for it

enables us to begin separating the visual process into pieces that can be

understood individually. Computer scientists call the separate pieces of a

process its modules, and the idea that a large computation can be split up

and implemented as a collection of parts that are as nearly independent of

one another as the overall task allows, is so important that I was moved to

elevate it to a principle, the principle ofmodular design. This principle is

important because if a process is not designed in this way, a small change

in one place has consequences in many other places. As a result, the process

as a whole is extremely difficult to debug or to improve, whether by a

human designer or in the course of natural evolution, because a small

change to improve one part has to be accompanied by many simultaneous,

compensatory changes elsewhere. The principle of modular design does

not forbid weak interactions between different modules in a task, but it

does insist that the overall organization must, to a first approximation, be

modular.

From a theoretical point of view, observations like Bela Julesz's are

extremely valuable because they enable us to formulate clear computa-

tional questions that we know must have answers because the human visual

system can carry out the task in question. ItwasJulesz's findings that allowed

us to formulate our theory of human stereopsis (Marr and Poggio, 1979).

The analogous findings of Miles (1931) and of Wallach and O'Connell

(1953) allowed Ullman (1979b) to develop his theory of structure from

motion. Some other experiments by Julesz (1971, chap. 4), together with

Braddick's (1974) identification of a short-range, short-term process in

apparent motion, contributed to the formulation of our theory of direc-

tional selectivity.

The existence of a modular organization in the human visual proces-

sor proves that different types of information can be analyzed in relative

isolation. As H. K. Nishihara (1978) put it, information about the geometry

and reflectance of visible surfaces is encoded in the image in various ways
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and can be decoded by processes that are almost independent. When this

point was fully appreciated, it led to an explosion of theories about possible

decoding processes. This chapter describes the computational theories of

those decoding processes that are now quite well understood. These

processes are (1) stereopsis, (2) directional selectivity, (3) structure from

apparent motion, (4) depth from optical flow, (5) surface orientation from

surface contours, (6) surface orientation from surface texture, (7) shape

from shading, (8) photometric stereo (the determination of surface ori-

entation and reflectance from scene radiances—the intensity of reflected

light—observed by a fixed sensor under varying lighting conditions), and

(9) lightness and color as an approximation to reflectance. Of course, other

cues are available, like occlusion, but unless I have been able to give a

process a reasonably integrated treatment, I have not discussed it here. Not

all of the methods described here have biological relevance—photometric

stereo certainly has none—but they are all of interest as ways of inferring

the geometry and reflectance of visible surfaces from their images.

3.2 PROCESSES, CONSTRAINTS, AND
THE AVAILABLE REPRESENTATIONS

OF AN IMAGE

Before embarking on a detailed description of the different theories, I

should make some remarks about the general nature of these theories and

what the reader should look for in them and expect from them.

The first point is to remind the reader that we expect to analyze

processes at three levels (remember Figure 1-4)—the levels of compu-

tational theory, of algorithm, and of implementation. Of course, the vision

problem has not been completely solved yet, so we cannot analyze at all

three levels every process within the human visual system. But we can

analyze some processes at all three levels, and many of them at one or

two—perhaps even most of the processes that discern surfaces from

images.

In every case, we start with the first level—the computational theory

—

because this book is about the computational approach to vision. And at

this level the reader should look out for the physical constraints that allow

the process to do what it does. The situation is quite like what happened

in Chapter 2. There we were dealing with ways of representing the image,

and in order to say what would be useful and what would not, we were

continually referring to the interaction between the imaging process and

the underlying properties of the physical world that gives rise to structure
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in images. In this chapter, where we deal with processes instead of rep-

resentations, the situation is entirely analogous but arises in a slightly dif-

ferent way. We have already met an example of this new situation in the

theory of how to combine zero-crossings from different-sized filters in

order to make the physically meaningful primitives of the raw primal

sketch. The critical point was that, in general, there is no reason why the

zero-crossings from two channels that do not overlap in the frequency

domain should be related. They are related in early vision because intensity

changes are caused by markings on a surface, the edges of objects, and so

on, and these happen to have the critical property of spatial localization.

This interaction between the imaging process and the underlying

properties of the physical world commonly occurs in the study of visual

processes, and we shall meet several examples here. Frequently an appar-

ently insoluble problem arises, such as which dots in the left-hand pattern

in Figure 1-1 should match which dots in the right-hand pattern. From the

image alone one just cannot tell. The critical step in formulating the com-

putational theory of stereopsis is the discovery of additional constraints on

the process that are imposed naturally and that limit the result sufficiently

to allow a unique solution. Finding such constraints is a true discovery

—

the knowledge is of permanent value, it can be accumulated and built

upon, and it is in a deep sense what makes this field of investigation into

a science (Marr, 1977b).

Once we have isolated where the extra information comes from—in

what ways, if you like, the information is constrained by the world—we

can incorporate it into the design of a process. For combining zero-cross-

ings, for example, this was done by the spatial coincidence assumption—
that coincident zero-crossings are adequate evidence of a physical edge.

Thus, the constraints are used by turning them into an assumption that

may or may not be internally verifiable.

This, then, is one aspect of the top-level computational theory of a

process, but there is another, almost as important. We saw in Chapter 1 that

a process can be viewed as a transformation from one representation to

another. Addition, for example, maps a pair of numbers into a number. All

the processes that we shall discuss take as their inputs properties of the

image and produce as their outputs properties of the surfaces—indicating

to us either something about the geometry or the reflectance of the sur-

faces.

We shall discuss ways of representing the outputs of these processes

in the next chapter, but now we are concerned with their inputs. What

should serve as the inputs to these processes? We already have four

options—the image itself, zero-crossings, the raw primal sketch, and the

full primal sketch. Part of the computational theory must indicate which of
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these four should be used (or if something else entirely is appropriate)

and why, and a portion of the investigation of each process will deal with

this question.

Ultimately, of course, psychophysics tells us which input representa-

tion is used—if the process is in fact incorporated in the human visual

system. There is, however, one useful point to bear in mind (Marr, 1974b):

Essentially, since the constraints allow the processes to work, and since the

constraints are imposed by the real world, by and large the primitives that

the processes operate on should correspond to physical items that have

identifiable physical properties and occupy a definite location on a surface

in the world. Thus one should not try to carry out stereo matching between

gray-level intensity arrays, precisely because a pixel corresponds only

implicitly and not explicitly to a location on a visible surface.

This point is important. For example, failure to recognize it held Wal-

lach and O'Connell (1953) up for years by their own admission. They could

not understand why the shadow of a bent wire should be different from

the shadow of a smooth solid object. If a wire is rotated, its shadow moves,

and one instantly perceives the wire's three-dimensional shape; if a solid

object is rotated, its shadow moves but one cannot perceive its shape. The
reason is that the shadow of the wire produces an outline that is effectively

in one-to-one correspondence with fixed points on the wire, each having

a definite physical location that changes from frame to frame, admittedly,

but that always corresponds to the same piece of wire. For the rotating

object this is just not true. From moment to moment, the points on the

silhouette correspond to quite different points on the object's surface. The
image primitives are no longer effectively tied to a constant physical entity.

Hence the shape recovery process fails.

On the other hand, the more complex the derivation of a represen-

tation from an image, the longer the derivation is liable to take. In real life,

time is often of the essence; especially in the analysis of motion, an answer

is required as soon as possible—before the image has become out-of-date

or before the mover has eaten the viewer. In general, therefore, evolution

is prejudiced toward getting things started as soon as possible.

Hence, although processes that operate on the information in an

image could use any of a wide variety of input representations in principle,

in practice they are likely to use the earliest representations that they

possibly can. The range that we have discussed includes the gray-level

image, zero-crossings, the raw primal sketch, and the full primal sketch.

The earlier ones are not yet "physical," and so a bit unsafe, which might

cause us to make mistakes. But for some purposes this possible error is

worth the extra speed, for example, in the control of eye movements in

response to a sudden change in an image and perhaps also for looming
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detectors in the theory of directional selectivity (see Section 3.4). Further-

more, just because a boundary is physical does not always make it safe to

use. The edges of a uniform cylindrical lamppost give rise to perfectly good

edges in the images seen by the left and right eyes, but these edges cor-

respond to different lines on the physical surface. This gives the stereopsis

process trouble when, having matched the images, it tries to calculate how

far away the lamppost is.

So our rule, then, that the inputs to a process should consist of ele-

ments with close physical correlates, is only a general one. It is clearly

inappropriate for some things, like shape from shading or photometric

stereo, but probably rather important for things like the correspondence

process in apparent motion (Ullman, 1978) or the analysis of shape from

surface contours or texture. The rule has its attendant dangers, though,

and for some processes it is obeyed only marginally—for example, I think

that both stereopsis and directional selectivity can use zero-crossings

directly. However, the important point is that the rule is sufficiently strong

and apparently valid and that violations cannot be allowed to go unnoticed.

They have to be defended.

So much, then, for the level of computational theory. The second of

the three levels of understanding a process is the level of the algorithm. At

this level we formulate a particular procedure for implementing a com-

putational theory. There are two principles that guide the design of algo-

rithms, and they probably ought to be satisfied by any serious candidate

for an early visual process in the human visual system. One principle says,

roughly, that the algorithm has to be robust: the other, that it must behave

smoothly. They are as follows (Marr, 1976):

1. Principle of graceful degradation. This principle is designed to

ensure that, wherever possible, degrading the data will not prevent the

delivery of at least some of the answer. It amounts to a condition on the

continuity of the relation between different stages in the processing. For

example, it should be required that a rough two-dimensional description

of the kind that a vision system might compute out of a drawing enable

the system to compute a rough three-dimensional description of what the

drawing represents.

2. Principle of least commitment. This principle requires not doing

something that may later have to be undone, and I believe that it applies

to all situations in which performance is fluent. It states that algorithms that

are constructed according to a hypothesize-and-test strategy should be

avoided because there is probably a better method. My experience has

been that if the principle of least commitment has to be disobeyed, one is

either doing something wrong or something very difficult.
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It would be nice to be able to give general rules about processes at

the third level of analysis, the level ofneural implementation. Unfortunately,

only a few process theories have been developed to the point where spe-

cific neural implementations have been proposed, and none of these

implementations have been confirmed experimentally in every detail so

we are not yet in a position to formulate such rules.

However, one suggestion of a rule can be extracted from our experi-

ence with cooperative algorithms for stereopsis and locally parallel orga-

nization (Marr and Poggio, 1976; Stevens, 1978). It is only a suggestion,

however, and I give it with that caution. It is that, if possible, the nervous

system avoids iterative methods—that is, pure iteration in which no new
information is introduced at each cycle. Instead, it seems to prefer one-

shot methods, like Stevens' (1978) one-shot algorithm for finding the local

orientation in Glass patterns. The nervous system also seems to prefer

methods that run from the coarse to the fine, doing essentially the same

thing at each state but being saved from pure iteration by introducing new
information at each cycle. Our stereo algorithm has this form, as we shall

see in the next section. And it might be a sound design principle, too, since

it effortlessly incorporates the principles of graceful degradation and least

commitment.

Yet cooperative methods (a type of nonlinear, iterative algorithm) look

very plausible from some points of view. They are very robust, for example,

and often have a structure that is readily translatable into the inhibitory

and excitatory connections of a plausible neural network. Why, then, are

they not used?

One possible explanation may be that cooperative methods take too

long and demand too much of the neural hardware to be implemented in

any direct way. The problem with iteration is that it demands the circulation

of numbers around some kind of loop, which could be carried out by

some system of recurrent collaterals or closed loops of neuronal connec-

tions. However, unless the numbers involved can be represented quite

accurately as they are circulated, errors characteristically tend to build up

rather quickly. To use a neuron to represent a quantity with an accuracy of

even as low as 1 in 10, it is necessary to use a time interval that is sufficiently

long to hold between 1 and 10 spikes in comfort. This means at least 50

ms per iteration for a medium-sized cell, which means 200 ms for four

iterations—the minimum time ever required for our cooperative algorithm

to solve a stereogram. And this is too slow.

This argument against purely iterative algorithms is not compelling.

It is, however, persuasive enough to make me skeptical of them as candi-

dates for processes used by the human visual processor, and it suggests

that one should try very hard when designing ways of implementing a

process to use algorithms with a more open and flexible structure.
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Figure 3-2. The synaptic arrangement considered by Torre

and Poggio (1978). Such an arrangement could approximate

an AND-NOT gate.

Null

C-L

Threshold

for spike

Figure 3-3. The electrical circuit equivalent of the synaptic arrangement shown

in Figure 3-2 in the configuration suggested by Torre and Poggio (1978) for

implementing directional selectivity. The interaction implemented by the circuit

has the form gx
- a gt & , which approximates a logical AND-NOT gate. A logical

AND gate can be implemented by a similar circuit.
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One other lesson about neural implementations may perhaps be

drawn, this time from the work of Torre and Poggio (1978), who showed

how the nonlinear operation AND-NOT could be implemented at the level

of synaptic interactions on a dendrite. They showed, using a cable-

theoretical analysis, which calculates the time dependent electrical prop-

erties of the dendrite from its geometry, that the synaptic arrangement

shown in Figure 3-2 has the electrical properties of the circuit shown in

Figure 3-3 and the behavior shown in Figure 3-4. It approximately corn-

Null Preferred

(a)

(c)

Figure 3-4. The calculated behavior of the circuit in Figure 3-3. For movement
in the null direction, the time course of the inputs g 1

and g2
is shown in (a), and

the output of the circuit is the solid line in (c). The dotted and dashed curves show,

respectively, the responses with g 1
and g2

separately. For motion in the opposite

direction, the inputs arrive as shown in (b), and the output of the circuit is shown
in (d). Notice how attenuated (c) is relative to (d). In this manner, the output of the

system can be made directionally selective. The time courses (horizontal axes) are

plotted in units of the membrane time constant.
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putes g x
-ag

xg2 , which behaves like AND-NOT, and they suggested that

this might be how the ideas of Hassenstein and Reichardt (1956) and of

Barlow and Levick (1965) about directional selectivity in the fly and rabbit

retinas are implemented (see Section 3.4). Poggio and Torre (1978)

extended this idea, showing that a wide range of primitive, nonlinear

operations could be implemented using local synaptic mechanisms.

One message of this work is that neurons might do more than we

think. Early models, like those of McCulloch and Pitts (1943), tended to see

neurons as basically linear devices that could implement nonlinear func-

tions by means of a threshold, which could perhaps be variable if produced

by an inhibitory interneuron. This way of thinking led Barlow and Levick

to formulate their model of directional selectivity, and I employed it myself

when I was interested in the cerebellar cortex (Marr, 1969). We have already

seen, however, that local nonlinearities may be important. For example,

the scheme for zero-crossing detection in Figure 2-18 is based on the use

of many AND gates. The force of Poggio and Torre's work is that such things

as AND gates may not require whole cells for their implementation—they

can perhaps be executed much more compactly by local synaptic interac-

tions in small pieces of dendrite.

Enough, then, of generalities; let us turn to the processes themselves.

I shall start with stereopsis, since it was the first psychological process to

be understood and because it led to much of the general knowledge about

early vision already incorporated into my account. I have tried not to be

too technical in describing the various processes, my aim being to give the

reader a general feel for how they all work and to show some examples of

them working. For full details, the reader may consult the original

articles.

One final point about the organization of the account. Many of these

processes divide naturally into two parts, the first concerned with setting

up and making a measurement, so to speak, and the second with using the

measurement to recover three-dimensional structure. In stereopsis, for

example, the first step is the matching process, which establishes the cor-

respondence between the two eyes so that disparities can be measured;

the second is the trigonometry that recovers distance and surface orien-

tation from disparity. The first step is the difficult one; the second is easy.

In directional selectivity, the first step is to establish the local direction of

movement, and the second is to use this sparse local information to help

separate figure from ground. Neither step is particularly difficult. In appar-

ent motion, the first step is to establish a correspondence between

successive "frames" so that the displacements between frames can be

measured; the second step is to use these measurements to recover

three-dimensional structure. Here both steps are difficult.
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For this reason I have split several of the sections into two parts. Of

course, whether a process is indeed implemented by the human visual

processor is sometimes unknown, and, even if it were known, whether it

is divided as I have described is still an open psychophysical question. In

such cases, I have tried to make clear what the current evidence is and

what needs to be done to resolve the open questions.

3.3 STEREOPSIS

We saw earlier that the two eyes form slightly different images of the world.

The relative difference in the positions of objects in the two images is

called disparity, which is caused by the differences in their distance from

the viewer. Our brains are capable of measuring this disparity and of using

it to estimate the relative distances of the objects from the viewer. I shall

use the term disparity to mean the angular discrepancy in position of the

image of an object in the two eyes; the term distance will refer to the

objective physical distance from the viewer to the object, usually measured

from one of the two eyes; and the term depth I shall reserve for the sub-

jective distance to the object as perceived by the viewer.

I shall divide the account into two parts, the first concerned with

measuring disparity, and the second with using it. Both parts are separated

into the three levels of Figure 1-4. The articles on which this account is

based are by Marr (1974b) and Marr and Poggio (1976), which deal with

the computational theory; by Marr and Poggio (1979), which deals with the

algorithm thought to be used by the human visual system; and by Grimson

and Marr (1979) and Grimson (1981), which describe Eric Grimson's com-

puter implementation of the algorithm. Between 1977 and 1979, the addi-

tional work done on zero-crossings (Marr, Poggio, and Ullman, 1979; Marr

and Hildreth, 1980) allowed certain simplifications in the implementation

of the algorithm; most notably, we found from mathematical arguments

that we could use circularly symmetric instead of oriented receptive fields

for the initial convolutions. This particular detail was arrived at indepen-

dently on psychophysical grounds by Mayhew and Frisby (1978a).

Measuring Stereo Disparity

Computational theory

Three steps are involved in measuring stereo disparity: (1) A particular

location on a surface in the scene must be selected from one image; (2)
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that same location must be identified in the other image; and (3) the

disparity between the two corresponding image points must be measured.

If one could identify a location beyond doubt in the two images, for

example, by illuminating it with a spot of light, the first two steps could be

avoided and the problem would be easy. In practice, we cannot go around

carefully shining a spot of light on a surface and noting where its image

falls in the two eyes, so we must somehow find a way of identifying a

location by the more passive means of sensing the environment.

The reason why the task of identifying corresponding locations in the

two images is difficult is because of what is called the false target problem.

This occurs in what may be its extreme form in Julesz's random-dot ster-

eograms (see Figure 1-1), and the nature of the problem is illustrated in

Figure 3-5. The question is, Which dot corresponds to which? The left eye

here sees four dots, and the right eye sees four, but which corresponds to

which? A priori, all of the 16 possible matches are plausible candidates but

when we observe such a stereo pair, we make the correspondences shown

by the filled circles and not any of the correspondences shown by the open

circles, which are called false targets.

Although this obviously makes some kind of sense, it is nevertheless

surprising. How do we know which matches are correct and which should

be ignored? What is more, there is another solution to this particular cor-

respondence problem that seems just as valid. Look at the figure for a

moment and try to see what it is. The other answer is the four central

vertical matches, in which R x
is paired with L4 ,

R2
with Z

3 ,
R

5
with Z

2 ,
and

RA
with L v But we never see this match perceptually, which would appear

as a set of squares in a receding line. Why not? Why only the other one, in

which the squares line up, all about the same distance away?

From reading Chapter 2, the reader will immediately suggest using

higher-level descriptions of the image—for example, matching first the

two rows of dots as units and then, going on to match the individual squares

and finally the edges of each square. And I think that something like this

happens, but the first point to be clear about is that such a suggestion on

its own is only a mechanism. The real question to ask is Why might some-

thing like that work? For the plain fact is that if we look just at the pair of

images in Figure 3-5, there is no reason whatever why L
x
should not match

Ry L
2
match Rv and even L

5
match Rv

What we need is some additional information to help us decide which

matchings are correct by constraining them in some way, and to do this we

have to examine the basis in the physical world for making a correspon-

dence between the two images.

The constraints that we need are the following, and they look decep-

tively simple; (1) A given point on a physical surface has a unique position
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Figure 3-5. Ambiguity in the correspondence between the two retinal projec-

tions. In this figure, each of the four points in one eye's view could match any of

the four projections in the other eye's view. Of the 16 possible matchings, only 4

are correct (filled circles); the remaining 12 are false targets (open circles). Without

further constraints based on global consideration, such ambiguities cannot be

resolved. The targets (filled squares) are assumed to correspond to matchable

descriptive elements obtained from the left and right images. (Reprinted by per-

mission from D. Marr and T. Poggio, "Cooperative computation of stereo disparity,"

Science 194, October 15, 1976, 283-287. Copyright 1976 by the American Associ-

ation for the Advancement of Science.)

in space at any one time; and (2) matter is cohesive, it is separated into

objects, and the surfaces of objects are generally smooth in the sense that

the surface variation due to roughness cracks, or other sharp differences

that can be attributed to changes in distance from the viewer, are small

compared with the overall distance from the viewer.

These observations are properties of physical surfaces, and they con-

strain the behavior of the surface position. Hence, if we want to use these

observations to help us establish a correspondence between two images

of a surface, we must ensure that the items to which we apply them are in

one-to-one correspondence with well-defined locations on a physical sur-

face. To do this, we must use image predicates that correspond to surface

markings, shadows, discontinuities in surface orientation, and so forth.

These physical considerations were precisely the motivation for the

primal sketch, as we saw in Chapter 2, and that is why the primal sketch can

be used, because the descriptive items in it—line and edge segments,
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blobs, terminations and discontinuities, and tokens obtained from these by

grouping—usually correspond to items that have a physical existence on

a surface. And it is perhaps worth pointing out here that since the grouping

processes have to be rather catholic in what they are prepared to group

together, the larger and more abstract tokens tend to be less reliable than

the very early and primitive things in the raw primal sketch. This is partic-

ularly relevant to stereopsis for another reason: Large-scale tokens are

quite large, perhaps several degrees, whereas useful disparities tend to be

rather small, on the order of minutes. To make accurate measurements,

therefore the smaller, more primitive descriptors are preferred. On the

other hand, clear statistical effects are likely to be quite a reliable indication

of a physical change even at quite high levels so that high-level boundaries

of the kind I called texture discrimination boundaries are probably more

useful for stereopsis than aggregates at the same high level. We shall meet

what I think are some consequences of this later on.

We can therefore rewrite the physical constraints as matching con-

straints, which restrict the allowable ways of matching two primitive sym-

bolic descriptions, one from each eye. For the matching constraints to be

valid, the elements in the matched descriptions must correspond to well-

defined locations on the physical surface being imaged. We can think of

these elements as carrying only position information, like the black dots

in a random-dot stereogram, although for a full image, rules will exist that

specify which matches between descriptive elements are possible and

which are not. These rules will again be deducible from the physical sit-

uation; if the two descriptive elements could have arisen from the same

physical marking, then they can match. If they could not have, then they

cannot be matched. This is our first matching constraint, which I shall call

the compatibility constraint.

The second and third matching constraints come from the two physical

constraints. The uniqueness constraint means that, except in rare cases,

each descriptive item can match only one item from the other image. The

exceptions can arise as a result of the imaging process when two markings

lie along the line of sight from one eye but are separately visible from the

other. The third constraint, continuity, means that disparity varies smoothly

almost everywhere. This constraint follows because the second physical

constraint implies that the distance to the visible surface varies continu-

ously except at object boundaries, which occupy only a small fraction of

the area of an image.

These three restrictions, then, are our constraints. We now turn them

to our purposes by making what I shall call thefundamental assumption

of stereopsis: If a correspondence is established between physically mean-

ingful primitives extractedfrom the left and right images of a scene that
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contains a sufficient amount of detail, and if the correspondence satisfies

the three matching constraints, then that correspondence isphysically cor-

rect. It follows immediately from this assumption that the correspondence

must be unique.

But this is all very well, the skeptical reader will say. The matching

constraints look perfectly reasonable and even quite powerful. But to turn

them into a fundamental assumption which asserts that they are not only

necessary consequences of the physical world but also actually sufficient

to determine uniquely the correct correspondence—now that is an alto-

gether different matter.

To say this is absolutely correct and hits fairly and squarely upon a

philosophical point that constitutes one of the foundations of the approach.

For to isolate this fundamental assumption and to establish that it is valid

is precisely what I mean by the computational theory of a process. Estab-

lishing the sufficiency of this assumption here is more difficult than estab-

lishing the sufficiency of the spatial coincidence assumption that we met

in Chapter 2, because that is a rather simple assumption which follows

quite directly from the structure of the physical world.

However, we can establish validity for a wide range of situations. I

shall try to show here in more general terms how the argument runs,

because the underlying methodological point is so important. We shall

meet it at the heart of the theory of every process.

As formulated, the fundamental assumption of stereopsis contains

phrases like "scene that contains a sufficient amount of detail" and "phys-

ically meaningful primitives," which are too imprecise for mathematical

demonstrations. So I will replace the phrase "physically meaningful prim-

itives" by employing the special case of a physical surface that is white with

black dots on it, and the first phrase by specifying the condition that the

density—call it v—of the dots be sufficiently high; specifically, we shall

need v to be at least 2% or so for our demonstration to work. By these

somewhat devious means, analogous to spraying the world with black paint

spots, I have converted the real-world situation into images that bear an

uncanny resemblance to one of Julesz's random-dot stereograms. The

matching conditions now obtain between the two binary images, and when
translated, they read as the following three rules:

Rule 1: Compatibility. Black dots can match only black dots.

Rule 2: Uniqueness. Almost always, a black dot from one image can

match no more than one black dot from the other image.

Rule 3: Continuity. The disparity of the matches varies smoothly

almost everywhere over the image.
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Our task now is to prove that these rules force a unique correspon-

dence between the two images, and we can do this in the following way.

First, note that because the two eyes lie horizontally, we need consider only

all the possible matches along horizontal lines; therefore, we can reduce

the problem to the simple one-dimensional case illustrated in Figure

3-6(a). Zx
shows all possible positions for dots on the left retina, and Rx

for dots on the right retina. The continuous vertical and horizontal lines

represent the lines of sight from the left and right eyes, respectively; the

dotted diagonal lines, marking traversal at the same rate across the left

and right images, therefore represent planes of constant disparity.

Our proof is now easy, at least in conception. Rule 1 tells us to consider

only black dots. Rule 3 tells us that, on the whole, the correct matches

cluster along or close to these diagonal lines, and Rule 2 tells us that, at

each point, only the matches along one of these planes should be chosen.

The density of dots in each image is v, so on the correct plane the density

of possible matches is v. On the incorrect planes it is only v
2

.
Hence,

provided the disparity changes slowly enough so that the area A spent on

each disparity plane is big enough for Av to be significantly different from

Av
2

, the three rules will yield a unique solution. Hence, since the solution

is unique (following the Av matches), it is physically correct, since the

physically correct situation will yield one solution. That is the gist of the

argument. Of course, this version is somewhat baldly stated, and various

subtleties have to be attended to.

The arguments I have given have established two things. First, the

fundamental assumption of stereopsis is valid, and this is why the con-

straints that it incorporates were derived from arguments based on the

structure of the physical world. And second, the fundamental assumption

provides a sufficient basis for defining the matching process, since a match-

ing that satisfies it is guaranteed to be correct. Furthermore, there will

always be such a match in normal physical situations. This completes the

computational theory of stereopsis.

Algorithmsfor stereo matching

A cooperative algorithm

In order to drive home the point that more than one algorithm can

be designed to implement a given process, I shall give two algorithms for

the stereo matching process. The first one (Marr and Poggio, 1976) follows

naturally from the thinking of the last section, and it can be understood

most easily from the diagrams in Figure 3-6.
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Figure 3-6. In (a), Zx and /?x represent the positions of descriptive elements in

the left and right images. The continuous vertical and horizontal lines represent

lines of sight from the left and the right eye. The intersections of these lines cor-

respond to possible disparity values. The dotted diagonal lines are lines of constant

disparity.

In the cooperative algorithm described in the text, a cell is placed at each

node; then solid lines represent inhibitory interactions, and dotted lines excitatory.

The local structure at each node of the network in (a) is given in (b). This algorithm

may be extended to two-dimensional images, in which case each node in the

corresponding network has the local structure shown in (c). The oval in this figure

represents a two-dimensional disc rising out of the plane of the page. (Reprinted

by permission from D. Marr and T. Poggio, "Cooperative computation of stereo

disparity," Science 194, October 15, 1976, 283-287. Copyright 1976 by the American

Association for the Advancement of Science.)
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As we saw above, Rules 2 and 3 determine the solution to the matching

problem. Rule 2 says in effect that only one match is allowed along any of

the small vertical or horizontal lines in Figure 3-6(a). Rule 3 says that the

correct matches tend to lie along the dotted diagonals.

What we do now is to make a parallel, interconnected network of

processors that implements these two rules directly. At each intersection,

or node, in Figure 3-6(a) we place a little processor. The idea is that if the

node represents a correct match between a pair ofblack dots, then it should

eventually have the value 1. If it represents an incorrect match—a false

target, as we called it earlier—then the processor should have the value 0.

We implement the rules by interconnections between the processors.

As we saw, Rule 2 tells us that only one match is allowed along each hori-

zontal or vertical line. So, we make all the processors at the nodes along

each vertical or horizontal line inhibit each other—the idea being that, in

the resulting competition along each line, only one processor will survive

to be 1, all the others will be 0, and so Rule 2 will be satisfied. Rule 3 says

that correct matches tend to lie along the dotted lines, so we insert exci-

tatory connections between processors in these directions. This gives each

local processor the structure shown in Figure 3-6(b). Each such processor

sends inhibitory connections to processors along the horizontal and ver-

tical lines shown there, which correspond to the lines of sight from the

two eyes, and excitatory connections along the diagonal line, which is the

line of constant disparity. We can even extend the algorithm to two-dimen-

sional images, in which case the inhibitory connections remain the same

but the excitatory ones cover a small two-dimensional neighborhood of

constant disparity. This situation is diagrammed in Figure 3-6(c).

The idea now is to load the network of processors by taking the two

images and putting a 1 wherever two black dots could match—false targets

and all—and a at all other places. Then we let the network run. Each

processor adds up the l's in its excitatory neighborhood, adds up the l's

in its inhibitory neighborhoods, and subtracts the resulting figures (after

multiplying one of the sums with a suitable weighting factor). If the result

exceeds a certain threshold, the processor takes the value 1; if it does not,

the processor is set to 0. Formally, this algorithm can be represented by

the iterative relation

C
x,y;d

lx',y';d'eS(x,y;d} x',y',d'e.O(x,y;d) )

where < yd denotes the state of the cell corresponding to position (xjO,

disparity rf, and time t in the network of Figure 3-6(a); S(x,y,d) is the local
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excitatory neighborhood, and 0(x,y,cf) the inhibitory neighborhood. The

Greek letter e is an inhibition constant, and a is a threshold function. The

initial state C° contains all possible matches, including false targets, within

the prescribed disparity range; here it is added at each iteration. (It does

not have to be, but the algorithm converges faster if it is.) Notice how Rules

2 and 3 are implemented through the geometry of the inhibitory and

excitatory neighborhoods O and S.

This algorithm successfully solves random-dot stereograms, and an

example is shown in Figure 3-7 of how the network gradually organizes

itself into the correct solution. The stereograms themselves are labeled Left

and Right, the initial state of the network as 0, and the state after n iterations

is marked as such. To understand how the figures represent states of the

network, imagine looking at the network from above—that is, from the

direction of the top of Figure 3-6. The different disparity layers in the

network lie in parallel planes, so that the viewer is looking down through

them. In each plane, some nodes are on and some are off. Each of the

seven layers in the network has been assigned a different gray level, so that

a node that is switched on in the top layer (corresponding to a disparity of

+ 3 pixels) contributes a dark point to the image, and one that is switched

on in the lowest layer (disparity of - 3) contributes a light point. Initially

(iteration 0) the network is disorganized, but in the final state the order

has stabilized (iteration 14), and the inverted wedding-cake structure has

been found. The dot density of this stereogram is 50%.

The algorithm defined by the iterative relation above with the param-

eter values used for the example of Figure 3-7 is capable of solving

random-dot stereograms with dot densities from 50% down to less than

10%. For this and smaller densities, the algorithm converges increasingly

slowly. If a simple homeostatic mechanism is allowed to control the thresh-

old cr as a function of the average activity (number of on cells) at each

iteration, the algorithm can solve stereograms whose density is very low.

In the second example, Figure 3-8, the density is 5% and the central square

has a disparity of - 2 pixels relative to the background. The algorithm fills

in those areas where no dots are present, but it takes several more iterations

to arrive near the solution than in cases where the density is 50%. When
we look at a sparse stereogram, we perceive its shapes as being cleaner

than the shapes found by the algorithm. This seems to be due to subjective

contours that arise between dots that lie on shape boundaries.

We can see intuitively how the algorithm works from these examples.

It never seems to have any trouble with stereograms, but this alone is not

sufficient evidence for placing confidence in it. We did, however, manage

to make it intellectually respectable; in a mathematical analysis of the algo-
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Figure 3-7. The decoding of a random-dot stereogram pair by the cooperative

algorithm described in the text. The stereogram appears at the top, and the initial

state of the network, which includes all possible matches within the prescribed

disparity range, is labeled 0. The algorithm runs through a number of iterations, as

shown, and gradually the structure is revealed. The different shades of gray rep-

resent different disparity values.
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Figure 3-8. The algorithm used in Figure 3-7 can also decode and fill in very

sparse stereograms. This one has a density of 5%.
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rithm (Marr, Palm, and Poggio, 1978), we demonstrated that states obeying

Rules 2 and' 3 were stable states of the algorithm, and we showed that the

algorithm converges for a wide range of parameter values.

This is an example of a cooperative algorithm, so-called because of

the way in which local operations appear to cooperate in forming global

order in a well-regulated manner. Cooperative phenomena are well-known

in physics; for example, the Ising model of ferromagnetism, superconduc-

tivity, and phase transitions in general. Cooperative algorithms have many

characteristics in common with these phenomena.

Cooperative algorithms and the stereo matchingproblem

Until 1977, almost all of the stereo algorithms put forward as models

for human stereopsis were based on Julesz's proposal that stereo matching

is a cooperative process (Julesz, 1971, pp. 203ff.; Julesz and Chang, 1976;

Nelson, 1975; Dev, 1975; Hirai and Fukushima, 1976; Sugie and Suwa, 1977;

Marr and Poggio, 1976). The two exceptions were Julesz's (1963) AUTOMAP

program, which used an approach based on cluster-seeking, and Sperling's

(1970) model, which is based on gray-level correlations but does make an

interesting point of the connection between stereopsis and vergence move-

ments.

There is a rather fascinating moral that one can draw from these

attempts: Apart from our own, which was based on the computational

approach, not one of these algorithms was accompanied by an analysis of

the underlying computational theory of the stereo matching problem. As

a direct consequence, not one of them computed the right thing—at least

one of the constraints in the fundamental assumption of stereopsis was

either missing or incorrectly implemented. Sperling's model was based on

gray-level correlation—which, as we have seen, is incorrect—and because

this model was not implemented, he failed to specify the area and dispo-

sition of the neighborhoods over which the correlation is taken. It is in

trying to do this that one comes up against the problems.

Dev's algorithm deserves credit for being one of the first precise

attempts to embody Julesz's ideas (Dev, 1975, eqs. 1 and 2). The algorithm

realizes Rule 3 but employs an incorrect version of Rule 2. Instead of two

lines of inhibition, one down each line of sight, she has one that bisects

the angle between the lines of sight. This algorithm, illustrated in Figure

3-9, should be contrasted with the geometry of Figure 3-6. Physically, the

connections in Figure 3-9 correspond to something like the rule that any

direction out from the viewer meets only one surface. This is not true in

general; for example, when one looks into a shallow lake, one sees two

surfaces, the lake surface and its bottom. The correct version, shown in
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Figure 3-9. Several of the cooperative stereo algorithms that have been proposed

include just one set of inhibitory connections between detectors of different dis-

parities at the same retinal position. Ifwe represent these connections in the same

way as in Figure 3-6, it becomes obvious that they implement slightly different

constraints. Instead of forbidding double matches down each line of sight, as was

the case in Figure 3-6, these connections forbid double matches along the radial

out from the viewer. It is incorrect to formulate the stereo correspondence process

in this way.

Figure 3-6, says that any particular visible marking will lie either on the

lake's surface or on the bottom (or perhaps on a fish swimming by), but

only on one of these.

Sugie and Suwa's (1977) algorithm implements only a part of Rule 3

and the same, incorrect version of Rule 2. Nelson (1975) gave no precise

algorithm, nor did he implement any form of his ideas, but he also seems
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to mean an algorithm that implements the wrong form of Rule 2. Hirai and

Fukushima (1976) correctly implemented Rule 2 (p. 48, function [1]) but

did not implement Rule 3, preferring instead a network that favored solu-

tions with lower parallax.

Julesz's (1963) AUTOMAP fails to implement Rule 2 but implements

Rule 3 implicitly in the way it detects clusters. Julesz's dipole model is more

interesting. It is defined as a mechanical analogy in which the left and right

stereo images are each represented by a network of compass needles

(magnetic dipoles), one for each image marking to be matched. The

needles are oriented so that they can point to nearby locations in the

opposite image's network when the two networks are overlayed. The end-

points of neighboring needles on each side are coupled together by springs

and the polarity of each needle (north or south) is chosen according to

the intensity of the image (black or white) at that location. The idea is

that when the left and right networks are overlayed in rough registration,

the magnetic attraction between similarly arranged groups of needles on

either side will cause the network to settle into a stable state with the

needles pointing towards their correct matches on the other side. While

the relation between the polarity of the magnets and the retinal intensity

values is unclear except for random-dot stereograms, the dipole model

implicitly implements uniqueness, Rule 2, because a given dipole can have

only one orientation at a time. Spring coupling between the tips of adjacent

dipoles implements the continuity of Rule 3. This model therefore comes

the closest to meeting our requirements, but it has the interesting feature

that, unlike the other cooperative models, it does not represent explicitly

all possible nodes in the diagram of Figure 3-6(a). That is, there is really

only one processor for each vertical or horizontal line in that diagram, the

different nodes along them being represented by different angular posi-

tions of a single dipole. It would be interesting to see whether such a

model could be made to work.

The reason for elaborating upon this point is simply to help my overall

argument that intellectual precision of approach is of crucial importance

in studying the computational abilities of the visual system. Unless the

computational theory of a process is correctly formulated, the algorithm

will almost certainly be wrong.

Finally, none of these algorithms has been shown to work on natural

images. Gray-level correlation works some of the time, but it makes mis-

takes that a human operator has to correct. The other proposals make no

specific suggestions about what their input representations should be,

although Marr and Poggio (1976) suggested that the primal sketch is

suitable.
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Biological evidence

All of these algorithms are designed to select correct matches in a

situation where false targets occur in profusion. Consequently, apart from

early versions ofJulesz's dipole model perhaps, they do not critically rely

upon eye movements, since in principle they have the ability to interpret

a random-dot stereogram without them. However, eye movements seem to

be important for human stereo vision. Without them, in fact, one can see

very little depth—the range over which one can fuse two images (called

Panum's fusional area) is small, about 6 '-18' of arc (Fender and Julesz,

1967; Julesz and Chang, 1976)—and almost no structure can be perceived

(Richards, 1977), except for small disparities (Mayhew and Frisby 1979).

For complex stereograms such as Julesz's spiral (1971, fig. 4.5-4), eye

movements are probably essential (Frisby and Clatworthy 1975; Save and

Frisby, 1975). In fact, in view of Fender and Julesz's early findings, it is quite

surprising that so little psychophysical attention has been given to eye

movements until very recently.

There are several other psychophysical phenonema that would be

difficult to explain in terms of the type of algorithms we have been dis-

cussing. Some subjects, for example, can tolerate a 15% expansion of one

image (Julesz, 1971, fig. 2.8-8). If one severely defocuses one of the pair

in a stereogram, fusion is easy to obtain (Julesz, 1971, fig. 3.10-3). This is

only the most striking demonstration of a phenomenon that can be shown

in several other ways. In fact, one can simultaneously experience both

binocular rivalry and fusion of different spectral components in a stereo-

gram, as the reader may experience in Figure 3-10 (Kaufman, 1964; Julesz,

1971, sec. 3.9 and 3.10; Julesz and Miller, 1975; Mayhew and Frisby, 1976).

Such findings raise the interesting possibility that disparity information is

conveyed at some stage by independent stereopsis channels that are tuned

to different frequencies and are roughly one and a half octaves wide—very

reminiscent, in fact, of the different-sized V 2G operators that we met in

Chapter 2.

Other interesting findings are the physiological, clinical, and psycho-

physical evidence about Richards' two-pools hypothesis (Richards, 1970,

1971; Richards and Regan, 1973; Poggio and Fischer, 1978; Clarke, Donald-

son, and Whitteridge, 1976). Richards' basic finding was that stereo blind-

ness manifests itself as a blindness to all convergent disparities, all divergent

disparities, or both—and some kind of stereo incapacity, incidentally, is

extraordinarily common, having an incidence of about 30%. In other

words, stereo detectors seem to be organized into two pools, one dealing

with convergent and the other with divergent disparities, with perhaps a

third pool dealing with zero disparity. The neurophysiologists report some-
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Fzgwre 3-iO The high-frequency spectral components of this stereogram are rivalrous, yet the

low-frequency components are not and can be fused. This suggests that independent spatial-fre-

quency-tuned channels are involved in stereopsis. (Reprinted, by permission, from B. Julesz and

J. E. Miller, "Independent spatial-frequency-tuned channels in binocular fusion and rivalry," Percep-

tion 4, 1975, 125-143, fig. 6.)

thing similar—roughly three classes of disparity-tuned neurons, one class

broadly tuned to convergent (the so-called near neurons), and another

broadly turned to divergent (far neurons), and a third sharply tuned to

near-zero disparities. This goes against what one would expect of a neural

implementation of the algorithms I discussed above, since, apart from the

dipole model, all require many "disparity-detecting" neurons, whose peak

sensitivities cover a range of disparity values that is much wider than the

tuning curves of the individual neurons.

Finally, a remark about the motivation for the cooperative algorithm

approach. As I have mentioned, these ideas were all inspired by Fender

and Julesz's (1967) exhibition of hysteresis in stereopsis. In their experi-

ment, they stabilized the images against eye movements and showed that

once fusion was achieved, the two images could be "pulled" apart by up

to about 2° of disparity before fusion "broke." However, once fusion had

broken, the images had to be brought back to the 6'-l4' range before they

would refuse. Hysteresis is one property of cooperative algorithms, and so

is filling-in, which also seems to occur in stereopsis—as the reader has

already seen, sparse stereograms like Figure 3-8 give the appearance of

a smooth, solid surface, not of a few dots hanging isolated in space. Hence
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everybody, including Julesz and ourselves, searched for a cooperative

algorithm.

But not very sensibly. After all, the critical point of the Fender and

Julesz experiment was that the hysteresis occurred over 2° of disparity,

whereas matching only occurred under 20'. It therefore seems unlikely

that the hysteresis is a consequence of the matching process, and much
more likely that it is due to a cortical memory that stores the results of the

matching process but is distinct from it. Fender and Julesz even suggested

such a thing. Of course, this does not forbid the presence of cooperativity

in the matching process, and the so-called pulling effect, described later

byJulesz and Chang (1976), is probably evidence for its existence; however,

the lesson is that we should probably deemphasize our ideas about coop-

erative processes and look instead for a rather different approach to the

problem of stereopsis.

A second algorithm

The basic problem to be overcome in binocular fusion is the elimi-

nation or avoidance of false targets, and its difficulty is determined by two

factors: the abundance of matchable features in an image and the disparity

range over which matches are sought. If a feature occurs only rarely in an

image, the search for a match can cover quite a large disparity range before

false targets are encountered, but if the feature is a common one or the

criteria for a match are loose, false targets can occur within quite small

disparities.

For a given disparity range, then, if we want to simplify the matching

problem, we have to decrease the incidence of matchable feature pairs;

that is, we have to make features rare. There are two ways to do this. One
way is to make them quite complex or specific, so that even if their density

in the image is high, there would be so many different kinds that there

would seldom be a compatible pair. The other way is to reduce drastically

the density of all features in the image, for example, by decreasing the

spatial resolution at which it is examined.

We know fromJulesz s work on random-dot stereograms that the pros-

pects for the first approach are rather slim. We know that the matching is

carried out locally, yet all the edges are exactly vertical or horizontal and

all have the same contrast, so even forcing very specific criteria onto them
would not help us much. Furthermore, doing so would severely impair

performance on real images, for which the orientations and contrasts of

two corresponding edges can differ by surprising amounts. The reader can

see for himself that stereograms with different contrasts can be fused by
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Figure 3-11. The left and right images have different contrasts, yet fusion is still

possible.

looking at Figure 3-11. The contrasts must, however, have the same sign.

The criteria for orientation are also quite lax.

However, the other possibility is more promising. Indeed, the exis-

tence of independent spatial-frequency-tuned channels in binocular fusion

now acquires a new and special interest, because it suggests that several

copies of the image, obtained by successively finer filtering, are used during

fusion, providing increasing and, at the limit, very fine disparity resolution

at the cost of decreasing disparity range.

A notable feature of a system organized along these lines would be its

reliance on eye movements for building up a comprehensive and accurate

disparity map from two viewpoints. The reason for this is that the most

precise disparity values are obtained from the high-resolution channels,

and eye movements are therefore essential so that each part of a scene can

ultimately be brought into the small disparity range within which high-

resolution channels operate. The importance of vergence eye movements

is also attractive in view of the extreme precision with which they may be

controlled (Riggs and Niehl, I960; Rashbass and Westheimer, 1961a).

These observations suggest the following scheme for solving the

fusion problem: (1) Each image is analyzed through channels of varying

coarseness and matching takes place between corresponding channels

from the two eyes for disparity values ofthe order of the channel resolution;

(2) coarse channels control vergence movements, thus causing fine chan-

nels to come into correspondence.

This scheme contains no hysteresis and therefore does not account

for the observations of Fender andjulesz (1967). According to our emerg-

ing theory of intermediate visual information processing, however, a key
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Figure 3-12. Illustration of the 2 1/2-dimensional sketch. In (a), the perspective views of small

squares placed at various orientations to the viewer are shown. The dots with arrows symbolically

represent the orientations of such surfaces. In (b), this symbolic representation is used to show

the surface orientations of two cylindrical surfaces in front of a background orthogonal to the

viewer. The full 2y2-dimensional sketch would include rough distances to the surfaces as well as

their orientations; contours where surface orientations change sharply, which are shown dotted;

and contours where depth is discontinuous (subjective contours), which are shown with full lines.

See Chapter 4 for more details. (D. Marr and H. K. Nishihara, 1978.)

goal of early visual processing is the construction of something like an

orientation-and-depth map of the visible surfaces around a viewer (see

Chapter 4). In this map, information is combined from a number of dif-

ferent and probably independent processes that interpret disparity, motion,

shading, texture, and contour information. These ideas are illustrated by

the representation shown in Figure 3-12, which Marr and Nishihara (1978)

called the 2V2-D sketch.

Suppose now that the hysteresis that Fender and Julesz observed was

not due to a cooperative process during matching but was in fact the result

of using a memory buffer, like the 2V2-D sketch, for storing the depth map
of the image as it is discovered. Then the matching process itself need not

be cooperative (even if it still could be): it would not even be necessary

for the whole image ever to be matched simultaneously, provided that a

depth map of the viewed surface was built and maintained in this inter-

mediate memory.
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Our scheme can now be completed by adding to it the following two

steps: (3) When a correspondence is achieved, it is held and written down

in the 2V2-D sketch; (4) there is a reverse relation between the memory

and the channels, acting through the control of eye movements, that allows

one to fuse any piece of surface easily once its depth map has been estab-

lished in the memory.

The idea of matching coarse, widely separated features first, and then

with the information so obtained, repeating the matching process at suc-

cessively finer scales of resolution sounds promising, but what features

should we match at these different resolutions? We have seen enough of

early visual processing to suggest various possibilities. Are they zero-cross-

ings the raw primal sketch, the full primal sketch, or some combination

of them all? Poggio and I proposed that the input representation for the

stereo matching process consists of the raw zero-crossings, labeled by the

sign of their contrast change and their rough orientation in the image, and

of terminations—local discontinuities—also labeled by contrast and per-

haps very rough orientation.

The matchingprocess. The choice of input representation leads to the

matching algorithm illustrated in Figures 3-13 and 3-14. These figures

show Eric Crimson's computer implementation of the algorithm running

on a pair of random-dot stereograms, which represent one of the most

difficult kinds of input for the algorithm.

The left and right images, forming a random-dot stereogram with

density 50% , appear at the top of Figure 3-13. The first step in the algorithm

is to apply a large V 2G filter to each image and obtain the zero-crossings,

just as we did in Chapter 2. Although in theory the elements to be matched

between images include both zero-crossings and terminations, it is only

the zero-crossings that cause difficulties with false targets. Thus Figure 3-14

shows only the zero-crossings and in fact horizontal segments are ignored,

since they cannot be easily matched.

In addition to their locations, the zero-crossings have been given a

sign and a rough orientation. The sign corresponds to the sign of the

contrast change from left to right across the zero-crossing, and it is indi-

cated by the shade of the zero-crossing in the figure. Two zero-crossings

are matchable if they have the same sign and their local orientations are

within 30° of each other. Matching itself is carried out point by point along

the zero-crossings.
.

The convolution values and signed zero-crossings for three sizes or

the V 2G filter appear in Figure 3-14. The reader can see that far more

zero-crossings are obtained from the smallest channel than from the larg-

est which means that the disparity range considered can be greater for the

larger channels without any increase in the incidence of false targets.



Figure 3-13. The solution of a 50% random-dot pattern. The left and right images
are shown at the top. The three lower figures indicate an orthographic view of the

disparity maps obtained by matching the zero-crossing descriptions of Figure 3-14.

A point in the image with coordinates (x,y) and an assigned disparity value of d is

portrayed in this three-dimensional system as the point (x,y,d). Here the heights of

the bright points above the plane indicate their disparity values.

In general terms, then, the overall structure of the algorithm is clear

from Figures 3-13 and 3-14. First, the coarse images are matched; the

results of this are illustrated in Figure 3-13(a), which shows an ortho-

graphic view of the resulting disparity map. This rough result is used as

the starting point for the same matching process applied to the medium-
sized channel. The decrease in the allowed disparity range is offset by the

knowledge, obtained from the large channel, of its approximate value. This
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Figure 3-14. The convolutions and zero-crossings involved in solving the stereogram of Figure

3-13. The two left columns indicate the convolutions of the left and right images with masks of

size w
2 _ D

= 35, 17, and 9, respectively, from top to bottom. The two right columns indicate the

zero-crossings obtained from the convolutions in the left two columns. Notice how much more

detail the smaller masks reveal.

gives the disparity map shown in Figure 3-13(b). Second, the smallest

channel is considered, yielding the accurate disparities made possible by

its small disparity range, and the results appear in Figure 3-13(c). In this

example, the central square has a disparity of 12 pixels, and each black

square is 4 x 4 pixels. In the final disparity map, less than 0.1% of the

points are incorrectly matched, and these all occur at the borders of the

square.

More properties of zero-crossings. In this algorithm, the false target

problem is solved essentially by evasion, but exactly how it is solved is
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Figure 3-15. The positive (or negative) zero-crossings of a pure sine wave are

guaranteed to be X apart, where X is the wavelength. See discussion in text.

interesting and, from the point of view of psychophysics, quite important.

I shall not give the proofs here, but the general argument can be conveyed

without much technical detail.

The central idea is illustrated in Figure 3-15. Suppose, for sake of

argument, that the intensity variation in the image was purely sinusoidal,

consisting solely of a vertically oriented sinusoidal grating. Such a signal

has the Fourier transform shown in Figure 3-1 5(a) and passes unscathed

through V 2
G, giving the same curve shown in one-dimensional cross-sec-

tion in Figure 3-1 5(b). Now the problem is to match the zero-crossings

between the two filtered images, so let us suppose that we have fixed on

a particular positive-going zero-crossing from the left image whose true

match is the one marked M in Figure 3-1 5(b). Then F
1
and F

2
are false

targets. But since they also have to be positive-going zero-crossings, they

must be at least a distance X away, where X is the wavelength of the sinusoid.

Hence, provided that we restrict our search for possible matches to a

disparity range of at most X, we are guaranteed to find only one possible

match, and provided that we know by some other means roughly where

to carry out the search, we can be sure that the one match we find will be

correct.

That is the basic idea, but the real world is not restricted to pure sine

wave gratings. A sine wave is, however, only the extreme case of a band-

pass function, in which the bandwidth is zero. The same qualitative argu-

ment holds for wider bandwidths, and this can be seen roughly from

Figures 2-19 and 3-16. For example, consider the case of an ideal one-

octave band-pass filter of the type whose Fourier transform appears in

Figure 2-1 9(b). A portion of a typical signal from such a filter is illustrated

in Figure 2-19(c). The average value of this signal is zero, so the signal
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Figure 3-16. The signal in (a) varies randomly in the range to 100. After being passed through

the filter V2
C7, it has the appearance shown in (b), with more or less regularly occurring zero-

crossings. A similar example is given in Figure 2-19 for a pure one-octave band-pass filter. For

general band-pass signals, like those passed by V 2
C7 or a pure one-octave filter, the zero-crossings

cannot on average occur too closely together or too far apart. The intervals between zero-crossings

are governed by the statistical rules illustrated in Figure 3-17.

crosses zero quite frequently, like the sine wave. However, because it is a

band-pass signal, its zero-crossings cannot occur too far apart. On average,

they occur at the frequency corresponding to the middle of the filter's

range.

The important point for us is that zero-crossings cannot on average

occur too close together, and this is true for any band-pass filter. The filter

V 2
G, however, is also roughly a band-pass filter—the reader may care to

look once again at its one-dimensional Fourier transform, shown in Figure

2-9(c). The results of passing a random one-dimensional signal (Figure

3-l6a) through V 2G are shown in Figure 3-l6(b), and the reader can see

that it has the same qualitative features as Figure 3-15, its average value is

zero, and the zero-crossings lie neither very close to nor very distant from

their neighbors.

The general lines of the argument are now quite straightforward, and

they are the same as those of the argument for the sine wave. Since V G

is roughly a band-pass filter, its zero-crossings are usually separated by

some minimum distance. Provided we know approximately where to look

for a match, and provided we do not search over too large a range, we shall

find a unique candidate for the match and it will be correct.
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This shows us a promising approach to the matching problem, but it

also raises another rather exciting possibility. From the point of view of

psychophysics, V 2G is monocular, but matching is binocular. That is, the

parameters of the S7
2G filters—their widths w1 _ D ,

for instance—are

obtained by purely monocular measurements. The disparity range for

matching, usually called Panum's fusional area and which I shall denote by

V, is essentially a binocular phenomenon. If our theory is true, it will

predict a clear and unexpected relationship between these a priori unre-

lated quantities, which are measured in completely different ways. This

will therefore provide an excellent way of testing the theory.

It is therefore important to derive the precise quantitative relationship

that we expect should hold between w
1 _ D and V. In order to do this, we

need a quantitative model for the channels used in early processing and

some way of estimating the probable distances between zero-crossings.

The idea of using zero-crossings, it should perhaps be said, came from

early work on the primal sketch (Marr, 1976) in which many of the cells

early in the visual pathway were thought of not as feature detectors but as

differential operators. Hubel and Wiesel's (1962) definition of a cortical

simple cell as linear led us to think, for example, of a bar-shaped receptive

field as an oriented second-derivative operator from which one subse-

quently found zero-crossings. Only later did we come to realize that the

simple cells themselves are probably the zero-crossing detectors, as in

Figure 2-18 (see also Section 3.4). This slight confusion does not matter

from a mathematical point of view, because under only very weak assump-

tions the two points of view are equivalent (see Marr and Hildreth, 1980,

app. A). With respect to their implementation and consequently to psycho-

physics, the two things are rather different. I shall return to this point

later on.

For our analysis, then, we need a quantitative hold on the distances

between zero-crossings for the filters that the visual system actually uses.

At the time the present stereo theory based on matching at different scales

of resolution was formulated, we did not know that V2G was the optimal

filter to use, but we knew something just as good, because Hugh Wilson

at Chicago had just formulated his four-mechanism model for the structure

of the channels. He described their structure using DOG's—differences of

Guassians—which are almost indistinguishable from V 2
6", as we saw in

Figure 2-16.

We were also very lucky with the mathematics of the problem because

obtaining estimates of the probable distances between the zero-crossings

of band-pass signals turns out to be very difficult. Various mathematicians

had already worked on it, starting with Rice in 1945 and more recently M.

Longuet-Higgins (1962) and Leadbetter (1969). The problem itself is inter-
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esting, because it relates to a number of physical phenomena, some quite

important and some less so. The important ones include the effects of

Brownian noise due to the random motion of electrons in electrical cir-

cuits—and some amplifiers, for example, switch as the voltage crosses

zero_and the analysis of the distribution ofwave heights in the sea, which

is of particular interest now that people are trying to tap this source of

energy. On a more frivolous note, the same type of mathematics is involved

in the study of twinkles, which are the places in the sea that happen to

reflect the sun back into your eyes, causing the surface to glitter and, well,

twinkle.

We can therefore analyze the spatial distribution of zero-crossings, at

least for one-dimensional band-pass signals. The results are illustrated in

Figure 3-17 for two cases: first, the example shown in Figure 2-19 of a

pure one-octave band-pass filter (left column), and second, the case, illus-

trated in Figure 3-16, of a V 2G filter which closely approximates the filters

that Wilson concluded are present in the early stages of the human visual

system (right column).

The legend explains the details, but the important graphs are the two

in Figure 3-17(c). They show the probability given a zero-crossing at the

origin, of encountering another zero-crossing of the same sign at distance

£ away The units in which £ are plotted, in the biologically interesting case

of the right-hand column, are such that w
1 _ D has the value 2.8. Two values

of this probability are worth remembering: at distance w
t _D it is about 5%,

Figure 3-1 7. (opposite) Interval distributions for zero-crossings. A "white" Gaus-

sian random process is passed through a filter with the frequency characteristic

(transfer function) shown in (a). The approximate interval distribution for the first

(F ) and second (PJ zero-crossings of the resulting zero-mean Gaussian process

is shown in (b). Given a positive zero-crossing at the origin, the probability of

having another within a distance £ is approximated by the integral ofP, and shown

in (c). In the left column, these quantities are given for an ideal band-pass filter

one octave wide and with center frequency w = 2tt/\; in the right column, these

quantities are given for the case of the receptive field described by Wilson and

Giese (1977). The ratio of space constants of excitation and inhibition is 1:1.5. The

width w of the central excitatory portion of the receptive field is 2.8 in the units in

which £ is plotted. For the case portrayed in the left column, a probability level of

fP = 0.001 occurs at (• = 2.3 and a probability level of 0.5 occurs at £ = 6.1. The

corresponding figures for the case illustrated in the right column are g = 1.5 and

£ = 5.4. If the space-constant ratio is 1:1.75, the values of JPJ
change by not more

than 5%. (Reprinted by permission from D. Marr and T. Poggio, "A computational

theory of human stereo vision," Proc. R. Soc. Lond. B 204, 301-328.)
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Ideal one-octave band-pass filter Wilson-Giese receptive field
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and at distance 2w
1 _ D it is about 50% and increasing rapidly. Moderate

changes in the shape of the underlying filter do not change these numbers

by very much.

The matching algorithm. Given this background, we can now formu-

late the matching algorithm and prove that it will work. Let us first examine

a simple case, in which false targets are essentially avoided. It is best

explained by looking at Figure 3-18(a). Here we have a zero-crossing from

the left image, marked L, which matches another of the same sign in the

right image, which is displaced by a disparity of amount d The correct

match is labeled R, and a possible false target F, shown dotted, is shown

lurking nearby. Provided that we consider only the disparity range w/2,

however, we are safe, because even ifR is right at one end of the range—

if d = w/2, for example—our statistical analysis assures us that, with a

probability of 95%, it will be the only zero-crossing of its type within a

disparity range that extends over w. Even if we ignore all cases in which

two candidates are present, we shall still succeed over 95% of the time.

This assumes, of course, that R is the correct match, that is, that the

correct match lies in the range of w/2 that the procedure examines. How-

ever, we can tell when the correct match does not lie in this range, because

if the visible surface has disparity in this range, almost all zero-crossings

from the left image will find matches in the right image, and all of them

will find at least one candidate match. If the surface has a disparity lying

outside this range, then the probability that a zero-crossing from the left

image will find a candidate match within range from the right image is, for

all intents and purposes, simply the probability that a zero-crossing of the

appropriate sign falls by chance within the particular spatial interval w/2

in the right image. This probability is about 40%. Hence, if the surface lies

outside the disparity range, only 40% of the matches will be achieved

versus nearly 100% if the surface falls within this range. It is therefore easy

to tell when the matching process is succeeding. And notice, incidentally,

that we rely on the third constraint, continuity, of our fundamental assump-

tion since it is assumed that we can look over a neighborhood in the image

that 'is large enough to enable us to measure the difference empirically

between a situation with a 40% probability of matches and one of, say, 95%

.

Such a neighborhood does not have to be very large, but it has to exist,

and this is why we need the continuity assumption.

Now that this simple algorithm has given us the basic idea, we can

improve on it, and by doing so increase the allowed disparity range from

w/2 to w Figure 3-18(b) shows our zero-crossing L in the left image, but

this time its match R in the right image has a disparity d that can be as

much as w. The first point to note is that if d is positive, then by the same
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Figure 3-18. The matching process driven from the left image. A zero-crossing L in the left image
matches one R displaced by disparity d in the right image. The probability of a false target within
w ofR is small, so provided that d < w/2 (a), almost no false targets will arise in the disparity range
w/2. This gives the first possible algorithm. Alternatively, all matches within the range w may be
considered (b). Here false targets, designated F, can arise in about 50% of the cases, but the correct

solution is also present. If the correct match is convergent, the false target will with high probability

be divergent. Therefore, in the second algorithm, unique matches from either image are accepted
as correct, and the remainder as ambiguous and subject to the pulling effect, illustrated in (c). Here
L

x
could match R

l
or R

2 , but Z
2
can match only R

2
. Because of this and because the two matches

have the same disparity, L
1
is assigned to Rv (Reprinted by permission from D. Marr and T Poggio,

"A computational theory of human stereo vision," Proc. R. Soc. Lond. B 204, 301-328.)
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arguments as before, R is at least 95% certain to be the only candidate in

the disparity range to w. Second, we know from our statistics that the

likelihood of a false target in the 2w disparity range from d = -wxod
= +w is at most 50%, even when the correct match lies at one extreme

of this range. Putting these two facts together, we see that at least 50% of

the time the match will be unambiguous and correct and that remaining

cases will be ambiguous, consisting mainly of two alternatives, one con-

vergent (in the range (0,u;) ) and one divergent (in the range (-wfi) ),

one of which will be correct. In the ambiguous cases, selection of the

correct alternative can be based simply on the sign of neighboring matches

(note the use of continuity here). Notice, incidentally, that if a match is near

zero disparity, it is likely (p > 0.9) to be the only candidate, again according

to the statistics of the situation. Hence the notion ofthree disparity ranges-

one convergent, one divergent, and one around zero—follows naturally

from this matching technique.

Once again, if the surface lies within the disparity range, nearly 100/6

of the zero-crossings will find matches; if it does not, the figure in this

instance is 70% instead of 40%, but this is still different enough from 100%

to enable us to tell when matching is succeeding.

We cannot improve much on the range w without resorting to more

powerful techniques for removing false targets, because the probability of

false targets occurring increases quite sharply above the range 2w. The

percentage of unambiguous matches, for example, is already down to 20%

at 1.5^.

Uniqueness, cooperativity, and the pulling effect

Eric Grimson (1981) made the important point that matching can be

carried out from either image or from both images. In Figure 3-18(c), for

example, if matching is initiated from the left image, the match for L
x

is

ambiguous, but for L 2
it is unique. From the right image, matching is unique

for R, but ambiguous for R 2
. Together the two unique matches provide the

correct solution.

That the two unique matches should be correct rather than contra-

dictory is a consequence of the uniqueness property embedded in the

fundamental assumption of stereopsis. As a result, the algorithm can be

designed to accept unambiguous matchings by starting from either image.

However this design does have some fascinating consequences, for it

means that the uniqueness assumption is no longer internally verifiable by

the algorithm, whereas the continuity assumption is.

This fact is determined in the following way We have already seen that

the algorithm needs to check the proportion of local candidates that are

matched in order to tell whether the surface lies within the disparity range
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under examination. If the proportion is near 100%, everything is satisfac-

tory. If it is not (in which case it is probably 70%), the solution is rejected.

It is extremely difficult to fool this test, and since it relies on continuity for

its validity, it amounts to an internal check that continuity is being locally

satisfied by the visible surfaces.

Not so uniqueness. If the algorithm accepts unique solutions from
either image, this allows it to fuse patterns such as the Panum's limiting

case example (Figure 3-19) not only for rare occurrences across an image,

as in Figure 3-1 9(a), but also for frequent ones. Oliver Braddick investi-

gated this point by constructing stereograms like Figure 3-1 9(b), in which
each dot from the right image matches two from the left. Matching initiated

from the left image is unique, so one accepts it, and the resulting percept

is of two planes, one behind the other. The visual system is not particular

about which eye it operates from, and one can mix the doublets up so that

some of them are in the right image, and some are in the left. It makes no
difference.

Physically, of course, this situation is effectively impossible to produce
with two real surfaces, which is perhaps why we have not evolved an

internal check for uniqueness. The general point here is an interesting

one, though; some assumptions can be and are checked internally, like

continuity here; some could be but are not, like uniqueness; and some
cannot be even in principle. We shall meet some examples of this later on,

but it may be worth mentioning here that the Ames room illusion may be
one. Without stereopsis or motion cues, the assumptions of right angles

cannot be tested internally.

Finally, there are situations in which matching is ambiguous from both

eyes. In this case, the ambiguity can be resolved by consulting the signs of

the neighboring matches and choosing the matches with the same sign.

There is, however, an important distinction between the two most obvious

ways of doing this. Either we consult the signs of the neighboring matches

that were unambiguous from the start, or we consult the signs of the neigh-

boring matches that have so far been assigned. The second scheme intro-

duces cooperativity, the first does not.

To see this, imagine a stereogram cleverly constructed so that every

match is ambiguous except for an unambiguous region located, for exam-
ple, at the border. With the first scheme, none of the matches in the interior

region of the stereogram will ever be disambiguated, because there are

never any unambiguous matches to start from. With the second scheme,
however, the disambiguation will gradually propagate from the borders,

where the matches are determined, into the interior, where matches will

eventually be chosen whose signs are those of the matches at the border.

Julesz and Chang (1976) did just this experiment, and an example of

the type of stereogram they used appears in Figure 3-20. It transpired that
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(a)

(b)

(c)

Figure 3-19 (a) Panum's original limiting case. When fused, the impression is of

two lines separated in depth. In (b), each dot in the right image is paired with two

in the left image. When fused, the viewer sees two planes. The doubling does not

have to be restricted to one image, (c) The results of running the stereo algorithm

on (b), disparity being displayed according to the same conventions as were used

for Figure 3-13- Two planes are found.
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(a)

(b)

Figure 3-20. (a) There are many possible ways of matching the center of this

stereogram, but usually only the matches having the smallest disparity are per-

ceived. However, the particular match found can be biased by inserting unambig-

uously matchable dots at a particular disparity. In (b), 6% of the dots in the upper

half of the square have unambiguous matches at a two-dot crossed disparity

—

shifted in the nasal direction, whereas the lower half is biased with a two-dot

uncrossed disparity. Even a bias inserted into the border will pull fusion to one of

the possible solutions in the center. This is evidence for some cooperativity in the

human stereo matching algorithm. (Reprinted by permission from B. Julesz and J.

J. Chang, "Interaction between pools of binocular disparity detectors tuned to dif-

ferent disparities", Biol. Cybernetics 22, 1976, 107-120, figs. 1, 2.)
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information from the border could pull the matching going on in the

interior one way or the other. This suggests that our visual systems use the

second of the two alternatives outlined above.

Panum'sfvisional area

By using the second of the above schemes, matching may be assigned

correctly for a disparity range of w. The precision of the disparity values

thus obtained should be quite high and a roughly constant proportion of

w (which can be estimated from stereoacuity results to be about w/20). For

Wilsons foveal channels, this means 3' disparity with a resolution of 10

for the smallest and perhaps up to 20' for the largest with a resolution of

1' At 4° eccentricity, the range is 53' to about 34'.

Under these assumptions, the predicted values apparently correspond

quite well to available measures of the fusional limits without eye move-

ments Mitchell (1966) used small, flashed line targets and found, in keep-

ing with earlier studies, that the maximum amount of convergent or diver-

gent disparity without diplopia is about 10'-14' in the fovea and about 30

at 5° eccentricity. The extent of the so-called Panum's fusional area is there-

fore twice this.

Under stabilized image conditions, Fender and Julesz (1967) found

that msion occurred between line targets (13' by 1° high) at a maximum

disparity of 40 ' . This value probably represents the whole extent ofPanum s

fusional area. Using the same technique on a random-dot stereogram,

Fender and Julez arrived at a figure of 14' (6' displacement and 8' disparity

within the stereogram). Since the dot size was only 2', we expect more

energy in the high-frequency channels than in the low, which would tend

to reduce the fusional area. Julesz and Chang (1976), using a 6' dot size

over a visual angle of 5°, routinely achieved fusion up to 18' disparity.

Taking all factors into account, these figures seem to be consistent with our

expectations.

A critical prediction of the theory is that the maximum fusible disparity

should scale with the spatial frequency of the stimulus, since the lower

spatial frequencies will be detected by only the larger channels. There are

already hints that this might be so (Felton, Richards, and Smith, 1972).

Impressions of depthfrom larger disparities

We have assumed that Panum's area corresponds to pure stereoscopic

fusion. One still gains some impression of depth outside this disparity

range however, although this impression does not accurately reflect the

disparity that is present. There are two interesting cases to examine.
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Figure 3-21. In addition to the three narrow disparity pools (solid lines) required

by the matching algorithm, sets of outlying disparity detectors may exist, as illus-

trated here by the dotted lines. Their function would be to estimate whether the

fusion plane lies convergent or divergent, so that vergence eye movements can be

initiated in the appropriate direction.

The first is diplopia, in which one sees double but still senses depth.

The stereo matching algorithms I described above are designed to work
when the images are complex. When they are very sparse, there is no real

trouble with matching them, because there are no false targets to be
avoided. If, for example, there are no possible matches at all in the range

w, detectors operating outside this range, possibly sensitive to any match
over a broad interval may be consulted. The idea would be that if some
indication of the sign of the disparity was available, this would be enough
to initiate vergence eye movements in the correct direction so as to bring

the images into the fusible range.

There is another way in which such detectors could be used. As we
saw in the subsection on the computational theory of stereopsis, if the

image contains matchable features with a density of v, the density of

matches at the correct disparity is v, whereas at incorrect disparities it is

only v . If there is a range of disparity detectors and we want only to extract

the sign of the disparity where the correct matches lie, we could conceive

of a scheme in which the total number of convergent matches—false targets

and all—is summed and compared with the corresponding number of

divergent matches. We can think of various ways of doing this. For example,

adding up over the whole convergent and divergent disparity ranges simul-

taneously would be the simplest, but just conceivably the range of sum-
mation might be gradually extended until a significant difference is

obtained. In any case, in a biologically plausible implementation of the

kind illustrated in Figure 3-21, we would expect the number of detectors

to decrease as the disparity increases. This would, for statistical reasons,
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produce a psychophysical interdependence between the disparity in an

unfused stereogram and the area needed to detect the disparity s sign.

Interestingly, Tyler and Julesz (1980) have reported that such a rela-

tionship holds for dynamic random-dot stereograms. These are stereo-

grams that change in their patterns but not necessarily their disparity at

rates around 30 frames per second. The sign of disparity can be detected

but not, for example, the shape of the disparate pattern at up to several

degrees of disparity. Their finding, that detection ability depends on the

square root of the area, VX, could be explained by the kind of scheme I

suggested, in which the density of disparity detectors falls off with the

inverse of disparity, lid. This produces a ^dependence (Marr and Pogg.o,

1980) Of course, there are other possible explanations of these findings,

based on things like motion cues or possible nonlinear, temporal sum-

mation at the receptor level between successive frames.

Finally, we shall return to what I still regard as something of a puzzle

about stereopsis; namely, Why should one use zero-crossings as the input

representation for the matching process? Why not wait and use the raw

and full primal sketches, using a scheme that has the same general char-

acteristics but which replaces the low-spatial-frequency zero-crossings by

the rough, large-scale primitives in the primal sketch, and the high-spatial-

frequency zero-crossings by the raw primal sketch The findings ofJu esz

and Miller (1975), for example, about the independent fusion of different

spatial frequencies seem the best evidence for the pure zero-crossings

approach, but they can probably be explained by this other scheme. The

reason is that since, injulesz and Miller's patterns, like the one reproduced

in Figure 3-10, information from different regions of the spatial-frequency

spectrum does not come from a common source, the spatial coincidence

assumption will be violated, and so independent descriptions for each will

^infdStlfwfhave the evidence of Kidd, Frisby, and Mayhew

(1979) which I described in Chapter 2, that some texture boundaries can

drive vergence movements in stereopsis. This is definite evidence that

some of the later primal sketch descriptions are used for stereo visioa

On the other hand, however, the same group found that, in some

sense, stereo fusion can preempt and therefore probably precede
,

texture

vision discriminations (Frisby and Mayhew, 1979, figs, lb c, and d)_ Figure

3-22 shows some examples. When viewed monocularly, the differently

textured regions are clearly visible. When viewed binocularly,
however,

they disappear. This is slight but not incontrovertible evidence for the zero-

CfOS

M?oTvS is that some combination of the two is in fact used,

although it is based mainly on the zero-crossings approach. The decisive

advantages of zero-crossings are probably speed, since they are the first
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Figure 3-22. The texture differences, which are clearly visible monocularly, dis-

appear when the two images are fused stereoscopically. (Reprinted by permission

from J. P. Frisby and J. E. W. Mayhew, "Does visual texture discrimination precede

binocular fusion?" Perception 8, 1979, 153-156, figs. 1, 2.) Figure 3-22 continues

on next page.

things to be obtained, and precision, since they can be very accurately

localized. The theoretical reservations one has about them—that they are

only approximately and not strictly tied to physical changes—are not very

strong points because zero-crossings are pretty physical (much more so

than gray levels, for example). In fact, we know that they are sufficiently

physical, because the computer implementation of the zero-crossings the-

ory works well on natural images (Grimson and Marr, 1979; Grimson,

1981).
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Have we solved the rightproblem?

The basic issue that faces the designer of a stereo matching algorithm

is What are the difficult problems and what are the easy ones? A neuro-

physiologist could, with some justification, object that the matter of stereo

fusion is not very difficult at all, and that the really remarkable thing about

our stereoscopic vision is its precision, which can be as great as 2 of arc

for a 75% success rate, that is, roughly one-twelfth the diameter of a foveal

cone (Berry, 1948). The false target problem, he might argue, is not difficult

if we match special features that occur only rarely

I disagree with these arguments for the following reasons. In stereo

matching, the critical questions are, of course, How rare is rare and how

is rarity related to the disparity range that is consulted? The psychophysical
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evidence is that the features that can be matched are low level and not very

specific for contrast or for orientation. Thus, random-dot stereograms must
create false targets, yet we can fuse them. The theory of our second algo-

rithm is in fact largely devoted to precisely the question of how rare is

rare, and it is specifically tied to the suggestion that the input representation

for stereo fusion is the roughly oriented, signed zero-crossings.

Stereoscopic acuity, on the other hand, although quite remarkable, is

an engineering and not a theoretical problem. It occurs at the third of our
three levels, the level of implementation mechanisms, because the only

question that it raises is, How accurately are the zero-crossings localized?

That they can be located to 2" is remarkable but easy to incorporate in a

computer program, for example. We simply have to calculate quite pre-

cisely the positions at which the V 2G convolution passes through zero. No
issue of principle is raised here. That neural hardware can do this calcu-

lation is remarkable, and it probably means that very many small cells are

at some stage used to find and locate these positions, but this calculation

is not a theoretical problem in the same way that stereo fusion is. I shall

return to the problem of acuity in the neural implementation subsection.

Vergence movements and the 2V2-D sketch

According to the second stereo matching theory, once zero-crossing

matches have been obtained between V 2G filtered images using masks of

a given size, they are represented in a temporary buffer. These matches
also control vergence movements of the two eyes, thus allowing informa-
tion from large masks to bring small masks into their range of correspon-
dence. The control ofvergence could be direct, deriving from the matching
neurons themselves, or it could be indirect, routed through the memory
buffer or (most likely) through both paths.

The reasons for postulating the existence of a memory are of two
kinds, those arising from general considerations about early visual process-
ing and those concerning the specific problem of stereopsis. A memory
like the 2y2-D sketch (see Figure 3-12) is computationally desirable on
general grounds, because it provides a representation in which information
obtained from several early visual processes can be combined (see Chapter
4). The reason associated specifically with stereopsis is the computational
simplicity of the matching process, which requires a buffer in which to

preserve its results as disjunctive eye movements change the plane of fix-

ation and as objects move in the visual field. In this way, the 2V2-D sketch
becomes the place where global stereopsis is actually achieved, combining
the matches provided independently by the different channels, making the
resulting disparity map available to other visual processes, and forming the
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representational basis for the subjective impression that we obtain from

stereograms of visible geometrical surfaces.

I shall discuss the 2%-D sketch in detail in the next chapter; here I

shall make a few brief remarks about the control of eye movements during

stereo vision.
.

Disjunctive eye movements, which change the plane of fixation of the

two eyes are independent of conjunctive eye movements (Rashbass and

Westheimer 1961b), are smooth rather than saccadic, have a reaction time

of about 160 ms, and follow a rather simple control strategy. The (asymp-

totic) velocity of eye vergence depends linearly on the amplitude of the

disparity, the constant of proportionality being about 87s per degree of

disparity (Rashbass and Westheimer, 1961a). Vergence movements are

accurate to within about 2' (Riggs and Niehl, I960), and voluntary binocular

saccades preserve vergence nearly exactly (Williams and Fender, 1977).

Furthermore Westheimer and Mitchell (1969) found that tachistoscopic

presentation of disparate images led to the initiation of an appropriate

vergence movement but not to its completion. These data strongly suggest

that vergence movements are not ballistic but rather are continuously con-

'

The hypothesis is that vergence movements are controlled by matches

obtained through the various channels by means of the mechanisms

described earlier that can give a rough sense of depth and by means of

some higher types of boundary acting either directly or indirectly through

the 2V2-D sketch. This hypothesis is consistent with the observed strategy

and precision of vergence control, and it also accounts for the finding that

perception times depend to some extent on the distribution of disparities

in a scene (Frisby and Clatworthy, 1975; Saye and Frisby, 1975). A stereo-

gram of a spiral staircase ascending toward the viewer does not produce

the long perception times associated with a two-planar stereogram of sim-

ilar disparity range. This is to be expected within the framework of the

theory, because scenes like a spiral staircase, in which disparity changes

smoothly, allow vergence movements to scan a large disparity range under

the continuous control of the outputs of even the smallest masks. On the

other hand, two-planar stereograms with the same disparity range require

a large vergence shift but provide no accurate information for its contin-

uous control. c .

The long perception times for such stereograms may therefore be

explained in terms of a random search strategy by the vergence control

system. In other words, vergence movement control is a simple, continu-

ous, closed-loop process that is usually inaccessible from higher levels

The stereograms in Figure 3-23 will enable the reader to see for himself

that this is at any rate subjectively true.
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(a)

(b)

Figure 3-23. These two stereograms have about the same disparity range but in
(a) disparity varies continuously while (b) consists of just two disparity planes It
takes longer to see this second one, presumably because the vergence control
system has less information about how to cover the disparity range

Interestingly, there is some evidence that an observer can learn to
make an efficient series of vergence movements (Frisby and Clatworthy
1975). However, this learning effect seems to be confined to the type of
information used by the closed-loop vergence control system. A priori
verbal or high-level cues about the stereogram are ineffective, as, inciden-
tally

,

they seem to be at all levels of processing up to and including the
2Y2-D sketch.
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Neural implementation ofstereofusion

A complete neural implementation of the second stereo matching algo-

rithm just described has not yet been formulated. One reason is that such

a formulation was not worth the considerable work involved until we were

reasonably certain from implementation studies and psychophysics that

the algorithm works and is roughly correct. However, the first steps have

been taken in the analysis of possible neural mechanisms underlying the

computation of V 2G and of the detection of zero-crossings (Marr and Hil-

dreth, 1980; Marr and Ullman, 1979).

The problem of the binocular combination is still an open question—

the first of many that we shall be able to formulate. We can, however, allow

ourselves some preliminary remarks on the topic. First, disparity sensitivity

should not arise before zero-crossing detection. Hence, if the simple cells

of area 17 (the striate cortex), which are the first cortical cells in the visual

pathway, are disparity sensitive, as seems likely in the cat (Barlow, Blake-

more, and Pettigrew, 1967), then they must also detect zero-crossings.

This can occur in several ways, and Figure 3-24 shows two examples.

In the first, two independent zero-crossing detections are proposed to take

place in the dendrites, each much as shown in Figure 2-18 and relying on

local synaptic mechanisms of the Poggio and Torre (1978) type.

Figure 3-24. (opposite) Two possible neural implementations of disparity detec-

tors. In the first, the cell (a) detects zero-crossings of a given sign independently

in two dendrites, one driven by each eye. It then combines the result through an

AND gate, which has the effect of making the cell fire whenever an appropriate

zero-crossing simultaneously appears anywhere in the cell's left-eye and right-eye

receptive fields. This is illustrated in (b). However, such a scheme can provide only

a rather rough type of disparity detection; it has the disadvantage, for example, that

the range of disparities to which it is sensitive varies with the position of the zero-

crossing in the left-eye receptive field. Circles represent excitatory inputs; squares,

inhibitory inputs. Open synapses (circles and squares) represent on-center inputs;

filled ones, off-center inputs. L and R denote left-eye and right-eye inputs.

The second scheme does not suffer from this disadvantage, since it accurately

signals the sign of the disparity, but it operates on only a small disparity range. A

zero-crossing is detected in the left image by the AND dendrite of the cell in (c),

and the sign of the disparity is assessed by examining the sign, at the zero-crossing,

of the difference—computed by a linear process—in the values of the V G con-

volution for the left and right eyes. This yields a detector of disparity sign that is

independent of the position of the left-eye zero-crossing, at least for a small range

(d). As illustrated in (e) and (f), if the difference at the zero-crossing is positive,

the disparity has one sign; if it is negative, the disparity has the opposite sign.
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Such a mechanism does have disadvantages. First, it is not very sen-

sitively tuned to disparity, because the zero-crossings in each eye are

located with an accuracy of not much better than w,_D .
Second, the range

of disparities to which the mechanism responds depends upon the exact

position of the zero-crossing in the left eye, because the range of positions

in the right eye is also fixed by the geometry of the connections there.

The second model in Figure 3-24 shows another possibility. The cell

is left-eye dominant, being driven by a zero-crossing from the left eye.

However it is gated by the difference between the left- and right-eye con-

volutions' at the zero-crossing. If this difference is negative, the disparity

will usually be of one sign, and if it is positive, the disparity will usually be

of the other sign, as explained in Figure 3-24. For an edge that goes from

light to dark as one moves from left to right in the visual field, a negative

difference corresponds to divergent (near) disparities. This mechanism

removes some of the imprecision associated with the first mechanism,

since it measures quite directly whether the right image's zero-crossing

(of fixed sign) is to the left or to the right of the left image's. It has its

disadvantages, however, since for too closely occurring zero-crossings or

for very different contrasts in the two eyes, it can be unreliable.

Unfortunately, the technical problems associated with the neurophys-

iology of stereopsis are considerable, and rather few quantitative data are

currently available—certainly too few to enable us to rule out either or

both of the mechanisms of Figure 3-24. Since Barlow, Blakemore, and

Pettigrew's (1967) original paper, relatively few examples of disparity tun-

ing curves have been published. Recently, however, Poggio and Fischer

(1978) and von der Heydt and others (1978) have published properly

controlled disparity curves for the monkey and cat, respectively. On the

whole these studies favor the idea that disparity detectors are organized

into three pools—convergent, near zero, and divergent—and recently

Clarke, Donaldson, and Whitteridge (1976) have found that, in the sheep

these detectors are organized into columns, as Hubel and Wiesel (1970)

suggested they might be in area 18 of the macaque. However, the size of

the disparities involved are surprisingly large—7° in the sheep and up to

a degree or even several in the monkey. The precise role of these detectors

in stereopsis is therefore not yet clear.

Curiously enough, even the owl, which diverged from the monkey

probably before stereopsis evolved, appears to use an algorithm similar to

the monkey's. Pettigrew and Konishi (1976) have found that although the

anatomical organization of the owl's wulst is quite different from that of

the monkey's visual pathway, the physiological responses of the cells are

very similar. The owl, however, is unable to move its eyes very much, so at

first it might be thought to be deprived of the ability to make the vergence
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movements that are so essential for this approach to stereopsis. Nature
though, has found a way—the owl's horopter is sloped, passing through
its feet at the bottom of the visual field and extending to infinity roughly
straight ahead. The owl can therefore attain the effect of vergence eye
movements, together with the simultaneous impression of a profound and
grave wisdom, by the gentle but deliberate nodding of its head.

Finally, there is the problem of stereo acuity, which, like all human
hyperacuity abilities, requires an underlying mechanism that is able to
localize small, isolated features in an image to within about 5" of arc for an
average subject (Westheimer and McKee, 1977). Crick, Marr, and Poggio
(1980) discussed the neurophysiological implications of these findings and
suggested that one possible solution might be based on the high-resolution
spatial reconstruction of the V2

G-filtered image as it enters the visual cortex
from the optic radiations. Barlow (1979) made the suggestion first, and we
amended it slightly, saying that the reconstruction need not be completely
accurate. It will suffice to reconstruct accurately only those parts of the
signal lying around the zero-crossings.

The natural candidate for performing the reconstruction is the granule
cell population of layer IVCp in area 17. Worst-case estimates suggest that
for each type (on center and off center) and each eye, there is easily one
granule cell for every 5" of arc for the smallest channel. David Hubel
furthermore reports that these cells are all center-surround, so far indis-
tinguishable from geniculate fibers, and that their spatial arrangement is
very precisely retinotopic—nearby cells correspond to nearby points on
the retina. These are all properties that we would expect of cells engaged
in reconstruction. It would therefore be of great interest to know whether
their responses differ physiologically in any way from those of the lateral
geniculate fibers, for example in their spatial or particularly in their tem-
poral characteristics.

Computing Distance and
Surface Orientation from Disparity

Computational theory

Distancefrom the viewer to the surface

Suppose a point P lies at distance / from the viewer's left eye L and at
angle o> to his forward line of sight, as illustrated in Figure 3-25 Let the
distance between the viewers eyes be 8r ; then, because the line of sight toP does not lie directly ahead, the effective distance between the two eyes
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is only a = 5r cos w. Writing (3 = 8r sin w, we see from the figure that <|>,

the angle between the lines of sight from the two eyes, is given by

a 5

For small values of (|>, we can write

/ /+p

Now take two points P and P' along the same line of sight from the

left eye, with P at distance / and P' at distance /' as in Figures 3-25(a) and

(b). It follows that the disparity A<|> between P and P r
is <)>' - <|>. Hence,

if we let

/' + p
<7
=
/+p

then

^-(r 1)^-'-^
We can rewrite this as

(

^b

In other words, the fractional change in distance for a given disparity

depends upon the distance away This fact can be important for depth-

judging experiments and, as we shall shortly see, for the perception of

surface orientation, because it shows that if the human visual system does

its job properly, the proportional change in perceived depth obtained for

a given disparity should depend on l
}
that is, on what the observer happens

to think the current true depth is.

Surface orientationfrom disparity change

The trigonometry of the recovery of surface orientation is rather

tedious. However, the resulting formulas are interesting, so I shall discuss

them here. We need to consider two cases, one in which the surface slopes
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Figure 3-25. The trigonometry of recovering depth from disparity, (a) shows a top view of the
geometry of the two eyes looking at a point P distance / from the left eye, as illustrated in (b). The
line of sight is not necessarily perpendicular to the line joining the two eyes L and R, and the
difference is described by the angle o> as illustrated. The true interocular distance is 8r , and the
effective interocular distance for this line of sight is 5r cos a>. The angle between the lines of sight
from the two eyes is

<f>, and it is the differences in the values of cj> for different points P' that are
normally called disparities. The lengths a = 5r cos w and (3 = 8r sin a> are useful geometrical
quantities.

(c) shows a side view of the same situation, illustrated in (d). The point P is shown lying on
a plane that slopes vertically, and its slope at P is described by the angle 0. Only the left eye L is

shown in this diagram, and again the distance / refers to the distance from the left eye. In order to
recover surface orientation, it is necessary to recover the angle 9.

in the horizontal direction, as in Figures 3-25(a) and (b), and one in which
it slopes away in the vertical direction, as in Figures 3-25(c) and (d). These
situations differ because our eyes are positioned horizontally not vertically
In both cases, we need the formulas that relate surface orientation, which
I denote by 0, to the rate of change of disparity § with visual angle i|j, which
I write d<|)/di|/. The formulas are as follows:
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For surfaces changing in depth in the vertical direction:

gj>
-a/cot9

a
2 + (p + /)

2

For surfaces changing in depth in the horizontal direction (the formula is

perforce more complicated):

d<$> a + p (p + /) -a/ cote

#h a
2 + (p + /y

There are two points to be noted about these formulas. First, like

estimates of fractional depth, they depend on the viewing distance /,

roughly as 1//. Hence, if the brain is doing its task, a given rate of change

of disparity should be perceived as an increasingly steep surface as its

distance away is increased. The reader can see this by looking at the ster-

eogram in Figure 3-26 from different distances. Disparity and viewing

angle change together, so dc|>/di|j is constant for all viewing distances. Hence,

the surface should appear to steepen as one moves the stereogram further

away, and it does. This also shows, incidentally, that the brain has a pretty

good idea of where the stereogram actually is and uses this information.

Second, when the horizontal rate of change of disparity d<|>/di|/H

reaches 1, the line of sight from the other eye must fall directly along or

in front of the actual physical surface. The viewer then sees a discontinuity

Figure 3-26. Notice that if the viewing distance from this stereogram changes,

the perceived surface orientations change. This is to be expected if the visual system

is calculating its trigonometry correctly. (Bela Julesz, 1971, p. 156, fig. 5.4-2)
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in depth from the second eye. This can be checked by putting 6 = -
<|>

into the horizontal disparity-change formula; then d<j>/di|/H
= 1. in this

situation, all the change in viewing angle from the first eye is a change in
disparity, so dfyd\\sH remains equal to 1 until the other eye starts seeing the
surface again. This fact can be used to help us to find discontinuities in
viewing distance from stereopsis.

Algorithm and implementation

Nothing is known about how these formulas are implemented, although
the example of Figure 3-26 suggests that approximations to them are and
that the approximations may be quite accurate. It is perhaps worth empha-
sizing that the effects I pointed out, of a dependence of perceived depth
and surface orientation on viewing distance and direction, are wholly to
be expected and are not some strange psychophysical phenomena that
need complex explanations.

3.4 DIRECTIONAL SELECTIVITY

Introduction to Visual Motion

Motion pervades the visual world, a circumstance that has not failed to
influence substantially the processes of evolution. The study of visual
motion is the study of how information about only the organization of
movement in an image can be used to make inferences about the structure
and movement of the outside world. Again there are two basic parts to the
problem: How are the raw measurements of the changes produced by
motion made, and is this information used? Neither is at all easy to solve
and perhaps because the first is so difficult, the second is to some extent
a study of the minimum information necessary from the first part in order
for subsequent computations to deliver any sort of useful results.

The psychophysical study of visual motion is old. Most people would
probably trace its origins to members of the Gestalt movement (Werthei-
mer, 1923; Koffka, 1935), who, like their followers Gibson and Julesz (Gib-
son et al., 1959; Julesz, 1971, ch. 4), were interested in the effects of motion
on the separation of figure and ground and on eye movements. Miles
(1931) and Wallach and O'Connell (1953) introduced the problem of
determining three-dimensional structure from motion, a problem dealt
with at length in the recent and remarkable book by Shimon Ullman
(1979b). Gibson (1966) was interested in the problem of optical flow a
problem that has only recently received the mathematical attention' it

deserves (Longuet-Higgins and Prazdny, 1980).
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Table 3-1. Determinants of apparent motion found with two perceptual criteria.

Criterion of segregation in

random-dot display

Criterion of smooth apparent

motion for isolated element

Spatial displacement must be 15'

arc or less (Braddick, 1974).

ISI must be less than 80-100 ms

(with 100 ms stimulus exposure)

(Braddick, 1973).

Segregation abolished by bright

uniform field in ISI (Braddick,

1973).

Successive stimuli must be

delivered to the same eye or to

both eyes together (Braddick,

1974), as must bright field for effec-

tive masking (Braddick, 1973).

Pattern defined by chromatic but

not luminance contrast is

inadequate (Ramachandran and

Gregory, 1978).

Spatial displacement may be many

degrees (e.g., Neuhaus, 1930;

Zeeman and Roelofs, 1953).

ISI may be at least 300 ms (e.g.,

Neuhaus, 1930).

Motion perceived whether ISI is

bright or dark.

Successive stimuli may be delivered

to the same or different eyes

(Shipley, Kenney and King, 1945).

Stimuli may be defined by

chromatic contrast alone

(Ramachandran and Gregory,

1978).

Note: ISI = interstimulus interval.

The first important psychophysical finding I wish to emphasize, how-

ever, is quite recent, and it bears upon the question of how many different

motion modules or processes there are, what they do, and how rich the

information is that they run on. Following Julesz's (1971, ch. 4) example,

Braddick (1973, 1974) used random dots and lines to explore the psycho-

physical properties of apparent motion. For example, he found a number

of strange differences between what happens over short times and small

displacements and what happens over long times and large displacements.

He concluded that there were two different processes characterized by

different perceptual criteria, and which have the properties listed in Table

3-1 (from Braddick, 1979).

These properties were found in experiments of the following kind.

Two patterns are used as displays, each composed of random dots or lines.

Outside a central rectangle, the two patterns are uncorrected, as illustrated

in Figure 3-27. Inside the central rectangle, the dots are displaced in one

pattern relative to the other, in the manner of Figure 3-28. The two patterns
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Displaced

Uncorrelated

Vertical Horizontal

Figure 3-27. The discrimination task for Braddick's short-range phenomena. A
vertical or horizontal rectangle has to be discriminated against an uncorrelated
background.

Uncorrelated
Displacement

by n elements' Uncorrelated

Figure 3-28. The rectangles in Figure 3-27 are created in a pair of successively
presented random-dot displays by displacing a rectangular region by a few ele-

ments. The rest of the display is uncorrelated between frames.

are alternated at some rate with an interstimulus interval (ISI) during which
other masking fields are sometimes shown. The question is, For what rates
and displacements does the subject perceive the rectangular region well
enough to say whether it is horizontal or vertical?

The second kind of experiment was like those extensively used by
Ullman, in which one or a few lines are presented in frame 1, followed by
the ISI, followed by a second few lines, as illustrated in Figure 3-29. Here
the question is, Does the subject smoothly perceive one line mapping to
another line or lines, and if so, how does the mapping go? Ullman s (1978)
experiments have warned us to be wary of smoothness, but the actual
mapping itself is a reliable and useful phenomenon.
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Figure 3-29. The second type of display, extensively

used by Ullman, also consists of two frames, but they

are much simpler than those in Figures 3-27 and 3-28.

The first might consist of the line / shown here, and

the second oftwo linesm and n. The observer is asked,

Does / go to m, n, or both?

What Braddick found was that if one does various things to the two

types of display—things like changing the displacement or the ISI or flash-

ing a bright uniform field during the ISI—perceptions of the displays are

very different. Conditions that easily disrupt the first experimental task do

not disrupt the second. For example, to discern the rectangle successfully,

the angular displacement must be small (less than 15'), the ISI short (less

than 80 ms), and no masking field may intervene. Not so the second task;

the angular displacement may be many degrees, the ISI may be 300 ms or

more, and the masking field may be bright or dark. These and other dif-

ferences are summarized in Table 3-1.

What could be the significance of these distinctions? Perhaps the key

to the puzzle is that in the analysis of motion—more so, perhaps, than any

other aspect of vision-time is of the essence. This is not only because

moving things can be harmful, but also because, like yesterday's weather

forecast old descriptions of the state of a moving body soon become use-

less. On the other hand, the detail of the analysis that can be performed

depends upon the richness of the information on which the analysis is

based, and this in turn is bound to depend upon the length of time that is

available to collect the information. In an instantaneous view, for example,

everything is static, so no information about motion is available. After a 60

ms wait information derived from observed changes may enable a much

more thorough analysis, and in a third look in yet another 60 ms perhaps

everything about the motion can be recovered, provided that computation

is powerful enough.

Perhaps one of the most primitive types of motion analysis is the type

concerned with noticing that something has changed, where the change is

in the visual field, and perhaps something about the direction of movement

involved, though this is arguably a more complex matter. Such analysis we

have already met in our earlier discussion of the visual system of the

housefly. Another case where similar mechanisms are thought to operate

is in the directionally selective cells of the rabbit's retina (Barlow and
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Fzgwn? 3-30. (a) Barlow and Levick's (1965) model for directional selectivity

connects two detectors to an AND-NOT gate, one via a delay. Thus the network
does not respond to stimuli moving with roughly the right speed in the null direc-

tion, (b) Hassenstein and Reichardt's (1956) model operates on the same principle

except that the delay is replaced by a temporal low-pass filter (L). H = high-pass

filter.

Levick, 1965), the frog's retina (Barlow, 1953; Maturana et al., I960), the

pigeon's retina (Maturana and Frenk, 1963), and perhaps the mammalian
retinal W cells.

These mechanisms all have various things in common. They probably
all operate at the earliest possible stage—that is, directly on the gray-level

image intensity values—and their underlying mechanism is something
equivalent to combining a time delay (or temporal low-pass filter) and an
AND-NOT gate*. The basic idea is illustrated in Figure 3-30(a). Two recep-

tors are connected to an AND-NOT gate, one directly and one through a

delay. If a bright spot moves first across the right-hand receptor R2 , then

*A logical device that gives an output only when its first input is on and its second input is off.
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across the other one, R1?
signals from the two will arrive at the gate roughly

simultaneously, causing it to remain silent. This is called the null direction.

A white spot moving the other way will cause the gate to fire.

If the intensity detectors are replaced by a center-surround operator,

this difficulty goes away—we get a directionally selective bug detector or

edge detector—but it still has characteristic problems. First, if a stimulus

is moved very slowly in the null direction or is stopped and restarted

halfway between the two receptors, the gate will give a response. Second,

and again relating to the delay, the range of spatial frequencies over which

the device operates reliably depends on how fast the pattern moves. To the

device, a thick sinusoidal grating moving fast looks like a thin one moving

slowly. Our own visual systems exhibit similar properties (for example,

Kelly, 1979). To maintain reliability, we must make sure that the mechanism

looks only at the appropriate portion of the range of spatiotemporal pos-

sibilities.

The reason that detectors of the type shown in Figure 3-30 fail to be

reliable is a deep one. Fundamentally, they are reading a receptor in one

place at one time and another in a nearby place a little later; if anything

happens at one and then at the other the correct interval later, the detector

implicitly assumes that the two changes are due to the same physical cause.

This, in fact, is our first real introduction to the correspondence problem

ofapparent motion. The unreliability of these detectors arises for the same

basic reasons that make a fast, clockwise-turning wagon wheel in a Western

movie seem to be turning slowly counter-clockwise. The implicit assump-

tion, that the nearest spoke in the next frame is the same one as in the last

frame, is wrong because the wheel is turning too fast relative to the movie

frame rate.

Such schemes, as I indicated, are still useful for saying where in a

visual field a relative movement has occurred and for giving some infor-

mation about its direction, if one is careful. However, if we also wish to

analyze the shape of a moving patch, it seems more sensible to try to

combine the analysis of movement with the analysis of contours (Marr and

Ullman, 1979). This view, incidentally, is diametrically opposed to current

physiological and psychophysical thinking, according to which the sus-

tained and transient channels in human early vision are separated into two

parallel systems, one concerned with the analysis of form or pattern, and

the other with movement (Tolhurst, 1973; Kulikowski and Tolhurst, 1973;

Ikeda and Wright, 1972, 1975; Movshon, Thompson, and Tolhurst, 1978).

For eye movement control, of course, there is no need to combine them,

but to see the shape of moving patches, it would seem sensible to do so.

We have now discussed the two types of information that can be

gleaned from motion—(1) noticing a movement and finding its position
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in the visual field and (2) determining its two-dimensional shape. As we
might have expected, neither requires very sophisticated measurements,
and in principle they can both be carried out very quickly given reasonably

accurate measurements. What, then, about determining three-dimensional

structure? This is clearly more valuable, but intuitively we would have

thought that more information from the images would be necessary.

In fact, more information is required, and the basic improvement
needed is a good solution to the correspondence problem, rather than the

half-baked guess at it which suffices for the simpler tasks. To recover three-

dimensional structure, we need to be able to say that points in the image
at time t

x
corresponds to point B in the image at time t

2
for the equivalent

of three frames in Ullman's (1979a) style of analysis, or, almost equivalently,

we need the exact instantaneous positions and velocities in the image for

the simpler task of analyzing the optical flow induced by the observer's

movement through a rigid environment. Whether either or both of these

theoretical possibilities are incorporated into the human visual system is

a matter for psychophysics. As we shall see, the evidence for Ullman's

scheme is strong; that for a Gibson-style analysis of optical flow is somewhat
weaker, but the theory is nevertheless interesting.

This and the next section in this chapter deal with the different parts

of the motion analysis problem. In this section we look first at directional

selectivity from the point of view of using it to separate figure from ground
and recovering the two-dimensional shape of the figure. We shall then
explore Ullman's theory of the interpretation of three-dimensional shape
from visual motion in Section 3.5, and shall briefly discuss the problem of

optical flow.

Computational theory

The theory of directional selectivity is the theory of how to use partial

information about motion—specifically, only its direction defined to within
180°—in order to discern the two-dimensional shapes of regions in the

visual field based on their relative movement.
The background to this problem from a computational point of view

comes from asking, How much of this information can one gain from
motion without solving the full correspondence problem—that is, without
being provided with the full instantaneous position and velocity field for

the whole image? The motivation for studying what direction alone can tell

us comes from something that we call the apertureproblem, illustrated in

Figure 3-31. If a straight edge is moving across the image in direction b,

as indicated by the arrow in Figure 3-31, this fact cannot be discerned by
local measurements alone. As the figure shows, the only motion that can
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Figure 3-31. The aperture problem. If the

motion of an oriented element is detected by a

unit that is small compared with the size of the

moving element, the only information that can be

extracted is the component of the motion per-

pendicular to the local orientation of the element.

For example, looking at the moving edge E

through a small aperture A, it is impossible to

determine whether the actual motion is in the

direction of b or of c.

be detected directly through a small aperture placed over the edge is

motion at right angles to that edge—just one bit of information, indicating

whether it is moving forward or backward. Of course, if there is only a

point or blob or a termination of some recognizable kind, more infor-

mation can be recovered. And if one somehow knows 0, the angle between

the edge and the direction of motion b, then the speed s can be recovered

by measuring the component 5 sin 6 perpendicular to the edge. But the

very simple case in which just the sign is available has at least a theoretical

interest.

Various experiments suggest that this simple case is also of interest for

understanding one of the visual system's ways of analyzing motion. The

experimental situation is like that used by Braddick (1973, 1974), and the

stimuli are shown in Figure 3-32. These experiments fall into the first of

his two classes, being concerned with short-range, short-term phenomena.

In Figure 3-32(a), the individual dot speeds in the central square are

all constant at twice the dot speeds in the surround, but the directions of

movement are all random. The central square proves invisible, so we can-

not use only speed of movement to separate the patches. Julesz (1971, ch.

4) described a similar effect. In Figure 3-32(b), the surround moves ran-

domly, while the center dots all move in the same direction but with dif-

ferent'speeds, spanning a factor of 4. The square can be seen clearly, and

where the neighboring speeds are very different, the dots appear to have

some relative movement as well.

The remarks about the aperture problem tell us what we want to

measure and why we want to measure it. These psychophysical experi-

ments suggest that the visual system uses information about direction alone

to help carve up the visual field. We therefore explored algorithms for
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Figure 3-32. Two experiments showing that Braddick s ( 1979) short-range system
uses only limited information to decompose the image. In (a), the speeds in the

central rectangle and in the surround are different and uniform, but the directions

of motion are random. Discrimination is not possible. In (b), the directions in the
central rectangle are the same but the speeds differ. Discrimination is easy.

quickly detecting the sign of movement direction at the level of local edge
segments or their precursors. The earliest stage at which this could be
carried out is at the level of zero-crossing segments, and as we shall later

see, the physiological data support this possibility.

An algorithm

To construct a directionally selective zero-crossing detector, we must some-
how determine the direction of movement of an oriented zero-crossing

segment of the type defined in Chapter 2. There we saw that a zero-crossing
segment is defined as a locally oriented segment of the zero values of the
convolution V(?*/,A cross section of this convolution appears in Figure
3-33 for the image intensity profile illustrated there.

There are several ways of building a directionally selective unit from
this, one of which is to use two zero-crossing detectors as the inputs to a
device like Barlow and Levick's (1965). As we have already seen, however,
such devices suffer from the stop-restart false response in the null direc-

tion, and directionally selective cortical simple cells are known not to do
this (Goodwin, Henry, and Bishop, 1975). Marr and Ullman (1979) there-
fore suggested the following algorithm:
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Xk

(a)

Y a

(b)

Y a

Figure 3-33 The value ofX = V G * / and of Y = d/dt& G * /) in the vicinity

of an isolated intensity edge, (a) The X signal as a function of distance. The zero-

crossing Z in the signal corresponds to the position of the edge, (b) The spatial

distribution of the Y signal when the edge is moving to the right, and (c) when it

is moving to the left. Motion of the zero-crossing to the right can be detected by

the simultaneous activity of X +Y +X~ in the arrangement shown in (b). Motion of

the zero-crossing to the left can be detected by the X +Y X unit in (c).
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Step 1. Measure the time derivative d/d<V
2G * /).

Step 2. If this is positive atZ, the zero-crossing is moving to the right;

if it is negative, it is moving to the left. If the edge has opposite contrast,

the directions are reversed.

The truth of these statements can be seen from Figures 3-33(b) and
(c), which plots d/dt(V

2G * I), the time derivative of Figure 3-33(a), for the

two cases of movement to the right and to the left, respectively. The sign

of the time derivative is constant over the whole width w
1 _ D between the

peaks of the original convolution V 2
6" * /, so the algorithm is robust.

This scheme has several positive features. (1) It requires only local

measurements. (2) No time delay is involved beyond that required to com-
pute the derivative. (3) The method can be made extremely sensitive. The
lower limit to the displacement that can be detected is set by the unit's

sensitivity, and the upper limit, which depends on the temporal filter, is

high if the time constants are small. Hence, a single unit can be made
sensitive to a wide range of speeds, and since the only really important

part of the measurement of d/dt{S/
2G * I) is its sign, this can be exploited

by making the measuring unit extremely sensitive. It does not matter if it

saturates early. (4) Finally, within this range and for a sufficiently isolated

edge, the unit will be completely reliable.

The critical difference between the Barlow and Levick type of scheme
and this one is that this system does not have to wait until the zero-crossing

has passed from the first detector to the second. It can therefore respond
instantaneously, and it is sensitive to very small displacements. In addition,

unlike systems based on a pair of detectors, it does not have to "guess"

that the zero-crossing exciting tfie left-hand detector now is the same one
that excited the right-hand detector a short time ago; and so, at the price

of delivering less information, it avoids the difficulties inherent in the full

correspondence problem.

Neural implementation

I would not, of course, have suggested this scheme without an idea of how
it might be implemented. We have already seen that the detection of zero-

crossing segments (Figure 2-18) rests on the idea that the lateral geniculate

X cells carry the positive and negative parts of V 2G via on-center and off-

center cells, respectively. Finding a zero-crossing is simply a matter of
connecting the on- and off-center X cells via a logical AND gate.

But how to measure the time derivative?—here is an interesting and
fascinating point. The psychophysical studies of the transient channels and
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the neurophysiological recordings of the Y cells, to which the transient

channels are thought to correspond, essentially demonstrate that these

channels measure this time derivative, d/dtC7
2G * /)! Interestingly, so far as

we are aware, the behavior of these channels has never been formulated

as a time derivative, presumably because no one ever thought that such a

thing might be a useful function so early in the visual pathway.

Let us look at the evidence a little more closely. Ideally, to obtain a

time derivative, we subtract from the current value of a signal its value an

infinitesimal time ago. In practice, these measurements must be taken over

finite intervals of time. Hence, the impulse response of the device in the

time domain should be composed of a positive phase followed by a phase

of a similar shape but opposite sign. In the frequency domain, the power

spectrum should be roughly linear in frequency over the range in which

the device is to operate.

A temporal filter composed of about a 60-ms positive phase followed

by a negative phase was explicitly suggested by Watson and Nachmias

(1977) and further supported by Tolhurst (1975), Breitmeyer and Ganz

(1977), and Legge (1978). The negative phase may be somewhat longer

than the positive one, or it may be followed by damped oscillation of small

amplitude (see Breitmeyer and Ganz, fig. 3) without significantly affecting

the results.

In the frequency domain, the temporal modulation transfer function

(MTF) measured by Wilson (1979) for the transient U channel can be

accurately described up to range w = 10 Hz by F(w) = I6w - w
.
This

is consistent with an operator that approximates the first derivative of its

input, provided that the input signal has no significant power above 8 Hz.

Since the U channel attenuates spatial frequencies above 3 cycles/deg, the

channel will signal the derivative for edges and bars that drift across the

retina with a velocity of up to about 3 deg/s. Figure 3-34 shows how closely

Figure 3-34. (opposite) The computed response of the transient U channel to a

light edge, a thin bar, and a wide bar all moving at 3 deg/s. (a) The output of the

spatial filter (V
2G * /) when the U channel parameters from Wilson and Bergen

(1979) are used. The j>-axis represents the normalized response, and the *-axis

represents distance, the entire range being 3°. The *-axis in (b), (c), and (d) rep-

resents time; the entire range is 1 s. (b) The theoretically predicted output of the

temporal filter if the transient channel carries d/dt (

V

2G * /). (c) The output of the

temporal filter if Wilson's contrast-sensitivity curve is used and the filter is antisym-

metric, (d) Comparison of (b) and (c). The thin bar is 2' wide, and the thick bar

is 40' wide. In all cases the agreement between the curves derived from the time

derivative hypothesis and the curves derived from the empirical observations is

satisfactory. Hence for isolated bars and edges, the psychophysical evidence is

consistent with the idea that the transient channels approximate the function d/dt

(V
2
G*/).
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the measured characteristics of the transient channels match the expected

behavior of the time derivative d/dt(y
2G * I) for an isolated edge and a thin

and a wide bar.

Turning to the neurophysiology, Rodieck and Stone (1965) described

retinal ganglian cells whose response to a moving spot was "directly cor-

related with the gradient of the receptive field as defined by flashing lights"

(p. 842). Of course, no physical device can take a perfect time derivative

over the entire temporal frequency range. However, the published

response curves of retinal and geniculate Y cells to bars and edges moving

at moderate velocities closely agree with the predictions based on the time

derivative operation d/dt(S
2G * /). Figure 3-35 compares the predicted

responses of on- and off-center Y cells with their observed responses to

various stimuli. All the stimuli were light (that is, light edges and light bars);

the thin bars were about V2 wide, and the thick bars 5°. The traces are

taken from Dreher and Sanderson (1973). The predicted traces show pure

values of d/dt(S7
2G * /), and as in Figure 2-17, the thickness of the thin and

thick bars was, respectively, 05w and 25w. The observed responses closely

agree with the predicted ones, even in cases where both are elaborate (as

with the wide bar).

The idea, that the X cells signal V2G and the Y cells its time derivative,

which enables the construction of directionally selective, oriented zero-

crossing segment detectors, offers a precise explanation for part of the

function of the retina, and poses a fascinating challenge to the retinal

anatomists and neurophysiologists—namely, How are these signals

measured? Convolving with V 2G is easy to imagine, but measuring

d/dr(V
2G * I) or even just determining its sign is quite a complicated task

and requires both spatial and temporal comparisons: The center must be

compared with the surround, and the result at a given time compared with

the result a short time earlier, which means there must be a 60-ms memory

there. In the retina, some of these components maybe distorted, especially

since comparing the values at two different times requires a delay. Hoch-

stein and Shapley s (1976a) findings suggest, for example, that the Y-cell

surround receives a delayed contribution from nearby units about the size

of the centers of local X-cell receptive fields, and that this delayed input

may be a major source of the observed nonlinearity. The nonlinear effects

are induced primarily by gratings (Enroth-Cugell and Robson, 1966; Hoch-

stein and Shapley, 1976a, 1976b). For isolated edges and bars moving at

moderate velocities, however, the Y cells approximate d/dtC7
2G * I) quite

well, as we saw in Figure 3-35.

Provided that the Y channels deliver d/dt(\7
2G * /) and that positive

and negative values are separated into different channels, the zero-crossing

segment detector of Figure 2-18, reproduced in Figure 3-36, requires only
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Figure 3-35. Comparison of the predicted responses of on- and off-center Y cells to electro-

physiological recordings. The first row shows the response of d/dt (V 2
G*I) for an isolated edge,

a thin bar (bar width = 0.5w1D , where w^D is the width projected onto one dimension of the
central excitatory region of the receptive field), and a wide bar (bar width = 2.5w

1 _D). The predicted
traces are calculated by superimposing the positive (in the second row) or the negative (in the
fourth row) parts of d/dt(V

2
G*I) on a small resting or background discharge. The positive and

negative parts correspond either to the same stimulus moving in opposite directions, or stimuli of
opposite contrast—for example, a dark edge versus a light edge—moving in the same direction.
The observed responses (third and fifth rows) closely agree with the predicted ones, even in cases
where both are elaborate (such as for the wide bar).
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(a)

(c)

Figure 3-36. The detection of a moving zero-crossing, (a) X
-
and X+

subunits

are combined through a logical AND operation. Such a unit would signal the

presence of a zero-crossing of a particular sign running between the two subunits.

A row of similar units connected through a logical AND would detect the presence

of an oriented zero-crossing within the orientation bounds given roughly by the

dotted lines in (b). In (c), a Y unit is added to the detector in (b). If the unit is Y+
,

it would respond when the zero-crossing segment is moving in the direction from

the X +
to the X". If the unit is Y", it would respond to motion in the opposite

direction.

the addition of one Y-cell input, again via an AND gate, in order to make

it directionally selective.

The basic unit is shown in Figure 3-36(c), which is Marr and Ullman s

(1979) XYX model for the simplest type of cortical simple cell. Its receptive

field has three components, sustained on-center X inputs, sustained off-

center X inputs, and a Y input. The X units need to be all the same size and
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arranged in two parallel columns not more than w
2 _D/V2 apart (where

w2 _D is the diameter of the central excitatory regions of the X-cell receptive

fields). The Y-cell input can in principle be satisfied by a single input whose

receptive field is positioned centrally or a little toward one side (toward

the positive column for on Y units and the negative column for offY units).

The ideal scheme requires a strict logical AND operation between the

outputs of the subunits. In practice, this could be implemented by a strong

multiplicative interaction between the columns and the Y input, and a

weaker nonlinearity down the columns. Such a unit would respond opti-

mally to a moving zero-crossing segment that extended along the entire

length of the columns, but it would also respond to shorter stimuli and

even to moving spots of light. More complicated receptive fields (for exam-

ple, moving bars or slits) can be built up from these units. A critical

empirical characteristic of such a unit would be that if its Y-cell input is

abolished, the cell either fails to fire at all or, if it does fire, it loses its

directional selectivity. It is not yet known whether this is true of direction-

ally selective units. Otherwise, the model's properties are in overall agree-

ment with the available facts (Hubel and Wiesel, 1962, 1968; Schiller, Finiay,

and Volman, 1976a, 1976b [called S
1

cells there] ). The paper by Marr

and Ullman (1979) contains a fuller account ofthe properties ofand predic-

tions from this model.

Using Directional Selectivity to Separate

Independently Moving Surfaces

Computational theory

The movement of an object against its background can be used to delineate

the object's boundaries, and the human visual system is very efficient at

exploiting this fact. If the complete velocity field is given (that is, speed and

direction at each point of the image), object boundaries will be indicated

by discontinuities in this field, since the motion of rigid objects is locally

continuous in space and time. The continuity is preserved by the imaging

process and gives rise to what I earlier called the principle of continuous

flow, according to which the velocity field of motion within the image of

a rigid object varies continuously everywhere except at self-occluding

boundaries. Since the motions of unconnected objects are generally unre-

lated, the velocity field will often be discontinuous at object boundaries.

Conversely, as we saw in Chapter 2, lines of discontinuity are reliable evi-

dence of an object boundary.
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Unfortunately, the complete velocity field is not directly available from

measurements of small oriented elements. Because of the aperture prob-

lem, only the sign of the direction of movement is available locally. This

means that an additional stage is necessary for detecting discontinuities in

the velocity field. In this section, we ask how and to what extent the limited

raw information (the sign of the direction only) may be used to detect

these discontinuities.

The sign of the local direction of motion determines neither the move-

ment's speed nor its true direction, but it does place constraints on what

the true direction can be (see Figure 3-37). The constraint is that the true

direction of motion must lie within the 180° range on the allowed side of

Allowed

(a)

Forbidden

(b)

H

(c) (d)

Figure 3-37. The combination of local constraints from directionally selective

units to determine the direction of motion. The constraint placed by a single such

unit is that the direction of motion must lie within a range of 180° on the allowed

side (b). (c) The forbidden zones for two oriented elements (V = vertical; H =

horizontal) moving along the direction indicated by the arrow. The forbidden zone

horizontal) moving along the direction indicated by the arrow. The forbidden zone

of their common motion is the union of their individual forbidden zones, as indi-

cated in (d). The direction of motion is now constrained to lie within the intersec-

tion of their allowed zones, that is, the first quadrant.
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the local oriented element (Figure 3-37a), or, alternatively, it is forbidden
to lie on the other side (Figure 3-37b). The constraint thus depends on
the orientation of the local element. Hence, if the visible surface is textured
and gives rise locally to many orientations, the true direction of movement
may be rather tightly constrained.

Constraints can be combined as illustrated in Figures 3-37(c) and (d)
for the simple case of two local elements. The true direction of motion is

diagonal here. The vertically oriented directionally selective unit V sees
motion to the right, and the horizontally oriented unit H sees motion
upward. If these two units share a common motion, we can combine the
constraints they place on the direction of that motion by taking the union
of their forbidden zones (Figure 3-37d). The result is that the direction of
motion is now constrained to lie in the first quadrant, as illustrated. Addi-
tional units can further constrain the true direction ofmotion by expanding
the forbidden zone.

The diagram also shows how the motion of two groups of elements
may be incompatible. If the allowed zone for one group of elements is

completely covered by the forbidden zone of another, their motions clearly

cannot be compatible. Notice in this connection that only the direction of
movement, not its speed, is used here. A system that segments a scene in
this way will be relatively insensitive to variations in speed.

The final observation that we need in order to use this scheme is that

objects are localized in space. If the objects are also opaque, their images
will have an interior within which the forbidden zones in diagrams like

Figure 3-37(d) are consistent, provided that those forbidden zones draw
their elements from small neighborhoods. Exceptions can occur, for exam-
ple the center of a rotating disc, but only rarely Hence, the method will be
reliable. It is not, of course, exhaustive—if two surfaces are relatively sta-

tionary, this method will fail to separate them.

Algorithm and implementation

The diagrams of Figure 3-37 contain essentially all the information we
need to know here, for the algorithm must consist of searching for neigh-
borhoods with locally compatible directions of motion. Figures 3-38 to
3-40 show some results from a computer implementation of such an
algorithm, written by John Batali. The first example, Figure 3-38, shows
the detection of a moving pattern embedded in a pair of random-dot
images. A central square in Figure 3-38(a) is displaced to the right in
Figure 3-38(b), while the background moves in the opposite direction.
Figure 3-38(c) depicts the zero-crossing contours of Figure 3-38(a) fil-

tered through V 2
G. Figure 3-38(d) represents the values of the transient

channel if the two frames shown in Figures 3-38(a) and (b) are presented
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(d)

Figure 3-38. Separating a moving figure from its background by using combi-

nations of directionally selective units. A central square in (a) is displaced in (b) to

the right. The background in the two pictures moves the opposite way. (c) The

zero-crossing contours of (a) filtered through V2
G. (d) The convolution of the

difference between (a) and (b) with V 2
G. If (a) and (b) are presented in rapid

succession, the function shown in (d) approximates the value of d/dtiS7
AG * I). The

images are 400 x 400 pixels, the inner square is 200 x 200, each dot is 4 x 4,

and the motions are 1 pixel. (Courtesy John Batali.)

in rapid succession. Figure 3-40(a) shows the results of applying the XYX-

motion-detection operation to the zero-crossings of Figure 3-38(c). The

direction of movement has been coded, as indicated by the star in the

figure. As can be seen, black represents motion to the right, and white

represents motion to the left. The central square is clearly delineated by

discontinuities in the direction of motion.

The same analysis was also applied to the natural images shown in

Figure 3-39, which are two successive frames taken from a 16-mm film of
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Figure 3-39. Two successive frames from a 16-mm movie of a basketball game.
The same analysis was applied as to the random-dot patterns in Figure 3-38. (Cour-

tesy BBC.)

a basketball game. The results appear in Figure 3-40(b). For example, the

left arm of player 7 moved downward and to the left, and the rightmost

player moved to the right. Because ofthe extreme sensitivity of the method,
small registration errors, more or less unavoidable because of the way the

two images are digitized, sometimes give rise to spurious motion of the

background.

Psychophysical^, the XYX-motion-detection scheme fits well into the

first of Braddick s two categories. For example, the phenomenon should

occur only over short ranges (around wl\/2 or 15' at 5° eccentricity) and
short ISI's (not more than the total time course of the temporal component
of the transient channel, about 120 ms), according to Wilson's channel data.

If speed and not direction were the only available discriminant, separation

should be impossible, which we have found psychophysical^ (Figure

3-32).

In addition, the amount of information that can be obtained from
directional selectivity depends on the direction of movement and on the

orientation of the moved elements. Hence, the same velocity field may be
seen as coherent or incoherent, depending on the orientations of the

moved elements. The reason is that two nearby velocity vectors will pro-

duce the same directional sign on an element oriented roughly perpen-

dicular to them but different signs on an element whose orientation bisects

them. We also found this to be true psychophysical^. Moreover, if the

formation of coherent groups proceeds roughly in the manner of Figure

3-37, one might expect to see clusters of locally coherent motions in even
purely random display sequences—and, in fact, one does. Such a mecha-
nism also produces Anstis' (1970) reversed phi phenomenon, whereby
simultaneous movement and contrast reversal can give rise to the illusion

of movement in the opposite direction (see Marr and Ullman, 1979).
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Figure 3-40. Motion assigned to zero-crossings from the images of Figures 3-38 and 3-39. The

direction of motion was assigned according to the rules described in the text and the result is

displayed here using shades of gray. The keys below (a) and (b) indicate the shade of gray assigned

to each direction. In (a), the central square clearly moves right, while the surround moves left. In

the zero-crossings from the basketball game (b), the left arm of player 7 moves to the left and

down, while the player to his right moves to the right. (Courtesy John Batali.)
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Finally, the use of color but not luminance boundaries or the inter-

position of a white field during the ISI could disrupt the mechanism, as

Braddick requires, by interfering with the retinal machinery for measuring

the time derivatives traveling up the Y channels.

Looming

There is another way in which the outputs of directionally selective units

might prove useful, because combining directionally selective units from

the two eyes yields a different kind of information (Marr and Ullman, 1979).

Suppose that a particular zero-crossing has been identified and assigned

incompatible motions in the two images. Then the zero-crossing is moving

in depth either toward the viewer if it is moving away from the nose on

both retinas, or away if the motion is toward the nose. If motion is to the

right on both retinas, the object will pass safely to the viewer's left, and vice

versa (Regan, Beverley, and Cynader, 1979).

For this type of analysis, it is not necessary to combine constraints in

the manner of Figure 3-37; the raw output of the directionally selective

units can be used. The difficulty in this case lies in ensuring that both left

and right detectors are looking at the same zero-crossing; establishing this

match is the essence of the stereo matching problem. However, if inaccur-

acies from time to time are tolerable, a fast looming detector can be

designed that does not have to wait for the results of stereo matching. For

example, a simple looming detector can be constructed by comparing the

signs of motion at corresponding retinal points. Such points will often but

not always correspond to nearby points on the same moving object.

Such a scheme might rely at some point on a cell that has binocular

receptive fields close by in the visual field, but not truly disparity sensitive,

and whose preferred motions in the two eyes are opposite. There is some

evidence for the existence of such cells (Regan, Beverley, and Cynader,

1979).

3.5 APPARENT MOTION

In the last section, we saw how very limited information about the motion

in the visual field could be used at quite a primitive stage in the processing

to provide certain rather rough information about how to decompose the

scene into different surfaces. We also saw that this task can be done rather

fast. With a little more time and care, however, visual motion can be made

to yield a much richer harvest of information. Although the experiments

of Miles (1931) and of Wallach and O'Connell (1953) preceded it, Ullman's

(1979b) counterrotating cylinders demonstration (illustrated later in Fig-
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ure 3-52) is the most telling demonstration so far contrived of what our
visual systems can obtain from visual motion.

The demonstration consists of a sequence of frames, each of which is

a projection of a set of dots on two concentric, counterrotating cylinders.

Only the dots appear in each frame, and their positions change from frame
to frame. As in the case of random-dot stereograms, each individual frame
has no visible structure. However, when the frames are shown as a movie
sequence, a vivid impression of the two counterrotating cylinders is

obtained.

From this demonstration, it is clear that our visual system has remark-
able powers to recover the shapes of unknown structures simply from the

way their appearances change in the image. In his recent book on the

subject, Shimon Ullman (1979b) has gone far toward constructing a com-
plete theory of how this may be done, and he includes supporting psycho-

physical evidence. This section consists of a summary of Ullman s work,
together with one or two general points that I wish to raise about it in the

context of vision in general.

Why Apparent Motion?

Movement is an inherently continuous process that usually produces
smooth changes in an image. Indeed, one might think that this is a rather

important intrinsic property of movement with regard to its perceptual

analysis, since its very continuity should help in the task of following pieces

of an object around in an image to find out how they are moving. Why,
then, is this section based on the study of apparent motion, whose essence
is a discrete, discontinuous presentation of a fairly rapid succession of

frames? Surely something is lost in the transformation from the continuous
to the discrete. The theories I shall describe in fact apply to both kinds of

motion, continuous and framed (or apparent). But that is not quite a sat-

isfactory answer, and it is worth a little discussion to see that for the type

of situation of interest here, one probably can think in terms of framed
stimuli.

The first point is that we are no longer dealing with almost instanta-

neous phenomena, as we were in the last section. We are out of the realm
of detection tasks here. Instead of finding out something simple but pos-

sibly important within 50 ms, we can afford to take quite a long time—say,

Va to V2 s, which is large by perceptual standards—to allow the image to

change by a reasonable amount. For we want not just to detect the change
but also to measure its extent and use this information. So our fundamental
approach is to contrast the positions of items at one time in the image with
their positions at a sufficiently later time for the differences to be measured
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reliably, and we shall use the differences to make calculations about the

underlying shapes and movements.

Thus, it is in our interests to delay matters, at least up to a point, but

not too much, or the image will have changed beyond recognition—visible

portions of the surface may become occluded or may rotate out of view

But at least in principle, it is the changes over a period of time that we need

here, and they must be determined quite accurately.

That may be, one can reply. But the fact is that even ifwe want only to

know where things have moved after 100 ms or so, surely it is easiest to

find this out by smoothly following them. And isn't this made more difficult

by cutting the sequence into distinct frames? Well, up to a point this must

be true. On the other hand, if the frame rate is sufficiently fast compared

with the time constants in, say, the cones (which are of the order of 20 ms

or so), the two situations will be indistinguishable. We all know, too, that

we can watch movies perfectly well and that the motion there looks quite

normal. Yet they are split into only 24 frames per second, and one cannot

discern these facts from perceptual evidence alone. In addition, psycho-

physical presentations consisting of just two frames separated by as much

as 300 ms can give the subjective impression of smooth motion.

So, although the continuous problem may be slightly simpler than the

recovery of structure from apparent motion, it is probably not much sim-

pler and we can certainly do the harder problem involving apparent

motion. The apparent motion problem is also much easier to formulate

and to investigate empirically, and its results can be applied to the contin-

uous case. It therefore seems sensible to solve this problem first and then

to take stock of where we stand.

The Two Halves of the Problem

Our goal here, then, is not so much to detect the changes induced by

motion but to measure and use them to recover the three-dimensional

structures in motion. Broadly speaking, this introduces two kinds of task

that at least superficially, look rather different and somewhat analogous to

what we met in stereopsis. The first task is to follow things around as they

move in the image and to measure their positions at different times. This

is the correspondenceproblem, and at its heart is the question, Which item

in the image at time f, corresponds to which item at time t2 ? The second

task is to recover three-dimensional structure from the measurements sup-

plied by the results of the first task, and this is called the structure-from-

motion problem.

Apparently, these two problems are solved independently by the
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human visual system, and it is a great stroke of good fortune that they are

separate. The critical empirical evidence for this is that none of the mea-

surements on which the correspondence process rests involve three-

dimensional angles or distances—they are all two-dimensional measure-

ments made on the image (Ullman, 1978). Thus, there is no deep need for

any feedback from the later task to the earlier.

The two tasks may therefore be dealt with independently. We shall

first examine the correspondence problem and then alternative approaches

to the second task. By now the reader can formulate for himself the critical

preliminary question—What are the primitives on which the process

operates, or, in our earlier terms, what is the input representation for the

process? And since the measurements of changes in position must refer to

the changes in position of an identifiable surface location, these primitives

need to be as physical as possible. So, the reader will not be surprised to

learn that the elements in the primal sketch seem to be used, although

various interesting side issues arise in the details.

Then we must formulate the relationships that should hold between

the positions of the primitives in adjacent frames (remember, we shall be

dealing with apparent motion). In general terms, it is not hard to see that

the closer and more similar two items are in successive frames, the more
likely it is that they correspond. This simply reflects some kind of a statistical

rule of the universe, and it will hold provided that the interframe interval

is not too long in relation to the velocities of and distances involved with

the visible motions. It turns out that the human visual system incorporates

a permanent or "hard-wired" table of similarities by which the similarities

and dissimilarities in the various parameters may be compared. For exam-

ple, in experiments that test the similarity of two lines of the same contrast

in successive frames, a change in length by a factor of 3/2 produces the

same change in similarity as a change in orientation of 45°.

This similarity Ullman called the affinity measure, and it is based on
two-dimensional measurements. However, this does not by itself determine

the correspondence process. In order to do so, one has to take account of

extra factors. For example, suppose one has two lines A and B in the first

frame, and two lines a and b in the second. There are four possible pairings.

(l)A-> a and B —

>

b

(2)A-* b and B -> a

(3)"A-* a and B —> a

(4)ii-* b and B -» b

This list omits possibilities like A -» a, and B goes nowhere. The question

is, How does one decide which of the possible pairings actually occurs?
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The obvious answer is, take that solution which maximizes the overall

similarity between the frames. This similarity can be measured by means

of some standard cost function that gives a similarity value to each pairing

in a given solution, the overall similarity being the sum of the values for

each pairing. The cost function tells us roughly how many quite poor

pairings should be accepted in order to avoid an abysmal pairing or to

acquire an excellent one in the overall match.

An approach of this type, which involves finding a solution that

achieves an overall or global minimum, is analogous to part of what the

Gestalt movement became interested in during the first third of this century,

although several different phenomena were probably involved in the

experiments that the Gestaltists actually carried out. They had the idea of

an attraction among elements that bound them into wholes and governed

the interaction between successive frames, but they were unable to see

how much such an approach could account for the complexity that they

saw in the correspondence process. Their basic difficulty was this: In a

display such as Figure 3-41 , they saw that A -* A' and B -* B'
;
but ifA and

B' were removed, B -* A'. Hence, they reasoned, movements of wholes

are of critical importance, and the phenomenon cannot possibly be ex-

plained in a purely local way. In large measure, this type of argument killed

the school, because the Gestaltists viewed the problem of the formation of

wholes as intractable.

There are two fundamental misconceptions here, and I shall make a

point of them in order to draw a moral. The first is the point of basic

mathematical ignorance. Certainly examples like Figure 3-41 show that

the correspondence process involves more than finding purely local min-

ima; if the problem can be formulated in this way at all, the minimum one

wants is a global minimum. But—and here is the first point—there are

many systems in which global minima can be found using only local inter-

(a) <»

Figure 3-41 One of the patterns that puzzled the Gestaltists. (a) shows frame 1,

and (b) frame 2. Perceptually A goes to A' and B to B\ so that B seems to move.

(Courtesy of Shimon Ullman.)
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actions, so the Gestaltists' findings did not force the conclusions they drew

about the insufficiency of local interactions. In particular, the most obvious

way out of the Gestaltists' problem with Figure 3-41 is to say that the total

cost of (A -> A') + (£ -> B') turns out to be less than (A -> B') + (B -»

A'). The idea seems even simpler when we observe that it is linear, and

linear systems are extremely well-behaved—basically, they cannot get

caught in local minima. In fact, Ullman's correspondence theory is essen-

tially a linear one.

The second misconception was that the Gestaltists lacked the idea of

a process. They thought of groupings as being subject to various types of

rules—the principles of closure, good continuation, regularity, symmetry,

simplicity, and so forth (see Koffka, 1935, p. 1 10)—which were summarized

as the Gestalt law of Pragnanz. This law was to them like a physical law. If

they had had the idea of embodying such principles in a number of group-

ing processes—for example, as constraints on what should or should not

be grouped together—they might not have abandoned the other half of

their endeavor, the systemization of the formation of wholes.

The moral here is this. We saw in Chapter 1 something of the perils

to purely computer vision workers of ignoring the biological evidence

about how the human visual system is organized. The basic difficulty is that

such an oversight can lead to trying to solve problems which are not really

problems at all, but which happen to arise because of the particular limi-

tations of sensors, or hardware, or available computer power. Here we see

the opposite, in which mathematical ignorance (which could have been

avoided) and a failure to think more in terms of processes (which is more

excusable) led to the failure of a school of thought that had actually made
a number of valuable insights. The moral is that ignorance in any of these

three fields can be damaging. Just as the modern physicist has to know
some mathematics, so must the modern psychologist, but the psychologist

must also be familiar with computation and have a clear idea of its abilities,

its limitations, the fruitful ways in which to think about processes, and,

most importantly, what it takes to understand these processes.

This, then, is roughly the current state of affairs concerning the cor-

respondence problem. Ullman formulated it as a linear minimization prob-

lem and showed how this can account for much of the psychophysics. We
shall explore his ideas in some detail and see some even more recent ideas

about their biological implementations based on the higher-level primal

sketch primitives. As for the topic as a whole, it is not yet solved at any of

our three levels; however, a substantial amount is known about it, and a

complete computational theory of it cannot, I think, be too far off.

The second half of the problem, the structure-from-motion theory, is

in better shape and has essentially been solved at the level of computational
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theory (Ullman, 1979a). The form of the theory is by now familiar—it is

the same as we saw in Chapter 2 (for the primal sketch) and earlier in this

chapter, although chronologically Ullman's was one of the early theories.

The critical additional constraint that he used was rigidity, and he made a

very precise formulation of its use and showed how the recovery of three-

dimensional structure may proceed from the measurements made avail-

able by a successful correspondence process. The underlying mathematics

consists of a theorem stating essentially that three views of four rigid,

noncoplanar points are sufficient for recovering their three-dimensional

dispositions and motion. We shall see how this result may be used as the

cornerstone of the interpretation of visual motion. Longuet-Higgins and

Prazdny (1980) used a similar approach in their study of optical flow

One final comment is perhaps in order as a conclusion to this brief

survey. Although the geometry of three-dimensional space has been studied

since the time of Euclid, some relatively simple theorems still appear to

be unknown. The four-points, three-views theorem was one, and we shall

meet another when we discuss the recovery of shape information from

silhouettes (Marr, 1977a). It is difficult to believe that there are not others.

These two have recently been formulated because the imaging process

occurs in three dimensions, and hence certain types of geometrical rela-

tionships, if known and used, can be incorporated into processes for inter-

preting images. It may be well worth a mathematician's time to look again

into the subject of three-dimensional Euclidean geometry.

The Correspondence Problem

Empiricalfindings

What is the input representation?

On general grounds, we require that the tokens on which the corre-

spondence process operates, which we shall call correspondence tokens,

be physically meaningful. This eliminates raw gray-levels, and one can

directly demonstrate that, in the human visual system, gray-level correlation

does not form the basis for the correspondence process. Figure 3-42

shows how. The maximum gray-level correlation between the two frames

in Figure 3-42(a) occurs at zero displacement, as can be seen from the

correlation graph, Figure 3-42(b). If the sharp edges are matched, how-

ever, one would expect edge E in frame 1 to jump to F in frame 2, and this

is in fact what happens.

This demonstration establishes that the correspondence takes place

above the level of gray-level intensity values, but how far above does one
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(a)

Displacement

(b)

Figure 3-42. Correspondence is not established between gray-level images. If it were, two frames
with the intensity profiles shown in (a), when presented in succession, would give no impression
of movement, since the maximum value of the correlation between them occurs at zero displace-

ment (b). Instead, edge E is seen to move to edge F, suggesting that edges, not gray-level images,

are the tokens used in the correspondence process. (Reprinted from Shimon Ullman, The Inter-

pretation of Visual Motion by permission of The MIT Press, Cambridge, Massachusetts, Figure 1.1,

Copyright © 1979 by The Massachusetts Institute of Technology.)

go? Is the correspondence established between relatively small and simple

parts of a scene, largely independently of shape and form, or are much
more complicated descriptions involved, like the interpretation of the

whole of a shape from one frame, before different frames are compared?
Figure 3-43 is one of a series of demonstrations that rules out the

second alternative. The figure illustrates two successive frames, one
denoted with full lines, and the other with dotted lines. Ifthe whole pattern

was analyzed from one frame, with the shape of the wheel extracted and
then used to match the elements in the next frame, the observer should

perceive the frames as a whole wheel rotating when they are presented in

rapid succession. Notice, however, that the inner and outer parts of the

wheel have their closest neighbors in one direction, whereas the central

ring has its closest neighbors in the other direction. Because of this, if the

matching is carried out purely locally, the observer should see the central

ring rotating one way and the inner and outer rings rotating the other (as

shown with arrows in Figure 3-43). When appropriately timed, this is in

fact what happens.

This begins to suggest primal sketch elements, and the next demon-
stration shows that terminations play a role (as they do in stereopsis). In

Figure 3-44(a), a correspondence is established between the ends of the

two lines. This breaks down if the distances between the corresponding

ends are much greater than that between the line segments, as they are in

Figure 3-44(b), in which case a correspondence is established between
the short line and only the nearest part of the long one. It has not yet been
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Figure 3-43. Evidence that the correspondence problem for apparent motion

involves matching operations that act at a low level. Frame 1 is shown with full lines

and frame 2 with dotted lines. Instead of appearing as a single wheel rotating, the

wheel splits when appropriately timed, the outer and inner rings rotating one way

and the center rotating the other as indicated by the arrows. This suggests that

matching is carried out on elemental line segments and is governed primarily by

proximity. (Reprinted from Shimon Ullman, The Interpretation of Visual Motion,

by permission of The MIT Press, Cambridge, Massachusetts, fig. 1.3. Copyright ©
1979 by The Massachusetts Institute of Technology.)

firmly established whether discontinuities of the type shown in Figure

3_44(c ) are matched, but the question is obviously of interest.

Figure 3-45 adds to the evidence that correspondence is determined

by quite low-level tokens and not by the shape or form of the correspond-

ing figures. In Figure 3-45(a), the square A goes to the larger squared. In

Figure 3-45(b), it goes to the larger triangle B, not to the smaller square

C. Thus in these cases the motion of the constituent elements rather than

the similarity between the complete forms governs the matching process.

Ullman (1979b, p. 27) concluded that (1) differences in the tendency of

different figures to fuse is consonant with the motions established between

their components, and (2) there are no indications that structural figures

are part of the basic elements or that the correspondence process is based

on figural similarity.
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(a) (b) (c)

Figure 3-44. Terminations can also act as correspondence tokens, provided that

the two lines in successive frames do not differ too much in length (a). If they are

very different (b), correspondence is established between the short line and a

segment of the long line. It is not yet known whether orientation discontinuities

such as the one shown in (c) can act as correspondence tokens. (Reprinted from
Shimon Ullman, The Interpretation of Visual Motion, by permission of The MIT
Press, Cambridge, Massachusetts, fig. 2.10. Copyright © 1979 by The Massachusetts

Institute of Technology.)

Figure 3-45. In (a), the square A goes to the larger square B, yet in (b) it goes
to the larger triangle B, not to the smaller square C. This is more evidence that

correspondence is governed by the motions of constituent elements, not by com-
plete forms. (Reprinted from Shimon Ullman, The Interpretation of Visual Motion,
by permission of The MIT Press, Cambridge, Massachusetts, fig. 1.6. Copyright ©
1979 by The Massachusetts Institute of Technology.)

As a result of discussions between Shimon Ullman, Michael Riley, and
myself, Riley has found that matches can, for example, be established

between oriented clouds of dots or between groups of parallel lines, when
in neither case do the constituents match. Two illustrations of this phe-

nomenon appear in Figures 3-46(b) and (c). In such cases, the matching
rules appear to be governed by parameters like the overall orientation and
size of the group. Borders like those in Figure 3-46(a) can also be matched,
although there can be no question here of any kind of constituent match.
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,^V

(a)

(b) ^
Figure 3-46. Matching can take place between higher-order borders or tokens even when the

constituents do not match. For example, correspondence can be established between the two kinds

of border surrounding the squares shown in (a), (b) An experiment in which one cloud of dots is

presented in frame 1, and two clouds in frame 2 (as marked), with the property that one of the

clouds in the second frame is identical to the cloud in the first frame, whereas the other cloud is

not No preference for the identical cloud is exhibited. In (c), this idea is carried further. The first

frame consists of group C, consisting of short horizontal lines. The second frame consists of two

groups L comprised of short horizontal lines and R of long diagonal lines. The observer sees

no preference for motion from C to L, which proves that the correspondence in this case is not

being carried out between the constituents of the groups but between descriptions of their overall

structure.

The ISI's here are around 100 ms, much shorter than the Vs s or so required

for shape to begin influencing matching.

So Ullman's conclusions may need slight modification so that these

more abstract image descriptors from the full primal sketch can be

included. However, his main point—that no elaborate form analysis pre-

cedes the correspondence process—still stands. And the limitations

implied by the word elaborate here effectively allow the things that are

allowed in the full primal sketch—overall length, size, orientation of a

token, and so forth—but exclude the things that are excluded there—for

example, any explicit representation of an internal angle in the token, the
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noticing of right angles, and so forth. It will be interesting to see how far

the analogies can be taken between correspondence tokens and primitives

in the full primal sketch.

Two-dimensionality of the correspondenceprocess

The local behavior of the correspondence process for small numbers
of isolated elements can be studied in experiments like that shown in

Figure 3-47(a), in which the first frame (dotted line) contains one element
and the second, two (solid lines), and the observer is asked to which line

in the second frame the line in the first frame appears to go. Riley recently

modified this scheme to the form shown in Figure 3-47(b), which has
many copies of the same problem. The extended display has the advantage
of being somewhat more sensitive.

Figures 3-47(c), (d), and (e) show stimuli for these experiments; in

each case, frame 1 is dotted and frame 2 is not. The examples shown all

have approximately the same affinity for the original. Figure 3-47(c) shows
how length trades off against distance, Figure 3-47(d) shows how vertical

displacement trades off against distance, and Figure 3-47(e) shows how
orientation trades off against displacement. The relative weights of the
different parameters for a 3 line configuration are tabulated in Figure
3-47(f) (from Ullman, 1979b, table 2.1).

For our brief survey of this problem, the detailed values of the table

in Figure 3-47(f) do not matter so much, but the fact that the process uses
measurements made on the image and not measurements of objective,

three-dimensional quantities is important. This was established by Ullman
(1978) in the type of experiment shown in Figure 3-48. In frame 1 of the
experiment shown in Figure 3-48(a), for example, all the lines had the
same brightness except for C. In frame 2, only L and R were brighter, and
motion was induced from C to L or R. In this example, the two-dimensional
relations between C and L and between C and R are identical. Their three-

dimensional distances apart, however, are very different. In Figure 3-48(b),
an experiment along the same lines is shown in which the three-dimen-
sional distances are the same but the two-dimensional ones are very dif-

ferent. Similarly, in Figure 3-48(c) the two-dimensional and three-dimen-
sional angles are different.

From experiments like this, Ullman concluded that three-dimensional
measures were irrelevant to the correspondence process; everything he
found could be predicted from the two-dimensional configurations. He
was also able to make another fascinating point, about the smoothness of
apparent motion. When one looks at two frames, the transitions from one
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(a) (b)

(c) (d) (e)

Orientation difference

(in degrees)

Distance ratio

Length ratio

1/cos a

Relative Weight

1 2 3

15 30

1.1 1.2

1.04 1.13

1.04 1.15

(0

45

1.6

1.5

1.41

60

2.1

2.0

75,90

2.25 2.7, 3.

2.5

(2.3)

Figure 3-47. (a) shows a typical two-frame experiment of the kind used to mea-

sure affinities, and (b) shows a more sensitive version of the same experiment. In

(c)-(e), frame 1 is shown with dotted lines and frame 2 with full lines, and the two

stimuli in frame 2 have about the same affinity for the original, (c) How length

trades off against distance; (d) how displacement trades off against distance, and

(e) how displacement trades off against orientation. The measured affinity values

are tabulated in (0- (Reprinted from Shimon Ullman, The Interpretation of Visual

Motion, by permission of The MIT Press, Cambridge, Massachusetts, figs. 2.5-2.9

and table 2.1. Copyright © 1979 by The Massachusetts Institute of Technology.)
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(c)

Figure 3-48. Only two- and not three-dimensional measures are used by the

correspondence process. In (a), a correspondence is established between C (frame

1) and L and R (frame 2), which have identical two-dimensional relationships to C
but different three-dimensional ones. They behave identically. In (b), L is preferred

over R. (c) tests angles, and again it is two-dimensional angles that determine the

correspondence. (Reprinted from Shimon Ullman, The Interpretation of Visual

Motion, by permission ofThe MIT Press, Cambridge, Massachusetts, fig. 2.22. Copy-

right © 1979 by The Massachusetts Institute of Technology Part reprinted by per-

mission from Shimon Ullman, "Two dimensionality of the correspondence process

in apparent motion," Perception 7 (1978), 683-693, fig. 1.)
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to another sometimes seem to happen smoothly and sometimes not. Stud-

ies like those by Corbin (1942) and Attneave and Block (1973) had found

that smoothness of motion was determined predominantly and perhaps

entirely by perceived three-dimensional distance rather than by objective

two-dimensional distance. Yet Kolers (1972, ch. 4 and 5) was only the most

recent of a line of researchers who studied correspondence strength using

smoothness of motion as a criterion.

Plainly, there was some inconsistency, because the three claims—(1)

smoothness of motion depends on perceptual distance, (2) correspon-

dence strength depends on two-dimensional distance, and (3) smoothness

of motion reflects correspondence strength—are incompatible. Ullman

(1978, experiment 5) resolved the dilemma by constructing a situation like

Figure 3-47(a), in which motion one way was smoother but motion the

other way was stronger and won. Smoothness and correspondence

strength are therefore different phenomena, and the correspondence

process relies on two-dimensional measurements only, probably after

allowing for the effects of eye movements (Rock and Ebenholtz, 1962).

Ullman's theory of the correspondenceprocess

In more complex displays, an element does not always map to the element

with highest affinity, as we have seen in Figure 3-41. Mappings are affected

by inter-element interactions as well. In his empirical approach to this,

Ullman introduced the notion of correspondence strength (CS), which is

derived from the local affinities but also incorporates the effects of various

kinds of local competition and which determines the final mapping. Figure

3-49 illustrates this idea. First, the affinity between each pairing is mea-

sured, and then local interactions take place on these to produce the CS.

The interactions weaken the CS when splitting or fusion occurs, for exam-

ple, and so these conditions are avoided. In a particular numerical example

(appendix 4 of his doctoral thesis), Ullman showed that this same simple

scheme could account for several examples that were considered chal-

lenging to motion perception theories (Kolers, 1972; Attneave, 1974; Ull-

man, 1979b, sec. 2.4.1).

These points, though, primarily showed that the kind of thinking that

had been used when examining the capabilities of local interactions was

still often seriously flawed, sometimes in the same way as was the Gestal-

tists', by a failure to appreciate the complexity of functions that can be

computed by local interactions. More interesting was Ullman's attempt to

formulate a theory for the correspondence process, which he called the

minimal mapping theory. It is, in fact, a maximum likelihood theory.
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Lateral

interaction

Affinity

measures

Tokens

Figure 3-49. Ullman's approach to correspondence strength. Raw affinity values

are measured between correspondence tokens, and then local interactions take

place between them to obtain the final correspondence strengths.

There are three main assumptions behind the theory. The idea is to

provide a way of judging the relative merits of pairing tokens between

frames. Since the underlying argument is probabilistic, we need to assume

that different pairing decisions are independent. That is the first assump-

tion. The second is that each token in frame 1 is paired with at least one
token in frame 2, and vice versa. We do not explicitly demand a one-to-

one relationship (that is how splits and fusions are allowed), but since each

pairing costs something, the final answer keeps splits and fusions to a

minimum. Thus, the second assumption is that the set of pairings should

cover both sets of tokens.

The third idea is the interesting one. Of course, the range of true

velocities in the world varies widely—sometimes a viewer moves fast,
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velocity

Figure 3-50. The average distribution of velocities in an image. For almost any

reasonable velocity distribution for objects in the world such as p(v), after projec-

tion into an image, p(v), small velocities will predominate. See discussion in text.

(Reprinted from Shimon Ullman, The Interpretation of Visual Motion, by permis-

sion of The MIT Press, Cambridge, Massachusetts, fig. 3.11. Copyright © 1979 by

The Massachusetts Institute of Technology.)

sometimes slowly, sometimes objects move by quickly, sometimes not. But

almost whatever is chosen for distribution of velocities in the world, the

projections of those velocities in the image will usually be small rather

than large, simply because of the imaging process. This point is illustrated

in Figure 3-50. The dashed line p(v) shows one choice for the probability

distribution for true velocities in space. The solid line p(v) shows the

corresponding projected velocity distribution. Thus on only very general

grounds, mappings that prefer nearest neighbors will be more likely.

The theory is now straightforward: The entropy q(v) of a given velocity

v is defined as -logpO), wherep is its probability. The maximum likelihood

solution is the solution that minimizes the total entropy (just as in statistical

mechanics), and we can find this simply by letting q(v) be the "cost" of

assuming velocity v and then discovering the mapping that minimizes the

total cost. This is a linear problem that can be solved by a simple local

network, in which one can incorporate additional penalties for deviations

from one-to-one mappings if desired. The cost function is the affinity func-

tion that we discussed earlier, and the interactions of Figure 3-49 that

produce the CS in effect find the minimum total cost, that is, the most likely
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mapping given the statistics of the universe. This scheme generalizes nat-

urally from the discrete case of successive frames to the continuous case,

where the image is represented more as an incoming stream of tokens.

A critique ofUllman's theory

As a first attempt, this theory of the correspondence process is an extremely

valuable contribution, and it provides a welcome and refreshing sip of

clarity after the confusions and obfuscations of the preceding 50 years. Its

importance is that it enables us to formulate a number of empirical ques-

tions that would not otherwise arise, and it opens the way for a rational

investigation of the phenomenon rather than the confused cataloguing of

its phenomenology.

Leaving aside the empirical aspects of the theory for the moment,
there are a few points that should be raised, especially in a book whose
primary business is the theory of the visual system. The first point is that

the independence assumption, necessary for a probabilistic development,

is empirically not quite true, at least in its simplest terms. In Figure 3-5 1(a)

we do have independence—the unambiguous match of C
2
to R

2 does not

affect the ambiguity of the behavior of Q. In the situation shown in Figure

3-51(b), however, the behaviors ofd and C2 are related—in fact, as Ullman

pointed out, they behave as if they formed the endpoints of line C in Figure

3-51 (c). They do not so behave when the induced grouping is different,

as it is in Figure 3-5 1(d).

So it seems that the correspondence process can, to some extent,

operate on groups as well as on their constituents. Although the grouping

process does not involve explicit descriptions of the internal structure of

the groups, and although matching between overall groups does not pre-

clude additional matchings between their constituents, they can perhaps act

to constrain those matchings. Specifically, matchings that are compatible

with the grosser group matching are allowed, whereas those that are not

are disallowed. This type of internal structure in a theory can be accom-
modated by a probabilistic framework, but it is awkward and indicates that

we may not yet have found the most useful approach.

The second point we have already met—that correspondence may be
established between groups without correspondences being established

between their constituents. Ullman himself noted that this could happen
(1979b, sec. 2.4.2), and more recent work with M. Riley has confirmed and
extended this finding. Interactions such as these between higher-order

units can, of course, be simply added on to the theory in the way that

Ullman suggests, but they do not follow from it naturally and are not at all



200 From Images to Surfaces

L,

+ O

Li

+
Ci

O

o

(a)

+ + o
c,

(b)

+
R,

(c)

O

O

+ o +

+ o +
o

(d)

Figure 3-51. In this figure, frame 1 is shown with circles, frame 2 with crosses.

In (a), the presence of C
2
does not affect the behavior of Cr In (b) it does, however,

the pair C£,2
acting like the line C in (c)— it goes either to L or to R. If the token

configuration is disrupted by the presence of another organization as in (d), the

central pair is no longer treated like the line C. (Reprinted from Shimon Ullman,

The Interpretation of Visual Motion, by permission of The MIT Press, Cambridge,

Massachusetts, fig. 2.20. Copyright © 1979 by The Massachusetts Institute of

Technology.)

predicted by it. In fact, they run almost counter to it, since the whole thrust

of the theory is to show how the sometimes confusing and complex behav-

ior of the correspondence process on different patterns can arise from

purely local interactions between simple processors that are associated

with the constituents of the patterns.

For the third point, we need to adopt a slightly different perspective,

that of the theory builder. What, we might ask, does the probabilistic

approach buy? And the answer is, essentially, linearity. The practical con-

sequence here is that purely local interactions are guaranteed to yield the

global minimization that we seek. This is of great didactic value, because

it shows that, as in our first cooperative stereo algorithm, the right global

effects can be gained by purely local interactions. At first sight, this is exactly
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what we should try for, since, on the whole, the tangential connections in

the cerebral cortex are known to be quite short (for example, Szentagothai,

1973).

Our experience with stereopsis and locally parallel organization has,

however, warned us to beware of these arguments because of the problems
associated with iteration. We must be careful here because Ullman s theory

is not meant as an algorithm—it is a top-level theory—and there certainly

are noniterative ways of implementing it. Nevertheless, the fact that it can

be implemented with only local connections is an advantage only if it

actually is implemented in this way. Unfortunately, if we take the theory at

face value, which suggests an implementation, then I think a major objec-

tion must be that the rate of convergence for this type of calculation is

slow—slower than, for example, the first stereopsis algorithm. To be sure,

the rate depends on the starting point—and the rough grouping with large

tokens could help here—but even so one would need, say, 10-70 iterations

for reasonable convergence. This argument is not completely secure—one
can usually patch up any particular convergence problem with special tricks

to speed it up—but it does weaken the initial attractions of the theory

being built around simple local network interactions.

The final point is much less easy for me to express, since it rests much
more than the others on unsubstantiated intuition about how the brain

works. Basically, my feeling is that at these rather low levels, probabilistic

approaches such as the maximum likelihood principle are not used. Partly

this feeling comes from having tried to use them myself a number of

times—a probabilistic approach to stereopsis yields something like gray-

level correlation, and I once tried to solve some problems related to the

2V2-D sketch by using this approach—and partly from the general belief

that a probabilistic approach is somehow not definite enough. For a prob-
lem of any complexity, the maximum likelihood solution is always pretty

improbable (in the technical sense). Yet here the answers provided by the

visual system are almost always correct and, moreover, are usually accom-
panied by a subjective feeling of certainty, rarely of doubt—much more
certain and more often right than would be indicated by a rather low
probability value. In similar situations, I have usually found that better

constraints are available to describe how the world is put together, and
these have often led to a much firmer basis for a computational theory

In other words, if forced to answer the question posed at the end of
the section on stereopsis—namely, Does this computational theory solve

the right problem?—my answer would be more equivocal than it was for

stereopsis or for the other half of Ullman's theory, the structure-from-

motion problem. I do not yet have any very solid alternative, but the fol-

lowing remarks indicate the direction of my thoughts on this problem.
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A new look at the correspondenceproblem

Oneproblem or two?

The heart of any computational theory of a visual process is the answer

to the question, What is the process for? In Ullman's framework, the goal

of the correspondence process is to establish a relation between successive

frames that allows measurements of the changes that have taken place.

These measurements can then provide the input for subsequent processes

that can recover the structures and their motions.

No doubt this is at least part of the job of the correspondence process,

but is it the whole of it? Looking ahead a little, we shall see that the recovery

of structure from motion incorporates (in an internally testable way) the

assumption that the moving bodies are rigid. So we may ask about the

correspondence problem first of all from the point of view of an observer

in a world of moving, rigid bodies.

For small time intervals, the actual correspondence problem posed

by this situation is essentially equivalent to the correspondence problem

in stereopsis, because moving and rotating an object a little produces the

same effect as moving and rotating one eye a little. Of course, different

bodies may be moving in different ways, thus being equivalent to different

pairs of eye positions, but the stereopsis matching theory is a local one,

and it can be applied locally, provided that its assumptions are obeyed

locally. These assumptions are that surfaces are smooth locally and match-

ing is unique, because a given position always moves to only one other,

and this nearly always means only one other in the image. Of course, some

visible points will become invisible, and vice versa, but this is merely the

analogue of the fact that, in stereoscopic depth changes, one eye can see

parts of the surface that the other eye cannot see.

What, then, about the splitting and fusion phenomena of apparent

motion, in which a single element in one frame splits to match two in the

next (or conversely)? These are strong and well-known phenomena in

apparent motion and have caused considerable theoretical problems. How

often ought they to arise in the structure-from-motion situation? We have

already seen that they can arise in stereopsis, both physically, in the rare

instance that two surface markings that are distinct from one eye happen

to lie along the line of sight from the other, and psychophysical^, in Panum's

limiting case. We have even seen from Braddick's stereograms of Figure

3-19(b) that the human visual system is very catholic about accepting dou-

ble matches, provided that they are unique from one eye. But the reasons

there were not fundamental ones; they had to do with the implementation

and arise basically because the uniqueness condition is so strongly satisfied
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by the physical world that the visual system can afford to assume that it

holds without internally checking it.

Are the splitting and fusion phenomena of apparent motion of the

same kind as in the stereo correspondence problem, or are they more
fundamental? I think that if we are committed to the view that the sole

function of the motion correspondence process is to solve the problems

produced by rigid bodies in motion, then this problem can be solved in

the same way as the stereo correspondence problem, which is equivalent.

These phenomena would have to be explained away much as the examples

of Panum's limiting case were in stereopsis.

However, this approach is not very satisfactory. One rather subjective

reason is that the kinds of stereopsis achievable by the matching of pure

texture edges are so rivalrous (see, for example, Mayhew and Frisby 1976)

and the impression of depth from them so poor that one has the feeling

that "real" stereopsis is not happening at all—only some vague preliminary

parts of it are (perhaps the vergence control system). In apparent motion,

however, impressions are not at all as vague—such edges are clearly seen

in motion with respect to one another. The matching that is obtained

between pairs even as dissimilar as those in Figure 2-34 is quite clear and
definite, and not at all rivalrous, as it is in stereopsis.

Another argument, which I find quite compelling, comes from a report

by Ramachandran, Madhusudhan, and Vidyasagar (1973) that apparent

motion can be established between subjective contours and even between
disparity edges in a random-dot stereogram. This is almost a paradox from
our narrow point of view, because if disparity edges have already been
obtained, then we already have the three-dimensional structure, so why
initiate this whole structure-from-motion process in order to obtain it?

Our narrow point of view must, I think, be inadequate—one simply

cannot understand the motion correspondence process in so confined a

way. How, then, is this process essentially different from the stereo corre-

spondence process?

The crucial difference is that one is in space, and the other is in time.

For rigid bodies the processes are equivalent, but for pliable surfaces they

are not. The shape of an object from the left eye is always the same as its

shape from the right eye at the same instant, but its shape a moment later

may be different. This is not an uncommon phenomenon at all. A distant

bird, for example, changes its shape and appearance very rapidly, both

because it is not rigid and also perhaps because the sun catches its beating

wings at one particular angle. The bird's image may be quite small and
difficult to decompose into roughly rigid components. Nevertheless,

although its motions may yield little or no direct clues about its structure,

there is no doubt that the changing appearances are all related to one bird.
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In other words, time introduces an important new factor, which is rather

independent of the precise details of an object's three-dimensional struc-

ture. This factor is the consistency ofan object's identity through time, and

it is a different problem entirely. To see this difference, simply consider

Ullman's (1977) example of the frog changing into the prince. This is not

part of the structure-from-motion problem, because the structure changes,

but it is part of the object identity problem.

My argument is that the theory should consider the two problems

separately, because they have somewhat different computational require-

ments. The idea of matching disparity edges is inexplicable in the first

approach but entirely explicable and almost obviously desirable in the

second. For example, consider the patterns of light formed by the surface

of a river playing upon a riverbed. The only constants here pertain to the

geometry of the riverbed, and therefore we clearly need to be sensitive to

just this, independent of its surface radiance. This type of situation may

well be the real-life equivalent of Bela Julesz's random-dot "moviegrams,"

and this type of situation makes it quite comprehensible that we should be

able to perceive them. If a fish should happen to glide leisurely by, tran-

siently mottled by the changing patterns of light and dark falling upon it,

it may be defined only by its disparity boundaries. These boundaries are

moving, but it is the same fish all the time. That is a problem in object

constancy.

Separate systemsfor structure and object constancy

Thus the problems introduced by time yield at least two rather distinct

tasks for the correspondence process in apparent motion, and these are

themselves distinct from the first of Braddick's two categories, which we

discussed in Section 3.4. The first task is the first half of the structure-from-

motion problem, and, in an environment of rigid, moving bodies, it is

essentially equivalent to the matching problem in stereopsis. The only

difference between the two is that a small rotation of one image is added

in the motion situation, but this poses no important new problems. The

aim, as in stereopsis, is to achieve a very detailed correspondence between

accurately localizable items in the image, so that measurements of their

position changes may be made to the (second-order) precision necessary

for the structure-from-motion computations. In order to achieve this pre-

cision, one would expect the primitives used here to be rather low ones,

like those in the raw primal sketch or perhaps even zero-crossings.

The goals of the second task are different, and they arise precisely

because an object can change between two temporal viewpoints in a way
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that it cannot between two spatial viewpoints—it can change its shape and

configuration (and even reflectance). Precision is not its goal; rough iden-

tity is—and this is the key to the difference between visual motion and

stereopsis. There is no point to an approximate stereo correspondence by

itself; it only has a point if it is a prelude to an exact match. Hence, approx-

imate matches appear as indistinct and rivalrous perceptions. There is,

however, a great deal of point to an approximate correspondence in time,

since it offers a way of establishing object continuity

My suggestion, therefore, is that two theories may be needed here,

one for when the object is changing and moving and one for when it is

only moving. The first should use everything it possibly can, including

high-level primitives with catholic matching rules and any three-dimen-

sional information that is already available. The phenomena of subjectively

smooth motions may even be more concerned with the first system than

with the second, since smoothness goes perceptually hand in hand with

object constancy, and we know from Attneaves work that smoothness

involves three-dimensional perceptual distances. The second system is at

a lower level, computationally equivalent to stereopsis, and although it may
not be implemented in the same way, zero-crossings may be worth looking

at in this regard.

Structure from Motion

Theproblem

We have already seen from Ullman's (1979a) counterrotating cylinders

experiment, illustrated in Figure 3-52, that both the decomposition of a

scene into objects and the recovery of their three-dimensional shapes can

be accomplished when the only available information is that afforded by

their changing appearances as they move. Each frame in that demonstration

consists of an apparently random collection of dots and is by itself unin-

terpretable. Only when shown as a continuous sequence does the move-

ment of the dots create the perception of two counterrotating cylinders.

We shall therefore consider the simplified problem ofhow to interpret

a sequence of frames, each composed of a set of random dots. In real life,

the frames will contain more elaborate primitives than dots, but, just as in

the case of stereopsis, the bones of the problem can be expressed in this

simple form. Furthermore, we shall assume that correspondences have

already been established between successive frames by the correspon-

dence process that I discussed above. In fact, we shall need only the simpler
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F^wre 3-52. Ullman's rotating cylinders demonstration. Dots painted on the two

cylinders are projected orthographically onto a screen as indicated by the arrows,

giving a sequence of frames like those illustrated in Figure 3-53. Each single frame

has the appearance of a set of random dots, yet when seen as a movie, the rotating

cylinders are clearly visible.

sort of correspondence process, the one for rigid objects, which we saw

was computationally equivalent to the correspondence problem for ster-

eopsis.

Thus the problem posed here is a set of data like that shown in Figure

3-53. Each frame consists of a set of labeled dots (though the labeling is

not shown in the figure), where dot A in frame 1 corresponds to dot A in

frame 2, and so forth. The question is, How can we make sense of these

data? How should we go about a sensible three-dimensional interpretation?

The difficulty here is exactly like the one we met in the stereopsis

problem, namely, that the solution is underdetermined. There are an infi-

nite number of three-dimensional configurations that could give rise,

through orthographic projection, to the images of Figure 3-53—any num-

ber of different, randomly changing snowstorms, for example. But we do

not see any of these different possibilities; we see only one, and it is the

correct one.

Just as in stereopsis, therefore, we must be bringing additional infor-

mation to bear on the problem that constrains the solutions one finds. This

additional information must at the same time be powerful and true but

rather unspecific. Powerful because it forces a solution that is usually

unique; true because not only does one perceive only one solution, but
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Figure 3-53. The structure-from-motion problem. This set of frames contains

three-dimensional information (see Figure 3-52). How are we to recover it?

that solution is also the correct one physically; and unspecific because the

system works in unfamiliar situations, without specific a priori knowledge
of the shapes to be viewed.

Aprevious approach

Although there have been a number of previous approaches to this prob-

lem, only one of them deserves comment. It originated with Helmholtz

(1910; Braunstein, 1962; Hershberger and Starzec, 1974) and initiated the

idea that motion and stereopsis are analogous: Specifically, recovering

structure from motion is analogous to recovering distance from disparity.
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The idea is, however, seriously flawed, because different objects in

different parts of the visual field can be engaged in quite different motions.

Now for the correspondence problem this does not matter, since that is

essentially a local process. We have already made use of the fact that, for

rigid objects and short time intervals, the two correspondence problems

are in fact equivalent. We noted, however—without worrying particularly

—

that two different local motions would induce two different eye-pair

positions to produce the equivalent stereo correspondence problem.

The reason why this is not at all worrisome is that for correspondence the

combination rules do not depend upon the precise position of the eyes.

They have only to be close together and so have similar views. Hence,

correspondence is unaffected by the fact that different portions of the visual

field effectively induce different equivalent eye-pair positions.

Not so for the recovery of depth from disparity, however. As we saw,

this depends critically on the effective interocular distance 8, and the

induced 8 s are in general different for each differently moving rigid object.

There is no way of deducing their values a priori, and since they change,

there is no way of comparing what is happening in one part of the visual

field with what is happening in another. Hence, although this approach is

actually valid for the correspondence problems in the two domains (pro-

vided one restricts oneself to rigid motions and short time intervals), it is

not valid at all for the recovery of three-dimensional structure.

It follows from these arguments that changes in velocity in the visual

field (which are the analogues of changes in disparity) should not yield
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Figure 3-54. The conveyor belt demonstration. The dots in regions 1 and 2 move

to the right with speed v' = v cos 9, and those in region 2 with speed v. However,

the observer of (a) does not perceive the geometrical configuration (b). Instead,

all of the regions appear in the frontal plane, and the dots appear to move faster

in region 2. (Reprinted from Shimon Ullman, The Interpretation of Visual Motion,

by permission of The MIT Press, Cambridge, Massachusetts, fig. 4.2. Copyright ©
1979 by The Massachusetts Institute of Technology.)
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direct impressions of depth, nor should common velocities be necessarily

very useful for grouping. The Gestaltists, for example, had the notion of

"grouping by common fate," which included grouping by common velocity,

and Potter (1974) recently revived a form of this idea. However, the coun-
terrotating cylinders demonstration includes points having the same veloc-

ity that belong to different cylinders. Evidence against the other half of the

conclusion, that changes in velocity should yield changes in the impression

of depth, is provided by Ullman s conveyor belt demonstration, illustrated

in Figure 3-54. Dots in regions 1 and 3 have velocity v', and in region 2

they have velocity v. One does not perceive the different sections as planes

at different depths or even as being arranged in the configuration of Figure

3-54(b). Instead, the dots all appear to be in the same frontal plane; they

appear to speed up as they pass from region 1 to region 2 and to slow
down again as they pass from region 2 to region 3.

The rigidity constraint

Most of the structures in the visual world are rigid or at least nearly so.

This has been noticed by many students ofmotion perception (for example,

Wallach and O'Connell, 1953; Gibson and Gibson, 1957; Green, 1961; Hay,

1966; Johansson, 1964, 1975), who formed the opinion that rigidity plays

a special role in the problem. What they failed to realize, and what Ullman
pointed out, was that searching for rigid interpretations is not merely a

bias of our motion perception machinery; it enables us to solve the struc-

ture-from-motion problem unambiguously, without the need for any other

constraining influence. This remarkable fact follows from a piece of math-

ematics that Ullman called the structure-from-motion theorem. It states that

given three distinct orthographic views of four non-coplanar points in a

rigid configuration, the structures and motions compatible with the three

views are uniquely determined, up to a reflection where the closer points

become the more distant ones. In other words, three views of four non-
coplanar points suffice to determine their three-dimensional structure,

provided that the correspondence problem has already been solved. Again,

this result is not restricted to apparent motion; in continuous motion, what
counts as three views depends solely on the resolution of the underlying
systems measuring the position changes in time.

The four-points-three-views combination of the structure-from-motion

theorem is the minimal combination in the following sense. With just two
views, any number of points can be constructed that have no unique three-

dimensional interpretation (although some combinations fortunately will),

so that in general two frames are not enough. With three frames, three

points are again in general too few to yield a unique solution; one needs
four points.
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One can give a rough plausibility argument for four points and three

views based on the number of degrees of freedom involved. Suppose that

we label the four points O, A B, and C, the point O always corresponding

to the origin (0, 0, 0), and let us label the three views 1, 2, and 3. There are

15 variables to be determined. Nine of them determine the three-dimen-

sional positions in view 1 ofA B, and C relative to O (three points with

three coordinates for each one), and the remaining six determine the

three-dimensional rotations needed to obtain views 2 and 3 from view 1.

(We rule out translations by superimposing the point O in each view). It

takes three variables to specify a three-dimensional rotation, two to specify

the axis, and one to specify the amount.

The amount of information we gain from each view is 6 relations, the

two-dimensional coordinates of each ofA B, and C. (The point O is always

[0, 0].) Hence, two views give us 12 relations, fewer than the 15 unknowns

and so insufficient to determine the structure. Three views give us 18

relations, which exceeds 15 and so will be sufficient provided that there

are not too many singularities or internal dependencies. The difficult part

of the proof lies in showing that the 18 relations are in fact independent.

The fact that there are 18 relations and only 15 unknowns means that there

is some information left over, and this is ultimately what allows one to test

internally the hypothesis of rigidity.

The rigidity assumption

In our analysis of the use of directional selectivity to infer properties of

the visible surfaces, we saw that lines of discontinuity in motion direction

cannot arise by accident. They have to mean the presence of a boundary

between two incompatibly moving surfaces. In our analysis of the stereop-

sis problem, we saw that the constraints of uniqueness and continuity guar-

antee that a solution exists and is unique, and this theorem formed the

basis for stereo analysis, since it allowed us to formulate and rely upon the

fundamental assumption of stereopsis.

The same is true here. The structure-from-motion theorem, together

with the general truth that most things in the world are locally rigid, allows

us to formulate the fundamental assumption for the recovery of structure

from motion. It was called the rigidity assumption by Ullman (1979a), and

it states: Any set of elements undergoing a two-dimensional transforma-

tion that has a unique interpretation as a rigid body moving in space is

caused by such a body in motion and hence should be interpreted as such.

The structure-from-motion theorem tells us that if a body is rigid, we

can find its three-dimensional structure from three frames (up to a reflec-

tion, because we are dealing with the orthographic projection). If it is not
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rigid, the chances of there being an accidental rigid interpretation are

vanishingly small, so in practice, the method will fail. The method is there-

fore self-verifying, and we know that if we can find a three-dimensional

structure that fits the data, it is unique and correct. The proofofthe theorem

is constructive and enables one to formulate a set of equations whose

solution yields the three-dimensional structure if it exists.

It is easy to implement this scheme, because it requires only four

points as input data and so can be run in parallel independently throughout

the visual field. This makes the scheme a particularly attractive candidate

for understanding how human motion perception works. However, the

particular algorithms suggested by directly applying the methods used in

the proof of the theorem are not biologically plausible. They do not, for

example, satisfy all the guidelines that I set out in Section 3.1—in particular,

the principle of graceful degradation. Simply setting up the equations and

solving them provides an algorithm that is far too rigid. If the data are

inaccurate or if the viewed object is not quite rigid, this method will fail

and give no help.

What is wanted is an algorithm that degrades gracefully in at least two

senses. First, if the data are noisy but more than three views are available,

the algorithm should be able to deliver an account of the structure that is

at first rather rough but which becomes increasingly accurate as more

views and hence more information are presented. And second, if the

viewed object is not quite rigid, the algorithm should be able to produce

the not-quite-rigid structure, perhaps again at the price of needing more

points or more views to work on. Algorithms with this kind of robustness

are being developed at our laboratory.

Until a particular algorithm has been developed as a candidate for the

one actually used by our visual systems, and until the consequent psycho-

physical and neurophysiological experiments have been carried out, we
shall not know for sure whether this approach to motion perception is

appropriate. One thing, however, is certain; we now know what the impor-

tant experimental questions are. Until Ullman took a computational

approach to the problem, we did not know.

A note about the perspective projection

It is thought that algorithms for decoding the perspective, rather than the

orthographic projection, are not part of the human visual system. The
underlying reason is probably that the changes between frames are usually

small already, and the differences between the changes seen by the two

projections are usually very small indeed. The psychophysical evidence is

that receding motion, which gives rise to changes only in the perspective
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and not in the orthographic projection, does not yield a clear perception

of three-dimensional structure in the way that other motions do (Ullman,

1979a). The structure-from-motion scheme is an essentially local one, how-

ever, since it operates off nuclei of only four points. Even the perspective

projection is locally orthographic, so there are no practical difficulties

involved in using orthographic deprojection techniques like Ullman's

scheme even in the real-life perspective case.

Optical Flow

J. J. Gibson has long believed that "the fundamental visual perception is

that of approach to a surface. This percept always has a subjective com-

ponent as well as an objective component, i.e. it specifies the observer's

position, movement, and direction as much as it specifies the location, slant

and shape of the surface" (1950). Sixteen years later he enunciated similar

opinions and illustrated them with Figure 3-55 (1966, fig. 93).

The mathematics of this situation began to be studied quite soon, but

only for special cases or for particular aspects of the general case (Gibson,

Olum, and Rosenblatt, 1955; Lee, 1974; Clocksin, 1978). Nakayama and

Loomis (1974) showed how depth contours may be extracted from a rep-

resentation of the retinal velocity field induced by motion of the observer.

Only recently, however, has a general treatment of the problem appeared

(Longuet-Higgins and Prazdny, 1980).

The optical flow problem, as I shall employ the term, is the use of the

retinal velocity field induced by motion of the observer to infer the three-

dimensional structure of the visible surfaces around him. These visible

surfaces are assumed to be stationary. The principal difference from Ull-

man's approach is that the optical flow effects rely on the polar projection,

whereas the structure-from-motion approach is inherently orthographic.

Thus, the optical flow approach can in principle deal with planar surfaces,

on which the structure-from-motion approach necessarily fails.

The input representation

The information, called optical flow, on which our analysis is to operate

can be thought of as the instantaneous positional velocity field (Gordon,

1965), which associates with each element on the retina the instantaneous

velocity of that element. As usual, these elements are to be thought of as

having some physical meaning.

This information is by no means as simple to acquire as optical flow

devotees sometimes seem to assume. We have already seen in Section 3.4
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Figure 3—55. Gibson's example of flow induced by motion. The arrows represent

angular velocities, which are zero directly ahead and behind. (Reprinted from J. J.

Gibson, The Senses Considered as Perceptual Systems, Houghton Mifflin, Boston,

1966, fig. 9-3. Copyright © 1966 Houghton Mifflin Company. Used by permission.)

that local measurements alone can give little more than the direction of

movement because of the aperture problem. In fact, fully specifying the

optical flow is equivalent to solving the simpler of the two correspondence

problems in apparent motion, since knowing the flow field enables one to

establish the correct correspondences between two frames photographed

in sufficiently rapid succession. Hence if optical flow analysis is carried out

by our visual systems, it must rely on an input of the same sort that feeds

the structure-from-motion computations.

Mathematical results

If an observer is approaching a stationary surface on a linear trajectory, the

point of impact is the singularity in the optical flow field, and the time to
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impact depends only on the angular velocities in the field (Koenderink

and van Doom, 1976). It is doubtful whether these facts are much used by

our visual systems, since Johnston, White, and Cumming (1973) simulated

optical expansion during approach to a surface and showed that human

observers could reliably locate the focus of expansion only immediately

prior to apparent impact with the surface. When teaching a pupil to land

an airplane, a flying instructor will spend some time explaining that the

current estimated landing point is the focus of expansion. This requires

concentration and learning, for it is not a natural reflex. So Gibson's (1958)

hypothesis that the center of optical expansion plays a major role in the

control of locomotion is probably false for humans, although it may be

more relevant to birds.

An authoritative account of the mathematics of optical flow has

appeared only recently (Longuet-Higgins and Prazdny 1980; Prazdny 1979).

It showed that from a monocular view of a rigid, textured, curved surface,

it is possible in principle to determine the gradient of the surface at any

point, the motion of the eye relative to that surface from the velocity field

of the changing retinal image, and the field's first and second spatial deriv-

atives. The relevant equations are redundant, thus providing a test of the

rigidity assumption.

There is an interesting contrast between this result and Ullman's struc-

ture-from-motion theorem. In Ullman's scheme, four points are sufficient

provided that the observer waits long enough to obtain at least three dis-

tinct views of them. Longuet-Higgins and Prazdny 's scheme makes a slightly

different trade-off; only two frames are required, so the time needed to

acquire the measurements can be shorter. (Two frames suffice here

because shape recovery is based on the perspective, not orthographic pro-

jection.) On the other hand, the local spatial neighborhoods involved in

the computation are not just points, as in Ullman's scheme; they have to be

large enough to give reliable estimates of the first and second spatial

derivatives of the velocity field.

This analysis is another example of how computational theory can

help empirical investigation. By solving the mathematics of the problem—

and this was surely long overdue—Longuet-Higgins and Prazdny have pro-

vided a framework within which to inquire whether we humans actually

do make use of optical flow, as Gibson suggested, and if we do, how. It is

already clear that there are some ways in which we might have made use

of it but actually do not. Attributing importance to the focus of expansion

of retinal flow is one thing we could do but apparently do not. Another

example is Ullman's conveyor belt demonstration, illustrated in Figure

3_54. we do not see regions 1 and 3 as having a different geometry from

region 3, whereas most optical flow theories would say that we should.
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Nevertheless, we could still use optical flow in some form, perhaps

only weakly and more in peripheral than in central vision. That is, after all,

where we might expect precision of measurement to be too low for a

system based on Ullman's structure-from-motion scheme, yet it is also

where we would expect to find the most evident optical flow It remains to

be seen whether optical flow is used in human vision.

3.6 SHAPE CONTOURS

As we discussed in Chapter 2, when we inquired into the physical basis for

the primal sketch, there are four basic ways in which contours can arise in

an image. They are (1) discontinuities in distance from the viewer, (2)

discontinuities in surface orientation, (3) changes in surface reflectance,

and (4) illumination effects like shadows, light sources, and highlights.

Earlier in this chapter, we saw how different aspects of the primal sketch

can be used as the input representation for processes based on stereopsis

or on motion that are capable of finding boundaries from the differences

between two or more images of a scene. We turn now to the more difficult

case of a single, monocular image and ask how its contours can convey

unambiguous information about shape. The mystery that needs explaining

is that contours in an image are two-dimensional, yet we often see them in

three dimensions. The question is how and why we make this three-dimen-

sional interpretation.

I call the contours that we shall examine shape contours, because they

are all two-dimensional contours that yield information about three-dimen-

sional shape. I shall not discuss at all how to find them in an image—we
spent long enough on that task in Chapter 2. Nevertheless, it is worth
pointing out that although the physical origins of contours can be divided

into the four categories mentioned, these origins give rise to a wide range

of detectable changes in the image and hence a wide variety of ways in

which a particular type of contour may be defined in the image.

For example, consider the possible effects of a discontinuity in depth.

This can cause a simple intensity change—in fact, since our visual systems

incorporate a predisposition for seeing brighter things as nearer, we would
expect this brightness versus depth relation to be generally true of the

visual world. If the surface characteristics are the same on both sides of a

depth change, then a density- or size-induced texture boundary will be
formed. If the two surfaces are not the same object, their textures will

usually be very different and so many criteria will yield the boundary.

If the discontinuity is a change in surface orientation, intensity is likely
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to change and so is any density measure that the surface reflectance func-

tion may happen to support. Any clear orientation organization on the

surface will also probably be shifted, and perhaps also some length mea-

sures.

If the surface reflectance is organized in any of a number of ways

—

for example, if it contains parallel lines—then it can convey valuable shape

information to the viewer. And so forth.

The main point, then, is that contours can be defined on a surface in

many ways, and they should be detected in the initial analysis and repre-

sentation of the image. Some of these contours are more likely to have

been caused by one kind of change than another—a discontinuity in ori-

entation, for example, is more likely to be due to a change in surface

orientation than to a change in depth—but the rules are not hard and fast.

The important fact is that very many such contours can and do tell us about

three-dimensional shape, and when one reflects upon it, this is actually

quite an amazing fact. Such shape contours form the focus of our interest

in this section.

Some Examples

The power and vividness with which contours can depict shape is not in

doubt. Figure 3-56 shows some examples, and I think the reader will agree

that for sheer three-dimensional realism, Figures 3-56(b) and (c) approach

the effects achieved by means of stereopsis or motion. Very much more in

doubt than in these other cases is precisely how these examples create this

realism. Contours in an image can arise from several distinct physical

causes. Some, as in Figure 3-56(a), are occluding contours—contours that

arise at a discontinuity in depth, here at the edge of the viewed objects.

Other contours arise from changes in surface orientation, texture bound-

aries, changes in reflectance and pigmentation, or from shadows falling on

a surface. Most vivid and puzzling are the contours in Figures 3-56(b) and

3-56(c). To what do these correspond in nature? After all, we rarely come

upon objects created by deforming a rectangular wire grid, as in Figure

3_56(b). Why then are we so good at seeing the shape of the wire room

depicted there? Is it the same reason why we can see Figure 3-56(c) so

well? Is there just one basic trick involved here or the happy coincidence

of several that conspire and are jointly responsible for the vividness of the

percept?

These, then, are the questions that we shall be studying here. Unfor-

tunately, because we do not yet know whether one phenomenon or several

are operating in cases like Figures 3-56(b) and (c), we are not in so strong
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'^y^tisj
(a)

(b)

Figure 3-56. Examples of two-dimensional contours in an image that impart three-dimensional
information to the viewer, (a) Rites of Spring by Picasso, an example of shape information from
silhouettes, (b) A "wire room." (c) A portrayal of the curve sin x (b) and (c) are especially vivid.

(Part (a) Copyright © SPADEM, Paris/VAGA, New York 1981. Part (b) courtesy of the Carpenter
Center for the Visual Arts, Harvard University.)
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a position as we were with stereopsis and motion. Psychophysics has not

yet told us what the modules are, so we are still stuck in something of the

linguist's predicament of not yet having a clear decomposition of language

into relatively independent modules.

Nevertheless, some progress has been made. It is convenient to divide

our discussion into three categories: (1) contours that occur at discontin-

uities in the distance of the surface from the viewer (occluding contours),

(2) contours that follow discontinuities in surface orientation, and (3) con-

tours that lie physically on the surface. This third type of contour can be

due to surface markings or to shadow lines, for example. The important

point is that they lie along the surface, and therefore I call them surface

contours. Remember that contours in each category can be detected in

several ways in an image. In all cases, our principal question is, Why and

how can such contours in a single two-dimensional image convey to us

unambiguous and often quite detailed information about three-dimen-

sional shape?

Occluding Contours

An occluding contour is simply a contour that marks a discontinuity in

depth, and it usually corresponds to the silhouette of an object as seen in

two-dimensional projection. I became interested in occluding contours

from the observation—which is almost a paradox—that when we look at

the silhouettes in Picasso's Rites of Spring (reproduced here in Figure

3-56a), we perceive them in terms of very particular three-dimensional

shapes,' some familiar, some less so. This is quite remarkable, because the

silhouettes could, in theory, have been generated by an infinite variety of

three-dimensional shapes, which, from other viewpoints, would have no

discernible similarities to the shapes that we perceive. It takes only a little

imagination and moderate mischief to concoct a quite bizarre three-dimen-

sional shape to demonstrate this point. We might, for example, arrange

spikes and protuberances in a highly baroque style that happen to combine

unexpectedly to produce the silhouette of a man or a goat when viewed

from one special direction.

Yet we never think of such things when we are faced with these sil-

houettes. One can perhaps attribute part of the phenomenon to a familiarity

with the depicted shapes, but not all of it, because we can use a silhouette

to convey an unfamiliar shape, and because even with considerable effort

it is difficult to imagine the more bizarre three-dimensional surfaces that

could have given rise to the silhouettes in Picasso's painting. The paradox,
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then, is that the bounding contours in Rites of Spring apparently tell us

more than they should about the shapes of the figures. For example, neigh-

boring points on the bounding contours here could arise from widely

separated points on the original surface, but our perceptual interpretation

usually ignores this possibility.

This situation is so reminiscent of ignoring the many possible snow-

storm interpretations of random-dot stereograms or the two-cylinder, ran-

dom-dot moviegrams that one is almost forced to draw the obvious con-

clusion: Somewhere buried in the perceptual machinery that can interpret

silhouettes as three-dimensional shapes, there must lie some source of

additional information that constrains us to see the silhouettes as we do.

Probably, but perhaps slightly less certainly than in the analyses of motion

and stereopsis, these constraints are general rather than particular and do

not require a priori knowledge of the viewed shapes.

If these constraints are general, then there must be some a priori

assumptions in the way we interpret silhouettes that allow us to infer a

shape from an outline. These assumptions must pertain to the nature of

the viewed shape. Moreover, if a surface violates these implicit assumptions,

then we should see it wrongly. Our perceptions should deceive us in the

sense that the shape we assign to the contours will differ from the shape

that actually caused them. One common instance is the shadowgraph,

where the appropriate arrangement of the hands can, to the surprise and

delight of a child, produce the shadow of an objectively quite different

three-dimensional shape, like a duck, rabbit, or ostrich.

Constraining assumptions

The question we have to ask is, What assumptions are reasonable to make

—

that we unconsciously employ—when we interpret silhouettes like those

of Figure 3-56(a) or Figure 3-57(b) as three-dimensional shapes?

Three seem to be important (Marr, 1977a). The first is that each line

of sightfrom the viewer to the object should graze the objects surface at

exactly one point. In other words, each point on the silhouette (Figure

3-57b) should correspond to one point on the viewed surface (Figure

3-57a). The reason for assuming this is that even if this correspondence

did not exist, we could not possibly tell that it did not, and it would usually

happen only as a result of an accidental alignment of two parts of the object

along the line of sight.

This assumption allows us to speak of a particular curve on the object's

surface called the contourgenerator, illustrated in Figure 3-57(d). It is the

set of points on the surface that projects to the boundary of the silhouette

in the image, and I shall use the letter T to denote it.
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(a) (b) (c)

(d) (e)

Figure 3-57. Four structures of importance in studying the a priori conditions that we bring to

bear on the analysis of an occluding contour, (a) A three-dimensional surface, 2. (b) Its silhouette

Sv as seen from viewpoint V. (c) The contour Cv of5^ (d) The set of points Tv that project onto the

contour, (e) A condition for the theorem discussed in the text. In particular, the meaning of "all

distant viewing positions in any one plane" is shown.

The second assumption says that, except possibly in a very few

instances, points that appear to be close together in the image actually are

close together on the object's surface. The illustration in Figure 3-58(a)

helps to explain this assumption. Think of a and b as being two hills, with

the contour generators that give rise to a and b following the skyline on

the top of each hill. If the dashed portion of b happens to be invisible, then

at point P the visible contour generator leaps from one hill to the next

—

it is discontinuous. The sharp concavity at P, in fact, hints of this disconti-

nuity, and so we half expect it. In the body of a and b, however, we do not

expect it to happen, and in fact we assume it does not. This is our second

assumption, and it says that nearby points on the contour in an image

arisefrom nearby points on the contour generator on the viewed object.

The last assumption is a little more sophisticated, for it pertains to the
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(a)

31
(c) (d)

Figure 3-58. (a) The second assumption, that nearby points on a contour arise

from nearby points on the contour generator, essentially says that there are no

points like P on the contour. If the dotted portion of b were invisible, the contour

generator would leap from a to b, causing a discontinuity at P. (b) A typical piece

of contour. The only features we can hope to make use of are its convexities and

concavities, that is, its points of inflection, and these must be properties of the

surface and not of the imaging process. For example, if a viewer is close to a snake

(c), the convexities and concavities in the image (d) arise not because of properties

of the snake, but because of variations in its distance away, (e) If the occluding

contour shown with thick lines is present on its own, one perceives a hexagon. The

interior lines change it into a cube, since they suggest that the occluding contour

is not planar.

type of clue that an image contour might give about shape. Suppose, for

example, that we have been presented with a piece of contour like that

shown in Figure 3-58(b). The previous two assumptions allow us to think

of this contour as coming from a contour generator on the surface, and we
can safely assume that adjacent points on the contour come from adjacent

points on the contour generator. Because the imaging process is what it is,

we cannot rely on any measurements that we make on the contour in the

image, and so the only remaining straightforward feature is that sometimes

the contour bends one way and sometimes the other. In other words, there

is a qualitative distinction between convex and concave segments, which,

provided that the surface is sufficiently smooth, rests in turn on the notion

of an inflection point. In general, of course, points of inflection in a contour

need have no significance for the surface. The contour generator could
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weave around in an arbitrary and complex way, or it could move directly

toward and then away from the viewer. The latter case might, under the

perspective projection, give rise to convexities and concavities rather in

the way illustrated by Figures 3-58(c) and (d). So our next question has

to be, How exactly should we formulate an assumption saying that points

of inflection in a contour are significant, that they somehow reflect real

properties of the viewed surface and not artifacts of the imaging process?

Our previous two assumptions allow us to think of the contour gen-

erator as a piece of wire bent in three-dimensional space. If inflection

points on the contour are to reflect genuine inflections on this piece of

wire, however, two mathematical conditions must be satisfied:

1. The transformation due to the imaging process that produces the

contour from the wire must be linear. This rules out the perspective trans-

formation and restricts the validity of our theory to distant views—the

object must be small relative to its distance from the viewer.

2. The curve on which the transformation acts must lie in a plane. In

other words, the convex-concave distinction in the image can be mean-

ingful only for distant views and only if the bent wire that is the contour

generator lies in a plane. This gives us our third assumption, that the con-

tour generator isplanar.

This third assumption is a strong one that sharply delimits the class of

surfaces whose shapes can be interpreted by silhouette. However, it seems

unavoidable ifwe wish to distinguish convex and concave segments in the

interpretation process. Fortunately, however, the results of using this

assumption are very robust—if the contour generator is not quite planar

but nearly so, then the surfaces are usually only a little misbehaved. And

interestingly, the planar condition is actually embodied in much modern

design. All of the outlines drawn in mechanical engineering diagrams sat-

isfy the condition, so it has its uses even outside the study of vision. If the

condition is violated, we do seem to get the shape wrong. The occluding

contour in Figure 3-58(e), for example, is marked with thick lines and, if

shown on its own, gives the appearance of a two-dimensional hexagon.

With the additional information provided by the interior lines, however, it

takes on a quite different interpretation. As a cube, the occluding contour

is no longer planar.

Implications of the assumptions

In order to see what these assumptions really mean, we have to understand

how they constrain the geometry of the surfaces being viewed. Clearly,
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some surfaces will satisfy the assumptions and some will not. What about

a surface makes it satisfy them? To answer this question we should refor-

mulate our assumptions as restrictions on the geometry of the viewed
surface and then see what their consequences are. To remind ourselves of

these restrictions, I restate them here:

1. Each point on the contour generator projects to a different point

on the contour.

2. Nearby points on the contour arise from nearby points on the

contour generator.

3. The contour generator lies wholly in a single plane.

We need one more idea before we can formulate the critical result—the

idea of a generalized cone. This idea was introduced by T O. Binford

(1971) as a way of representing shapes in a computer program, and it is

illustrated in Figure 3-59. A generalized cone is the surface created by
moving a cross section along an axis. The cross section may vary smoothly

in size, getting fatter or thinner, but its shape remains the same. Thus a

football is a generalized cone and so is a pyramid or, roughly, a leg or an

arm, or a snake, or a tree trunk, or a stalagmite. In fact, we can think of a

horse as being composed of eight generalized cones, one for each leg and
one each for the head, neck, body, and tail.

We are now ready for the basic result, and I hope the reader finds it

as surprising as I did:

If the surface is smooth (for our purposes, if it is twice differentiable

with a continuous second derivative) and if restrictions 1 through 3 hold

for all distant viewingpositions in any oneplane, as illustrated in Figure

3-57(e), then the viewed surface is a generalized cone. The converse is

also true; if the surface is a generalized cone, then restrictions 1 through

3 will be observed.

This means that if the convexities and concavities of a bounding con-

tour in an image are actual properties of a surface, then that surface is a

generalized cone or is composed of several such cones. In brief, the theo-

rem says that a natural link exists between generalized cones and the

imaging process itself. The combination of these two must mean, I think,

that generalized cones will play an intimate role in the development of

vision theory.

Stated baldly, this result means that, in general, shape cannot be
derived from occluding contours alone unless that shape is made from
generalized cones and is viewed from a position from where its axis is not
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Figure 3-59. The definition of a generalized cone. As used in this book, the term

generalized cone refers to the surface created by moving a cross section along a

given smooth axis. The cross section may vary smoothly in size, but its shape

remains constant. We here show several examples. In each, the cross section is

shown at several positions along the trajectory that spins out the construction.

foreshortened (foreshortening would occur in Figure 3-57(e) if the van-

tage point was from above or below). If there is no foreshortening, how-

ever, and even if the viewed shape is constructed of several different gen-

eralized cones like the silhouette of a man or of a horse, then the shape

can be at least partially reconstructed. Perhaps the most important thing,

as we shall see later in the book, is that the axes of the cones can be

recovered from the image, because this helps to establish an object-cen-

tered coordinate system in the viewed shape. I shall say more about this

in Chapter 5 and will briefly illustrate an algorithm for decomposing sil-

houettes into their constituent generalized cones. (See Marr, 1977a, for the

theorems behind the algorithm.)

For now, however, it is enough to note that the use of occluding con-

tours requires the three restrictions that we formulated, and they hold if

and only if the viewed shapes are generalized cones. The principal impli-
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cation of these restrictions is that the surface goes in and out where the

contour goes in and out. Not much more can be said from the occluding
contours alone.

Surface Orientation Discontinuities

Surface orientation contours mark the loci of discontinuities in surface

orientation. For example, they follow the creases on a surface, like the

interior lines of Figure 3-58(e) or the longitudinal peaks and troughs of
Figure 3-60. With regard to recovering the geometry of the surface, the

most important question about such a contour is whether it corresponds
to a convexity or a concavity on the surface. In Figure 3-58(e), all the

interior contours represent convexities, whereas in Figure 3-60 convexi-

ties and concavities alternate, sometimes in an interestingly confusing way
Unfortunately, it is often difficult to distinguish convexities and con-

cavities from purely local cues in a monocular image. We have a predis-

position to see such contours as convex (see Figure 3-6lb), but even
examples that are loaded one way can be made to alternate (compare
Figures 3-6la and c).

There are certain things to be said about combinations of such con-
tours—for example, Waltz-like (1975) constraints, of the form illustrated

in Figure 1-3, apply which specify that one cannot have two concave and

Figure 3-60. A sketch of a generalized cone showing its silhouette (the circum-
scribing contour) and fluting (the contours spanning its length). The fluting marks
lines of discontinuity in surface orientation.
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(a) (b)

Figure 3-61. More examples of the

portrayal of discontinuities in surface

orientation.

(c)

one convex contour meeting at a point. However, these are not properties

purely of the isolated contours, and I shall discuss that class of more com-

plicated phenomena in Chapter 4. The only knowledge currently available

for helping to distinguish isolated convex and concave contours is due to

Horn (1977). He showed that, at least for the visual world of matte white

prisms, the intensity profiles across different types of edge are character-

istically different. If the intensity profile across the edge is a step change

or very sharp peak, the edge is probably convex. If the intensity profile is

roof shaped, the edge is probably concave. However, there is no evidence

yet that the human visual system uses these cues in classifying edges.

Surface Contours

Surface contours arise for various reasons in the image of smooth surfaces,

and they yield information about the three-dimensional shape of the sur-

face, in the manner illustrated by Figure 3-62. The question of interest, of

course, is how this is done, and it has recently been explored in some

detail by Stevens (1979). The underlying observation is that we do not
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Figure 3-62. The undulating surface is suggested by a family of sinusoids. The

curves are naturally interpreted as surface contours, that is, the images of markings

on a physical surface. What constraints can be brought to bear in making this three-

dimensional interpretation? (Reprinted by permission from K. Stevens, "Surface

perception from local analysis of texture and contour," Ph.D. thesis, Department

of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-

nology, 1979.)

perceive Figure 3-62 as purely two-dimensional; there is no doubt that

what we see is a smooth, undulating surface. As we have seen many times

now, this means that we are bringing some a priori assumptions to bear

on our analysis of such images.

Once again, the fundamental computational questions are What are

these assumptions, Why do we use them, and How do they enable us to

recover three-dimensional surface orientation information from a single

two-dimensional image? In this discussion of Stevens' work, I shall maintain

the distinction between an image contour and its corresponding contour

generator on the surface, which we met first in our analysis of occluding

contours, illustrated in Figure 3-57. The difference here is that the contour

generators are no longer restricted to just the silhouette boundaries of an

object but may arise within the silhouette because of internal surface mark-

ings or various kinds of illumination effects. For example, the contours of

Figure 3-62, are naturally interpreted as the image of markings on the

surface, and we shall call these markings the contour generators of the

image contours. These contours may, of course, be quite abstract objects,

perhaps created by rows of dots, but we take the machinery and represen-
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Figure 3-63. The curves in (a) are interpreted as occluding contours, and the

underlying surface is seen as a generalized cone—in this case, a vaselike object.

Such contours were studied in Section 3.5 and are further considered in this dis-

cussion. Those in (b) are interpreted as surface contours, and the surface appears

like a gently curved flag or ruled sheet of paper. (Reprinted by permission from K.

Stevens, "Surface perception from local analysis of texture and contour," Ph.D.

thesis, Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, 1979.)

tation abilities of the full primal sketch for granted here. We shall call such

contours surface contours. Note that occluding contours are almost never

surface contours (see Figure 3-63).

The puzzle and difficulty ofsurface contours

What makes the issue of surface contours so extremely difficult to analyze

satisfactorily is that there is no obvious physical source of surface contour

regularity that our perceptual machinery can use to such advantage. The

world really seems to have less structure than diagrams like Figure 3-62,

and I remain deeply puzzled about why we can interpret such figures so

vividly.

Stevens (1979), in a useful first approach to these issues, divided the

problem into two halves; inferring the shape of the contour generator in

three-dimensional space and then determining how the surface itself lies

in relation to the contour generator. The first step is that of discovering the
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Figure 3-64. This curve appears to have a specific three-dimensional shape, as if

planar and foreshortened by the slant of the plane relative to the viewer. Why and

how is this interpretation derived? (Reprinted by permission from K Stevens, "Sur-

face perception from local analysis of texture and contour," Ph.D. thesis, Depart-

ment of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, 1979.)

shape of a piece of wire bent in three-dimensional space so that it lies

along the contour generator and has the correct appearance in the image.

The second step can then be thought of as gluing a ribbon along the wire

so that it follows faithfully the strip of surface that lies directly under the

contour generator.

Determining the shape of the contour generator

When we observe a single contour, the curve appears to have a specific

three-dimensional shape and to lie in a plane. The impression gained from

Figure 3-64, for example, is of a planar curve whose plane has a definite,

if somewhat weakly specified, slant and tilt. The assumption that the con-

tour generator is planar greatly simplifies the problem, but it is difficult to

be confident of such an assumption, although shadow boundaries cast by

straight edges and certain types of surface reflectance organizations will

often produce planar contour generators on a surface.

There are other assumptions that one might make. Stevens (1979)

pointed out that much can be done if symmetry, even of only a rough or
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skewed kind, is detected in the figure (see also Marr, 1977a). Witkin (1978)

suggested that it is sometimes useful to assume that the real-life contour

generator has the minimum possible curvature, the visible curvature of the

image contour being derived in part from the imaging process. But these

ideas are still ad hoc and disorganized.

The effects ofmore than one contour

The weakness of our perception of single contours like that of Figure 3-64

is probably related to the unsatisfactory lack of any realistic interpretive

assumptions that one might bring to bear upon such perceptions. If there

are several contours, however, the vividness of our perception is much

enhanced, as in Figure 3-62. Except in very rare and accidental situations,

if surface contours are parallel in the image, their contour generators are

parallel on the surface.

That the contour generators are parallel so that one can be shifted

across the surface onto its neighbor, leads to quite a powerful idea about

how to recover surface orientation from surface contours. Parallel contour

generators essentially mean that we can locally ignore the curvature of the

surface in the direction of the shift. Technically, the surface is then devel-

Figure 3-65. The wavy lines represent visible contours in the image, and the

straight lines, which have zero curvature, make explicit the parallel relationships

between adjacent wavy lines. Such a surface is locally a cylinder, because one of its

curvatures (and hence its Gaussian curvature) is zero. (Reprinted by permission

from K. Stevens, "Surface perception from local analysis of texture and contour,"

Ph.D. thesis, Department of Electrical Engineering and Computer Science, Mas-

sachusetts Institute of Technology, 1979)
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opable. This means that the surface can be thought of locally as a cylinder,

which is a surface with two principal curvatures, one of which is zero

—

the surface is flat in that direction.

The idea is illustrated by Figures 3-65 to 3-67. Figure 3-65 shows a

surface in which two types of contours are visible—the wavy ones, which

are the family of parallel contour generators that we suppose are in fact

present in the image, and the orthogonal set of straight lines, which have

zero curvature and represent the correspondence between the locally par-

(a)

(b)

Figure 3—66. Usually, of course, the correspondences between adjacent parallel

surface contours will not be explicit in the image, as they were in Figure 3-65.

However, the correspondence can be found, even in the less straightforward cases.

For example, if the surface contours are straight for a portion of their length, as in

(a), the tangent to a point P on one contour may be parallel to various tangents on
the adjacent contour; however, only one choice would result in a correspondence

line that is parallel to the other correspondence lines between curved portions of

adjacent contours, as in (b). (Reprinted by permission from K. Stevens, "Surface

perception from local analysis of texture and contour," Ph.D. thesis, Department

of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-

nology, 1979.)
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Figure 3-67. Although, strictly speaking, the assumptions and techniques illus-

trated in Figures 3-65 and 3-66 require that the surface be cylindrical, in practice

they can be used assuming that they hold only locally, since the parallel corre-

spondence need be established only between adjacent contours. Hence the local

cylinder restriction allows us to interpret surfaces whose global structure is not

cylindrical. (Reprinted by permission from K. Stevens, "Surface perception from

local analysis of texture and contour," Ph.D. thesis, Department of Electrical Engi-

neering and Computer Science, Massachusetts Institute of Technology, 1979.)

allel contour generators. In identifying the correspondence with straight

lines, we are assuming that the surface is locally of a peculiarly simple sort,

with one of its curvatures being zero. Once both the wavy lines and the

correspondence lines are available, surface orientation is quite well con-

strained, because we know that in three dimensions these two types of

lines are perpendicular.

Usually, of course, the correspondence contours will not be visible in

the image, but Figure 3-66 illustrates how they may be recovered, even in

apparently ambiguous situations (some details are given in the legend).

Finally, one can extend the idea to quite general surfaces, as explained by

Figure 3-67, because the fundamental assumption on which the interpre-

tation is based must hold only locally—in this case, between adjacent sur-

face contours. Figure 3-67 shows an example of how this basic require-

ment—that one of the curvatures vanishes—holds only locally and

approximately. The structure of the surface depicted there can be

recovered by using methods based on these ideas, even though globally

it is certainly not a developable surface.

Stevens pointed out one other interesting fact, namely, that if a high-

light appears along a continuous curve on a surface, then the curve is planar



3- 7 Surface Texture 233

(assuming that the light source and vantage points are distant from the

surface). This contour is like one of our correspondence contours, along

which one of the principal curvatures of the surface is zero. In this case

the surface normal coincides with the normal to the plane containing the

gloss contour, just as in Figure 3-65 the surface normal lies perpendicular

to both the straight (correspondence) and wavy lines. So the conditions

that Stevens suggested for the recovery of surface orientation from surface

contours do actually occur in real life.

In summary, then, the recovery of surface orientation from surface

contours remains an intriguing and unsolved problem. On the other hand,

Stevens' main suggestions—the planarity of the contour generator and of

the locally developable assumption—seem to be powerful ingredients for

achieving the recovery, and I shall be surprised if they are not used by us

in practice in some form.

3.7 SURFACE TEXTURE

The notion that surface texture may provide important information about

the geometry of visible surfaces has attracted considerable attention in the

last 30 years. Perhaps the main impetus for this interest was the hypothesis

formulated by Gibson (1950), which states that texture is a mathematically

and psychologically sufficient stimulus for surface perception. By this he

meant that there is sufficient information in the monocular image of a

textured surface to specify uniquely the distance to points on the surface

and to specify the local surface orientation. Furthermore, he claimed that

the human visual system can and does use this information to derive such

surface information.

In an ideal world, where the surfaces are smooth and regularly and
clearly marked and exhibit sufficient density of detail so that gradients in

an image can be measured quite precisely, Gibson s claim would have much
to recommend it. Unfortunately, however, the world is a much rougher

place, in which uniformity and regularity are the exception or only an

approximation rather than the rule, so my own view is that we should be
surprised when something can be done rather than when it cannot. In

addition, as Stevens (1979) has pointed out, much of the rather simple

mathematics associated with these questions has had a somewhat flawed

presentation in the past. We shall therefore be wise to take a critical and
skeptical attitude to the supposed power of texture perception except when
it can be demonstrated beyond doubt that the human visual system is

using it.
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The Isolation of Texture Elements

The first problem, and one that has hardly been addressed at all, is how to

extract from an image the uniform texture elements on which subsequent

analysis must rest. A full answer to this would include a complete under-

standing of the full primal sketch and of the selection by similarity, whose

business it is to classify items by origin and whose importance we have

already encountered (for example, Figure 2-3). Let us, however, take this

for granted, and assume that the world's surfaces are covered with regular

and sufficient markings, and that we are capable of discovering them from

our early representations of the image.

Surfaceparameters

As we have already seen several times, there are two ways in which a surface

may be specified relative to the viewer: We can either specify the distance

to local pieces of it, or we can specify the surface orientation relative to

the viewer. Surface orientation itself is naturally split into two components,

which we have called slant and tilt. Slant is the angle by which the surface

dips away from the frontal plane, and tilt is the direction in which the dip

takes place.

Mathematically, of course, distance and surface orientation are almost

equivalent, being related by an integration (see Chapter 4). For the nervous

system, the question is a quite different one—Which of these quantities,

distance, slant, or tilt, is actually extracted directly from measurements of

variations in texture? In his recent study of this question, Stevens (1979)

concluded as follows:

1. Tilt is probably extracted explicitly.

2. Probably distance is also extracted explicitly

3. Slant is probably inferred by differentiating estimates of scaled dis-

tance made in accordance with point 2.

4. In particular, measurements of texture gradients, which are closely

associated mathematically with slant, are probably not made or used, per-

haps because of the inaccuracies inherent in the measuring process.

We look now at the reasons for his conclusions.

Possible measurements

Stevens observes that even very different looking textures pose the same

computational problems, and that one must be careful not to postulate

more mechanisms than the problems require. Figure 3-68 shows an
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Figure 3-68. These two types of texture, although they look very different, in fact pose the same
computational problem. In (a), the ellipses vary in width, eccentricity, and density exactly as if they

were produced by the perspective projection of equal-sized circles lying in a plane that slants away
from the viewer. A number of measurements could be made from such an image and used to help

determine the geometry of the plane, and a large part of our discussion will concern which of these

measurements are likely to be used. In (b), the converging lines suggest a slanted surface ruled

with parallel, equally spaced straight lines. Although it has been suggested that different processes

are required to interpret (b) than are required for (a), this is not necessarily true, since measure-
ments of spacing, separation, and so forth can be made in both. In fact, the apparent superiority of

the converging contours in (b) over the more random textures of (a) could be due solely to the

greater precision in image measurements that is allowed by patterns like (b). There is no a priori

computational reason to invoke separate mechanisms.

example of this; although the two patterns look very different, similar mea-
surements of spacing and size can be made in both. Our first question is,

Which of the many possible measurements are in fact yielding the percep-

tual clues that give us the impression of a slanted surface? In Figure 3-68(a)
are they the sizes of the ellipses, their distances apart, their density, or their

density gradients?

In Figure 3-69, all the information that appeared in Figure 3-68(a)
except the density gradient has been removed, and three types of tokens

have been used to mark the positions of the ellipses. In all cases, although

the density gradients are plainly visible and their directions clearly delin-

eated, there is little or no impression of slant.

Surface tilt, on the other hand, does seem to be obtained quite directly

from an image, although it is worth noting that it can be done in two ways
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(a) (b)

(c)

Figure 3-69. One of the possible measurements for inferring surface slant in Figure 3-68(a) is

the gradient of the density of the ellipses. Texture gradient measures, in fact, have several mathe-

matically attractive properties. In this figure, however, the exact gradient present in Figure 3-68(a)

has been reproduced using three different types of local texture element. In every case the density

gradient is obvious, but the impression of a slanted surface is absent, even under the best viewing

conditions. An impression of slant can sometimes be obtained using very high density gradients,

but the values involved are not physically plausible. Examples like these call into question the

matter of whether our own visual systems actually use texture gradient measures to infer the slant

of a textured surface. (Reprinted by permission from K. Stevens, "Surface perception from local

analysis of texture and contour," Ph.D. thesis, Department of Electrical Engineering and Computer

Science, Massachusetts Institute of Technology, 1979.)
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Figure 3-70. The tilt of a surface is the direction in which it is slanted away from

the viewer. If the surface bears a uniform texture, the projection of the axis of tilt

in the image indicates the direction in which the local density of the texture varies

most, or equivalently it is perpendicular to the direction in which the texture

elements are most uniformly distributed. Either technique can be used to recover

the tilt axis, as illustrated in this figure. Interestingly, however, the tilt axis in situ-

ations like (b) can probably be recovered most accurately by using the second

method, that is, searching for the line that is intersected by the perspective lines at

equal intervals. This method is illustrated in (c). (Reprinted by permission from K.

Stevens, "Surface perception from local analysis of texture and contour," Ph.D.

thesis, Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, 1979.)

(see Figure 3-70). We can detect either the direction in which the local

density of the texture varies most or, equivalently, the line perpendicular

to the direction in which the texture is most uniformly distributed. Interest-

ingly, in cases like Figure 3-70(b), the second method probably provides

the more accurate measurement. It is necessary only to search for the

direction shown along line / in Figure 3-70(c), which the lines of per-

spective intersect at equal intervals. It is also known that the human visual

system can detect equal intervals to within only a few percent.
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Estimating scaled distance directly

Stevens' final demonstration appears in Figure 3-71, and it provides his

reason for believing that we directly measure the size of the texture ele-

ment from which we infer distance and then obtain an internal estimate of

slant by a process akin to differentiation (see Chapter 4).

When viewed as a lighted display in a darkened room, Figure 3-71(a)

gives the appearance of a slanted plane scattered with uniform-sized

spheres. One possibility is that a texture gradient measure is being used

to infer slant—for example, the gradient in the width of the circles. Figure

3-71 (b), however, also appears strikingly three-dimensional under the

same viewing conditions, yet there is no gradient here. The larger circles

appear to be nearby, and the smaller ones further away. Both cases are

explained by assuming that the circles correspond to uniform-sized

spheres and that the different sizes in the image arise because of their

different distances away, according to the simple geometrical rule that mea-

sured diameter varies as 1/r. Therefore, the human visual system may not

measure slant directly, preferring instead to estimate relative depth from

size and perhaps brightness changes and then to infer slant from this.
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Figure 3-71. Are texture gradients used in texture vision? The visible gradient in (a) might be

responsible for the apparent slant, but under suitable viewing conditions (b) appears just as three-

dimensional. It could therefore be that the size or brightness of the circles is actually being used

to determine slant. (Reprinted by permission from K. Stevens, "Surface perception from local

analysis of texture and contour," Ph.D. thesis, Department of Electrical Engineering and Computer

Science, Massachusetts Institute of Technology, 1979)

L
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Summary

The analysis of texture is another topic that lies in a somewhat unsatisfac-

tory state. The mathematics is easy, but the psychophysics is not, nor is it

at all obvious to what extent the vagaries of the natural world allow the

visual system to make use of the possible mathematical relations. In addi-

tion, unhappily little is yet known about the later stages of the full primal

sketch, where the basic texture elements are actually found. Once more is

known of this matter, however, empirical studies can be conducted on a

variety of natural images. Probably only then shall we ever actually under-

stand why the human visual system handles texture information in the

rather peculiar and limited way in which it appears to operate.

3.8 SHADING AND PHOTOMETRIC STEREO

The importance of makeup in the theater, and the widespread use of

makeup in everyday life suggest that the human visual system incorporates

some processes for inferring shape from shading. It seems likely, however,

that the power of these processes is only slight, perhaps deriving from the

combination of shading cues and information from occluding contours.

On its own, shading acts as only a weak determiner of shape, and one of

the most interesting problems in the theory of human early vision, along

with color, is exactly what and how much information we are able to

recover from shading.

From a purely theoretical point of view, the shape-from-shading prob-

lem was one of the very first to receive a careful analysis, and in his doctoral

thesis (summarized as Horn, 1975), B. K. P. Horn showed how the differ-

ential equations relating image intensity to surface orientation could be

solved provided that the illumination was simple and the surface reflec-

tance known and uniform.

Since then Horn (1977) has reformulated his work in terms of the

gradient space, which makes it much simpler to understand. The main use

of his work has been in the development of methods for analyzing hill

shading. Suppose, for example, one knows the terrain in a part of the Swiss

Alps; the question is, How would it appear at 10 am on a sunny summer's

day? Or at 4 pm? Figure 3-72 shows that Horn's methods can answer these

questions. By comparing the predicted image with an actual satellite pho-

tograph one is able to extract information about the reflectance properties

of the land surface without being confused by the shading due to the

particular terrain and illumination characteristics.

A mathematical understanding of the shape-from-shading problem is
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(b)

Figure 3-72. Comparison of the predicted and actual appearance of a portion of the Swiss Alps,

(a) Computed by Horn's methods from a knowledge of the terrain map and the reflectance map

for that time of day. (b) is a photograph taken from a LANDSAT satellite.

probably a prerequisite for any serious study of the human capacity for

recovering shape from shading, so I have outlined the important ideas

here. The interested reader should consult Horn (1977) for more details,

as my account will not be very technical.

Gradient Space

The first thing necessary when discussing shape from shading is a sensible

way of talking about surface orientation. For this, we borrow the represen-

tation popularized in a slightly different context by Huffman (1971) and

Mackworth (1973).

Suppose we have a surface of some kind, as illustrated in Figure

3-73(a). Provided the surface is smooth, a given point on the surface will

have a local tangent plane—that is, there will be a plane that is locally

tangential to the surface at that point—and a local surface normal, which
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P(a, b, c)

x

(a) (b)

(c)

Figure 3-73. An explanation of gradient space. The local normal to the surface

(a) can be represented as a vector (a,b,c), as in (b). Since we are interested only

in the vector's direction, this can be reduced to {ale, b/c, 1), which can be repre-

sented as the two-dimensional vector {ale, b/c), as in (c). The quantity ale is usually

denoted byp, and b/c by q.

is the outgoing normal to the tangent plane at that point. Now take the

same tangent plane, move it to the origin of the coordinate system, and

draw in its normal OP, as in Figure 3-73(b). Suppose the coordinates of

P happen to be {a, b, c). It clearly does not matter how long OP is, since

only its direction matters, so we could just as well use the point P' at {ale,

b/c, 1). But now we can represent P' by just two numbers, {ale, blc)—that

is, by just the two-dimensional point P in Figure 3-73(c). This is the gra-

dient space representation of surface orientation.
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Figure 3-74. Understanding gradient space. The orientation of the frontal plane

P
x
corresponds to the origin in (p,q) space. As the plane is rotated about the vertical

(a), the corresponding point in gradient space moves along thep-axis (P2 ,
P3) as

shown in (c). If the plane rotates about the horizontal x-axis, as in (b), its repre-

sentation in gradient space moves out along the #-axis (P4 , P5 ).
Similar arguments

apply to rotations about intermediate axes. The depicted angle t is called the tilt,

and the angle a the slant of the plane.

Gradient space is an elegant way of representing surface orientation.

A few examples will help to make its properties clear. For a frontal plane,

with the surface normal coming directly toward the viewer, a = b = and

the point P is at the origin O in Figure 3-73(c). Now imagine rotating the

plane clockwise about the vertical axis as in Figure 3-74(a). Then P moves

gradually to the right along thep-axis, as shown in Figure 3-74(c), and the

distance from O equals the tangent of the angle of slant. If instead we rotate

the plane about the horizontal axis, as in Figure 3-74(b), P moves along

the g-axis, as shown in Figure 3-74(c), again by an amount equal to the
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tangent of the angle of slant. If we rotate about some intermediate axis,

shown clotted in Figure 3-74(c), then P moves out at right angles to it along

the direction t from thep axis, as shown in Figure 3-74(b). This angle t

is what in the psychophysical literature is referred to as the tilt of the plane,

and the angle between it and the frontal plane is usually called its slant,

and sometimes its dip. I shall use the letter a to denote slant. The distance

between the point P and the origin is tan o\

The reader might like to take a few moments to play with a piece of

paper and understand gradient space fully, because it is an important and

useful idea. In particular, he might prove to himself that the length of OP
is equal to tan o\

Surface Illumination, Surface Reflectance,

and Image Intensity

The study of shape from shading is concerned with finding ways of deduc-

ing surface orientation from image intensity values. The problem is com-

plicated because intensity values do not depend on surface orientation

alone; they depend on how the surface is illuminated and on the surface

reflectance function. In the real world, the prevailing illumination is often

complex, especially indoors. Outside is more straightforward—the sun is

nearly a distant point source, and the ground illumination that is produced

by thick cloud cover is nearly uniform, so these two situations are quite

simple. A partly cloudy day can sometimes be treated as a combination of

the two. But at ground level, the situation is often made very complex by

secondary illumination effects—light bouncing off one surface onto

another and thence into our eyes. These effects are almost impossible to

treat analytically.

Just like the echo effects in acoustics, secondary illumination becomes

especially important for indoor scenes, where light from a ceiling fixture

can reach the coffee table top either directly or after reflecting off the

ceiling or walls. The ceiling will help to illuminate the walls, and these in

turn will reflect light back, helping to illuminate the ceiling—a condition

called mutual illumination. The combined complexity introduced by all

these effects makes the analysis of shape from shading extremely difficult,

and no real progress has yet been made with the problem except in the

very simple illumination condition of one distant point source. Horn, how-

ever, has effectively solved this situation, and we shall shortly look at how
he did it.

The second factor that profoundly influences the shape-from-shading

problem is the surface reflectance function. The fraction of light reflected
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Figure 3-75. The definitions of the angles i, e, and g.

toward the viewer from a source depends on the microstructure of the

reflecting surface, and this is usually described as a function of the three

angles shown in Figure 3-75—the angle ofincidence i between the source

and the surface normal, the angle ofemittance e between the line of sight

to the viewer and the surface normal, and the phase angle g between the

incident and emitted rays. The reflectancefunction ty(i,e,g) is the fraction

of incident light reflected per unit surface area per unit solid angle in the

direction of the viewer. Intuitively, this says that the amount of light incident

on a surface patch that will be reflected to a detector depends directly on

the area of the illuminated patch, the value of <$>(i,e,g), and the angular size

of the detector.

There are many kinds of reflectance function. A perfect Lambertian

surface—a pure matte surface—looks equally bright in all directions and

has the simple reflectance function $(i,e,g) = cos i. The surfaces of rocky,

dusty objects that are viewed from great distances have another interesting

type of reflectance function; for fixed-phase angle g, $ depends only on

cos //cos e. This relationship applies to the material in the maria of the

moon—and for observation from the earth, g is indeed constant. This has

greatly helped the study of lunar topography.

A polished metallic surface has a particularly simple reflectance func-

tion <(>; it is 1 when i = e andg = i + e, the properties of a pure mirror.

If the surface is not quite so polished, then $ is smudged a little around

this value, often by convolution with a Gaussian. This smudged property

is particularly interesting because many everyday surfaces have a reflec-

tance function that combines two components, one matte and one specular.
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The reflectance function of glossy white paint is made up of such a com-
bination. For example, if 5 is the fraction of light reflected specularly, its

reflectance function might have the form

s(n +l)(2cosicose-cosgr
<K^„g) = r + (1 - s)cosz

where the first term is the specular component, and the second the matte.

The number n determines how sharp the specular peak is; a typical value

for a glossy paint might be n = 16 (see Horn, 1977).

The Reflectance Map

The best way of understanding the shape-from-shading problem is to

understand the reflectance map, which is a way of relating image intensities

directly to surface orientation.

Suppose we take a particular type of surface with a known reflectance

function <|>. Suppose we take distant source and viewing positions, so that

the phase angleg is constant, and suppose that we take just a single source,

so that the problem is expressed in its very simplest form. Then each

surface orientation will produce a particular intensity in the image, which
we can plot in the (p,q) gradient space map. In fact, let us choose to plot

our reflectance map in a particularly simple way—let us draw in the con-

tours of constant reflected intensity, normalized to some scale lying

between (for darkness) and 1 (the maximum possible intensity of light

that could be found in the image). Then if the measured intensity at a given

point is, say, 0.8, we know that the surface orientation (p,q) must lie on the

0.8 contour in the reflectance map.

Figures 3-76 to 3-79 show some examples. Figure 3-76 is the reflec-

tance map for a pure matte (Lambertian) surface illuminated from a source

that is by the viewer. In Figure 3-77, the surface is the same, but the source

is in a different direction (actually in direction/? = 0.7, q = 0.3). Notice

here there is a shadow line—the line of surface orientations at which the

surface becomes self-shadowed from the source. Figure 3-78 shows the

peculiar reflectance map characteristic of the maria of the moon, and Fig-

ure 3-79 shows the reflectance map for our glossy white paint. The very

closely spaced circular contours correspond to values of intensity that

change very rapidly with any change in surface orientation, and so they

correspond to the specular component. The rest of the map looks more
like Figure 3-77 and corresponds to the matte component.
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tf

Figure 3-76. Contours of constant cos i. Contour intervals are 0.1 unit wide. This

is the reflectance map for objects with Lambertian surfaces when there is a single

light source near the viewer.

Figure 3-77. Contours of constant cos /. Contour intervals are 0.1 unit wide. The

direction to the source is (ps , qs ) = (0.7, 0.3). This is a typical reflectance map for

objects with Lambertian surfaces when the light source is not near the viewer.
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q

Figure 3-78. Contours of <\>(i,e,g) = cos //cos e. Contour intervals are 0.2 unit

wide. The reflectance function for the material in the maria of the moon is constant

for constant cos //cos e.

Figure 3-79. Contours for <J>(£ e,g) = 0.5s (n + 1)(2 cos i cos e - cos g)
n

+ (1 - s) cos i. This is the reflectance map for a surface with both matte and

specular components of reflectance when the surface is illuminated by a single

point source. Glossy white paint can produce such a
(J).
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Recovery of Shape from Shading

The fundamental problem with recovering shape from shading is that, even

with all the simplifying assumptions that enable us to use a reflectance

map, it is still very difficult. Knowing the intensity value places one on a

particular isoluminance contour in the reflectance map—for example, it

might tell us that the surface orientation lies on the 0.8 contour—but it

does not tell us where. Unless we have additional information, one position

on the contour is just as good as any other.

However, the problem can be solved. The extra condition we need is

to assume that the surface is smooth and that surface orientation varies

smoothly (that is, is differentiable). Essentially this says that if you are at

one point in the image and know the surface orientation there and how it

changes locally, then if you move in one direction acrdss the image, you

can tell from the new intensity value what the new local orientation is.

This is an amazing fact, because one would not think that smoothness

constrains the answer enough. But it does because of a beautiful mathe-

matical trick (Horn, 1977), which I am unfortunately unable to reduce to

succinct English. So from a mathematical point of view, the problem is

soluble. However, from a biological point of view, this type of solution,

even given the major simplifications on which Horn's approach rests, is

still far too complicated to be used. To solve the shape-from-shading equa-

tions for a general reflectance map requires successive integration along

paths in the image whose loci can be determined only as the integration

proceeds. Solving these equations in a simpler, more parallel way appears

quite hopeless unless we are prepared to introduce other constraints.

A number of other approaches have therefore been tried. Woodham

(1977) combined constraints on surface orientation—like minimizing local

curvature—and constraints from shading to produce a local iterative

approach to determine surface orientation. Brady (1979) suggested restrict-

ing the type of surface as well, for example, to generalized cones, and

showed how one can then determine the direction of the light source.

However, I think it is fair to say that none of these approaches has

yet thrown much light on the use of shading information by the human

visual system. The difficulty is probably that we do not use this information

very well. The human visual processor seems to use only coarse shading

information, often but not always correctly, which is probably why shading

is easily overridden by other cues. Situations where the human visual sys-

tem does not perform well always cause trouble because knowing how the

problem ought to be solved mathematically may throw very little light on

how we ourselves approach it. Unfortunately, the same may be true for

color, as we shall see. Nevertheless, we do make some use of shading, so

there is definitely something here to be understood.
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Photometric Stereo

Finally, there is a technique for recovering shape from reflectance maps

that cannot possibly have any biological significance, but which is so elegant

that I cannot resist mentioning it. The idea was introduced by Woodham
(1978) and developed by Horn, Woodham, and Silver (1978), and it rests

on the following idea. Given an image and a reflectance map for one

position of the light source, suppose that we measure image intensity at

one particular point. As we have seen, we may then deduce that the cor-

responding surface orientation lies on a particular contour in gradient

space—the 0.8 contour was our example in the previous section—and I

have illustrated it in Figure 3 -80(c). The problem is that we do not know
where along this contour the correct surface orientation (p,q) is.
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l^(x,y) = 0.
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I2 (x,y) = 0.4

Figure 3-80. The idea behind photometric stereo. Images I
x
and I

2
are taken of the same scene

under two different lighting conditions, and so two different reflectance maps are employed. From
the first, image intensity measurements may place a particular point in the image on the 0.8 contour

(a); from the second, on the 0.4 contour (b). Hence the true surface orientation (p,q) corresponds

to either point A or point B in (c), the intersection points of the two contours.
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Suppose, however, that we now move the light source—or, in an out-

door scene, we wait until later in the day—and then take a second image

from the same viewpoint. The surface geometry relative to the viewer is all

the same, but the reflectance map changes. For example, the situation may

change to look like Figure 3-80(b), and the intensity measurement at the

same point in the image puts us on the 0.4 contour in the reflectance map,

as shown in Figure 3-80(c). Then the true surface orientation is narrowed

down to just two possibilities—the two points at which the first 0.8 contour

and the second 0.4 contour intersect, points A and B in Figure 3-80(c).

This essentially solves the problem, since the choice betweenA and B can

usually be made easily by using continuity information or by taking a third

picture with yet another lighting position.

This type of scheme may be of practical use, since we can usually

construct a reflectance map even for complicated lighting conditions,

although we usually have to measure the reflectance map empirically

because it is too difficult to compute. Provided that the lighting and surface

characteristics are the same everywhere in a scene, the sole determiner of

image intensity is surface orientation.

3.9 BRIGHTNESS, LIGHTNESS, AND COLOR

All the processes that we have considered so far have used the image of

reflectance and illumination changes on a surface to recover information

about the geometry of the surface. Nothing has been said about the nature

of the surface itself. Yet the reflectance of a surface—whether it is light or

dark, whether it reflects red light well or poorly, and so forth—carries

information that often has important biological significance. For example,

we can tell just by looking whether a fruit is ripe, whether a branch is

strong enough to bear one's weight, whether a leaf is green and supple,

whether an insect is likely to be poisonous, and many other things.

The business of recovering surface reflectance, then, is important, and

we are actually quite good at it. It is surprising how much perceived color

depends upon the reflectance of a surface and how little it depends on the

spectral characteristics of the light that enters our eyes. According to Helson

(1938), an illuminant may be up to 93% chromatic, but provided it contains

at least 7% "daylight", surfaces with uniform spectral reflectance—that

reflect equally at all wavelengths—will remain achromatic. The opposite

aspect of the problem is by how wide a range of stimuli we can be fooled

into saying that brightness differences exist where they objectively do not

—

from the Hering grid and Benussi ring on the one hand to the phenomenon

of subjective contours on the other. Some examples appear in Figure 3-81.
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(a) (b)

(c)

ft

I *
(e)

Figure 3-81. Some well-known brightness illusions, (a) The Hering grid, (b) An
illusion by Robert Springer that provokes the appearance of faint diagonal lines,

(c), (d) The Benussi ring; notice how the simple addition of a contour in (d) can

cause the two gray regions to look different, (e) The Kanizsa triangle.
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The theory of color vision is in an unsatisfactory and interesting state.

On the one hand, we have for a long time had a fairly adequate phenom-

enological description, due to Helson (1938) andJudd (1940). Their equa-

tions can be used to predict the colors that will be perceived by a subject

about as accurately as the subject is able to describe them, and they can,

without modification, account for Land's (1959a, 1959b) famous two-color

projection demonstrations in which images produced with only two colors

gave full color percepts (Judd, I960; Pearson, Rubinstein,, and Spivack,

1969). As Helson and Judd themselves commented, however, there are

probably many other equations that describe color perception just as well;

in fact, Richards and Parks (1971) proposed a simpler model that is nearly

as accurate.

The problem is that these formulations are descriptions of color vision,

not theories of it. The researchers do not say why their equations are good

at separating the effects of the illuminant from the effects of surface reflec-

tance. Of course, there may be no real theory of color vision, and these

descriptions may be as close as we can get—but I hope not. The only

attempt at a true theory of color vision is Land and McCann's (1971) retinex

theory. This theory has been criticized for explaining nothing that the Hel-

son-Judd formulation cannot account for, and this is probably true. But

that comment misses what, from this book's perspective, is the most impor-

tant difference between these two theories, namely, that the Helson-Judd

formulation is a phenomonological description, whereas the retinex idea

is a computational theory that is based on particular assumptions about the

physical world. To bring these points out, let us look in more detail at the

two formulations.

The Helson-Judd Approach

The basis for Helson and Judd's approach to color vision is the time-hon-

ored view that object color depends on the ratios of light reflected from

the various parts of the visual field rather than on the absolute amounts.

Helson and Judd tried to construct a formula that predicts what color a

given piece of paper will appear to have under different illumination con-

ditions and against different backgrounds. Thus they were not so much

interested in color constancy as in quantifying the extent to which con-

stancy is violated as the illumination and background are changed.

Their formulation is based on two steps. First, find out what "white"

should be for the conditions prevailing in the scene; second, compute what

color the paper should have by referring to this estimate of white. The

basic idea behind finding the white is (1) to take the standard daylight
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white, which by a suitable choice of coordinates we can denote as (rw , gw);

(2) to measure the "average" color of the whole visual field, which we

denote by (rf, gj); and (3) to assume that the current white (rn , gn) lies

somewhere between these two. For example, we might write

rn = r
f
~ k(rf

~ ru)

gn= gf~ k
(§f

~ 8w)

according to which the current white lies on the straight line joining day-

light white to the average over the current visual field.

This basic idea is then modified by incorporating various empirical

observations that Helson andJudd made to produce a complex expression

that is no longer linear. In other words, the modifications push the current

white off the line joining daylight white to the current average, so as to

account for the various odd effects that Helson andJudd found empirically

The most important modification comes about because of a notion they

had called adaptation reflectance, which is essentially a shade of gray that

depends on the scene. Papers that are lighter than this gray take on the

hue of the illuminant, whereas darker papers take on the complementary

hue. Of course, linear formulas cannot account for this effect. Other mod-

ifications arise because adaptation effects increase in power as we move

away from white, peculiar effects occur if the blue component of the illu-

minant is intense, and so forth. The result is a long and complicated for-

mula, adding to the basic equations above a number of second-order, non-

linear terms, each justified by a particular aspect of the experimental

findings. The second part of the scheme, assigning color relative to this

estimate of white, has a simple formulation. To determine the hue to be

associated with the point (r, g), we simply examine the orientation of the

line joining it to the current white (r„, gn ); the length of this line determines

the saturation.

The interesting thing about this approach is that these assumptions

lead to a successful predictor of perceived color. What is missing is an

explanation of why we can make these assumptions and why they lead to

valid color perception under such a wide range of circumstances.

Retinex Theory of Lightness and Color

Land and McCann (1971), on the other hand, base their theory firmly on

assumptions about the physical world. It applies to the planar world of so-

called Mondrians, which, as we saw in Chapter 2, consist of rectangular



254 From Images to Surfaces

Figure 3-82. The two marked squares have the same luminance, yet one is per-

ceived as being much darker than the other. (Reprinted by permission from E. H.

Land and J. J. McCann, "Lightness and retinex theory",/. Opt. Soc. Am. 61 (1971),

1-11, fig. 3.)

patches affixed to a large board that can be illuminated in various ways

(see Figure 2-30). The first part of the theory, concerned with what Land

and McCann called lightness, deals with monochromatic images of just this

kind. The central problem, as they state, is to separate the effects of surface

reflectance from the effects of the illuminant, because as has long been

known, what we perceive as the color of a surface is much more closely

connected with spectral characteristics of its reflectance function than with

the spectral characteristics of the light falling upon our eyes.
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How can these effects be separated? What critical characteristics might

enable us to separate the effects due to changes in illumination from the

effects due to changes in reflectance? Land and McCann proposed the

following: Changes due to the illuminant are on the whole gradual, appear-

ing usually as smooth illumination gradients, whereas those due to changes

in reflectance tend to be sharp. This dichotomy is certainly true in the

Mondrian world that they studied, and hence if we can separate the two

types of change, we can separate effects of changes in the illuminant from

the effects of changes in reflectance in these images.

An example of what Land and McCann mean appears in Figure 3-82.

This shows the image of a monochromatic Mondrian lit from above. The
two patches marked with arrows have exactly the same intensity, yet one
appears to be darker than the other. If one removes the effects of the

illumination gradient, one patch would actually become much darker than

the other. The argument is that this computation is essentially what our

visual systems do, and it is called the retinex computation.

Algorithms

The retinex computation has been implemented in at least two ways. Land

and McCann themselves used the one-dimensional approach illustrated in

Figure 3-83(a). If we trace the image intensities along any path from A to

B as shown, they will have the form shown in the first graph, portions of

slow changes interspersed with large jumps at the reflectance boundaries.

By applying a threshold, we can remove the effects of the slow changes,

thus arriving at the curve in the second graph, which describes the effects

of the reflectance changes only. Since the system is conservative, it does

not matter which path from A to B is used—the resulting assignments of

reflectance will always be the same. Land and McCann used this technique

together with a sufficient number of randomly chosen paths across the

image to cover all locations adequately.

Horn (1974) derived a two-dimensional analogue of this algorithm,

illustrated in Figure 3-83(b) and consisting essentially of the same three

steps. The first step is to take a differencing operator, here having a two-

dimensional center-surround form. Then we ignore small values and
accept only large ones, which correspond to the reflectance changes.

Finally, using only the large changes, we reconstruct the image to get a two-

dimensional analogue of the second graph in Figure 3-83(a). For this,

Horn suggested an interesting iterative algorithm based on nearest-neigh-

bor interactions in order to implement the equations shown in Figure

3-83(b).
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Figure 3-83. Diagrams illustrating retinex algorithms, (a) Land and McCann's one-dimensional

algorithm, (b) Horn's two-dimensional version. In both, the idea is to ignore smooth changes in

intensity, taking account only of discontinuities. See text for details.

Extension to color vision

The operations diagrammed in Figure 3-83 show the retinex operating

monochromatically. In order to apply the operation to color, Land and

McCann require that it be performed independently in each of the red,

green, and blue channels. What then emerges from each, they hope, are

signals that depend not on the illuminant but solely on the surface reflec-

tance. These can be combined to give a percept of color that happily rests
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solely on properties of surface reflectance and not on the vagaries of its

particular, present illuminant. Of course, there is still the need to calibrate

the signals in the three channels relative to one another, but Land and

McCann suggest that this can be done by calling the brightest point in the

scene white.

McCann, McKee, and Taylor (1976) have recently published compar-

isons between the results predicted by such an algorithm on their Mon-

drian stimuli and the psychophysical estimates of color made by subjects

who viewed them. They found that the agreement between their subjects

and their predictions was as good as the agreement among their subjects.

Comments on the retinex theory

To me, the positive aspects of Land and McCann's work seem to be three-

fold. First, they have attempted to construct a real theory of color vision,

as opposed to a description of color perception. Second, they have drawn

attention to the importance of boundaries and described one way in which

boundary effects may propagate across an image. Such effects had been

known for a long time—for example, the Craik-Cornsweet illusion and

the Benussi ring—but boundary effects do not appear explicitly in the

Helson-Judd equations. Third, Land's earlier work formulated an interest-

ing principle considered important by Judd, namely, that when the colors

of the patches of light making up a scene are restricted to a one-dimen-

sional variation of any sort, the observer usually perceives the objects in

that scene as essentially without hue.

The case against the retinex theory seems to consist of one major and

several minor arguments. The major argument is that there is more to

simultaneous contrast than is present in the retinex theory. That is, for-

mulations like Helson andjudd's that are based on the idea of simultaneous

contrast may be able to explain Land and McCann's effects, but the gradient-

eliminating retinex theory cannot explain all of simultaneous contrast,

because these effects occur perfectly well in situations of uniform illumi-

nation, where there are no illumination gradients. In addition, Land and

McCann apparently did not always pay adequate attention to the effects of

simultaneous contrast in their displays. For example, in Figure 3-82, one

of the squares has darker neighbors than the other, so one might expect

them to appear different just on these grounds. In any event, brightness

perception and color perception appear to involve at least some effects

that are not predicted by Land and McCann's approach.

One possible explanation is that these extra effects are introduced by

aspects of the problem that Land and McCann did not consider. For exam-
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pie, their theory applies only to planar surfaces, and these other effects

may be introduced only to deal with the added complications of having

different surface orientations in different parts of the visual field. This,

however, is unlikely. Although there certainly are three-dimensional effects

on brightness perception, they are probably not very large. Gilchrist (1977)

recently claimed that perceived orientation could affect brightness percep-

tion by factors of up to 30%, but, in repeating his experiments, Ikeuchi

(1979) was unable to obtain factors much greater than 5%-10%.

The first of the minor arguments against the retinex idea is compu-

tational: The theory involves a threshold (the level of gradient at which the

cutoff occurs), but it does not say what that threshold should be. It is a

matter of unhappy experience that whenever we have to set a threshold in

an image-processing task, we usually have problems—which is one reason

why the idea of zero-crossings is so attractive. The problem is that if the

threshold is too low, it will not remove the illumination gradient; but if it

is too high, it will remove valuable shading information. Gradual changes

in surface orientation also produce gradual changes in intensity across an

image, and these might be too valuable to throw away cavalierly. And grad-

ual changes in surface coloration can also be important. After all, we can

see a rainbow, even one that has been enlarged by binoculars. The color

changes are not thresholded out.

The second minor argument arises from neurophysiological obser-

vations. According to the retinex theory, the red, green, and blue channels

are processed independently, each in the manner of Figure 3-83, and

combined only afterward. This, however, is not the observed situation.

Neural processing seems to be based on an opponent-color approach

—

where the output depends on the difference between two color channels

—

right from the start. Even in the retina, most color-sensitive cells have an

opponent-color organization (DeValois, 1965), and DeValois and his asso-

ciates have found an impressive correlation between the psychophysics of

color discrimination and the observed neurophysiological properties of

lateral geniculate color-opponent cells.

These findings do not disprove the notion that the retinex function is

being computed in the visual pathway One could argue, as Horn (1974)

pointed out, that the retinex can be carried out on any three linear com-

binations of red, green, and blue just as well as on the original channels

themselves, and this adjustment might make the retinex theory compatible

with the neurophysiological observations. But this argument is not very

convincing, especially since the theory provides no very good reason why

one should want to operate on linear combinations rather than on the

original signals.
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Some Physical Reasons for the

Importance of Simultaneous Contrast

It is a widespread and time-honored view, going back at least to Ernst Mach,

that object color depends upon the ratios of light reflected from the various

parts of the visual field rather than on the absolute amount of light reflected.

Of course, this must be because although the illumination of a scene, which
greatly influences the spectral distribution in its image, changes drastically

from time to time and from place to place, we are relatively immune to

the variation. The range of color constancy is, of course, bounded—when
we buy clothing we insist on seeing the items in daylight or under tungsten

illumination if the store's lighting is fluorescent. But the important point

is that although our perceptions may only approximate the objective reflec-

tances, they do this much more accurately than they reflect the spectral

qualities of the light falling upon the retina.

Even within a single scene, the intensity of illumination can change

drastically, from sunlight to shadow, for example, or from near the lights

in a large hall to the dim recesses of the furthest-flung corners. The spectral

characteristics can also change, although usually not by so much. The light

becomes greener under a tree than in the open; in the mouth of a cave it

can turn browner. So even though the main fluctuations in spectral content

occur over time, they can still occur in a single scene, and this does not

much affect us.

How can we deal with such a wide range of effects? What the simul-

taneous-contrast phenomena* seem to be drawing attention to is an argu-

ment of the following kind. Suppose you pass an embankment where a

yellow or blue flower happens to be growing amid a background of green

grass and clover. Although the absolute spectral characteristics of the light

coming from the flower cannot at all be relied upon as a clue to its surface

reflectance characteristics, either in the matter of its lightness or of its

spectral properties, nevertheless its characteristics relative to other nearby

surfaces probably are reliable. If the flower appears lighter than the grass,

this is probably due to a characteristic of the flower and not of the illu-

mination (though the head of the flower could be just catching the sun).

If the flower looks bluer than the grass, then it probably really is. If it looks

yellower, then, again, it probably really is.

Furthermore, what is so amazing about simultaneous-contrast effects

—

even as simple as those in Figures 3-81(b) and (c)—is that the visual

"The tendency for color or brightness of one area to affect neighboring areas.
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system seems to take them so seriously. That is, we get what looks

like wrong answers in situations as simple as the Bernussi ring (Figure

3-81 c), where we would think that almost any sensible scheme would

give an answer reflecting the objective truth of the situation. I find this so

striking that I am tempted to believe that relative observations may be all

one relies on.

Even so, to make a success of a scheme based only on relative mea-

surements, we have to make a basic distinction between changes in the

image due to changes in reflectance (like the difference between a flower

and grass) and those due to changes in illumination (like the shadow of a

nearby tree). The fact is that shadowed lawn looks darker than unshadowed

lawn, and a daisy in the sun looks brighter than a daisy in the shade, but

the shadowing does not much affect the color of the lawn or the daisy. The

sunlit daisy and the shadowed daisy both look white, and (critically) the

shadowed daisy does not look gray.

We naturally consider the sunlit daisy brighter than the shadowed one.

This suggests that brightness is a subjective quality related to the intensity

of the prevailing illuminations. The reflectance of the surfaces, on the other

hand, is more closely related to the qualities of lightness and color. Changes

in lightness are ideally pure scalar changes in a surface's reflectance involv-

ing no changes in the surface's spectral characteristics (detectable through

the three color channels), whereas changes in color refer ideally to changes

in the spectral characteristics of a surface and may be described by the two

components hue and saturation. Helson (1938) and Judd (1940) defined

the terms brightness, lightness, and color purely psychophysical^, but I

think that to regard them as perceptual approximations to illumination

intensity and to the value and spectral distribution of surface reflectance

is consistent with their definitions (see Judd, p. 3).

The computational problem, therefore, is how to formulate in a rea-

sonable way the physical basis for estimating brightness, lightness, and

color from an image/The first point to note is that surface orientation can

influence brightness (according to our definition) but not usually a sur-

face's lightness or color, because at some orientations a surface will be

more directly illuminated than at others. The final solution to the com-

putation of brightness will therefore have to await an estimate of the sur-

face's orientation. As we have noted, however, the effects of 3-D interpre-

tation on perceived brightness are still not fully established.

The major source of brightness changes is shadows, and again, as we

saw in Section 2.4, these can be detected autonomously by using the ideas

behind the operator V ///. These two phenomena, surface orientation

changes and shadows, provide the main sources of discontinuity in bright-

ness, so provided that they are taken adequately into account, we can be
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QAxP x

Figure 3-84. Gradients in intensity that are due solely to illumination are usually

small and almost linear. S is a source that illuminates the plane containing P and

Q. The most significant terms in the difference between the intensities at P and Q
depend on Ax, the distance between the two points.

fairly sure that the remaining changes in the illuminant are smooth rather

than sharp.

Our next observations are (1) that locally measurable illumination

gradients on a flat surface can occur only if the light source is not very far

away, (2) that they are small unless the source is very near, and (3) that

they are approximately linear except perhaps directly under the source.

This can be seen from Figure 3-84. The illumination at P is I/r
2

, and at Q
nearby it is I/r

2
-2xAx/r4 + 0(l/r

4
). If Ax/x is small, the change from P

to Q varies approximately with - 2Ax/x. This is essentially linear in Ax,
the distance between P and Q, provided thatAx is small compared with x.

In other words, illumination gradients are almost always small and linear.

This may be one reason why the human visual system is insensitive to small

linear changes in intensity (see Brindley, 1970, p. 153).

Hypothesis of the Superficial Origin

of Nonlinear Changes in Intensity

These observations suggest that the following approach to the physical

basis of color vision may be profitable: In the absence ofsharp changes in

brightness, detectable as shadow boundaries or changes in surface orien-

tation, all nonlinear changes in intensities may be assumed to be due to
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properties of the surface—either its orientation or its reflectance. In other

words, in the absence of obvious illumination effects like shadows, meas-

urable nonlinear local differences in either image intensity or spectral

distributions are due to changes in the lightness or color of the surface.

This assumption allows us to ignore small linear changes and provides a

basis for the idea that lightness and color may be recovered from mea-

surements of nonlinear local changes in intensity and spectral distribution

made, for example, by comparing their values at each point with their

values in the surrounding neighborhood.

Implications for Measurements

on a Trichromatic Image

According to physiological descriptions, some opponent-color cells in the

retina of the monkey have receptive fields with rather mixed properties,

like a red center and green surround (Gouras, 1968; de Monasterio and

Gouras, 1975). There seem to be no internal reasons for doubting these

reports; nevertheless, I find such cells extremely difficult to understand in

general and impossible to fit into the V 2G framework that we developed

in Chapter 2.

The reason for the difficulty is that a cell with such a receptive field,

illustrated for convenience in Figure 3-85(a), signals a complex mixture

of spatial and chromatic information. It signals neither a pure V 2G function

for a single chromatic channel, like the red V 2G receptive field illustrated

in Figure 3-85(b), nor a purely chromatic message about the relative

strengths of signals in the two channels at one point in the image, as would

the receptive field illustrated in Figure 3-85(c). In fact, Figure 3-85(a) is

not even a zero-mean operator—it is not like a second derivative, and its

zero-crossings are meaningless. To use it, we have to pay special attention

to changes in its value—for example, if its green-center, red-surround

analogue looks at a lawn, it will fire everywhere over it, slightly harder for

the more saturated greens. This seems to me not only poor engineering

but also a contradiction to the experience we have about how the nervous

system likes to code changes rather than pure values; in other words, it

violates Barlow's (1972) second dogma about the economical neural

encoding of stimulus information.

In order to make a reasonable concrete suggestion about what these

cells are signaling, I would like to combine two pieces of information. The

first is that the V 2G style of analysis requires that the spectral characteristics

of the center and of the surround be essentially the same, related to one

another by a minus sign. This is necessary for zero-crossings to be useful.

The other piece of information is the idea that lightness and brightness
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Figure 3-85. Various possible organizations of chromatic receptive fields. The organizations are

assumed to be composed spatially of the difference of two Gaussian distributions, (a) So-called

red-green opponent-color receptive field, (b) A red-center, red-surround receptive field, (c) A
red-green opponent-color receptive field in which the spatial distribution of the two are identical,

(d) A pure luminance (red + green) receptive field, (e) A pure color-difference receptive field

(red - green), (f) The two-dimensional receptive field corresponding to (d). (g) The two-dimen-

sional receptive field corresponding to (e). R = red; G = green.

should be separated from color. Luminance boundaries correspond effec-

tively to change in the summed contributions of the red and green chan-

nels, which we can write (R + G). To detect these boundaries requires a

V G operator running on this sum, as illustrated in Figure 3-85(d). To

detect changes in color, on the other hand, our hypothesis of the last

section tells us to detect relative changes in the amounts of red and green
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light. That can be done by a V 2G operation on (R - G), the difference

between red and green signals, as illustrated in Figure 3-85(e).

Now the first type of cell, whose receptive field is illustrated in Figure

3-85(f), will not be very color selective, since its maximal stimulus will be

a white central spot, and it can be turned off by any combination of red

and green in the center and in the surround. The only criterion is that the

effective luminances should balance.

The second type of cell is quite different, however. Its optimal stimulus

would be a red center accompanied by a green surround, and it would

therefore look like a color-opponent cell. Such a cell would respond best

to changes in color and it should not respond at all to a pure white spot

at its center, provided that the red and green are appropriately balanced

in the white. Such a cell should respond to color boundaries but not to

other boundaries. In order for such a cell to be insensitive to nonwhite

lightness boundaries, like the boundary between two reds that differ only

in the fraction, not the quality, of the light they reflect, the quantities R and

G would have to be in logarithmic units. Such a cell would then act as a

pure detector of changes in color. V 2G operators are also insensitive to

linear gradients.

Summary of the Approach

The main ideas of this approach, then, are to separate brightness from

lightness and color and then to separate the estimation of lightness (average

percent reflectance) from color (spectral distribution). Local changes may

be recovered from zero-crossings in the lightness {R + G) image and in

the color image based on {R - G) and (B - G) (where B = blue).

The principal neurophysiological consequences are that no receptive

fields should mix color and spatial variations in the manner of Figure

3_85(a) ;
instead, receptive fields should exist as shown in the configura-

tions of Figure 3-85(d) (for changes in lightness and brightness) and Fig-

ure 3-85(e) (for changes in color). Zero-crossing segment detection can

subsequently occur in a similar way on each type of measurement yielding

luminance contours from the first type, and color change contours from

the second.

3.10 SUMMARY

In this chapter we have seen some of the quite striking variety of ways in

which surface information is encoded in images, and we have explored as
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Table 3-2. Processes producing surface information from image information and

their probable input representations.

Process Probable input representation

Stereopsis

Directional selectivity

Structure from motion

Optical flow

Occluding contours

Other occlusion cues

Surface orientation contours

Surface contours

Surface texture

Texture contours

Shading

Mainly ZC with eye movements

helped by FPS

ZC

FPS for correspondence;

perhaps only RPS for detailed

measurements

FPS(?) if process is used at all

RPS, BC

RPS

RPS, BC

RPS, IC, GT

RPS, GT

BC

IC, RPS; possibly others

Note: BC = boundary contours created by discrimination processes and curvilinear

aggregation of tokens; FPS = full primal sketch = RPS + GT + IC + BC. GT = group

tokens, created by grouping processes in the full primal sketch; IC = illumination

contours (shadows, highlights, and light sources); RPS = raw primal sketch (edges, blobs,

thin bars, discontinuities, and terminations); ZC = zero-crossings, discontinuities, and

terminations.

far as is presently possible how such information may actually be

recovered. At the moment, the different processes appear to use slightly

different input representations; the simplest, like directional selectivity, is

driven by the zero-crossings, and the more elusive, like surface texture,

probably involves the most complex aspects of the full primal sketch. I

have summarized the discussion in Table 3-2.

Another interesting aspect of all these processes is that, in addition to

using slightly different input representations, they all involve slightly dif-

ferent assumptions about the world in order to work satisfactorily. As we
have seen, in each case the surface structure is strictly underdetermined

from the information in images alone, and the secret of formulating the

processes accurately lies in discovering precisely what additional infor-

mation can safely be assumed about the world that provides powerful
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enough constraints for the process to run—for example, uniqueness and

continuity in stereopsis, rigidity in motion, and so forth. Much of the art of

formulating these processes lies in the precision and accuracy with which

these additional constraints are expressed, and our survey has included

some processes that I find satisfactorily formulated and others that remain

puzzling and rather ill defined. The constraints assumed by the various

processes have been set out roughly in Table 3-3, but the reader should

bear in mind that few of these are certain. Thus the table should be

regarded more as a guide to current thinking than as a definite statement

of what allows these processes to run.

Finally, a few words about research strategy in this area. As we have

seen, there are striking differences in the clarity and precision with which

we have been able to formulate the different processes. Some are straight-

forward and clean, like stereopsis, structure from motion, and directional

selectivity, whereas others, like visual texture and surface contour analysis,

seem to be inherently muddy. That is not because the first kind are intel-

lectually easier—on the whole they are not. For example, the mathematics

associated with stereopsis or with structure from motion is not as easy as

that associated with visual texture. Rather, the analytical difficulties arise

from deciding what can be safely assumed about the world in order to

help the processes interpret images of it. Where this can be done cleanly,

more or less by inspection of the real world, we have on the whole been

able to develop a clean theory. But where it cannot, I think there is no

hope of understanding the processes properly until some other means

have been found for determining what is safe to assume about the world

and what is not, together with the related question of the reliability of the

different kinds of information.

In the end, these are empirical questions, not so much about our

visual systems (although the answers will be reflected in their structural

design), as about the statistical structure of the visual world. I think that

one will have to accept this, taking more of an engineering point of view

when trying to answer them. As our knowledge of how to implement these

early processes improves, we shall have to build fast machines that can run

these processes in real time and acquire in that rather direct way a more

detailed knowledge of which tricks pay off in practice and which do not.

Studying vision is a mixture of studying processes and studying the world

from this rather specialized point of view—something that natural evolu-

tion has been doing for a long time.

The first step is to build a unified system that employs all the processes

that we currently understand, but much remains to be done before even

this limited goal should be attempted. For one thing, processes like the

construction of the raw primal sketch require a great deal of computational
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Table 3-3- Guide to additional assumptions implicit in processes deriving surface

information from images.

Process or representation Implicit assumptions

Raw primal sketch

Full primal sketch

Stereopsis

Directional selectivity

Structure from motion

Optical flow

Occluding contours

Surface contours

Surface texture

Brightness and color

Fluorescence

Spatial coincidence

Various assumptions about spatial

organization of reflectance func-

tions

Uniqueness; continuity

Continuity of direction of flow

Rigidity

Rigidity

Smooth, planar contour generator

Surface locally cylindrical; planar

contour generators

Uniform distribution and size of

surface elements

Only local comparisons reliable

Uniform light source

power. Even the fastest general purpose machines are several orders of

magnitude too slow for real-time vision, and although the emerging very

large scale integration (VLSI) technologies will eventually provide the nec-

essary power, the sensors and technology are not yet available and will not

be for several years. And then, of course, there is the question of what one
would do with the output of a machine that could run a set of processes

like the ones described in this chapter. It is to this question that we now
turn our attention.



CHAPTER 4

The Immediate

Representation of

Visible Surfaces

4.1 INTRODUCTION

In this chapter, we shall discuss the issues and problems surrounding the

idea of the 2Vz-D sketch, whose acquaintance we have already made in

Section 3.3. The central point is a simple one—that the 2 1/2-D sketch pro-

vides a viewer-centered representation of the visible surfaces in which the

results of all the processes described in Chapter 3 can be announced and

combined. The construction of the 2V2-D sketch is a pivotal point for the

theory, marking the last step before a surface's interpretation and the end,

perhaps, of pure perception.

The idea that such a representation might exist and that its construc-

tion can be regarded as the goal of early visual processing will probably

strike the reader as unsurprising, especially since this book is written

within precisely such a framework. But when we started out we had no

such framework, and in trying to find a way of understanding what vision

was, we were confused, having to grapple with almost philosophical diffi-

268
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culties concerning what perception was for. The reader who cares to

examine Marr (1976) closely, for example, will find no explicit statement

of what the primal sketch was for. He will find it more or less defined,

justified on general grounds, and closely tied to physical reality. But the

idea that the purpose of early vision is to recover explicit information about

the visible surfaces was only implicit.

In fact, at that point, much of computer vision was in considerable

disarray, because, with the exception of Horn's (1975) work, the idea that

the main point of vision was to tell the shapes of things had not yet been

taken seriously. And although perceptual psychologists like Gibson had the

notion that surfaces are important, the idea of an internal representation

obtained by certain processes was foreign to their thinking. In retrospect,

our lines of thought and the kind of questions we asked at that time were

rather muddled; inquiry had to do with feature-based recognition, how to

separate figure from ground, how to extract and interpret a "form" or

"figure," how much analysis could be done in a data-driven or bottom up
way, and how much needed top-down influences. In addition, we had no
coherent framework that allowed us to see how processes like stereopsis,

shading, or motion perception could combine with one another and with

the rest of vision to create what we call seeing.

All this type of thinking was dramatically swept away by the idea of

the 2V2-D sketch, which simultaneously resolved these and many other

issues. It told us what the goals of early vision were, it related them to the

notion of an internal representation of objective physical reality that pre-

ceded the decomposition of the scene into "objects" and all the concomi-

tant difficulties associated with object recognition. At the same time, it

hinted at the limits of what one might call pure perception—the recovery

of surface information by purely data-driven processes without the need
for particular hypotheses about the nature, use, or function of the objects

being viewed. And finally, it provided the cornerstone for an overall for-

mulation of the entire vision problem—the framework that this book has

been written to explain and that has since enabled us to structure our

research in a rational and strategic way.

For all these reasons, the emergence during the autumn of 1976 of

the idea of the 2V2-D sketch, which first appeared in Marr and Nishihara

(1978, fig. 2) and was developed at length a little later (Marr, 1978, sec. 3),

was for me the most exhilarating moment of the whole investigation. Its

first positive consequence was the theory of stereo vision (Marr and Poggio,

1979) which was formulated during the first half of 1977. The reformulation

of early visual processing was begun later that year, and of course, the

2V2-D sketch ultimately led to the overall framework that we now have

(Marr, 1978).
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4.2 IMAGE SEGMENTATION

Perhaps the best way to introduce the whole question of the 2V2-D sketch

is to describe in some detail the impasse that it was intended to resolve.

The neurophysiologists' and psychologists' belief that figure and ground

constituted one of the fundamental problems in vision was reflected in the

attempts of workers in computer vision to implement a process called

segmentation. The purpose of this process was very much like the idea of

separating figure from ground, the idea being to divide the image into

regions that were meaningful either for the purpose at hand (which for

computer vision might be assembling a water pump) or for their corre-

spondence to physical objects or their parts.

Despite considerable efforts over a long period, the theory and prac-

tice of segmentation remained primitive for two reasons. First, it was well-

nigh impossible to formulate precisely in terms of the image or even of

the physical world what the exact goals of segmentation were. What, for

example, is an object, and what makes it so special that it should be recover-

able as a region in an image? Is a nose an object? Is a head one? Is it still

one if it is attached to a body? What about a man on horseback?

These questions show that the difficulties in trying to formulate what

should be recovered as a region from an image are so great as to amount

almost to philosophical problems. There really is no answer to them—all

these things can be an object if you want to think of them that way, or they

can be a part of a larger object (a fact that is captured quite precisely in

Chapter 5). Furthermore, however these questions were answered in a

given situation did not help much with other situations. People soon found

the structure of images to be so complicated that it was usually quite

impossible to recover the desired region by using only grouping criteria

based on local similarity or other purely visual cues that act on the image

intensities or on something like the raw primal sketch. Regions that have

"semantic" importance do not always have any particular visual distinction.

Most images are too complex, and even the very simplest, smallest images

like one depicting just two leaves (Marr, 1976, fig. 13) often do not contain

enough information in the pure intensity arrays to segment them into

different objects.

Despite the lack of any precise formulation ofwhat it meant, the notion

of segmentation continued to be investigated with increasingly complex

techniques. It had been a long-standing view that visual perception was

analogous to problem solving and should therefore involve the testing and

modifying of hypotheses about the viewed object. This idea was common

in computer vision (for example, see Minsky, 1975), and it had its coun-



4.2 Image Segmentation 271

terpart in the psychology of vision (as exemplified by Gregory, 1970). The

critical difference between this idea and the use of constraints as described

in Chapters 2 and 3 is that, in the problem-solving approach, the additional

knowledge or hypothesis that is brought to bear is not general but partic-

ular and true only of the scene in question and others like it. Instead of

using things like rigidity, we make inferences such as: A black blob at desk

level has a high probability of being a telephone.

Naturally, because of their specificity, any very general vision system

must command a very large number of such hypotheses and be able to

find and deploy just the one or two demanded by the particular situation.

This prospect casts a whole complexion on the vision problem, in which

the main questions to be addressed concern how to manage vast amounts

of information in an efficient way. That is why so much effort was expended

on the design of efficient program control structures* for deploying visual

knowledge. Incidentally, for this type of reason people in other branches

of artificial intelligence believe the problem of control to be an important

one.

The main thrust of the then-current ideas was, therefore, to invoke

specialized knowledge about the nature of the scene being viewed to aid

segmentation of the image into regions that corresponded roughly to the

objects expected in the scene. Tenenbaum and Barrow (1976), for example,

applied knowledge about several different types of scene to the segmen-

tation of images of landscapes, an office, a room, and a compressor. Freuder

(1974) used a similar approach to identify a hammer in a simple scene. If

this approach had been correct, then a central problem for vision would

have been arranging for the availability of the right piece of specialized

knowledge at the appropriate time during segmentation. Freuder 's work,

for example, was almost entirely devoted to the design of what was called

a heterarchical control system that made this possible. A little while later,

the constraint relaxation technique of Rosenfeld, Hummel, and Zucker

(1976) attracted considerable attention for just this reason—it appeared to

be a technique whereby constraints drawn from disparate sources could

be applied to the segmentation problem while making the control

processes required to manage the information only slightly more complex.

Our own work on cooperative algorithms was also slightly colored by

thoughts that they could perhaps be used to combine constraints from

disparate sources, and this provided one of the motivations for trying to

develop precise methods of analyzing the convergence of such algorithms

(Marr, Palm, and Poggio, 1978).

*The interaction among subprocesses in a computer program.
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4.3 REFORMULATING THE PROBLEM

What was wrong with the idea of segmentation? The most obvious flaw

seemed to be that "objects" and "desirable regions" were almost never

visually primitive constructions and hence could not be recovered from

the primal sketch or other similar early representations without additional

specialized knowledge. Edges that ought to be significant are either absent

from an image or almost so (see, for example, Figure 4-1), and the strong-

est changes in an image are often changes in illumination and have nothing

to do with meaningful relations in a scene. Given a representation like the

primal sketch and the many possible boundary-defining processes that are

naturally associated with it, which of all the possible boundaries should

one attend to, and why? In order to answer these questions, it was necessary

to discover precisely what information we should try to recover from an

image and then to design a representation for expressing it.

In order to find the answer, it was necessary to go back to first prin-

ciples, to return to the physics of the situation. As we have seen several

times, the principal factors that determine the intensity values in an image

are (1) the illumination, (2) the surface geometry, (3) the surface reflec-

tance, and (4) the vantage point. At some stage, the effects of these different

factors are separated.

The main argument was, therefore, as follows: Most early visual

processes extract information about the visible surfaces directly, without

particular regard to whether they happen to be part of a horse, or a man,

or a tree. It is these surfaces—their shape and disposition relative to the

viewer—and their intrinsic reflectances that need to be made explicit at

this point in the processing, because the photons are reflected from these

surfaces to form the image, and they are therefore what the photons are

carrying information about. In other words, the representation of the vis-

ible surfaces should be carried out before knowing whether the surface

belongs to a horse, man, or tree. As for the question of what additional

knowledge should be brought to bear, general knowledge must be

enough—general knowledge embedded in the early visual processes as

Figure 4—1. (opposite) This image of two leaves is interesting because there is not

a sufficient intensity change everywhere along the edge inside the marked box to

allow its complete recovery from intensity values alone, yet we have no trouble

perceiving the leaves correctly. The table shows the actual intensity values within

the box. However, the surface is clearly discontinuous within the box. Consistency-

maintaining processes operating in the 2^-dimensional sketch may be partially

responsible for this.
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general constraints, together with the geometrical consequences of the fact

that the surfaces coexist in three-dimensional space.

Was there any chance that such an idea might work? In order to explore

it, we needed to look at three questions. First, what might it mean to

represent the visible surfaces? In order to answer this, we needed to pre-

view the general classification of shape representations, which we shall

spend more time on in the next chapter. Second, we needed to look at the

information provided by psychophysics, both about the early processes

that we studied in the last chapter and about whether there is any evidence

that such processes are combined before the visible shapes are interpreted

as objects. Third, we needed to look at the computational aspects of the

problem. In what form do these early processes deliver information about

the visible surfaces, and how might one combine all the different

resources?

Part of our task in formulating the problem of intermediate vision is

to examine ways of representing and reasoning about surfaces. We start

our inquiry by discussing the general nature of shape representations.

What kinds are there, and how may one decide among them? Although

formulating a completely general classification of shape representations is

difficult, we had already set out the basic design choices that have to be

made when a representation is formulated. Three characteristics of a shape

representation are largely responsible for determining the information that

the representation makes explicit. The first is the type of coordinate system

the representation uses—whether it is defined relative to the viewer or to

the object being viewed; the second concerns the nature of the shape

primitives used by the representation, that is, the elements whose positions

the coordinate system is used to define. Are they two- or three-dimensional,

in what sizes do they come, and how detailed are they? And the third

characteristic is concerned with the organization a representation imposes

on the information in a description—is it, for example, flat like an image

intensity array, or does it have a hierarchical structure, like the full primal

sketch of Chapter 2?

The first question about the coordinate system and the second about

the shape primitives both have fairly straightforward answers. The coor-

dinate system must be viewer centered, and the shape primitives must be

two-dimensional and specifywhere the local pieces of surface are pointing.

Briefly stated, the reason for this is that the information delivered by all

the early visual processes of Chapter 3 depends upon aspects of the imaging

process—for example, measures of depth, or surface orientation are

obtained relative to the viewer, and so fall naturally into a viewer-centered

coordinate frame. The second point is that all these processes tell about
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the visible surfaces, usually only locally, and so it is this information that

needs representing, usually only locally. It is worth going into these points

more deeply

4.4 THE INFORMATION TO BE REPRESENTED

Vision, as we have already seen, provides several sources of information

about shape. The most direct are stereopsis and motion, but surface con-

tours in a single image are nearly as effective, and we have seen several

examples of other, less effective cues. It often happens that some parts of

a scene are open to inspection by some of these techniques and other parts

by others. Yet different as the techniques are, they have two important

characteristics in common: They rely on information from the image rather

than on a priori knowledge about the shapes of the viewed objects, and
the information they specify concerns the depth or surface orientation at

arbitrary points in an image, rather than the depth or orientation associated

with particular objects.

When viewing a stereo pair of a complex surface, like a crumpled
newspaper or the "leaves" cube of Ittelson (I960), which is a box with

leaves attached to the sides and pointing nearly at the viewer, we can easily

state the surface orientation of any piece of the surface and whether one
piece is nearer to or further from the viewer than its neighbors. Neverthe-

less, memory for the shape of the surface is poor, despite the vividness of

its orientation during perception. Furthermore, if the surface contains ele-

ments lying nearly parallel to the line of sight, their apparent orientation

when viewed monocularly can differ from the apparent surface orientation

when viewed binocularly

The reader can check this in a room with a textured ceiling: If you
look at it with one eye through a narrow tube, any portion you see through
the tube will soon come to be oriented apparently at a right angle to your
line of sight. This impression persists despite the certainty of one's knowl-
edge that it is false.

From these observations, we may draw some simple inferences:

1. There is at least one internal representation of the depth, surface

orientation, or both associated with each surface point in a scene.

2. Because surface orientation can be associated with unfamiliar

shapes, its representation probably precedes the decomposition of the

scene into objects.
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Table 4-1 . Forms in which early visual processes would deliver information about

surface geometry changes most naturally.

Process Natural output form

Stereopsis Disparity, hence 8r, Ar, and 5

Directional selectivity Ar

Structure from motion r, hr, Ar, and 5

Optical flow ? r and s

Occluding contours Ar

Other occlusion cues Ar

Surface orientation contours As

Surface contours s

Surface texture Probably r

Texture contours Ar and 5

Shading 5s and As

Note: r = relative depth (in orthographic projection); Sr = continuous or small local

changes in r;Ar = discontinuities in r- s = local surface orientation; 85 = continuous or

small local change in s;As = discontinuities in s.

3. Because the apparent orientation of a surface element can change,

depending on whether it is viewed binocularly or monocularly, the rep-

resentation of surface orientation is probably driven almost entirely by

perceptual processes and is influenced only slightly by specific knowledge

ofwhat the surface orientation actually is. Our ability to perceive the surface

much better than we can memorize it may also be connected with this

point.

4. In addition, it seems likely that the different sources of information

can influence the same representation of surface orientation.

In order to make the most efficient use of these different and often

complementary sources of information, they need to be combined in some

way. The computational question is, How best to do this? The natural answer

is to seek some representation of the visual scene that makes explicit just

the information that these processes can deliver.

Fortunately, the physical interpretation of the representation that we

seek is clear. All these processes deliver information about the depth or

orientation associated with surfaces in an image, and these are well-defined
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physical quantities. We therefore seek a way of making this information
explicit, of maintaining it in a consistent state and perhaps also of incor-

porating into the representation any physical constraints that hold for the
values which depth and surface orientation take over the kinds of surface
that occur in the real world.

Table 4-1 lists the types of information that the different early

processes can extract from images. The interesting point here is that

although processes like stereopsis and motion are in principle capable of
delivering depth information directly, they are in practice more likely to

deliver information about local changes in depth, for example, by mea-
suring local changes in disparity. Surface contours and shading provide
more direct information about surface orientation. In addition, occlusion
and brightness and size clues can deliver information about discontinuities

in depth. The main function of the representation we seek is therefore not
only to make explicit information about depth, local surface orientation,

and discontinuities in these quantities but also to create and maintain a
global representation of depth that is consistent with the local cues that

these sources provide. We call such a representation the 2 1/2-D sketch, and
the next section describes a particular candidate for it.

4.5 GENERAL FORM OF THE 2 1/2-D SKETCH

In order to provide an example of a representation as a basis for a more
thorough discussion about the details of its composition, I will describe
first the original proposal for a viewer-centered representation (this is the
force of the word sketch) that uses surface primitives of one (small) size.

It includes a representation of contours of surface discontinuity, and it has
enough internal computational structure to maintain its descriptions of
depth, surface orientation, and surface discontinuity in a consistent state.

Depth may be represented by a scalar quantity r, the distance from
the viewer of a point on a surface. Surface discontinuities may be repre-
sented by oriented line elements. As we have seen, surface orientation may
be represented as a vector (p,q) in two-dimensional space, which is equiv-
alent to covering the image with needles. The length of each needle defines
the slant (or dip) ofthe surface at the point, so that zero length corresponds
to a surface that is perpendicular to the vector from the viewer to that

point, and the length of the needle increases as the surface slants away
from the viewer. The orientation of the needle defines the tilt, that is, the
direction of the surface's slant. Figure 4-2 illustrates this representation;
it is like having a gradient space at each point in the visual field.

In principle, the relation between depth and surface orientation is
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Figure 4-2. Another example of a 2 1/2-dimensional sketch, this time of a cube.

The surface orientation is again represented by arrows, as explained in the text and

in the legend to Figure 3-12. Occluding contours are shown with full lines, and

surface orientation discontinuities with dotted lines. Depth is not shown in the

figure, though it is thought that rough depth is available in the representation.

straightforward—one is simply the integral of the other, taken over regions

bounded by surface discontinuities. It is therefore possible to devise a

representation with intrinsic computational facilities that can maintain the

two variables of depth and surface orientation in a consistent state. But

note that in any such scheme surface discontinuities acquire a special status

(as curves across which integration stops). Furthermore, if the represen-

tation is an active one, maintaining consistency largely through local oper-

ations, curves that mark surface discontinuities (for example, contours that

arise from occluding contours in the image) must be filled in completely,

so that the integration cannot leak across any point along an object bound-

ary. It is interesting that subjective contours have this property and that

they are closely related to subjective changes in brightness often associated

with changes in perceived depth. If the human visual processor contains

a representation that resembles the 2 J/2-D sketch, it would be interesting

to ask whether subjective contours occur within it.

In summary, then, the argument is that the 2V2-D sketch is useful

because it makes explicit information about the image in a form that is

closely matched to what early visual processes can deliver. We can then
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formulate the goals of early visual processing as being primarily the con-
struction of this representation. For example, specific goals would be to

discover the surface orientations in a scene, which contours in the primal
sketch correspond to surface discontinuities and should therefore be rep-

resented in the 2V2-D sketch, and which contours are missing in the primal
sketch and need to be inserted into the 2 1/2-D sketch so that it is consistent

with the structure of three-dimensional space. This formulation avoids all

the difficulties associated with the terms figure and ground, region and
object—the difficulties inherent in the image segmentation approach; for

the gray-level intensity array, the primal sketch, the various modules of
early visual processing, and finally the 2 1/2-D sketch itself deal only with
discovering the properties of surfaces in an image.

This outline raises many questions of detail, and we shall examine
some of them in the next few sections. The reader, however, should be
warned not to expect very precise answers. Our knowledge from here
on is much less detailed than it has been up to this point. Unfortunately, I

cannot provide much more than a framework within which to ask ques-
tions. Nevertheless, this has its value, even though denying the satisfaction

of permanent answers. Thus, it is worth setting this description out with
a little more precision than our discussion of the 2V2-D sketch has had
hitherto.

4.6 POSSIBLE FORMS FOR THE REPRESENTATION

There has not yet been any determined psychophysical assault on the 2V2 -

D sketch, so we know very little about it or even whether it in fact exists

in the sense suggested by our approach to vision. The main questions,
however, are not difficult to formulate: What precisely is represented and
how? What precisely is the coordinate system?—even saying that it must
be viewer centered leaves one with several options. And perhaps most
difficult, what kinds of internal computations are carried out within the
representation either to maintain its own internal consistency or to keep
it consistent with what is allowed by the three-dimensional world?

The first question is, Exactly what kind of surface information is made
explicit? Are both depth r and surface orientation 5 represented, for exam-
ple, or is only r actually carried in the representation, surface orientation
being computed on demand by local differentiation? Or alternatively, is

only surface orientation carried explicitly, depth being obtained somehow
by local integration?—a more difficult possibility to accept but definitely

different from the first alternative.

The best argument for the explicit representation of some function
like distance from the viewer comes from the theory of stereopsis. The
maximum range of disparities that are simultaneously perceivable without
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(a)

(b)

Figure 4-3. A selection of large-disparity stereograms. The reader can test for

himself what is the largest disparity for which he can simultaneously fuse both

foreground and background. When viewed from 20 cm, these stereograms have

disparities of (a) 2°, (b) 2.25°, (c) 2.5°, and (d) 2.75°.

diplopia is the same under four rather different conditions. First, in sta-

bilized-image conditions,* Fender and Julesz (1967) obtained a figure of

about 2° for a random-dot stereogram. Second, in the absence of any sta-

bilization—that is, under normal viewing conditions—about the same

range is obtained. When the complex stereograms given by Julesz (1971;

for example, fig. 4.5-3) are viewed from about 20 cm, they give rise to

'Images are held fixed on the retinas so that eye movements have no effect.
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(c)

(d)

Figure 4-3 (continued).

disparities of about the same order; if one views them from much closer,

one cannot "see" all of them at once. Third, it seems at present unlikely

that the maximum range of simultaneously perceivable disparities is much
affected by their distribution. The reader can see for himself from Figure

4-3 that the figure of about 2°, which holds for stabilized-image conditions

and for freely viewed stereograms with continuously varying disparities,

also applies to stereograms with a single disparity. And fourth, ifyou exper-
iment informally, using your fingers and real-world surfaces, you will arrive

at a similar figure.

These examples suggest that the figure of about 2° for the maximal
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range of simultaneously perceivable disparities has a rather general validity

(provided there is enough surface at the extreme disparities) and that the

figure is independent of eye movements. It is difficult to see how a memory

buffer that stored only surface orientation could impose such a restriction,

so I would conclude that depth is held in some form, perhaps only roughly,

and that the amount that is being held corresponds to 2°-2Va° of disparity.

The second set of arguments concerning why depth should be rep-

resented explicitly in some form has to do with the importance of discon-

tinuities in depth. Several early visual processes can yield information about

such discontinuities, some of them in only a qualitative way. The most

striking are probably occlusion cues, certain texture boundaries, disparity

boundaries, and also directional selectivity (see Table 4-1). The perceptual

vividness of subjective contours testifies to their importance. And subjec-

tively, if two surfaces lie at very different depths, we seem to be very aware

of this fact, even if they have the same surface orientations.

Both kinds of arguments suggest that some form of depth represen-

tation exists, and one interesting question is whether the range of simul-

taneously perceivable depths from apparent motion is commensurate with

what we can see stereoscopically But neither argument forcefully requires

that depth information be held very accurately, as it would have to be if it

formed the primary representation. Very locally we can easily say from

motion or stereopsis information whether one point is in front of another.

But if we try to compare the distances to two surfaces that lie in different

parts of the visual field, we do very poorly and can do this much less

accurately than we can compare their orientations.

This casts doubt, then, on the idea that depth is the basic represented

variable, that it is stored accurately over a particular range of values, and

that it is differentiated on demand to give surface orientation. There are

better arguments against this possibility, too, which come from the fact that

many of the processes listed in Table 4-1 yield information about surface

orientation directly rather than via information about depth. The most

obvious are surface contours, shading, and contours that deal with discon-

tinuities in surface orientation. But in fact, stereopsis and structure from

motion are both best suited to delivering information about how things

are changing locally rather than about absolute depth—stereopsis because

the brain rarely seems to know the actual absolute angle of convergence

of the two eyes, dealing instead only with variations in it, and structure

from motion because the analysis is local and orthographic, thus yielding

only local changes in depth. There is therefore a strong sense in which

both processes are very well suited to delivering surface orientation infor-

mation, and it is probably more accurate to think of them in this way than

as if they were primarily concerned with distance from the viewer.
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Finally, we can judge surface orientation very accurately, to within a

degree or two over the entire range of possible orientations (Stevens, 1979,

app. B). This is not on its own conclusive evidence that we represent it

explicitly, but taken in conjunction with our poor depth-judging abilities,

I think that it is a significant fact which would require explanation if we
did not represent it.

My conclusion from these arguments is that we likely represent both

quantities 5 and r internally, but that although we may represent 5 quite

accurately, we represent r only roughly. We may also have facilities for

representing local differences in depth more accurately, which would be
in addition to our representation of surface orientation.

4.7 POSSIBLE COORDINATE SYSTEMS

Perhaps we should next address the question of a coordinate system. We
have already observed that it must be centered on the viewer, but this still

leaves several possibilities. The first and most conspicuous point is that all

the processes we have discussed are naturally retinocentric, as illustrated

in Figure 4-4(a). Relative depth and surface orientation are obtained along

and relative to the line of sight, not any external frame. So at least initially,

(a) (b)

Figure 4-4. In retinocentric polar coordinates, the natural angle to measure a

surface's orientation is that formed between the surface and the line of sight. Hence,
as in (a), two parallel surfaces S

}
and S2 are associated with different angles Q, and

2 ,
respectively, which here have opposite signs. A much more convenient repre-

sentation is to refer all angles to the direction straight ahead, as illustrated in (b).

It is then easy to tell whether two surfaces are parallel and whether they are flat,

convex, or concave.
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we are almost forced to expect a retinocentric frame within which to

express the results of each process.

On the other hand, it must be remembered that coordinates referring

to the line of sight are not very useful to the viewer. Decisions about

whether two surfaces have the same orientation or whether a surface is flat

are not easily made from specifications in such a frame. One must contin-

ually allow for the angle of the line of sight, as illustrated in Figure 4-4(a)

—

a difficulty that is compounded by the effects of eye movements.

The second point, which follows from the first, is that although most

early visual processes that deliver surface orientation information do so

relative to the line of sight, each process may do so in its own way. In

stereopsis, as we saw, there is a natural preference for specifying the com-

ponents of surface orientation in the vertical and horizontal directions

separately, simply because the horizontal positioning of the two eyes dis-

tinguishes these two directions. Surface contour and texture information

prefer a slant-and-tilt representation of the sort discussed in Sections 3.6

and 3.7. Structure-from-motion information is probably like surface con-

tour information in this respect.

To summarize, then, there are several different ways of representing

surface orientation in a retinocentric coordinate frame, and the different

early visual processes may use slightly different ones in which to express

their own first guesses at what the surface orientation actually is.

The third point is that we have a fovea. Different parts of the visual

field are analyzed at very different resolutions for a given direction of gaze.

An important consequence of this is that the amount of memory or buffer

space necessary to record the results of early visual processes varies widely

in the visual field, being much greater for the fovea than for the periphery.

This provides another reason for expecting a retinocentric frame, because

if one used a frame that had already allowed for eye movements, it would

have to have foveal resolution everywhere. Such luxurious memory capac-

ity would be wasteful, unnecessary, and in violation of our own experience

as perceivers, because if things were really like this, we should be able to

build up a perceptual impression of the world that was everywhere as

detailed as it is at the center of the gaze.

The final general point involves the question of consistency. We have

already observed that the early visual processes can run independently to

a large extent, and that some parts of the visual field will be accessible to

some processes, and other parts to other processes. Therefore, the ques-

tion of maintaining consistency among the different types of information

will arise, as well as the question of assigning priorities that accurately

reflect the reliabilities of the different processes, that is, assigning priorities

so that the best source is believed when different sources are in conflict.
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This question of consistency should clearly be resolved as early as possible,

because until it is, all the information cannot be reduced to just one rep-

resentation.

These four observations lead to two conclusions. First, information

from the different sources is probably checked for consistency and com-
bined in some kind of retinocentric frame. This is because the information

is all delivered in this form and because such a representation, containing

among other things an enlarged foveal capacity, best matches the capabil-

ities of the preceding processes.

Second, some conversion of the coordinate frame probably takes place

at this point in order to express information from the different processes

in a standard form and probably also to allow for the angle of gaze. An
example of a suitable conversion is illustrated in Figure 4-4(b), where all

angles are referred to the direction straight ahead instead of to the local

line of sight. Such a conversion would (1) facilitate the computation of

predicates like flat, convex, or concave; (2) allow easy comparison of the

orientation of surfaces in different parts of the visual field; and (3) prepare

the way for the business of allowing for eye movements.

4.8 INTERPOLATION, CONTINUATION,
AND DISCONTINUITIES

The issues I wish to discuss next are based on three different types of

psychophysical observation. The first is the observation, first studied in

detail by White (1962), that one "sees" even a low density (2%-3%) ran-

dom-dot stereogram as portraying a continuous surface, not as a set of

isolated dots. The reader may confirm this for himself by looking at the

5% stereogram in Figure 3-8. The impression of a solid surface is strong.

We are aware that the dots all lie at the same depth—they are clearly

markings on an otherwise transparent sheet, which is flat and whose sur-

face orientation is clearly apparent. This phenomenon is not altogether

surprising in view of the theory of stereopsis described in Section 3.3,

because the zero-crossings at which disparity is assigned do not cover the

image—most of its area has no zero-crossings at all (examine Figure 3-14,

for example)—so the notion that some kind of filling-in has to be carried

out is to be expected. Notice, incidentally, that in the cooperative stereo

algorithm of Figure 3-7, the filling-in process is incorporated into the

algorithm, and this indeed was one of its initial attractions for us.

Eric Grimson (1979) has studied the filling-in or interpolation prob-
lem from a psychophysical and a computational point of view and has

found that the visual system is very conservative in the amount of filling-in
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Figure 4-5. The stereogram (a) has the density distribution given in (b) and the

disparity distribution indicated by the solid lines in (c). Such a stereogram can be

used to explore psychophysical^ whether and how we interpolate across the gap.

The dotted lines in (c) illustrate two interpolation possibilities.

it allows without additional evidence. He created various stereograms like

the ones depicted in Figure 4-5, in which the density and disparity both

decrease toward the center, as shown. The question is, How, if at all, does

the observer fill in across the region where there are no dots? Two of the

three possible candidates are shown in Figure 4-5(c): Candidate A fills in

straight across with constant disparity; candidate B (not shown) produces

some smooth interpolation that connects the two surfaces without any

discontinuity in surface orientation; and candidate C continues the surfaces

linearly until they intersect.

What the viewer perceives can be determined by putting a probe spot
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' H
Figure 4-6. In this stereo pair, C

2
is seen at the same depth as C

1
and C

3
, despite

the fact that there are no disparity cues to the depth of C2 .
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in the intermediate region at various disparities and asking the viewer
whether it lies above or below the place "where the surface goes." Grimson
found that the percept is unfortunately not a vivid one in these circum-
stances; although the subjects confidently exclude possibilities A and c7,

they are vague about the position of B. They never report any discontinu-

ities in surface orientation. He concluded that although there seems to be
some interpolation, the matter is not straightforward. I shall look at the

computational side of the problem a little later.

The second aspect of the problem is what I shall call continuation,

which is best illustrated by a stereo pair of Andrew Witkin's, shown in

Figure 4-6. This stereogram is perceived as two rectanglesA andB occlud-
ing a continuous rectangle containing Cu C2 , and C5 . The curious thing

about this demonstration is that the information about stereo disparity can
come from only the vertical lines in the figure. Thus, regions A, B, Cu and
C5 contain points at which the disparity is defined, and the fact that we see
each as a whole surface is a problem only in interpolation. But for region
C2 there are no such cues. The fact that it is assigned the same depth as d
and C5 must therefore be the result ofsome continuation process operating
"behind" the occluding planes A and B. It is critically important for the
demonstration that lines like the horizontal edges of Clt C2 , and c73 be in

good alignment. It is as though their accurate alignment in the two-dimen-
sional image allows them to be viewed as evidence of the same surface

discontinuity in three dimensions, which then allows surface C2 to be seen
at the same depth as surfaces Cx and C3 . A similar inference may perhaps
be made from some experiments by Naomi Weisstein (1975), who dis-

played a drifting grating, occluded a central rectangular patch of it, and yet

found adaptation effects occurring even within this patch.

These experiments suggest that the viewer-centered representation of
surfaces may be capable of representing more than one surface at once. It

may also be significant that in suitably constructed random-dot stereo-

grams, like that given in figure 3-1 9(b), one can simultaneously and vividly

see two surfaces. I personally cannot see three at once (compare Julesz,

1971, fig. 5.7-1), although there may be people who can.
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Figure 4-7. The shape of curved subjec-

tive contours. They are composed of two

circles with centers C, and C
2 ,
one ema-

nating smoothly from each initiating point,

A and B, that are joined smoothly (at T). Of

the infinite number of pairs of circles with

these properties, subjective contours fol-

low the pair having minimal curvature.

Finally, there is the question of discontinuities in depth and in surface

orientation. We have already mentioned discontinuities in depth in relation

to the kind of continuation necessary for the phenomenon of Figure 4-6

and also in relation to the phenomenon of subjective contours. In both

cases, continuity and smoothness (minimum curvature) seem to be impor-

tant criteria. Ullman (1976a) examined phenomenologically the shape of

curved subjective contours and found that it could be described accurately

by two circles, one emanating from each source point, that are joined

smoothly, as illustrated in Figure 4-7. Of the infinite family of pairs of

circles with this property, one selects the pair yielding minimal curvature.

Ullman also described a local network capable of generating this shape.

Although the shape of these contours is quite well understood, little

is known about the conditions that cause their formation except the rather

general notions that evidence of occlusion is required, together with rather

direct monocular cues as to the exact position of the discontinuity. The

Kanisza triangle (Figure 3-81e), the radial sun (Figure 2-25b) and the 5%

random-dot stereogram (Figure 3-8), in which the dots themselves contain

short, vertical edge segments, all provide both kinds of information in

slightly different ways. The topic needs further psychophysical study.

4.9 COMPUTATIONAL ASPECTS

OF THE INTERPOLATION PROBLEM

From a computational point of view, two problems need to be understood

before planning detailed psychophysical experiments. The first is the

notion of discontinuity, and the second, the different possibilities for inter-

polation.
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Discontinuities

Although the distinction between a continuous and a discontinuous change

over a continuum is a clear one, where the sample space is discrete the

distinction is more elusive. We have already met this problem twice, once

in detecting discontinuities in the orientation of zero-crossings where,

strictly speaking, they cannot occur, and again in Land and McCann s (1971)

lightness algorithm. In both cases one has to set a threshold. In the first

case it was based on the point at which a "real" underlying discontinuity

can no longer be discriminated from a very high curvature change. This

point depends upon the receptive field size associated with the channel,

so that what the smaller channels might "see" as smooth, the larger ones

might "see" as discontinuous.

In an absolute sense, the resolution of the sample space does impose
restrictions on what can be considered a continuous change. For example,

in the one-dimensional case, suppose that the underlying representation

consists of values specified a distance 8 apart. Then by the sampling theo-

rem, the representation cannot contain complete information about fre-

quencies higher than, say, it/8 = H. Thus, the representation is effectively

band limited by frequency H.

Now, although a signal that is band limited by frequency fl can be
represented completely by samples at intervals of 8, there is no guarantee

that such a signal can accommodate all sample points at which one places

arbitrary numbers. In other words, if the sample values change too fast, the

overall signal may exceed the bandwidth of the representation. If this

occurs, then the representation is forced to attribute the change to a dis-

continuity, since it is simply not rich enough to accommodate the changes

that are actually occurring. This point is captured precisely by a theorem
due to Bernstein, which says that the derivative of a band-limited function

cannot get too large compared with the value of the function. If/00 is a

function that is band limited by ft, and if/'OO is its derivative, then the

theorem states that

sup [/•'(*)! ^ a sup [f(x)\

That is, the largest value of [f'(x)\ over all x's is not bigger than the largest

value of n|/(x)|.

This constraint is a fundamental one that applies whenever we try to

represent information on a discrete grid, and it is of particular interest

here that the human visual system appears unable to represent sine waves
in depth whose frequencies exceed 3-4 cycles per degree at the fovea
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(Tyler, 1973). For example, the constraint may help to explain why subjec-

tive contours that do not appear or that are not very strong when we look

at them directly appear much more vivid if we look at them indirectly.

Presumably, the resolution of the representation also decreases with eccen-

tricity, so that what can be represented foveally as a very steep gradient

must, when presented more eccentrically, be represented as a discontinuity.

As we saw in Section 3.3, stereopsis can sometimes provide clear

evidence for a surface discontinuity; if, for example, the horizontal rate of

change of disparity, which we shall call d' , reaches 1 in either eye, there is

a discontinuity in depth as seen from the other eye. But in sparsely featured

images, there is often not enough information to decide even this. Percep-

tually one may be left with a vague feeling that the disparity does change

but no exact impression of where. In a sparse random-dot stereogram, if

two squares happen to line up along a disparity boundary, vivid subjective

contours are formed and the boundary is clearly delineated; however, if

the squares in the stereogram are replaced by blurred dots, for example,

the perception of the discontinuity is much less vivid.

Although these observations are little more than suggestions, they do

hint that the interpolation process is conservative and that the visual system

is reluctant to insert contours of discontinuity in either depth or surface

orientation unless the image itself provides reasonable evidence of their

positions. A contour may not be evident all along its length, but it is unlikely

that direct visual evidence of it will be lacking everywhere along it. Eric

Grimson (1979) enshrined this view in a dictum, which states thztplaces

ofno information are actuallyplaces ofinformation. In other words, one

cannot hide discontinuities, and conversely, if the image provides no evi-

dence at all about the presence of a discontinuity, not even an edge frag-

ment anywhere along where one is expected, then such a discontinuity

may not be assumed. Hence, in contrived situations where direct evidence

is deliberately removed, as in Figure 4-5, we neither insert contours nor

interpolate the surfaces in a definite way, and we are thus left with a vague

and unsettled perception.

Interpolation Methods

Three principal interpolation methods deserve notice: (1) linear interpo-

lation in depth r, (2) linear interpolation in surface orientation, and (3)

"fair surface" interpolation, which is a method used by car makers to give

car bodies a smooth shape. Very roughly, method 1 is similar to the inverse

transform we met in Horn's (1974) algorithm for the retinex. It tries to

minimize the value of the Laplacian operator V 2
on the surface. Method 2
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approximately minimizes the first curvature of the surface in any given

concave or convex region. (This follows from the facts that the first cur-

vature/ = — div n, where div n is the divergence of n, n is the surface

normal, and that locally averaging n almost minimizes div n.) The objection

to both methods 1 and 2, implemented on a grid, is that convergence rates

are slow—quadratic, in fact, with the distance between fixed points of the

computation. I have already stated my reservations about the use of iterative

methods in perceptual computations (see Sections 3.2 and 3-5).

The third possibility, favored over the other two by Grimson, involves

the notion of a fair surface, which is a surface whose first and second

derivatives vary continuously but which allows discontinuities in the third

and higher derivatives. One-shot methods are available for filling-in

between neighboring triplets of points and knitting them together along

the seams, so as to preserve smoothness in arbitrarily high-level derivatives.

Choice of the second derivative as the cutoff point rests on the empirical

observation of car designers that customers notice discontinuities in the

first and second derivatives of a surface but not in the third. Figure 4-8
illustrates the result of applying a filling-in method of this kind to the

output derived from a stereo pair. It gives a smooth and pleasing appear-

ance.

As for the connection between these computational ideas and the truth

of how we ourselves find discontinuities or fill in surfaces—to the limited

extent that we do these things—these are questions for the future.

4. 10 OTHER INTERNAL COMPUTATIONS

The notion of surface continuity may, as we have seen, give rise to various

active computations in the 2V2-D sketch, including filling-in and the smooth
continuation of discontinuities. We would expect other local constraints to

be embedded there in a similar way—for example, consistency relations

concerning the possible arrangements of surfaces in three-dimensional

space, such as the constraints made explicit by Waltz (1975; recall Figure

1-3). Such constraints may eventually form the basis for an understanding

of phenomena like the reversal of the Necker cube. From this point of

view, it is natural that many illusions concerning the interpretation of three-

dimensional structure (the Necker cube, subjective contours, the Muller-Lyer

figure, the Poggendorff figure, and so on) should take place after stereo-

scopic fusion (see Julesz, 1971; Blomfield, 1973). Illusions like the revers-

ing bucket of Figure 5-9 should also have part of their cause here, since

the continuity of the bucket s surface plays a critical role in keeping its

appearance consistent. The interesting questions here concern how much
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Figure 4-9. The strange reversal of

this figure may, like the reversal of the

Necker cube, be due to constraints

embedded in the 2V2-dimensional

sketch.

is done in the 2V2-D sketch proper and how much occurs as this immediate

representation is computed into a three-dimensional representation of the

kind that we remember (see the next chapter). Examples like the Penrose

triangle, many of Escher's figures, and even Figure 4-9 probably depend

on a mixture of effects, some local in the 2 1/2-D sketch, and other effects

due to a failure to construct an overall, consistent three-dimensional inter-

pretation from a set of local views.

One final point that might be thought puzzling. Why should the Necker

cube reversal occur when depicted in a random-dot stereogram? It might

be argued that since stereopsis definitely assigns the edges all to a plane,

the figure should be seen in two-dimensions and not in three. I think it is

best to regard all contours in the 2V2-D sketch as trying for a three-dimen-

sional interpretation. The fact that the contours are put there by stereopsis

rather than by, say, the primal sketch is unimportant.



CHAPTER 5

Representing Shapes

for Recognition

5.1 INTRODUCTION

We come now to the final and perhaps most fascinating of the steps in our

overall program, the transformation of shapes from a representation that

is matched to the processes of perception into a representation that is

suitable for recognition. There are many issues to be explored here, and

this chapter, which rests heavily on Marr and Nishihara (1978), touches

only the surface of some of them. Nevertheless, the main ideas are once

more clear in outline, and I shall emphasize exactly what creating a shape

representation that is suitable for recognition entails. This involves us in

a discussion of what recognition is and how it comes about.

The single most important point is that we must now abandon the

luxury of a viewer-centered coordinate frame on which all representations

discussed hitherto have been based because of their intimate connection

with the imaging process. Object recognition demands a stable shape

description that depends little, if at all, on the viewpoint. This, in turn,

means that the pieces and articulation of a shape need to be described not

295
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relative to the viewer but relative to a frame of reference based on the

shape itself. This has the fascinating implication that a canonical coordinate

frame* must be set up within the object before its shape is described, and

there seems to be no way of avoiding this. For some shapes, like a cigar,

it will be easy to do this, and for others, like a crumpled newspaper, it will

not.

Let us therefore look at these questions in detail. I shall reserve the

term shape for the geometry of an object's physical surface. Thus, two

statues of a horse cast from the same mold have the same shape. A repre-

sentation for shape is a formal scheme for describing shape or some

aspects of shape together with rules that specify how the scheme is applied

to any particular shape. I shall call the result of using a representation to

describe a given shape a description of the shape in that representation. A

description may specify a shape only roughly or in fine detail.

5.2 ISSUES RAISED BY THE
REPRESENTATION OF SHAPE

There are many kinds of visually derivable information that play important

roles in recognition and discrimination tasks. Shape information has a

special character, because unlike color or visual texture information, the

representation of most kinds of shape information requires some sort of

coordinate system for describing spatial relations. For example, the infor-

mation that distinguishes the different animal shapes in Figure 5-1 is the

spatial arrangement, orientation, and sizes of the sticks. Similarly, since left

and right hands are reflections of each other in space, any description of

the shape of a hand that is sufficient for determining whether it is left or

right must in some manner specify the relative locations of the fingers and

thumb.

Criteria forjudging the Effectiveness

of a Shape Representation

There are many different aspects of an object's shape, some more useful

for recognition than others, and any one aspect can be described in a

number of ways. Although formulating a completely general classification

*A coordinate frame uniquely determined by the shape itself.
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of shape representations is difficult, we can attempt to set out the main

criteria by which they may be judged and the basic design choices that

have to be made when formulating a representation.

Accessibility

Can the desired description be computed from an image, and can it be

done reasonably inexpensively? There are fundamental limitations to the

information available in an image—for example, regarding its resolution

—

and the requirements of a representation have to fall within the limits of

what is possible. Moreover, a description that is in principle derivable from

an image may still be undesirable if its derivation involves unacceptably

large amounts of memory or computation time.

Scope and uniqueness

What class of shapes is the representation designed for, and do the shapes

in that class have canonical descriptions in the representation? For example,

a shape representation designed to describe planar surfaces and junctions

between perpendicular planes would have cubical solids within its scope,

but would be inappropriate for describing a billiard ball or a comb. If the

representation is to be used for recognition, the shape description must

also be unique; otherwise, at some point in the recognition process, the

difficult problem would arise of deciding whether two descriptions specify

the same shape. If, for example, we chose to represent shape using poly-

nomials of degree n, the formal description of a given surface would
depend on the particular coordinate system chosen. Since we would be
unlikely to use the same coordinate system on two different occasions

without observing some additional conventions, even the same image of

a surface could give rise to very different descriptions.

Another example would be to represent a shape by a large collection

of small cubes, packed together so as to approximate the shape as closely

as possible. If the cubes were sufficiently small, the shape could be approx-

imated quite accurately so that the scope of such a representation would
be quite broad. On the other hand, a small shift of, say, half the side of a

Vs-in "minicube" could significantly change the representation of a shape,

thus violating the uniqueness condition. If we used 1-ft cubes instead, the

uniqueness problem would be greatly alleviated (a human might be rep-

resented by just six of them stacked up), but at considerable cost to other

aspects of the representation.
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Stability and sensitivity

Beyond the above scope and uniqueness conditions lie questions about

the continuity and resolution of a representation. To be useful for recog-

nition, the similarity between two shapes must be reflected in their descrip-

tions, but at the same time even subtle differences must be expressible.

These opposing conditions can be satisfied only if it is possible to decouple

stable information that captures the more general and less varying prop-

erties of a shape from information that is sensitive to the finer distinctions

between shapes.

For example, consider a stick figure representation that uses the three-

dimensional arrangement and the relative size of sticks as primitive ele-

ments to describe animal shapes, as in Figure 5-1. The size of the sticks

used gives one control over the stability and sensitivity of the resulting stick

figure description. Stability is increased by using larger sticks; a single stick

provides the most stable description of the whole shape, describing only

its size and orientation. A description built of smaller sticks, on the other

hand, would be sensitive to smaller, more local details, such as the extrem-

ities of an animal's limbs. Although such details tend to be less stable, they

can nevertheless be important for making fine distinctions between similar

shapes.

Choices in the Design of a Shape Representation

We can now relate the effects of different designs of shape representation

to our three performance criteria. It is worth repeating once more that the

most fundamental property of a representation is that it can make some

types of information explicit, and this property can be used to bring the

essential information to the foreground allowing smaller and more easily

manipulated descriptions to suffice. We shall consider three aspects of a

representations design here: (1) the representation's coordinate system;

(2) its primitives, which are the primary units of shape information used

in the representation; and (3) the organization that the representation

imposes on the information in its descriptions.

Coordinate systems

The most important aspect of the coordinate system used by a represen-

tation is the way it is defined. If locations are specified relative to the viewer,

we say the representation uses a viewer-centered coordinate system. If

locations are specified in a coordinate system defined by the viewed object,
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Figure 5-1. These pipe cleaner figures illustrate several of the points developed

in this chapter. A shape representation does not have to reproduce a shape's surface

in order to describe it adequately for recognition; as we see here, animal shapes

can be portrayed quite effectively by the arrangement and relative sizes of a small

number of sticks. The simplicity of these descriptions is due to the correspondence

between the sticks shown here and natural or canonical axes of the shapes

described. To be useful for recognition, a shape representation must be based on

characteristics that are uniquely defined by the shape and that can be derived

reliably from images of it. (Reprinted by permission from D. Marr and H. K. Nishi-

hara, "Representation and recognition of the spatial organization of three-dimen-

sional shapes," Proc. R. Soc. Lond. B 200, 269-294.)

the representation uses an object-centered coordinate system. There are,

of course, several versions of each type.

For recognition tasks, viewer-centered descriptions are easier to pro-

duce but harder to use than object-centered ones, because viewer-centered

descriptions depend upon the vantage point from which they are built. As

a result, any theory of recognition that is based on a viewer-centered rep-
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reservation must treat distinct views of an object essentially as distinct

objects. Thus this approach requires a potentially large store of descriptions

in memory in exchange for a reduction in the magnitude and complexity

of the computations required to compensate for the effects of perspective.

Minsky (1975) has suggested that this number of descriptions might

be minimized by choosing appropriate shape primitives and views to be

stored in memory. Clearly much can be accomplished by this approach in

some circumstances. For example, suppose squirrels need to distinguish

trees from other objects but do not need to identify particular trees by

their shape. They may be able to note some general characteristics of the

appearance of a vertical tree trunk on the ground nearby that do not

depend on the vantage point. In a representation based on these charac-

teristics, all trees in the squirrel's environment would produce essentially

the same description.

For more complex recognition tasks involving the arrangement of an

object's components, however, any viewer-centered representation is likely

to be sensitive to the object's orientation. For example, consider the many

orientation-dependent appearances of a human hand, even if the fingers

and thumb remain fixed with respect to each other. In order to distinguish

a left hand from a right by using a viewer-centered representation, this

problem would have to be treated as many separate cases, one for each

possible appearance of a hand.

The alternative to relying on an exhaustive enumeration of all possible

appearances is to use an object-centered coordinate system and thus to

emphasize the computation of a canonical description that is independent

of the vantage point. Ideally, only a single description of each object's spatial

structure would have to be stored in memory in order for that object to be

recognizable from even unfamiliar vantage points. However, an object-cen-

tered description is more difficult to derive, since a unique coordinate

system has to be defined for each object, and, as I mentioned earlier, that

coordinate system has to be identified from the image before the descrip-

tion is constructed.

Primitives

The primitives of a representation are the most elementary units of shape

information available in the representation, which is the type of informa-

tion that the representation receives from earlier visual processes. For

instance, the 2V2-D sketch is an example of a representation whose prim-

itives carry information about local surface orientation and distance (rel-

ative to the viewer) at thousands of locations in the visual field. We can

separate two aspects of a representation's primitives; the type of shape
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information they carry, which is important for questions of accessibility,

and their size, which is important for questions of stability and sensitivity

There are two principal classes of shape primitives, surface-based

(two-dimensional) and volumetric (three-dimensional). As we have already

seen, surface information is more immediately derivable from images. The
simplest primitives useful for surface descriptions would specify just the

location and size of small pieces of surface. More elaborate surface prim-

itives like those used in the 2y2-D sketch could include orientation and

depth information as well.

On the other hand, volumetric primitives carry information about the

spatial distribution of a shape. This type of information is more directly

related to the requirements of shape recognition than information about

a shapes surface structure, and this often means that much shorter and
therefore more stable descriptions can still satisfy the sensitivity criterion.

The simplest volumetric primitive specifies just a location and a spatial

extent, and corresponds to a roughly spherical region in space. By adding

a vector to this information, a roughly cylindrical region can be specified,

whose length is indicated by the length of the vector and whose diameter

is indicated by the spatial extent parameter of the primitive. A second vector

could indicate a rotational orientation about the first vector, making it

possible to specify a pillow-shaped region whose cross section along the

first vector is thicker in the direction of the second vector. The additional

vector could alternatively be used to specify the direction and magnitude
of a curvature in the axis of the cylindrical region.

The complexity of the primitives used by a representation is limited

largely by the type of information that can be reliably derived by processes

prior to the representation. While the information-carrying capacity of

primitives can be increased arbitrarily, there is a limit to the amount that

is useful, since very detailed primitives will be derived less consistently by

those earlier processes. In the extreme case, descriptions in a shape rep-

resentation would consist of a single primitive. Such a representation

would satisfy the uniqueness and stability conditions only ifthe information

carried by the primitive was derived consistently by the processes supply-

ing it. If this were so, however, those processes would already have accom-

plished shape recognition in specifying the primitive, and there would be
no need for the representation.

Size is the other aspect that influences the information that the rep-

resentation's primitives make explicit. In particular, information about fea-

tures much larger than the primitives used is difficult to access, since it is

represented only implicitly in the configuration of a larger number of

smaller items. For example, consider how the arm of the human shape

would be described in a surface representation like the 2V2-D sketch. The
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representation here is essentially what one would get by covering the

surface with fish scales, each specifying a local surface orientation. Only

information about small patches of surface is present, so a rather sophis-

ticated analysis of a large assembly of these patches is required to make

explicit the presence of the arm shape itself. A stick figure representation,

on the other hand, can specify an arm explicitly with a single stick primitive

of the appropriate size. Similar arguments can be applied to the represen-

tation scheme based on small cubes, discussed earlier; larger-scale shape

information is not immediately available from such a representation.

At the other end of the scale, features of a shape that are much smaller

than the primitives used to describe it are not just inaccessible, they are

completely omitted from the description. For example, the fingers of a

human shape are not expressible in a stick figure description that uses only

primitives the size of the arms and legs. And even the arms and legs would

be inexpressible in terms of 1-ft cubes. Similarly, surface details much

smaller than the basic surface primitives used in the 2 1/2-D sketch would

be inexpressible in that representation. Thus the size of the primitives used

in a description determines to a large degree the kind of information made

explicit by a representation, the information made available but not directly

obtainable, and the information that is discarded.

Organization

The third design dimension is the way shape information is organized by

a representation. In the simplest case, no organization is imposed by the

representation and all elements in a description have the same status. The

local surface representation provided by the 2V2-D sketch is one such

example, and another would be our pile of minicubes that approximates

a three-dimensional shape.

Alternatively, the primitive elements of a description can be organized

into modules consisting, for example, of adjacent elements of roughly the

same size, in order to distinguish certain groupings of the primitives from

others. A modular organization is especially useful for recognition because

it can make sensitivity and stability distinctions explicit if all constituents

of a given module lie at roughly the same level of stability and sensitivity.

5.3 THE 3-D MODEL REPRESENTATION

We have formulated the requirements for a representation for shape rec-

ognition in terms of the criteria of accessibility, scope and uniqueness, and

stability and sensitivity. We concluded that the design of a suitable repre-

sentation should involve an object-centered coordinate system, include but
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perhaps not be limited exclusively to volumetric shape primitives, and

impose some kind of modular organization on the primitives involved in

a description. These choices have strong implications, and a limited rep-

resentation, called the 3-D (three-dimensional) model representation, can

be defined quite directly from them.

Natural Coordinate Systems

Our first objective is to define a shape s object-centered coordinate system.

If it is to be canonical, it must be based on axes determined by salient

geometrical characteristics of the shape, and conversely, the scope of the

representation must be limited to those shapes for which this can be done.

A shape's natural axes may be defined by elongation, symmetry, or even

motion (for example, the axis of rotation); thus, the coordinate system for

a sausage should be defined by its major axis and the direction of its

curvature, and that of a face by its axis of symmetry. Objects with many or

poorly defined axes, like a sphere, a door, or a crumpled newspaper, will

inevitably lead to ambiguities. For a shape as regular as a sphere, this poses

no great problem, because its description in all reasonable systems is the

same. A door has four distinguished axes, defined by the directions of its

length, its width, and its thickness and also by the axis on which it is hinged.

Since the number of descriptions is small and doors are important, we
could deal with each of the four possible descriptions of a door as a sep-

arate case. This would not be true of a crumpled newspaper, however,

which is likely to have a large number of poorly defined axes.

At present, the problems we understand best are those involving the

determination of axes based on a shape s elongation or symmetry (Marr,

1977a), and for the sake of simplicity we shall restrict the scope of the 3-D

model representation to shapes that have natural axes of this type. One
large class of shapes that satisfy this condition is the generalized cones,

which we have already met and studied in Section 3.6 and illustrated in

Figure 3-59. This class of shapes is important to us not because the surfaces

are conveniently described—they may actually not be at all simple (Hol-

lerbach, 1975)—but because such shapes have well-defined axes. This crit-

ical feature helps to define a canonical object-centered coordinate system,

which is of course the central and most difficult task we face here.

In real life, a wide variety of common shapes is included in the scope

of such a representation, because objects whose shape is achieved by
growth are often described quite naturally in terms of one or more gen-

eralized cones. The animal shapes depicted in Figure 5-1 provide some
examples—the individual sticks are simply axes of generalized cones that

approximate the shapes of parts of these animals.
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Axis-Based Descriptions

To be useful for recognition, a representations primitives must also be

associated with stable geometrical characteristics. The natural axes of a

shape satisfy this requirement, and we shall therefore base the 3-D model

representation's primitives on them. A description that uses axis-based

primitives can be thought of as a stick figure, like those depicted in Figure

5-1, but one must be careful to think of the stick as a local coordinate axis.

While only a limited amount of information about a shape is captured by

such a description, that information is especially useful for recognition. We
shall further limit the information carried by these primitives to pertain

just to size and orientation. This will enable us to develop the 3-D model

representation with a minimal commitment to inessential details. More

elaborate details, such as curved axes or the tapering of a shape along the

length of its axis, will not be included here.

The concept of a stick figure representation for shape is not new. Blum

Figure 5-2. Blum's (1973) grassfire technique for recovering an axis from a sil-

houette. It can be thought of as lighting a fire at the boundary, the axis being defined

as where two configurations meet. However, the technique is undesirably sensitive

to small perturbations in the contour, (a) Shows the Blum transform of a rectangle,

and (b) of a rectangle with a notch. (Reprinted by permission from G. Agin, "Rep-

resentation and description of curved objects," Stanford Artificial Intelligence Proj-

ect, memo AIM-173, Stanford University, Stanford, California.)
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(1973), for example, has studied a classification scheme for two-dimen-

sional silhouettes based on a "grassfire" technique for deriving a kind of

stick figure from those shapes (see Figure 5-2), and Binford (1971) intro-

duced the generalized cone for three-dimensional shapes. These repre-

sentations have an important limitation, however; they do not impose a

modular organization on the information they carry. For example, each

part of the arm of a human shape can correspond to at most one stick in

these representations; it would not be possible to have both a single stick

corresponding to the whole arm and three smaller sticks corresponding

to the major segments of the arm in the same description.

Modular Organization

of the 3-D Model Representation

The modular decomposition of a description used for recognition must be
well defined—such a decomposition must exist and it should be uniquely

determined. In the 3-D model representation as specified so far, this is best

achieved by basing the decomposition on the canonical axes of a shape.

Each of these axes can be associated with a coarse spatial context that

provides a natural grouping of the axes of the major shape components
contained within that scope. We shall refer to a module defined this way
as a 3-D model. Thus, each 3-D model specifies the following:

1. A model axis, which is the single axis defining the extent of the

shape context of the model. This is a primitive of the representation, and
it provides coarse information about characteristics such as size and ori-

entation about the overall shape described.

2. Optionally, the relative spatial arrangement and sizes of the major

component axes contained within the spatial context specified by the

model axis. The number of component axes should be small and they

should be roughly the same size.

3. The names (internal references) of 3-D models for the shape com-
ponents associated with the component axes, whenever such models have

been constructed. Their model axes correspond to the component axes of

this 3-D model.

Each of the boxes in Figure 5-3 depicts a 3-D model with the model
axis on the left and an arrangement of the component axes on the right.

The model axis of the human 3-D model makes explicit the gross prop-

erties (size and orientation) of the whole shape with a single primitive.

The six component axes corresponding to the torso, head, and limbs can
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each be associated with a 3-D model containing additional information

about the decomposition of that component into an arrangement ofsmaller

components. Although a single 3-D model is a simple structure, the com-

bination of several in this kind of organizational hierarchy allows one to

build up a description that captures the geometry of a shape to an arbitrary

level of detail. We shall call such a hierarchy of 3-D models a 3-D model

description of a shape.

The example in Figure 5-3 illustrates the important advantages of a

modular organization for a shape description. The stability of the repre-

sentation is greatly enhanced by including both large and small primitive

descriptions of the shape and by decoupling local spatial relations from

Human

Arm

Forearm

Hand

Figure 5-3. This diagram illustrates the organization of shape information in a 3-D

model description. Each box corresponds to a 3-D model, with its model axis on the left side of

the box and the arrangement of its component axes on the right. In addition, some component

axes have 3-D models associated with them, as indicated by the way the boxes overlap. The relative

arrangement of each model's component axes, however, is shown improperly, since it should be

in an object-centered system rather than the viewer-centered projection used here (a more correct

3-D model is given by the table shown in Figure 5-5c). The important characteristics of this type

of organization are: (1) Each 3-D model is a self-contained unit of shape information and has a

limited complexity; (2) information appears in shape contexts appropriate for recognition (the

disposition of a finger is most stable when specified relative to the hand that contains it); and (3)

the representation can be manipulated flexibly. This approach limits the representation's scope,

however, since it is only useful for shapes that have well-defined 3-D model decompositions.

(Reprinted by permission from D. Marr and H. K. Nishihara, "Representation and recognition of

the spatial organization of three-dimensional shapes," Froc. R. Soc. Lond. B 200, 269-294.)
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more global ones. Without this modularization, the importance of the rel-

ative spatial arrangement of two adjacent fingers would be indistinguisha-

ble from that of the relation between a finger and the nose. Modularity also

allows the representation to be used more flexibly in response to the needs

ofthe moment. For example, it is easy to construct a 3-D model description

of just the arm of a human shape that could later be included in a new
3-D model description of the whole human shape. Conversely, a rough but

usable description of the human shape need not include an elaborate arm

description. Finally, this form of modular organization allows one to trade

off scope against detail. This simplifies the computational processes that

derive and use the representation, because even though a complete 3-D

model description may be very elaborate, only one 3-D model has to be

dealt with at any time, and individual 3-D models have a limited and man-

ageable complexity.

Coordinate System of the 3-D Model

There are two kinds of object-centered coordinate systems that the 3-D

model representation might use. In one, all the component axes of a

description, from torso to eyelash, are specified in a common frame based

on the axis of the whole shape. The other uses a distributed coordinate

system, in which each 3-D model has its own coordinate system. The latter

is preferable for two main reasons. First, the spatial relations specified in

a 3-D model description are always local to one of its models and should

be given in a frame of reference determined by that model for the same

reasons that we prefer an object-centered system over a viewer-centered

one. To do otherwise would cause information about the relative disposi-

tions of a model's components to depend on the orientation of the model
axis relative to the whole shape. For example, the description of the shape

of a horse's leg would depend on the angle that the leg makes with the

torso. Second, in addition to this stability and uniqueness consideration,

the representation's accessibility and modularity is improved if each 3-D

model maintains its own coordinate system, because it can then be dealt

with as a completely self-contained unit of shape description.

The coordinate system for specifying the relative arrangement of a

3-D model's component axes can be defined by its model axis or by one
of its component axes. We shall refer to the axis chosen for this purpose
as the model's principal axis. For the examples given here, the principal

axis will be the component axis that meets or comes close to the largest

number of other component axes in the 3-D model (for example, the torso

of an animal shape). The location of the principal axis must also be spec-
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(a) (b)

Figure 5-4. The spatial organization of a 3-D model's axes is specified in terms

of pairwise relationships between those axes that we call adjunct relations. The

disposition in space of one axis S is determined relative to another, A, by specifying

the location of one of its endpoints in a cylindrical coordinate system (p,r,6) about

A as shown on the left, and its orientation and length in a spherical coordinate

system (i,<|>,s) centered on that point and aligned with A as shown on the right.

(Reprinted by permission from D. Marr and H. K. Nishihara, "Representation and

recognition of the spatial organization of three-dimensional shapes," Proc. R. Soc.

Lond. B 200, 269-294.)

ified relative to the model axis in order to maintain the connectedness of

the distributed coordinate system.

Two three-dimensional vectors are required to specify the position in

space of one axis relative to another. One way of doing this is illustrated

in Figure 5-4, which represents the position of a vector S relative to an

axis vector A by means of two vectors. The first vector, written in cylindrical

coordinates (p, r, 0), defines the starting point of S relative to A (Figure

5_4a) ;
the second vector, written in spherical coordinates (i, ((>, s), specifies

S itself (Figure 5-4b). We shall call the combined specification (p, r, 0, i,

<(>, s) an adjunct relation for S relative to A.

Because the precision with which 3-D models can represent a shape

varies, it is appropriate to represent the angles and lengths that occur in

an adjunct relation in a system that is also capable of variable precision.

For instance, one might wish to state that a particular axis, like the arm

component of the human 3-D model in Figure 5-3, is connected rather

precisely at one end of the torso (that is, the value ofp is exactly 0), but

with 9 only coarsely specified and with very little restriction on i. An

example of a suitable system incorporating variable precision is illustrated

in Figure 5-5.
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Figure 5-5. Angle and distance specifications in an adjunct relation must include tolerances so

that specificity of these parameters can be made explicit in the representation. One way to do this

is shown in the upper diagrams, which associate symbols with (a) angular and (b) linear ranges.

An example of adjunct relations for the human 3-D model in Figure 5-3 that are expressed in these

symbols is shown in the table (c). A and S identify the two axes related by the adjunct relation

specified along each row of this table. If the mnemonic names listed under A and S were replaced

by internal references to the corresponding 3-D models whenever they exist and left blank other-

wise, this table would show essentially all the information carried by a 3-D model. (Reprinted by

permission from D. Marr and H. K. Nishihara, "Representation and recognition of the spatial

organization of three-dimensional shapes," Proc. R. Soc. Lond. B 200, 269-294.)

5.4 NATURAL EXTENSIONS

These representational ideas, perhaps best epitomized by the hierarchical

scheme depicted in Figure 5-3, begin to show how the complexities of

shape description may be approached. Perhaps ifJ. L. Austin had seen such

a figure, he would not have thrown up his hands in such despair at the
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prospect of formulating rules for representing the shape of his cat (see

Section 1.2)! Nevertheless, the ideas are still quite crude, and little work

has gone into their development since 1977, mainly because we have been

preoccupied with the details of early visual processing. However, questions

have frequently arisen about ways of generalizing these ideas, and while

answers have not yet been developed in detail, it is worth indicating briefly

the most obvious directions in which the representation can be extended.

Perhaps the first point is that one can represent two-dimensional con-

figurations just as easily as three provided, of course, that the patterns are

endowed with a natural axis of elongation or of symmetry Thus we can as

easily represent a two-dimensional drawing of a face as the features and

details on a real three-dimensional head. A primitive example appears in

Figure 5-6. It is particularly interesting to note in this connection that the

existence of symmetry in a pattern yields a canonical axis but not a can-

onical direction along the axis. We still have to decide which end is

(down) and which is 1 (up). This choice has to be made when one starts

to construct a particular 3-D model, and we seem to make this final choice

ourselves using the direction that we are currently taking to be up—usually

it is vertically up. Ifyou construct a detailed face description while adhering

to this convention and then stand on your head, the details become com-

pletely unrecognizable, perhaps because the innate choice mechanism is

now using the opposite convention! In addition, face recognition seems to

be a rather accurate, specialized, and late-developing process in humans,

and interested readers should consult Carey and Diamond (1980) and

other works on the subject.

The second point is that the primitives ofthe 3-D model representation

can be extended to include surface primitives, roughly of two kinds. First

would be just rough, two-dimensional rectangular surfaces of various sizes,

including elliptical shapes and circular ones. Not very many primitives

would be needed by the average man, although presumably a sculptor like

Henry Moore has a repertoire of hundreds. The second kind of primitive

is the notion of something that is not solid but hollow—like a tube or cup,

for example. It is not hard to see how such primitives may be organized

along much the same lines as the original 3-D model representation, and

Figure 5-7 illustrates some preliminary ideas about how such a vocabulary

may be deployed to represent various common objects. If we also admit

curved axes into the representation, much can be done to represent the

more common objects we encounter in everyday life (see Figure 5-7a, and

especially Hollerbach, 1975).

The other major directions in which these ideas need to be extended

concern not so much the spatial arrangement of a given shape but the

spatial configurations formed by several separate objects. These will need
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(a)

A A

(b) (c)

(d) (e)

Figure 5-6. The 3-D model for a two-dimensional pattern portraying a face,

(a) The overall 3-D model, with the axis determined by symmetry, (b)-(e) Possible

3-D models for the pattern's principal constituents.

at least three types of description. One is the incorporation of their posi-

tions in a standard space frame around the viewer in terms of angles and

distances from him. Another is the representation of configurations of

objects relative to the viewer, for example, the notion that you and two

other people happen to create an equilateral triangle. The critical point

here is that the position of the viewer is involved and that angular rela-

tions—the internal structure of the configuration—are made explicit.

Finally, there is the representation of the relative positions of a number of

external objects without particular reference to the viewer. For example,
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(a)

(c)

Figure 5-7. Some 3-D models for more complex shapes (a), (b) and (c) may

require surface primitives in the representation, (d) Illustrates the representation

of a familiar object (a cube) obtained by G. Hinton's unusual choice of axis (a

diagonal from one vertex to the opposite one).

three trees might lie in a row, or four buildings form a square. The under-

lying problems here are exactly the same as those we have already met—

how to choose an appropriate canonical coordinate frame within which to

make explicit the spatial relations of the configuration.

It is already clear how to approach representational problems of this

sort, and for the designers of a vision machine I do not think that these
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questions will raise any insurmountable difficulties. The major scientific

obstacles here, it seems to me, are how to discover what systems and

schemes are actually used by humans. I do not expect the answers to be

very surprising, but at present I see no empirical way of approaching this

type of problem. It seems to be much more difficult to design experiments

to answer questions at these rather high levels of analysis than at the lower

ones. In fact, perhaps we could say that at these higher levels we are

beginning to face all the problems that the linguists have. Designing a

successful empirical approach to such questions would represent a major

breakthrough.

5.5 DERIVING AND USING
THE 3-D MODEL REPRESENTATION

The advantages of modularity, which has been one of our major concerns

in the design of the 3-D model representation, will become especially

visible as we discuss the processes that derive and use the representation

for recognition. In particular, none of the processes have to deal with the

internal details of more than one 3-D model at a time even if the complete

description of a shape involves many 3-D models. We begin by examining

the basic problems associated with identifying a model's coordinate system

and its component axes and transforming the viewer-centered axis speci-

fications into specifications in the model's coordinate system. We then treat

the task of recognizing this description as a problem of indexing into a

catalogue of stored 3-D model descriptions. Finally, we consider the inter-

action between the process that derives a 3-D model description and the

recognition process. The ambiguities introduced by the perspective pro-

jection often mean that only coarse specifications of the lengths and ori-

entations of a shape's axes are directly accessible from its image. However,

if the recognition process in conjunction with the derivation process, is

conservative—so that all the information recognition recovers is reliable

—

the early stages of the recognition process can make additional constraints

available so that a more precise description can be produced.

Deriving a 3-D Model Description

To construct a 3-D model, the model's coordinate system and component

axes must be identified from an image, and the arrangement of the com-

ponent axes in that coordinate system must be specified.

Even if a shape has a canonical coordinate system and a natural decom-

position into component axes, there is still the problem of deriving these
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features from an image. At present we do not have a complete solution to

this problem, but some results have been obtained for shapes that fall

within the scope of the 3-D model representation. For example, we saw in

Section 3.6 that the image of a generalized cone's axis may be found from

the occluding contours in an image provided that the axis is not too fore-

shortened. An example of the decomposition formed by this method

appears in Figure 5-8, and a brief description is given in the legend. Notice

that the final decomposition (Figure 5-8f) was derived from the contour

(Figure 5-8a) without knowledge of the three-dimensional shape apart

from the assumption that it is composed of generalized cones. The method

can therefore be used to find the component axes for the 3-D model of a

shape that has not been seen before.

This result is somewhat limited, but so is the information it uses,

namely, the contours formed by rays that are tangential to the side of a

smooth surface. Interestingly, as we saw in Section 3.2, these particular

contours are unsuitable for use in either stereopsis or structure-from-

motion computations, because they do not correspond to fixed locations

on the viewed surface. Creases and folds on a surface also give rise to

contours in an image, and these have yet to be studied in detail. Similarly,

much work remains in the study of how to use information about shape

from shading and texture.

A major difficulty in the analysis of images arises when an important

axis is obscured because it is either foreshortened or hidden behind

another part of the shape. For example, although the torso-based coordi-

nate system for the overall shape of a horse is easily obtained from a side

view, it is difficult to obtain when the horse faces the viewer. There are

three ways of dealing with such a situation. The first is to allow for rec-

ognition the use of partial descriptions based on the axes visible from the

Figure 5-8. (opposite) The occluding contours of simple shapes composed of

generalized cones can be used to locate projections of the natural axes of the cones

provided that the axes are not severely foreshortened. One algorithm for doing

this is shown in this example from a program written by P. Vatan. The initial outline

in (a) was obtained by applying local grouping processes to the primal sketch of

an image of a toy donkey. This outline was then smoothed and divided into convex

and concave sections to get (b). Next, strong segmentation points like the deep

concavity circled in (c) were identified and a set of heuristic rules used to connect

them with other points on the contour to get the segmentation shown in (d). The

component axes shown in (e) were then derived from these. The thin lines in (f)

indicate the position of the head, leg, and tail components along the torso axis, and

the snout and ear components along the head axis. (Reprinted by permission from

D. Marr and H. K. Nishihara, "Representation and recognition of the spatial orga-

nization of three-dimensional shapes," Proc. R. Soc. Lond. D 200, 269-294.)
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front. If this is done, the representation is slightly weakened in terms of

the uniqueness criterion, but not as severely as a purely viewer-centered

representation would be. Another strategy is to use a shape's visible com-

ponents whenever their recognition is easy but that of the overall shape is

difficult. For example, the front view of a horse usually contains an excellent

view of the horse's face, which can be recognized directly and provides

(b)

(d)

Figure 5-9. These views of a water bucket illustrate an important characteristic

of any system based on the derivation of canonical axes from an image. The tech-

niques useful for the axis shown in (b) from the image (a) are quite different from

those that are best for situations where the axis is foreshortened, as in (c) and (d).

(Reprinted by permission from D. Marr and H. K. Nishihara, "Representation and

recognition of the spatial organization of three dimensional shapes," Proc. R. Soc.

Lond. B200, 269-294.)
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another route by which the horse can be recognized. This strategy will be

discussed further at the end of this section. Finally, a foreshortened axis

can sometimes be found from an analysis of radial symmetry in the image.

A water bucket like that shown in Figure 5-9 provides an interesting

example. Its principal axis and the shape about that axis are derivable by

the methods discussed above for the view shown in Figure 5-9(a) but not

for that in Figure 5-9(c), where the bucket s principal axis is foreshortened.

An erroneous axis is likely to be established instead, perhaps going through

the flanges that attach the handle to the rim. However, a failure to produce

a recognizable description with this erroneous axis would suggest that the

correct axis is not the most pronounced in the image, and an alternative

could be sought. The two concentric circles (made by the top and bottom

rims of the bucket) are strong clues that the principal axis passes through

their centers. Furthermore, because they are concentric, these circles may
be at widely separated locations along that axis. Considering that possibility

could lead to the desired description of the bucket even though the identity

of the closer rim remains ambiguous. A local surface depth map like the

2V2-D sketch, computed by means of stereopsis, shading, or texture infor-

mation, is likely to play an important role in interpreting images like these.

Relating Viewer-Centered

to Object-Centered Coordinates

Techniques for finding axes in a two-dimensional image describe the loca-

tions of the axes in a viewer-centered coordinate system, and so a trans-

formation is required to convert the specifications of the axes to an object-

centered coordinate system. In the 3-D model representation, all axis dis-

positions are specified by adjunct relations, as in Figure 5-4, so a mecha-

nism is required for computing an adjunct relation from the specification

oftwo axes in a viewer-centered coordinate system. We shall call this mech-

anism the image-space processor.

The image-space processor can be kept very simple, since the adjunct

relation is the only positional specification that has to be interpreted. An
adjunct relation (p, r, 6, 1, c|>, s), as we have seen, is a way of specifying the

position of a vector S relative to an axis vector A. What the image-space

processor must do is make the coordinates of S available simultaneously

in a frame centered on the viewer and in one centered on vector A, so that

specifying the vector S in either frame makes it available in the other. This

is not a difficult task (see Marr and Nishihara, 1978, for more details).

The accuracy of the adjunct relations computed by the image-space

processor is limited by the precision with which vectors A and S are spec-

ified in the viewer-centered coordinate system. Since depth information is
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lost in the orthographic projection, the orientation specifications for axes

derived from the retinal images are least precise in the amount the axes

slant toward or away from the viewer. Axis slant parameters can often be

reconstructed at least roughly by using stereopsis, shading, texture, struc-

ture-from-motion, and surface contour analysis. Constraints supplied by

the recognition process can also be used to improve the precision of the

slant specifications. We shall consider this possibility later when we discuss

the interaction between the derivation process and recognition.

Indexing and the Catalogue of 3-D Models

Recognition involves two things: a collection of stored 3-D model descrip-

tions, and various indexes into the collection that allow a newly derived

description to be associated with a description in the collection. We shall

refer to the above collection along with its indexing as the catalogue of

3-D models. Although our knowledge ofwhat information can be extracted

from an image is still limited, three access paths into the catalogue appear

to be particularly useful. They are the specificity index, the adjunct index,

and the parent index.

All 3-D models can be classified hierarchically according to the pre-

cision of the information they carry, and an index can be based on this

classification that we call the specificity index. Figure 5-10 shows an exam-

Figure 5-10. (opposite) If the recognition process of relating new shape descrip-

tions to known shapes is to be a reliable source of information about the shape, it

must be conservative. This diagram illustrates an organization (or indexing) of

stored shape descriptions according to their specificity. The top row contains the

most general shape description, which carries information about size and overall

orientation only. Since no commitment about the shape's internal structure is made,

all shapes are described equally well. Descriptions in the second row include

information about the number and distribution of component axes along the prin-

cipal axis, making it possible to distinguish a number of shape configurations (a

few are shown in this example). At this point only very general commitments are

made concerning the relative sizes of the components and the angles between

them. These parameters are made more precise at the third level so that distinctions

can be made, for example, between the horse and cow shapes. A newly derived

3-D model would be related to a model in this catalogue by starting at the top

level and working downward as far as the information in the new description

allows. At that point, it could branch and form a new shape category. (Reprinted by

permission from D. Marr and H. K. Nishihara, "Representation and recognition of

the spatial organization of three-dimensional shapes," Froc. R. Soc. Lond. B 200,

269-294.)
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pie of this organization for models of a few animal shapes. The top level

contains the most undifferentiated description available, a 3-D model with-

out a component decomposition. Only the model axis is specified, so the

model describes any shape. At the next level of detail are various limbs and

a general quadruped shape, a biped shape, and a bird shape. These descrip-

tions are most sensitive to the number of component axes in the model

and to their distribution along the principal axis (which is the torso for

most animal shapes), while only very coarse information about the lengths

and orientations of the components is available. One level lower in the

hierarchy the descriptions become more sensitive to angles and lengths,

so that distinctions can be made between horse, giraffe, and cow shapes,

for example. A newly derived 3-D model may be related to a model in the

catalogue by starting at the top of the hierarchy and working down the

levels through models whose shape specifications are consistent with the

new model's until a level of specificity is reached that corresponds to the

precision of the information in the new model.

Once a 3-D model for a shape has been selected from the catalogue,

its adjunct relations provide access to 3-D models for its components based

on their locations, orientations, and relative sizes. This gives us another

access path to the models in the catalogue, which we call the adjunct index.

It tells, for example, that the two similar components lying at the front end

of a quadruped model are general limb models and that, for a horse model,

they are more specific horse limb models. Thus the adjunct index provides

useful defaults for the shapes of the components of a shape prior to the

derivation of 3-D models for them from the image. It is also useful in

situations where a catalogued model is not accessible via the specificity

index because the description derived from the image is inadequate (per-

haps because the component has very little structure).

The third access path that we consider important is the inverse of the

second, and we call it theparent index of a 3-D model. When a component

of a shape is recognized, it can provide information about what the whole

shape is likely to be. For example, the catalogue's 3-D model for a horse

can be indexed under each of its component 3-D models so that the 3-D

model for a horse's leg provides access to the 3-D model for a horse shape.

This index would play an important role in the situation, discussed

earlier, where an important axis of a shape is obscured or foreshortened.

When a horse faces the viewer, the omission of the torso and hind leg axes

might cause the neck axis to be selected incorrectly as the principal axis.

Unless special provision has been made to handle this case, the specificity

index will fail to access a horse model in the catalogue. A reasonable

strategy at this point is to apply the derivation process to the components

of the image. In this example, 3-D models for the head, neck, and the two
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forelegs would be produced. Catalogued models for the head and legs are

likely to be found using the specificity index, and each of these would

indicate via the parent index that it is a component of either the quadruped

or the horse 3-D model (depending on the quality of the derived com-

ponent models), providing strong evidence for considering the quadruped

or horse model for the whole shape.

It is important to note that the adjunct and parent indexes play a role

secondary to that of the specificity index, upon which our notion of rec-

ognition rests. We shall see below that their purpose is primarily to provide

contextual constraints that support the derivation process, for example, by

indicating where the principal axis is likely to be when such information

cannot be obtained directly from the image. They do not prevent novel

composite shapes, such as a centaur, from being described faithfully and

recognized (in the case of a centaur, as a horse shape with a human bust).

It may be useful to posit other indexes in the catalogue, perhaps based

on color or texture characteristics (for example, the stripes of a zebra) or

even on nonvisual clues, such as the sounds an animal makes, but these lie

outside of the scope of this investigation.

Interaction Between Derivation

and Recognition

So far, the derivation of a 3-D model has been treated separately from the

process of relating that model to the stored models of the 3-D model
catalogue. We view recognition as a gradual process that proceeds from
the general to the specific and that overlaps with, guides, and constrains

the derivation of a description from the image. After a catalogued model
is selected by using one of the three indexes, we want to use it to improve

the analysis of the image. There are two phases to this: First, the component
axes from the image must be paired with the adjunct relations supplied by
the catalogue; second, the image-space processor must be employed to

combine the constraints available from the image with those provided by
the model to produce a new set of derived adjunct relations that are more
specific than those from the catalogue model. This last phase involves an

analysis of constraints that must be satisfied by adjunct relations consistent

with both the image and the information from the catalogue. The general

idea of using a stored model of a shape to assist in the interpretation of an

image was first used by Roberts (1965) in a computer program for pro-

ducing edge descriptions of shapes built out of cubes, wedges, and hex-

agonal prisms from their images.
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Finding the correspondence between image and catalogued model

The first phase can be thought of as a homology problem, in which the

adjunct relations of a catalogue model must be related to the axes derived

from an image. There may not be a complete solution. For example, the

leg axes in a silhouette of a horse as viewed from the side are easily

identified, but the left and right forelegs usually cannot be disambiguated

without further information. Often this ambiguity may be tolerable, how-

ever, since the corresponding adjunct relations for the two legs have the

same general orientation specifications (they differ only in their locations),

and this is all that the following analysis makes use of.

The information available for establishing the correspondence between

image and model increases as the derivation-recognition process pro-

ceeds. Initially, positional information along the principal axis of the stick

figure has priority, since it is the least distorted by the perspective projec-

tion. Other clues available initially include: (1) the relative thicknesses of

the shapes about the component axes (the neck of a horse is much thicker

than the legs), (2) possible decompositions of component axes (the tail

and legs of a horse may be roughly straight but the bust has two compo-

nents that always make a large angle with one another), (3) symmetry or

repetition (the legs of a horse are all the same thickness and are roughly

parallel, and so have roughly the same length and orientation in the image

distinguishing them from the tail), and (4) large differences in <(> of the

adjunct relation (in an image, the legs and tail of a horse usually extend to

one side of the torso while the neck extends to the other). Collectively,

such clues are often sufficient to relate the major components of a 3-D

model to the axes derived from an image.

Homology information is also available from the adjunct and parent

indexes. When a 3-D model from the catalogue is obtained by using the

adjunct index, the polarity of that component's axis is automatically deter-

mined. For example, when continuing the analysis of the image of a horse

to one of the legs, the polarity of the leg axis is indicated by its connection

with the torso (the hoof end being distal to the junction). When the parent

index is used to select a catalogue model based on the identification of

some of a shape's components, the pairings for these identified compo-

nents strongly constrain pairings for the remaining components. For exam-

ple, in the case of a horse facing the viewer, the missing torso's location in

the image can be found from the locations of the head, neck, and forelegs.

Constraint analysis

Once a homology has been established between a 3-D model and the

image, we want to use the information that it makes available to constrain
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the possible slant angles for the axes. The basic idea is that there are often

only a few combinations of the slant specifications for the projected axes

in the image for which the adjunct relations derived from the image would
be consistent with those supplied by the catalogue model. Or equivalently

there are often only a few orientations of the catalogue model s principal

axis (relative to the viewer) for which its component axes match closely

the projected axes in the image.

The combination of information from the image and the catalogue

model is often sufficient to determine the axis slants uniquely up to a

reflection about the image plane. For example, Figure 5-1 1(a) shows the

locus of orientations of vector A (relative to the viewer) that are consistent

with an inclination of 90° between A and vector S, and an angle of 47°

between their projections onto the image plane; Figure 5-1 1(b) shows the

allowed orientations for an inclination angle of 45° and a projected angle

of - 111°; and Figure 5-1 1(c) shows the intersection of these two sets. The
sharpness of these constraints depends on the particular viewing angle (as

indicated by the other examples in the figure) and on the particular adjunct

relations in the 3-D model. Generally, the constraints are strongest when
the component axes have very different orientations and when the prin-

cipal axis does not lie in the image plane.

There are several algorithms that can use these constraints. Perhaps

the simplest is a relaxation process that adjusts the orientation ofA incre-

mentally, seeking the disposition for which the projections of the angles

between the component axes of the catalogue model, as computed by the

image-space processor, best agree with those in the stick figure image. At

this point vector A will indicate the orientation of the principal axis that is

most consistent with all of the constraints, and the image-space processor

can use its other vector, S, to compute the orientations of each of the

component axes by using the adjuncts from the catalogue model. This hill-

climbing approach converges quite efficiently when the constraints are

sufficiently strong.

Alternatively, instead of relaxing the orientation of the catalogue

model's principal axis, one can relax the slant angles of the sticks obtained

from the image. In this case, the discrepancy measure is obtained by com-
paring adjunct relations derived between the sticks in the image with the

corresponding adjunct relations from the catalogue. This approach is inter-

esting because in its implementation, all of the transformations carried out

by the image-space processor are in the same direction (from viewer-cen-

tered to object-centered coordinates). In a final step, improved orientation

information may be used to recover more information from the image. In

particular, once the orientations of the axes have been determined, their

relative lengths may be computed.

The overall recognition process may be summarized as follows. We
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Figure 5-11. (opposite) Ifwe know the three-dimensional inclination angle i that

vector S makes with axis A, as well as the two-dimensional projection of this angle,

then the orientation of As coordinate system relative to the viewer is strongly

constrained, (a) The orientations consistent with an inclination of 90° and an image

angle like that between the heavy lines in the accompanying stick figure (allowing

a tolerance of 5° in the image angle). The horizontal axis of the graph indicates the

angle by which A dips out of the image plane toward the viewer. The vertical axis

is the amount the coordinate system is rotated about A. (b) shows the set of ori-

entations consistent with i = 45°, and the visible angle between the images of the

torso and neck axes, (c) The intersection of the two sets, which is restricted to a

narrow range of orientations having a dip of approximately 67° out of the image

plane (there is another solution, not shown here, at - 67°). The remaining rows

show the same analyses for dips of 45° and 0°, respectively. In this way, two-dimen-

sional information from the image and angles from the stored 3-D model can be

combined to give sometimes quite accurate information about the spatial dispo-

sition of the viewed shape relative to the viewer. (Reprinted by permission from

D. Marr and H. K. Nishihara, "Representation and recognition of the spatial orga-

nization of three-dimensional shapes," Proc. R. Soc. Lond. B 200, 269-294.)

first select a model from the catalogue based on the distribution of com-

ponents along the length of the principal axis. This model then provides

relative orientation constraints that help to determine the absolute orien-

tations (relative to the viewer) of the component axes in the image, and

with this information the image-space processor can be used to compute

the relative lengths of the component axes. This new information can then

be used to disambiguate shapes at the next level of the specificity index.

5.6 PSYCHOLOGICAL CONSIDERATIONS

In our study of the primal sketch and of processes capable of deriving

surface information from such image representations, we were much
helped by evidence from neurophysiology and psychophysics and by a

careful computational examination of what can in fact be derived from the

available information. Our approach rested heavily on the principle of

modularity (Marr, 1976), which states that any large computation should

be split up into a collection of small, nearly independent, specialized sub-

processes. Our analysis was based on evidence from psychophysics and

from everyday experience about what the modules were likely to be, the

underlying argument being that if visual information processing is not

organized in a modular way, incremental changes in its design, presumably
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an essential requirement for its evolutionary development, would be

unable to improve one aspect of visual performance without simultane-

ously degrading the operation of many others.

Unfortunately, we receive little help from the biological sciences about

the kinds of questions raised by the later aspects of the visual process.

Virtually nothing is known about the physiological and anatomical arrange-

ments that mediate the construction of three-dimensional visual descrip-

tions of the world, and even the best psychological information is for the

most part anecdotal and derived from neurological rather than psycho-

physical studies.

Nevertheless, I think it is clear in principle that the brain must con-

struct three-dimensional representations of objects and of the space they

occupy. As Sutherland (1979) has remarked, there are at least two good

reasons for this. First, in order to manipulate objects and avoid bumping

into them, organisms must be able to perceive and represent the disposi-

tion of the objects' surfaces in space. This gives us a minimal requirement

for something like the 2WD sketch. Second, in order to recognize an

object by its shape, allowing one then to evaluate its significance for action,

some kind of three-dimensional representation must be built from the

image and matched in some way to a stored three-dimensional represen-

tation with which other knowledge is already associated. As we have seen,

the two processes of construction and matching cannot be rigorously sep-

arated because a natural aspect of constructing a three-dimensional rep-

resentation may include the continual consultation of an increasingly spe-

cific catalogue of stored shapes.

This forces us to rely, in our study of these later problems, much more

on a careful consideration of the computational and representational

requirements. Stated baldly, the strong constraints come from what the

representation is to be usedfor.

We asked here about the requirements for a shape representation to

be used for recognition, and we came to three main conclusions: A shape

representation for recognition should (1) use an object-centered coordi-

nate system, (2) include volumetric primitives ofvarious sizes, and (3) have

a modular organization. A representation based on a shape's natural axes

(for example, the axes identified by a stick figure) follows directly from

these choices. In addition, we saw that the basic process for deriving a

shape description in such a representation must involve a means for iden-

tifying the natural axes of a shape in its image and a mechanism for trans-

forming viewer-centered axis specifications to specifications in an object-

centered coordinate system.

Finally, we saw how the recognition process itself involves a mixture

of straightforward derivation of shape information from the image and the
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deployment of gradually more detailed stored 3-D models during the

process of recognition-derivation. Thus critical ingredients of this process

are a collection of stored shape descriptions and various indexes for the

collection that allow a newly derived description to be associated with an

appropriate stored description. The most important of these indexes allows

shape recognition to proceed conservatively from the general to the spe-

cific based on the specificity of the information available from the image.

There are two ways in which we might try to examine empirically the

relevance of these ideas to the processes of recognition in the human visual

system. We can try to discover the type of information made explicit by the

visual process in its representations, or we can try to find some correlate

of the processes that derive and maintain them, perhaps using Shepard-

like studies of mental rotation. The first approach is the more fundamental:

Is a three-dimensional representation used, does it have a modular orga-

nization, and is it object centered? These questions have yet to be put to

empirical test, but three observations are worth noting here. The first is

that stick figure animals like those shown in Figure 5-1 are usually rec-

ognized easily despite the limited amount of shape information they por-

tray. While this does not demonstrate that the human visual process is

based on stick figures, it does suggest that the type of information carried

by stick figures plays an important role in it.

Second, illusions like that shown in Figure 5-12 (due originally to

Ernst Mach) provide evidence that local shape information is described rel-

ative to axes that are defined more globally. In the right row, the shapes

are seen as diamonds, whereas along the diagonal they are seen as squares.

\
Figure 5—12. The effect of different choices of an object-centered coordinate

system on the perception of shape is apparent in these diagrams. The black shapes

can be seen as diamonds or squares depending on which of their several natural

axes are used. (From F. Attneave, "Triangles as ambiguous figures," Am. J. Physiol.

81,447-453.')
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The diagonal axis is therefore being constructed during the analysis of this

pattern; it influences and therefore probably precedes the description of

the shapes of the local elements.

Third, Warrington and Taylor (1973) drew attention to the difficulty

experienced by their patients with right parietal lesions in interpreting

certain views of common objects, which Warrington and Taylor called

unconventional views. For example, these patients would fail to recognize

the top view of a bucket (Figure 5-9c), denying that it was a bucket even

when told it was. The patients were relatively unimpaired on views like

Figure 5-9(a). As Warrington and Taylor pointed out, this difference cannot

be easily explained in terms of familiarity or impaired depth perception,

because both views of a bucket are common and depth is just as important

to the three-dimensional structure of Figure 5-9(a) as it is to that of Figure

5-9(c). However, if the internal shape representation used for recognition

was based on a shape's natural axes, the second figure would be more

difficult to describe correctly, since its major axis is foreshortened. If this

explanation were correct, Warrington and Taylors unconventional views

would correspond to views in which an important natural axis of the shape

is foreshortened in the image, making it difficult for the patient to discover

or derive a description in the shape's canonical coordinate system.



CHAPTER 6

Synopsis

Our survey of this new, computational approach to vision is now complete.

Although there are many gaps in the account, I hope that it is solid enough

to establish a firm point ofview about the subject and to prompt the reader

to begin to judge its value. In this brief chapter, I shall take a very broad

view of the whole approach, inquiring into its most important general

features and how they relate to one another, and trying to say something

about the style of research that this approach implies. It is convenient to

divide the discussion into four main points.

The first point is one that we have met throughout the account—the

notion of different levels of explanation. The central tenet of the approach

is that to understand what vision is and how it works, an understanding at

only one level is insufficient. It is not enough to be able to describe the

responses of single cells, nor is it enough to be able to predict locally the

results of psychophysical experiments. Nor it is enough even to be able to

write computer programs that perform approximately in the desired way.

One has to do all these things at once and also be very aware of the
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additional level of explanation that I have called the level of computational

theory. The recognition of the existence and importance of this level is one

of the most important aspects of this approach. Having recognized this,

one can formulate the three levels of explanation explicitly (computational

theory, algorithm, and implementation), and it then becomes clear how

these different levels are related to the different types of empirical obser-

vation and theoretical analysis that can be conducted. I have laid particular

stress on the level of computational theory, not because I regard it as

inherently more important than the other two levels—the real power of

the approach lies in the integration of all three levels of attack—but

because it is a level of explanation that has not previously been recognized

and acted upon. It is therefore probably one of the most difficult ideas for

newcomers to the field to grasp, and for this reason alone its importance

should not be understated in any introductory book, such as this is

intended to be.

The second main point is that by taking an information-processing

point of view, we have been able to formulate a rather clear overall frame-

work for the process of vision. This framework is based on the idea that

the critical issues in vision revolve around the nature of the representations

used—that is, the particular characteristics of the world that are made

explicit during vision—and the nature of the processes that recover these

characteristics, create and maintain the representations, and eventually

read them. By analyzing the spatial aspects of the problem of vision, we

arrived at an overall framework for visual information processing that

hinges on three principal representations: (1) the primal sketch, which is

concerned with making explicit properties of the two-dimensional image,

ranging from the amount and disposition of the intensity changes there to

primitive representations of the local image geometry, and including at the

more sophisticated end a hierarchical description of any higher-order

structure present in the underlying reflectance distributions; (2) the 2 1/z-D

sketch, which is a viewer-centered representation of the depth and orien-

tation of the visible surfaces and includes contours of discontinuities in

these quantities; and (3) the 3-D model representation, whose important

features are that its coordinate system is object centered, that it includes

volumetric primitives (which make explicit the organization of the space

occupied by an object and not just its visible surfaces), and that primitives

of various size are included, arranged in a modular, hierarchical organi-

zation.

The third main point concerns the study of processes for recovering

the various aspects of the physical characteristics of a scene from images

of it. The critical act in formulating computational theories for such

processes is the discovery ofvalid constraints on the way the world behaves
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that provide sufficient additional information to allow recovery of the

desired characteristic. We saw many examples of this in Chapter 3, and

they were summarized in Table 3-3. The power of this type of analysis

resides in the fact that the discovery of valid, sufficiently universal con-

straints leads to conclusions about vision that have the same permanence

as conclusions in other branches of science.

Furthermore, once a computational theory for a process has been

formulated, algorithms for implementing it may be designed, and their

performance compared with that of the human visual processor. This

allows two kinds of results. First, if performance is essentially identical, we
have good evidence that the constraints of the underlying computational

theory are valid and may be implicit in the human processor; second, if a

process matches human performance, it is probably sufficiently powerful

to form part of a general purpose vision machine.

The final point concerns the methodology or style of this type of

approach, and it involves two main observations. First, the duality between

representations and processes, which is set out explicitly in Figure 6-1,

often provides a useful aid to thinking how best to proceed when studying

a particular problem. In the study both of representations and of processes,

general problems are often suggested by everyday experience or by psy-

chophysical or even neurophysiological findings of a quite general nature.

Such general observations can often lead to the formulation of a particular

process or representational theory, specific examples of which can be pro-

grammed or subjected to detailed psychophysical testing. Once we have

sufficient confidence in the correctness of the process or representation

at this level, we can inquire about its detailed implementation, which

involves the ultimate and very difficult problems of neurophysiology and

neuroanatomy.

The second observation is that there is no real recipe for this type of

research—even though I have sometimes suggested that there is—any

more than there is a straightforward procedure for discovering things in

any other branch of science. Indeed, part of the fun is that we never really

know where the next key is going to come from—a piece of daily expe-

rience, the report of a neurological deficit, a theorem about three-dimen-

sional geometry, a psychophysical finding in hyperacuity, a neurophysiol-

ogical observation, or the careful analysis of a representational problem.

All these kinds of information have played important roles in establishing

the framework that I have described, and they will presumably continue to

contribute to its advancement in an interesting and unpredictable way. I

hope only that these observations may persuade some of my readers to

join in the adventures we have had and to help in the long but rewarding

task of unraveling the mysteries of human visual perception.
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CHAPTER 7

In Defense

of the Approach

7.1 INTRODUCTION

In the first and second parts of this book, I have tried to set out in some
detail an approach that treats visual perception primarily as an information-

processing problem. I have incorporated answers to the objections most

commonly raised, but from my experience in trying to convey in lectures

and conversations the essence of this point of view, I expect that the reader

will still have some private difficulty or question, even if it is as simple as

thinking the scheme too farfetched or, at the opposite extreme, not imag-

inative enough.

To have addressed all the possible objections, however, would have

disrupted the account too much, so I thought it best to attempt to answer

them separately in the form of a conversation between an imaginary skeptic

and an imaginary defender of the information-processing point of view.

The dialogue is based on lunchtime conversations at the Salk Institute

between Francis Crick, Tomaso Poggio, and myself, but it does not follow
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those conversations very closely, and my imaginary objector is a combi-

nation of many real-life people. The discussion is not very structured and

ranges over a variety of topics, but this seems unavoidable.

7.2 A CONVERSATION

Can we begin with the levels-of-explanation idea, since you attribute so

much importance to it? How is it related to ideas aboutfeature detectors

and in particular to Horace Barlow's first dogma (1972, p. 380), which

states, "A description ofthe activity ofa single nerve cell which is transmitted

to and influences other nerve cells, and ofa nerve cell's response to such

influencesfrom other cells, is a complete enough descriptionforfunctional

understanding of the nervous system"?

Here, of course, I must disagree with Barlow's formulation, although

I do agree with one of the thoughts behind this dogma, namely, that there

is nothing else looking at what the cells are doing—they are the ultimate

correlates of perception. However, the dogma fails to take level one analy-

sis—the level of the computational theory—into account. You cannot

understand stereopsis simply by thinking about neurons. You have to

understand uniqueness, continuity, and the fundamental theorem of ster-

eopsis. You cannot understand structure from motion without knowing a

result like the structure-from-motion theorem, which shows how such a

phenomenon is possible. In addition, and critically important for a

researcher, the levels approach enforces a rigid intellectual discipline on

one's endeavors. As long as you think in terms of mechanisms or neurons,

you are liable to think too imprecisely, in similes.

Remember the moral from the early stereopsis networks discussed in

section 33! None ofthem formulated the computational problem precisely

at the top level, and almost all the proposed networks actually computed

the wrong thing. Another example was the notion of segmentation to carve

up an image into regions and objects. This wasted an enormous amount

of time and led to the development of all kinds of special relaxation and

hypothesize-and-test methods for agglomerating areas of the picture into

useful regions (see Chapter 4). The problem again was that people became

so entranced by the mechanisms for doing something that they erroneously

thought they understood it well enough to build machinery for it—just as

had occurred in the simpler case of stereopsis. It was only with a level-one

attack—the formulation of the 2V2-D sketch and its attendant and precisely

stated problems—that real progress was possible.

Have I made my case strong enough yet? The levels idea is crucial, and

perception cannot be understood without it—never by thinking just about

synaptic vesicles or about neurons and axons, just as flight cannot be under-

stood by studying only feathers. Aerodynamics provides the context in
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which to properly understand feathers. Another key point is that explana-

tions of a given phenomenon must be sought at the appropriate level. It's

no use, for example, trying to understand the fast Fourier transform in

terms of transistors as it runs on an IBM 370. There's just no point—it's too

difficult.

For instance, take the retina. I have argued that from a computational

point of view, it signals *72G * I (the X channels) and its time derivative

d/dt (V
2G * /) (the Y channels). From a computational point ofview, this is a

precise specification ofwhat the retina does. Of course, it does a lot more

—

it transduces the light, allows for a huge dynamic range, has a fovea with

interesting characteristics, can be moved around, and so forth. What you

accept as a reasonable description ofwhat the retina does depends on your

point of view. I personally accept V 2G as an adequate description, though

I take an unashamedly information-processing point ofview. A retinal phys-

iologist would not accept this, because he would want to know exactly how
the retina computes this term. A receptor chemist, on the other hand,

would scarcely admit that these sorts of consideration have anything at all

to do with the retina! Each point of view corresponds to a different level

of explanation, and all must eventually be satisfied.

Yes, I see thepoint. You re simply saying that,from an information-process-

ingpoint ofview, what is done and why assumesparamount importance—
this is your top level. The implementation details don't matter so much
from this perspectiveprovided that they do the right thing.

I'd like to make that point even more strongly. Figure 7-1 shows three

descriptions of essentially the same thing. At the top is the mathematical

description that we're so familiar with, V 2G * /. Figure 7-1(b) shows a

piece of the retina, which we believe does roughly this, at least in part. And
Figure 7-1 (c) illustrates a silicon chip, built for us by Graham Nudd of the

Hughes Research Laboratories in charge-coupled device technology, which

carries out the V2G convolution. So, in a real sense, all these three things

—

the formula, the retina, and the chip—are similar at the most general level

of description of their function.

Are the different levels ofexplanation really independent?

Not really, though the computational theory of a process is rather

independent of the algorithm or implementation levels, since it is deter-

mined solely by the information-processing task to be solved. The algo-

rithm depends heavily on the computational theory, of course, but it also

depends on the characteristics of the hardware in which it is to be imple-

mented. For instance, biological hardware might support parallel algo-

rithms more readily than serial ones, whereas the reverse is probably true

of today's digital electronic technology.
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Figure 7-1. (a) The mathematical formula that describes the initial filtering of an image. V 2
is

the Laplacian, G is a Gaussian, / (x,y) represents the image, and * the operation of convolution, (b)

A cross section of the retina, part of whose function is to compute (a), (c) The circuit diagram of

a silicon chip, built by Graham Nudd at Hughes Research Laboratories, which is capable of com-

puting (a) at television rates.
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(c)

Figure 7-1 (continued).

I cannot really accept that the computational theory is so independent of
the other levels. To beprecise, I can imagine that two quite distinct theories

ofa process might be possible. Theory 1 might be vastly superior to theory

2, which may be only a poor man s version in some way, but it could

happen that neural nets have no easy way of implementing theory 1 but

can do theory 2 very well. Effort would thus be misplaced in an elaborate

development of theory 1.

Yes, this could certainly happen, and I think it already has in the case

of deriving shape from shading. I would not be at all surprised if it was

unreasonably difficult to solve Horn's integral equations for shape from

shading with neural networks, yet the equations can be solved on a com-

puter for simple cases. Human ability to infer shape from shading is very

limited, and it may be based on simplistic assumptions that are often vio-

lated—a sort of theory 2 of the kind you mentioned. Nevertheless, I doubt

that the effort put into a deep study like Horn's was misplaced, even in the

circumstances. Although it will not yield direct information about human
shape-from-shading strategies, it probably provides indispensable back-

ground information for discovering the particular poor man's version that

we ourselves use.

What about the oldfeature detector ideas? How did theyfit in?

Historically, I think, the notion of a feature—and I would not now care

to define it at all precisely—played an important role in shifting our con-

ceptions away from Lashley's mass-action ideas (according to which the
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brain was a kind of thinking porridge whose only critical factor was how
much was working at the time) and toward the much more specific view

of single-neuron action that we now have. This movement was initiated by

Barlow (1953), Kuffler (1953), Lettvin and others (1959), and, of course,

Hubel and Wiesel (1962, 1968). Essentially, these findings ultimately lead

to the notion that single nerve cells can have as one of their functions the

job of signaling explicitly whenever a particular, very specific configuration

is present in the input, and this type of thinking was formulated in terms

of features.

But there are a number of fascinating points here arising mainly from

the basic question, When does a specific configuration in the image imply

a specific configuration in the environment? The first point, which we met

in Chapter 1, has to do with how descriptions of the environment actually

get made. In a true sense, for example, the frog does not detect flies—it

detects small, moving, black spots of about the right size. Similarly, the

housefly does not really represent the visual world about it—it merely

computes a couple of parameters (i|i,iji), which it inserts into a fast torque

generator and which cause it to chase its mate with sufficiently frequent

success. We, on the other hand, very definitely do compute explicit prop-

erties of the real visible surfaces out there, and one interesting aspect of

the evolution ofvisual systems is the gradual movement toward the difficult

task of representing progressively more objective aspects of the visual

world. The payoff is more flexibility; the price, the complexity of the analy-

sis and hence the time and size of brain required for it.

But wasn't there more to thefeatures idea than that?

Yes, and that, too, is an interesting set of issues that harks back to some

extent to the philosophers of perception, who thought in terms of "sense

atoms" grouped into larger "molecules" of sensory experience, which were

the things we could recognize. One can perhaps follow a tradition of

attempts at feature-based recognition. This started with the Barlow (1953)

ideas, involved Kruskal's (1964) multidimensional-scaling technique, Jar-

dine and Sibson's (1971) excellent work on cluster analysis, my early ideas

about the neocortex (Marr, 1970), and the mountainous literature on sta-

tistical decision theory.

What was the main idea?

The hope was that you looked at the image, detected features on it,

and used the features you found to classify and hence recognize what you

were looking at. The approach is based on an assumption which essentially

says that useful classes of objects define convex or nearly convex regions

in some multidimensional feature space where the dimensions correspond

to the individual features measured.That is, the "same" objects—members

of a common class—have more similar features than objects that are not

the same.
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That sounds perfectly reasonable. What went wrong?

It's just not true, unfortunately, because the visual world is so complex.

Does feature refer to the image or the object? Different lighting conditions

produce radically different images, as do different vantage points. Even in

the very restricted world of isolated, two-dimensional, hand-printed char-

acters, it is difficult to decide what a feature should be. Think of a 5 grad-

ually changing into a 6—a corner disappears, a gap narrows. Almost no

single feature is necessary for any numeral. The visual descriptions nec-

essary to solve this problem have to be more complex and less directly

related to what we naturally think of as their representation as a string of

motor strokes.

Soyour main argument is that the world isjust too complex to yield to the

types ofanalysis suggested by thefeature detector idea?

That is correct unless, of course, the visual environment can be rigidly

constrained—the lighting, the vantage point, the domain of visible ele-

ments, and so forth. If this is done, then some progress can be made.

Otherwise not, and we have to look quite carefully in the literature to see

this, because people do not report negative results, even though such

results can be very important in deciding whether to pursue a particular

line of attack.

What are the options if the domain of study cannot be so rigidly con-

strained?

There are basically two: Use a more complicated decision criterion or

use a better representation. Using a more complicated decision criterion

means abandoning the hope that classes correspond to convex clusters of

features and introducing logical ideas in the decision process so that the

questions asked at a given point in the classification process may depend
on the answers just obtained. It is roughly true to say that artificial intelli-

gence grew out of this approach. It leads to a view of recognition or clas-

sification as an exercise in problem solving. Decisions and routes to the

solution depend sensitively on partial results found along the way, and
these in turn determine the information deployed next to allow the process

to continue. We saw some examples of this type of thinking in Chapter 5.

The other option is to use a representation or series of representations

that are better tailored to the problem at hand. In practice, this turns out

to be the more important task for the particular case of vision, although

for problems like medical diagnosis the problem-solving approach may be
more profitable.

Are there perhaps other ways in which we might try to think about these

things? What about Winograd's (1972) procedural representation of
knowledge, for example, according to which terms like pick-up or block
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are represented byprograms. Ifyou want to pick up the block, you simply

run the two programs in sequence. That sounds like a very sensible

approach to me. How does that relate to your two options?

The procedural representation idea isn't really a representation at all;

it is an implementation mechanism. A representation is a much more pre-

cisely defined object. For example, there was never any result defining the

scope of the procedural representation or establishing any uniqueness

characteristics (in the sense of Chapter 5). It is no more a representation

than is a property list! In order to define a representation, as we have seen,

we must define its primitives, how they may be organized, and so on. Now
the primitives in these procedural representations are simply the primitives

of the underlying programming language—in Winograd's case, PLANNER
or LISP. Such primitives are useless for representing what the process is

actually doing in any high-level description, just as the individual instruc-

tions in a machine language program for the fast Fourier transform are

useless for understanding the transform. To begin to understand and

manipulate the code, one has to add comments to it. At this point it is these,

not the code, that in effect provide the representation of what the code is

doing from the point of view of the manipulator. G. J. Sussman's (1975)

program HACKER was essentially an exercise in writing useful standard

comments within a particular and restricted programming domain.

Why do you say a property list is not a way of representing knowledge?

Surely it is?

I did not say that, I said it wasn't a representation. A property list is a

programming mechanism that one may use to implement a representation,

but it is not a representation in itself. To see this, just ask the simple

question, What can and what cannot be represented in a property list, or,

expressed in our earlier language, what is its scope? Is each description

unique? It is meaningless to ask these questions about property lists, just

as it is about procedures. Both these ideas are universal from a represen-

tational point of view, because both are in fact notions at a lower level of

explanation pertaining to decisions about implementation. They are mech-

anisms, not representations. Choosing one mechanism rather than the

other will affect how easy it is for the programmer to make a certain piece

of information explicit, but the decision about what is to be made explicit

and what is not is a decision about the representation itself and is inde-

pendent of the implementing mechanism.

Ah yes, and here we come back to thefeature idea again. For it was surely

the notion ofafeature which led eventually to the idea thata representation

has as its business the making of certain information explicit, wasn't it?

Very much so. But I do think that the time has now come to abandon

those older ways of thinking, it being more fruitful to think instead of



7.2 A Conversation 343

systems of representations that can describe as fully as desired firstly

images and then other derived aspects of the visual world. And I also think

it is important not to be too anxious to relate our ideas immediately to

neurons. We should first be sure that our representations and algorithms

are sensible, robust, and supported by psychophysical evidence. Then we
can delve into the neurophysiology.

Before leaving this topic, Ifeel there is one other matter we should raise.

This is the question offeatures—well, lets call them descriptionsfrom now
on—and ofmeasurementsfor getting them. What exactly is the difference

between a descriptive element—perhaps we could call it an assertion—
and a measurement? Is this even an importantpoint?

There are two aspects to this. One is historical—a point I felt lay in

terrible confusion back in 1974—and the second is a modern question. Let

us look first at the historical question. Put most simply, people confused

measurements and assertions. For example, a cell with a center-surround

receptive field will respond to a blob, but it will also respond to many
other things—a line, an edge, two blobs, and so forth. In fact, one can often

say no more than that it signals a convolution—our old friend V2G * /, for

instance. Nevertheless, people did call these cells blob detectors.

Now that is not so bad in the retina, but ifwe were to take Hubel and

Wiesel's (1962) definition of a simple cell—the simplest type of receptive

field—literally, it, too, would be performing a linear convolution with one
excitatory and one inhibitory strip, signaling something like a first direc-

tional derivative. I do not now believe these cells are linear convolvers

(see Chapter 2), but the point is that people thought ofthem simultaneously

as linear convolvers and as feature detectors, and that is criminal, intellec-

tually. Of course, you can use the output of such convolvers to find edges,

but it needs extra work. You have to find peaks in the first derivatives or

zero-crossings in the second. And, of course, we now think that simple

cells are in fact zero-crossing detectors. But the point is that here again,

just because of imprecise thinking by computer vision people as well as by

physiologists, that whole rich theory of early vision had been missed (see

Chapter 2).

The second aspect is the modern one, and I have already raised it in

Chapter 2. It has to do with when and how vision "goes symbolic." Most
would agree that an intensity array 7(x,y) or even its convolution V2

(7 * /

is not a very symbolic object. It is a continuous two-dimensional array with

few points of manifest interest. Yet by the time we talk about people or cars

or fields or trees, we are clearly being very symbolic, and I think again that

most would find suggestions of symbols in Hubel and Wiesel's (1962)

recordings. Our view is that vision goes symbolic almost immediately, right

at the level of zero-crossings, and the beauty of this is that the transition

from the analogue arraylike representation to the discrete, oriented, sloped

zero-crossing segments is probably accomplished without loss of infor-

mation (Marr, Poggio, and Ullman, 1979; Nishihara, 1981).
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And the use of symbols does not stop there either. Almost the whole

of early vision appears to be highly symbolic in character. Terminations,

discontinuities, place tokens, virtual lines, groups, boundaries—all these

things are very abstract constructions, and few of their neurophysiological

correlates have been found, but experiments like Stevens' (1978) tell us

that such things must be there (see Chapter 2).

How else might one approach these phenomena? What about some kind

oftransformational orgrammatical approach, like the one Chomsky used?

People have tried to write picture grammars involving rules that must

be obeyed by line drawings (Narasimhan, 1970), but they have been unsuc-

cessful in general and never successful on a real image. The best of the

early approaches, was, I think, the blocks-world analysis ofGuzman (1968),

Mackworth (1973), and Waltz (1975). Unfortunately, this did not general-

ize—it suffered from the wrong choice of a miniworld, as indeed has much
research in artificial intelligence. The great virtue of artificial intelligence

has been that it forced people to substantiate their opinions by writing

programs, and in doing so, these opinions were often found to be wrong.

It forced a constructive way of thinking—disallowing, for example, Ber-

trand Russell's definition of the percept of an object as the set of all possible

appearances of the object (Russell, 1921). But in having to program things,

research was too often limited to a miniworld in which very many factors

appear in only simple forms. Though the programs solved none of the

individual problems, on the whole they ran just well enough to get by with

luck. Winograd's (1972) blocks-world program was of this genre. The

underlying conceptual fault is to ignore the modularity that must be present

to help decompose the problem.

/ do notfollow. Why must it be there? How was it being ignored?

Once again, I think the clearest examples come from vision. An early

miniworld, or domain of study if you like, was the blocks world—com-

positions of matte white prisms against a black background. The study of

such a domain led to Waltz's (1975) careful cataloguing of the legal junc-

tions of the various types of edges (as in Figure 1-3). Allowing for shadows,

Waltz found that most line drawings of such scenes could be interpreted

unambiguously. But notice that not one of the general processes listed in

Chapter 3 was elucidated by this approach. The reason is that the general

processes that combine to make up human vision cannot be easily studied

by restricting oneself to any particular miniworld except by carefully choos-

ing it in relation to something that one already suspects of corresponding

to a genuine module, like the world of random-dot stereograms.

It is critical to appreciate the difference between these two kinds of

miniworlds. One is very particular, the other general. Only the second kind

has been found to be of value so far, although constraints in the spirit of
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Waltz's may turn out to be useful for the 2 1/2-D sketch (see Chapter 4). The

reason is that for genuine computational modules with general and not

limited abilities, we can actually prove theorems that show the modules

will always work in the real world.

This is the true difference between the approach described in this

book and the original conception of artificial intelligence, which, in its

desperate effort to pack a whole working miniworld into a program—an

endeavor that requires a huge amount ofwork—was forced to neglect and

eventually to abandon attempts at real theory turning instead to the devel-

opment of better computer tools. This endeavor has met with little success.

So although the artificial intelligence approach was necessary to haul us

out of our false preconceptions about the simplicity of vision, it in turn

became limited and hidebound because of its failure to recognize what a

true computational theory is and how it should be deployed.

Are there any rulesfor doing this successfully?

I don't think so, and it's perfectly natural to get it wrong first. The

example of flight that came up earlier makes a number of points in a nice

way. First, it's obvious that you cannot understand how a bird flies by

speculating on the fine structure of a feather. So the next natural step is to

try to copy how the bird behaves—what I call the mimicry phase. So people

built imitation wings and flapped them. That didn't work either. This phase

is essentially copying at the lower two levels or possibly only at level two.

The real advance comes only when you understand that an airfoil provides

lift in accordance with Bernoulli's equation. That is the level-one part

—

aerodynamics. It is why a bird and a 747 are similar—and why both are

dissimilar from a gnat, which keeps itself aloft not by means of an airfoil

but by "treading air" in an essentially turbulent regime.

But at some stage, one has to relate ones level-one ideas directly to neural

machinery, surely? You talked about the eyes—the retina and V G—but

what about eye movements? I understand thatfrom your—/ should say,

from an information-processing and levels point of view, they are quite

trivial to deal with. But that doesn't make it any easierfor me to think of
compensatingfor them in neural machinery.

Yes, I admit that this is a thorny issue. But first, I hope I made it clear

in Chapter 4 that eye movements involve much more than just a subtraction.

We saw there how the representation of surface orientation, for example,

is quite intimately bound up with whether you choose a retinocentric polar

frame (the natural one from the point of view of imaging) or a more
invariant type of retinocentric frame.

The second point is that, by delaying the transition out of a retinocen-

tric frame, the difficulty of the arithmetic that is necessary when one at last

performs the transition is correspondingly eased. In the manner of Chapter
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5, we can move directly to a 3-D model representation, which is located in

a stable frame around the viewer; and then all we have to check is that

when the eyes move, the appropriate blob moves as expected.

Lastly, I think that here, as always, it is important not to be fooled by

the apparent detail and luxury of our perception. We met this earlier in

connection with the immediacy and vividness of our perception. I would

be surprised ifwe can keep track of more than a handful of objects during

eye movements, and I expect our powers are quite limited in this respect.

Yes, I see the plausibility of the argument. But this doesn't need our levels,

does it? It seems a rather different kind of issue.

Absolutely true, but that is mostly because the level-one theory of eye

movements is so simple that we don't notice that it's even there. In fact,

general ideas along these lines were in Gibson's thinking, I suspect, and

were certainly being articulated by Marvin Minsky and Seymour Papert in

the late 1960s and early 1970s. But the details to these general ideas were

never filled in. In a curious sense, this was because artificial intelligence

remained decerebrate. It never realized that there was a level one theory

to be discovered. It remained, and often still does, stuck fast in the mud of

mechanistic explanations—where memory is held to be achieved by a

neural net of some kind, or by a process in a computer, or by a set of

procedures.

/ don't know about this. These seem quite reasonable ways of explaining

memory. Why do youfind them so objectionable?

Well, in simple cases like eye movements, we can think in that rather

direct fashion and get away with it. But it is very dangerous to hope that

this type of thinking can ever give any real insight into the computational

problems that the neural mechanisms are busy solving.

For example, to take a famous and elegantly expressed case, we might

discuss Minsky's frames theory a little. A frame is essentially an item to

which properties may be attached. For example, consider the following

properties of an elephant considered as a frame:

Name Clyde

Color Pink

Weight Large

Appetite Large

Processes can also be attached to a frame and the contents of a frame may

be interconnected or indexed in various ways. In his most stimulating

article, Minsky (1975) describes how many "subjectively plausible" phe-

nomena can be thought of in this way provided that the conceptual units

involved are "large" enough. But I believe the approach is fundamentally
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flawed by its mechanism-based thinking. This harks back to our earlier

point. If frames offered a representation and not just a mechanism, we
would at once see what they are capable of representing and what they are

not. This may still be done, but it has not yet been; until it has, we must be

wary of ideas like frames or property lists. The reason is that it's really

thinking in similes rather than about the actual thing—just as thinking in

terms of different parts of the Fourier spectrum is a simile in vision for

thinking about descriptions of an image at different scales. It is too impre-

cise to be useful. Real progress can only be made in such cases by precisely

formulating the information-processing problems involved in the sense of

our level one.

Butyourpoint isn't aboutjustframes, is it? Doesn't it apply to almost the

whole of artificial intelligence?

Yes, very true, and mechanism-based approaches are genuinely dan-

gerous. The problem is that the goal of such studies is mimicry rather than

true understanding, and these studies can easily degenerate into the writing

of programs that do no more than mimic in an unenlightening way some
small aspect of human performance. Weizenbaum (1976) now judges his

program ELIZA to belong to this category, and I have never seen any reason

to disagree. More controversially, I would also criticize on the same

grounds Newell and Simon s (1972) work on production systems and some
of Norman and Rumelhart's (1974) work on long-term memory.

Why, exactly?

The reason is this. Ifwe believe that the aim of information-processing

studies is to formulate and understand particular information-processing

problems, then the structure of those problems is central, not the mech-

anisms through which their solutions are implemented. Therefore, in

exploiting this fact, the first thing to do is to find problems that we can

solve well, find out how to solve them, and examine our performance in

the light of that understanding. The most fruitful source of such problems

is operations that we perform well, fluently, and hence unconsciously since

it is difficult to see how reliability could be achieved if there was no sound,

underlying method.

Unfortunately, problem-solving research has for obvious reasons

tended to concentrate on problems that we understand well intellectually

but perform poorly on, like mental arithmetic and cryptarithmetic* geom-

etry-theorem proving, or the game of chess—all problems in which human
skills are of doubtful quality and in which good performance seems to rest

on a huge base of knowledge and expertise.

*For example, DONALD + GERALD = ROBERT. The object is to find the digit each letter

stands for.
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I argue that these are exceptionally good grounds for not yet studying

how we carry out such tasks. I have no doubt that when we do mental

arithmetic we are doing something well, but it is not arithmetic, and we
seem far from understanding even one component of what that something

is. I therefore feel we should concentrate on the simpler problems first,

for there we have some hope of genuine advancement.

If one ignores this stricture, one is left with unlikely looking mecha-

nisms whose only recommendation is that they cannot do something we
cannot do. Production systems seem to me to fit this description quite well.

Even taken on their own terms as mechanisms, they leave a lot to be

desired. As programming languages, they are poorly designed and hard to

use, and I cannot believe that the human brain could possibly be burdened

with such poor implementation decisions at so basic a level.

This mimicry idea—is itjust the business of thinking in similes that you
mentioned before?

Yes, very much so. In fact, we could draw another parallel, this time

between production systems for students of problem solving and Fourier

analysis for visual neurophysiologists. Simple operations on a spatial-fre-

quency representation of an image can mimic several interesting phenom-

ena that seem to be accomplished by our visual systems. These include the

detection of repetition, certain visual illusions, the notion of separate

independent channels, separation of overall shape from fine local detail,

and a simple expression of size invariance. The reason why the spatial-

frequency domain is ignored by image analysts is that it is virtually useless

for the main job of vision—building up a description ofwhat is there from

the intensity array. The intuition that visual physiologists lack, and which

is so important, is for how this may be done. As a computing mechanism,

a production system exhibits several interesting ideas—the absence of

explicit subroutine calls, a blackboard-like communication channel, and

some notion of a short-term memory.

However, just because production systems display these side effects

(as a Fourier analysis "displays" some visual illusions) does not mean that

they have anything to do with what is really going on. For example, I would

guess that the fact that short-term memory can act as a storage register is

probably the least important of its functions. I expect that there are several

"intellectual reflexes" that operate on items held there about which nothing

is yet known and which will eventually be held to be the crucial things

about short-term memory.

Studying our performance in close relation to production systems

seems to me a waste of time, because it amounts to studying a mechanism,

not a problem. Once again, the mechanisms that such research is trying to

penetrate will be unraveled by studying the problems that need solving,

just as vision research is progressing because it is the problem of vision

that is being attacked, not neural visual mechanisms.
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What about human memory? You implied that the same type of misdirec-

tion was evident there. What didyou mean?

I was referring to Norman and Rumelhart's work on the way infor-

mation seems to be organized in long-term memory. Again the danger is

that questions are not asked in relation to a clear information-processing

problem. Instead, they are asked and answers proposed in terms of mech-

anisms—in this case the mechanism is called an "active structural network,"

and it is so simple and general as to be devoid of theoretical substance.

Norman and Rumelhart may be able to say that such an "association" seems

to exist, but they cannot say of what the association consists, nor do they

say that to solve problem x (which we humans can solve) memory must

be organized in a particular way; and that if this organization exists, certain

apparent "associations" occur as side effects.

The phenomenological side of experimental psychology can do a val-

uable job in discovering facts that need explaining, including those about

long-term memory, and the work of Shepard (1975), Rosch (1978), and

Warrington (1975), for example, seems to me very successful at this; but

like experimental neurophysiology, experimental psychology will not be

able to explain those facts unless information-processing research has iden-

tified and solved the underlying information-processing problems, and I

think that this is where we should be concentrating our energies.

What about Gunther Stent's work on the leech, though? Isn't that rather

mechanism based, too?

Yes, but it is meant to be. It is concerned with elucidating the precise

mechanism by which a leech swims. I value his work very highly, like that

of the Tubingen group's on the housefly, but I think that early hopes of

generalizing very far from these results have not borne fruit, and the reason

is the levels story again. What higher nervous systems must do is deter-

mined by the information-processing problems that they must solve. We
may have some simple leechlike oscillators inside us, and they may, to be

very farfetched, eventually help us to understand some aspects of respi-

ration. But such results will not teach us how we see.

One has a strong urge to tie explanation to structure eventually—that, of
course, was the impact of molecular biology. It has to be done here, don't

you think? Or do you see the endeavor as totally hopeless?

Yes, I agree it has to be done for the central nervous system, but I

doubt if it can ever be done completely. The complexity barrier is just too

great. But we have started to do it, don't forget! The zero-crossing detection

and directional selectivity stories are very close to neurons. Don't be too

impatient about the later things! As I said earlier, I bet you could never

understand the fast Fourier transform as implemented in transistors on an

IBM 370. I can only understand its formulas for about 10 minutes at a
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time—let alone understand a circuit diagram implementing them. One last

word—I don't think that developmental and genetic programs will be able

to be understood so directly in terms of underlying mechanisms. I would
guess that some levels structure will eventually be needed to understand

growth, because it is complicated.

Can weperhaps return to thinking rather specifically about visualpercep-

tion and what actually happens when you see?

Well, are you happy with the primal sketch ideas?

/ think so. The critical point seems to be that even very early vision is a
highly symbolic activity. Assertions are actually made where lines end—
yes, I've even accepted that terminology andam not too worriedhere about

neurons!—and that objective lines and virtual lines arejust as "rear as

one another. Both can, for example, have their orientations detected and
manipulated. Isn't this the idea?

Very much so. And if there is one more key idea, it is the idea of a

place token and the ability to use crude selection criteria to group such

tokens together and look for patterns, just as we saw in Figure 2-3.

I'm still a little unhappy about the representation ofspatial relations—in

the image, that is. Iremember the discussion in Chapter2 about coordinate

systems, but was a little unconvinced. How can we be sure that important

spatial information isn't lost?

Well, we have to be careful here, because I do not think much in the

way of spatial relations is made explicit very early on. For example, certainly

no intrinsic structure like the angle between two lines is. This type of

information is not explicit in the full primal sketch, nor would the angle

between two surfaces be in the 2V2-D sketch. Such quantities do not belong

to perception; their realm is that of the 3-D model representation. On the

other hand, a few explicit spatial relations, like virtual lines between neigh-

boring place tokens, often carry implicitly the entire geometry of the figure.

This can be true even if the length measurements are very imprecise

—

perhaps only ranked by size.

A striking example of the richness of the information coming from a

few clues about nearness is provided by the archaeological endeavors of

Flinders Petrie. He measured the similarity of graves found along the Upper

Nile by judging the number of characteristics shared by pieces of pottery

found in each one. By using just this similarity information, techniques like

multidimensional scaling can recover the times of burial quite accurately.

The story makes fascinating reading (see Kendall, 1969), but we need note

only that in two dimensions, the situation is even more constrained. I do

not think there's much danger of the information being lost, but I do think

only rather little spatial information is made explicit at the early stages.
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So we derive thefullprimal sketch and then all thoseprocesses of Chapter

3 run to give us surface information? And roughly speaking, that is deliv-

ered in retinocentricpolar coordinates, with perhaps slight differencesfor
each process?

Yes, indeed, and the surface information from each process is com-
bined in the 2V2-D sketch, still in a retinocentric fashion but perhaps in a

more convenient frame than the polar one. In a deep sense this is the end
of pure autonomous perception. At this point the information is ready to

be turned into a real 3-D model type of representation, a description that

you can then remember.

I'm still unhappy about this tying-togetherprocess and the idea thatfrom
all that wealth of detail all you have left is a description. It sounds too

cerebral somehow.

Well, the description can be arbitrarily rich—it's just a question of

how much time and energy you spend on it. The other matter, that visual

perception is just the formation of such descriptions—well, that is the

conceptual leap I'm asking you to make. I personally find nothing impor-

tant that this view fails to account for in general, and since we probably

understand 20%-25% of the whole process already, I'm frankly ready to

put my money on the rest of the process being of the same character. It's

a conceptual leap, to be sure, but I think this view is worth trying to live

with for a while, because thinking of visual perception in terms of the

formation of particular kinds of descriptions explains so much so simply.

But don't try to think about vision all the time in neurons! It's just impos-

sible—the structure of vision is complicated enough at the top level, and
outrageously so in terms of wiring.

And the result of those Chapter 3 processes, embodied in the 2V2-D sketch,

is the end of the immediate perception?

I think it's the right place to make the division, because up to here the

processes can be influenced little or not at all by higher-order considera-

tions. They deliver what they compute—no more, no less. The term

immediateperception is a bit misleading, because these processes can take

time—think of fusing a random-dot stereogram—but they do not involve

scrutiny in Julesz s sense of an active intelligent examination of the image
and comparison of its parts. This is compatible with the random-dot ster-

eogram case, because we think that when the time to perceive one is long,

most of the delay is due to random-walk-like movements of the eyes as

they try to find somewhere to start fusion from.

Ifthe 2V2-D sketch changes every timeyou moveyour eyes, you lose it every

timeyou move them (exceptpossiblyfor small movementspurely in depth).

Isn't this a terribly wasteful thing to do?
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It is wasteful, surely, but if you have the machinery there capable of

recomputing the scene in real time, it doesn't matter that it's wasteful. In

fact, it almost has to be this way, since the point of the 2V2-D sketch is to

assemble and represent incoming perceptual information, not to store it,

and the alternative of economizing on computing power by using more

memory is of no real use here. Just suppose, for example, that a 2Vi-T>

sketch had foveal resolution everywhere and was driven by a foveal retina

in the usual way. Immediately, the memory has to contain out-of-date infor-

mation (or nothing) in most of its capacity. This is not what the memory

is for. Before resorting to almost any real storage, one must convert to

something like the 3-D model representation, which is much more stable

than the viewer-centered appearance of an object in a fleeting world. So

the representation in which information from the different sources is

assembled must be retinocentric and transient, it should have a foveal

region where resolution is high, and it should reflect exactly and only what

is coming in now

These seem sensible distinctions, but they raise a difficulty Ihave in relating

this to my own experience. The problem is that there seem to be so many

different things going on in this modelfor perception, yet my perception

has a unity, a oneness that Ifeel does notjibe with or at least is not reflected

in these ideas. How is all the information tied together? How can one

accountfor the unity of visual experience?

The basic idea is indeed that very many things are delivered through

almost independent processes. At the 2V2-D sketch level they are tied

together, but only implicitly, whereas the next step is the creation of object-

centered descriptions of the visible shapes (which is perhaps localized in

a viewer-centered frame), and the description here is a unified object made

up just by adding properties to its basic shape description, rather as a

novelist adds to a description by adding qualifying adjectives.

What do you mean by being tied together "only implicitly"?

Simply that although different processes operate in different ways,

there is a way of finding out when they are referring to the same visual

object.

You mean ifa rawprimal sketchprocessfinds an edge, and a colorprocess

finds its color, the relation between the two is implicitly available? I don't

quitefollow.

It's all a question of addressing. In most computers, you address infor-

mation by specifying where to look for it. In some computers, you access

a chunk of information by specifying pieces of the chunk. That is a content-

addressable memory, and such memories are easy to build. What we might

have here is a mixture of these two types of addressing—something like
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"the edge at roughly position (x,y) in the visual field with an orientation

within, say, 30° of some given value". That would uniquely specify the edge
in question both for the raw primal sketch representation and for the

output for the color processes. In this way, we can tie the two things

together, at least in principle.

What, dare I ask, about all those cortical areas? Isn't it natural to expect

that they should each deal with a differentprocess?

I would not be surprised.

Then what you are hinting at is, essentially, that up to this point each

process runs, perhaps in a different cortical area (by now there are 10 at

least, aren't there?), and that by presenting each with rough information,

which could be roughposition and orientation, you defineprecisely which

visual objectyou are referring to.

Yes, that is the addressing problem.

And then, in addition, you get the precise information with which that

particular area orprocess is concerned—theparticular color or disparity,

for example.

Exactly. And I think that the critical point about this is that the joining

together of information is done symbolically.

What do you mean by that?

It's not like adding together the three impressions that a printer uses

to make a printed page of color. We never see the colors of things smudged
beyond their boundaries. The point is that the rough position and orien-

tation information is used as an address. If you want the position of an
item's exact boundary, you look at the raw primal sketch. If you want its

color, you look at the color process.

Isee. This idea means that assembling the information must be a very active

process, doesn't it? Unless something specifically notices that stereo, zero-

crossing x is a brown border, these two pieces of information will remain
separate.

Yes, I think one has to ask for the color ofx. And we must expect much
of this to go on automatically as we move our eyes around. That is what
the 2V2-D sketch is partly for, after all—reducing information about surface

geometry from many retinocentric processes to a single, more usable,

viewer-centered form. At the same time, links to descriptions of other as-

pects of a surface are presumably made easily accessible, in preparation for

the task of constructing a three-dimensional, object-centered description.
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So you think it's likely that the actual combination isn't done until the

3-D model starts being constructed?

Yes.

It's as though strings are there to all the relevant information clearly

marked and labeled, but you don't pull it all together unless you start

making a 3-D model.

Which may be a very coarse one or parts of a very fine one. And in the

same way, one might expect other properties to be coarse (for example,

greenish) or quite fine (for example, a specific shade of green).

But how does this correspond to myperceptual experience?My experience

appears to be complete, not at all the halfway, ill-defined, fragmented sort

of thing thatyou describe.

Well, first remember that our visual processes can work extremely

rapidly. The time between requesting information about a part of the visual

field and moving the eyes there, getting it, and linking it to a 3-D model is

probably usually under half a second. The second thing is, How much of

a novel scene can you recall if you look at it only very briefly? Not very

much! Its coarse organization, or perhaps one or two details. And once you

close your eyes, the richness is gone, isn't it? I think that the richness

corresponds to what is available now, at the pure perceptual level, and

what you can remember immediately is much more closely related to the

3-D model description that you create for it while your eyes are open.

/ begin to see more clearly the force of the idea that perception is the

construction ofa description.

Yes, that is the core of the thing, and a really important point to come

to terms with.

But let's suppose you're right, then, that the 2V2-D sketch is retinocentric

and that you compute out of it little 3-D models and hang them up in a

spaceframe centered on you. What happens when you move your eyes a

lot?

One thing is that the finely detailed shape that you were just looking

at—suppose it was a porcelain cat—and for which you have just built up

an elaborate description is reduced to a blob in the image when you turn

your eyes to study its neighbor, a porcelain dog. If the blob can be distin-

guished confidently in the 2V2-D sketch, then I would guess that there is

a process that maintains the link between it and the 3-D model you've just

finished building, so that if that blob moves, you know immediately what

has moved.
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But how on earth do you do that with neurons?

Hold on there—we'll face that next. But note that basically, it's not
difficult computationally.

But to tie all this up with what itfeels like to see—that is difficult to swallow.

It grows on you. That first step, that vision is the computation of a

description, is the crucial one. Once you have accepted that, you can go
on to study exactly what description and how to make it.

And again it's not at all easyfor me to allow you to talk so much about
computation. The brain, after all, is made of neurons, not silicon chips.

But I suppose III get used to it. Still, ifvision is the construction ofdescrip-
tions, they must be implemented neurally, mustn't they? So couldn't one
hope to lookfor neurophysiological correlates of the 2V2-D sketch or ofa
piece ofa 3-D model? That, I wouldfind convincing.

It would be marvelous if the implementation were that simple—close

to Barlow's neural dogma! My own guess is that it is more like that than a

Hebb cell assembly.

There's another more generalpoint that is still troubling me, and it has to

do with the temporal continuity ofperceptual experience. I understand
very well how you think continuity can be held between eye movements
and so forth, but this avoids the larger question ofpure continuity over
time. Why, if I look at a tree, do I see it continuously as the same tree?

Presumably I could at any moment start a new 3-D modelfor it, in which
case I ought to experience it as a new tree in the same spot as the old one.

Yet I don't. Do you have any comments?

The permanence of the visual world—the continuity of objects in

time—is an awfully important aspect of vision, and I think it's just part of
our reflexes as adults that we assume it. In fact, whole aspects of processing
are based on discovering and exploiting the continuity relations—the cor-

respondence processes of Chapter 3, for example.

Another general point. You deal only with shape here. What about the

recognition as being thesame thing oftwo objects thathave differentshapes
but the samefunction—like two different kinds of chair?

This theory has nothing to say about semantic recognition, object

naming or function, though that is most certainly a path almost as useful

as shape determination for recognition in the external world (Warrington
and Taylor, 1978). I think that the problems of understanding what we
mean by the semantics of an object are fascinating, but I also think that they
are very difficult indeed and at present much less accessible than the prob-
lems of visual perception.
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If the overall scheme you describe is correct, would we be able to say

anything about painting and drawing using this knowledge of what the

visual system does with its input? Might it help to teach these skills, for

example?

Perhaps, although I would hate to commit myself to a definite view

yet. Nevertheless, it is interesting to think about which representations the

different artists concentrate on and sometimes disrupt. The pointillists, for

example, are tampering primarily with the image; the rest of the scheme

is left intact, and the picture has a conventional appearance otherwise.

Picasso, on the other hand, clearly disrupts most at the 3-D model level.

The three-dimensionality of his figures is not realistic. An example of some-

one who operates primarily at the surface representation stage is a little

harder—Cezanne perhaps?

With respect to otherproblems such as natural language, how universal is

the approach you are advocating? Howfar can it be taken? What kind of

things would it be likely tofail at?

Systems that are not modular. Things like the process by which a chain

of amino acids folds to form a protein—that is to say complex, interactive

systems with many influences that cannot be neglected. A burning issue in

the study of natural language understanding is, of course, How modular is

it, and what are the modules?

Yes, I suppose modularity is the key, but alsofluency ofsome kind must be

important, mustn't it? Ifaprocess doesn'tflow well, smoothly, unattended,

and without having to be patched by conscious interference, then it may

have no clean theory, and that might turn it into theprotein-folding class

ofdifficult-to-understand theories. But to return to natural language, what

modules have beenfound there?

It's not clear, and some claim it's inherently not modular and should

be viewed much more heterarchically

Doesn't that sound a little reminiscent of the early days of vision?

Yes, I'm afraid so. But there do seem to be modules and rules for

modules emerging at the early level—rules for syllable formation, prosod-

ies, and most famously Chomsky's analysis of syntax.

But how much ofa module is syntax? Don't artificial intelligence workers

like Schank claim that syntax is not a separable module at all?

Yes, and it is clear that the syntactical decoding of a sentence cannot

proceed entirely independently of its semantical analysis. But a good case

is being built up that the amount of interaction necessary between the two

is small, and the types of questions about syntax that must be answered
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seem to be of a quite simple kind—for example, Should a particular clause

refer to noun phrase one or to noun phrase two? Marcus (1980) was the

first to explore these problems in detail; and he has shown that a very

successful module can be made out of a parsing system. Above the level of

syntax, however, few hints are currently available about what the modularity

is, but I'm sure it must be present.

Why has artificial intelligence shown such resistance to traditional Chom-
skian approaches to syntactical analysis? Only Marcus seems to have

embraced it.

I think there are two reasons. First, it is easy to construct examples in

which syntax cannot be analyzed without some concurrent semantical

analysis. Thus, syntax is not a truly isolated module, and this fact led the

artificial intelligence people to jump to the opposite conclusion, that syntax

is not a module at all. This is incorrect—the true situation seems to be that

syntax is almost a module, requiring some interactions with semantics but

only a very small number of types of interaction.

The second reason is our old friend, the levels. Noam Chomsky's

transformational grammar is a level one theory, that is in no way concerned

with how syntactical recognition should be implemented. It merely gives

rules for stating what the decomposition of an arbitrary sentence should

be. Chomsky's description of it as a competence theory was his way of

saying this.

However, the levels idea has not been properly understood by com-
putational linguists. Indeed, one ofWinograd's reasons for rejecting Chom-
sky was that he could not invert the transformational structure and turn it

into a parser! This observation could be made only by someone who failed

to understand the distinction between levels one (what and why) and two

(how). Winograd is not to be singled out for this error, however; everyone

in artificial intelligence made it, and now that the linguists themselves are

becoming computationally aware, they are falling into the same trap. The
result is, I fear, that natural language computer programs have contributed

rather little to natural language understanding, with the recent exception

of Marcus (1980), who has begun to construct a genuine level-two theory

of the parsing algorithm we use.

What do youfeel are the mostpromising approaches to semantics?

Probably what I call the problem of multiple descriptions of objects

and the resolution of the problems of reference that multiple descriptions

introduce.

Couldyou expand on this?

Well, like many others in the field, I expect that at the heart of our

understanding of intelligence will lie at least one and probably several
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important principles about organizing and representing knowledge that in

some sense capture what is important about the general nature of our

intellectual abilities. While still somewhat vague, the ideas that seem to be

emerging are as follows:

1. The chunks of reasoning, language, memory, and perception ought

to be larger than most recent theories in psychology have allowed (Minsky,

1975). They must also be very flexible, and incorporating this requirement

precisely will not be easy.

2. The perception of an event or of an object must include the simul-

taneous computation of several different descriptions of it that capture

diverse aspects of the use, purpose, or circumstances of the event or object.

3. The various descriptions referred to in point 2 include coarse ver-

sions as well as fine ones. These coarse descriptions are a vital link in

choosing the appropriate overall scenarios demanded by point 1 and in

correctly establishing the roles played by the objects and actions that caused

those scenarios to be chosen.

An example will help to make these points clear. If one reads

The fly buzzed irritatingly on the windowpane.

John picked up the newspaper.

the immediate inference is that John's intentions toward the fly are fun-

damentally malicious. If he had picked up the telephone, the inference

would be less secure. It is generally agreed that an "insect-damaging" sce-

nario is somehow deployed during the reading of these sentences, being

suggested in its coarsest form by the fly buzzing irritatingly. Such a scenario

will contain a reference to something that can squash an insect on a brittle

surface—a description that a newspaper fits, but not a telephone. We might

therefore conclude that when the newspaper is mentioned (or, in the case

of vision, seen) not only is it described internally as a newspaper and some
rough 3-D model description of its shape and axes set up, but it is also

described as a light, flexible object with area. Because the second sentence

might have continued "and sat down to read," the newspaper must also be

described as reading matter; similarly, it must also be described as a com-

bustible article, as something that rustles, and so forth. Since we do not

usually know in advance what aspect of an object or action is important, it

follows that most of the time a given object will give rise to several different

coarse internal descriptions. Similarly for actions. It may be important to

note that the description of fly swatting or reading or fire lighting does not

have to be attached to the newspaper—a description of the newspaper is

merely available that will match its role in each scenario.
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Why do you think this must be so?

Because the importance of a primitive, coarse catalogue of events and

objects lies in the role that such coarse descriptions play in the ultimate

access and construction of perhaps exquisitely tailored specific scenarios,

rather in the way that a general 3-D animal model can finish up as a very

specific Cheshire cat after due interaction between the image and infor-

mation stored in the catalogue of models. What existed as little more than

a malicious intent toward the innocent fly after the first sentence becomes,

with the additional information about the newspaper, a very specific case

of fly squashing. Exactly how this is best done and exactly what descriptions

should accompany different words or perceived objects is not yet known.

What about other types ofprocessing that the brain does, such as theplan-

ning and execution ofbehavior? Might not these be simplerplaces to start

lookingfor modules?After all, semantics is one ofthe most advanced areas

ofhuman ability, so its not unreasonable to expect that it may be complex.

I would try something simpler.

I think that may be excellent advice, and it reminds me of a fascinating

experiment done some time ago by Stamm (1969). He was running what

is called a delayed-response task (see Figure 7-2). In this, a scrap of food
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Figure 7-2. A delayed-response task. A scrap of food is placed under one of the

wells in full view of the animal. Then a screen descends for a period. When the

screen is raised, the animal has to choose one of the wells. If he looks under the

correct one, he is rewarded with the food.
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is placed in one of two wells, a screen comes down, a delay ensues, the

screen lifts, and the animal is then free to choose the well in which he

thinks the food is hidden. Certain portions of the prefrontal cortex are

known to be involved in this task, and the animal cannot perform it if they

are removed. Stamm used a technique—depolarization—whereby he

could effectively disable these areas for the precise period he desired. He
asked, When must the area be operating for the task to be carried out? It

turned out that the animal had to have its area working as the screen came
down at the beginning of the delay; if the area was knocked out at any

other time, it mattered either much less or not at all!

One possible way of thinking about this experiment is this. Any real-

time computer must be able to construct plans, set them up for execution

under the appropriate conditions, and set the triggers for them. One cannot

recompute everything afresh each time, and indeed the structure of a

human personality consists in part of thousands of such little plans, all set

to run a person's behavior if the appropriate conditions arise. But some-

thing must write these plans, and here in Stamm 's experiment maybe we
are seeing a simple example of this happening. As the wells are removed
from view, the animal writes into its set of plans to go to the appropriate

well when it can. A simple plan, but a plan nevertheless.

If we carry this idea a little further, we see that it splits the central

system into what one might call the planner and the executive. The planner

writes plans and their triggers to the executive, which, when the time and

conditions are ripe, executes them. Is it too absurd to suggest that during

hypnosis the executive becomes externally programmable and that this is

why it is possible to set up plans under hypnosis that are executed later

when the assigned conditions are met? The idea bears reflection, at least.

That is an interesting idea. Ihave not seen anyprevious explanation about
why itshould hepossible to "program"someone at all, andyoursuggestion
is certainly plausible. But what about the stereotyped nature of the pro-

gramming? We are ourselves very flexible, are we not? It's a little difficult

to reconcile that with a set ofprogrammed responses.

I think that depends entirely on how large, rich, and subtle the set of

responses has grown to be. If there is wide variety of responses and con-

siderable ability to act differently in only subtly different situations, then

we would be called flexible—and freer, incidentally, since we would be

taking a wider range of relevant information appropriately into account. If

we take no information (random response) or only one piece (compulsive

response), then we are certainly not acting flexibly or freely

That seems a sensible distinction. But as we move closer to saying the brain

is a computer, I mustsay Ido get moreandmorefearfulabout the meaning

ofhuman values.
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Well, to say the brain is a computer is correct but misleading. It's really

a highly specialized information-processing device—or rather, a whole lot

of them. Viewing our brains as information-processing devices is not

demeaning and does not negate human values. If anything, it tends to

support them and may in the end help us to understand what from an

information-processing view human values actually are, why they have

selective value, and how they are knitted into the capacity for social mores

and organization with which our genes have endowed us.
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Action potential The self-regenerating electrical spike that propagates

down an axon, thus transmitting a signal from one cell to the next via

a synapse. The mechanism of the conduction of this signal was elu-

cidated by A. L. Hodgkin and A. F. Huxley.

Adjunct relation A flexible way of specifying the relative positions of two

axes in a 3-D model, usually used to relate a component axis to the

model's principal axis (see Figures 5-4 and 5-5).

Area 1 7 The striate cortex.

Bandpass channel A filter that allows only a particular band of frequen-

cies to pass through it.

Bit map A convenient way of representing rough position in an image.

A two-dimensional array is set in correspondence with the x- andjy-

coordinates in an image, and the positions of items are represented

by putting a 1 at the appropriate point in the array.

Blocks world The visual domain of matte white, plane-faced blocks

viewed against a dark background. Much early machine vision was

conducted in this domain.

362
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Complex cells An orientationally sensitive class of cells in the visual cor-

tex discovered by Hubel and Wiesel. These cells are more complicated

than simple cells in that their response is not a linear function of the

spatial stimuli falling within their receptive fields, but they do not

show any particular sensitivity to the termination of edges and bars.

Component axis A subsidiary axis of a 3-D model, for example, the neck

axis in a quadruped 3-D model.

Conjunctive eye movements Eye movements that change the average

direction of gaze of the two eyes.

Contourgenerator The locus of points on a visible surface that gives rise

to a contour in the surface's image.

Convolution (
* ) Formally, the convolution oftwo functions/Cx) and g(x)

is given by/*g(x) = }f(x')g(x — x')ax'. For the case of an image, its

meaning may be visualized more easily in terms of receptive fields.

Suppose we place at position (xy) in an image a weighted receptive

field, perhaps with a center-surround organization. This field adds up
linearly the contributions from each part of the image as "seen"

through the receptive field—that is, points in the center receive a

strong positive weighting and those in the surround a weaker negative

weighting. The result is the value of the convolution of the image with

the function represented by the receptive field weights at that one
particular point {x,y). Thus to calculate directly the convolution of the

whole image, that is, for every point (xy), can be a computationally

expensive process.

Cooperative Algorithm A nonlinear algorithm in which purely local

operations appear to cooperate to produce order on a global scale in

a well-regulated manner. So called after cooperative phenomena in

physics, like the Ising model of ferromagnetism, superconductivity,

and phase transitions in general. Cooperative algorithms share many
characteristics with these phenomena.

V 2G The Laplacian operator applied to a Gaussian distribution in two
dimensions. The result has a Mexican-hat shape and can be written:

V 2G(r) = -1/ttct4 (i - r2
/2(T

2)exp(-r2/2(j2
)

It is illustrated in Figure 2-9.

Depth Viewer's subjective impression of the distance to the visible sur-

face.

Description A description is the result of applying a representation to a

particular entity (see Representation).

Differential operators Spatial differential operators like d/dx and d/dy

can be realized approximately by convolution operators with appro-
priately shaped receptive fields. Some of these are diagrammed in

Figure 2-11.

Dip See Slant.
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Disjunctive eye movements Eye movements that change the relative

directions of gaze of the two eyes, making them more convergent or

more divergent, while leaving their average direction of gaze

unchanged.

Disparity If two items are positioned at different distances from the

viewer, the relative positions of their images in the two eyes will differ.

This difference, usually measured in minutes of arc, is called disparity.

A 1-in. depth difference at a distance of 5 ft straight ahead will produce

a disparity of about 1'.

Distance Usually refers to objective three-dimensional distance from the

viewer to the visible surface.

DOG A function composed of the difference of two Gaussian distribu-

tions. Such functions are thought to describe the shape ofthe receptive

fields of the retinal ganglion cells and the shape of the receptive fields

associated with Wilson's four-channel model of early visual processing.

They are very close in shape to the ideal function V 2G (see Figure

2-16).

Eccentricity Usually refers to the angle out from the central fovea of the

retina.

Emittance angle The angle of emittance e is the angle between a ray of

light reflected from a surface and the normal to the surface.

Entropy Roughly speaking, the entropy of a probability distribution mea-

sures how chaotic the distribution is. Thus the entropy is low if the

distribution is concentrated around one value, and zero if it is con-

centrated on exactly one value. A uniform distribution has the maxi-

mum entropy. Formally, for a discrete distribution with outcomes

1,2,...,/,... having probabilities pv pv . . . ,p t,
. .

. , the entropy q(p)

of the distribution is given by q(p) = S _ A l°g
2A-

i

Fast Fourier transform A fast digital algorithm for carrying out a Fourier

transform on a discrete array whose dimensions are a power of 2. It

was devised by J. M. Cooley and T W. Tukey Recently S. Winograd

devised an even faster algorithm known as the very fast Fourier trans-

form (VFFT).

Frontal plane The plane lying perpendicular to the line of sight.

Gaussian (G) The so-called Gaussian or normal distribution has the

form G(f) = (1/2tt(x 2
) exp ( -r2/2a 2

) in two dimensions.

Gradient space A way of representing three-dimensional surface orien-

tation by a point on a two-dimensional graph, usually denoted by (p,q)

(see Section 3.8 and especially Figure 3-73).

High-passfilter A filter that allows through only the high frequencies in

a signal (these could be high spatial or temporal frequencies).

Horopter There are several definitions of the horopter, but in this book

it refers to the zero-disparity surface for the current positions of the

eyes.
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Hyperacuity Humans can carry out a variety of tasks to accuracies that

are more precise than the dimensions of the retinal cones from which
the information originates. Foveal cones have a diameter of about 27",

yet many tasks yield accuracies of around 5", and stereoscopic acuity

may be as good as 2". Such tasks are said to fall within the range of

hyperacuity

Incidence angle The angle of incidence i is the angle between a ray of

incident light and the normal to the surface.

Isoluminance contour A reflectance map usually consists of contours of

constant luminance, or isoluminance contours, plotted in (p,q) or

gradient space.

Isotropic The same in all directions.

Just noticeable difference (JND) AJND experiment tests discrimination

ability for a parameter over a range by measuring at each point in the

range the amount the parameter has to be changed before the differ-

ence is noticed. The two test stimuli are usually juxtaposed.

Lambertian A Lambertian surface is a perfect diffuser, the reflective

analogue of a blackbody radiator. Its reflectance function §(i,e,g) is

cos i and depends only on i, the angle of incidence of the illumination.

Laplacian (V 2) Formally, V 2 = d 2/dx2 + d 2/dy2
. It is the lowest-order

isotropic differential operator.

Lateral geniculate body (LGN) The main visual nucleus between the

eye and the brain. It is fed by the optic nerve, which consists of axons

of the retinal ganglion cells. The axons emerging from the LGN, called

the optic radiations, project to the striate cortex in the monkey and in

man.

Low-pass filter A filter that allows through only the low frequencies in

a signal (these could be low spatial or temporal frequencies).

Model axis An axis, associated with a 3-D model, that defines the overall

extent of the shape that the model represents.

Modulation transfer function (MTF) The amplitude of the Fourier

transform of a filter or function. The MTF is useful because by looking

at its graph, one can tell at a glance which frequencies are passed and
which are suppressed by the filter.

Occluding contour A contour in an image that is formed by an occluding

edge.

Panum's area The disparity range over which stereoscopic fusion can be
achieved without eye movements.

Panum's limiting case See Figure 3-19.

Phase angle The phase angle g is the angle between the incident and
emitted rays.

Place token A token that marks a point of interest in an image. Such
tokens have a position, and they may possess various other properties.
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They are thought to be constructed during the early analysis of the

spatial arrangement of an image.

Primal sketch A representation of the two-dimensional image that makes

explicit the amount and disposition of the intensity changes there. The

representation is hierarchical, the primitives at the lowest level rep-

resenting raw intensity changes and their local geometrical structure,

and those at the higher levels capturing groupings and alignments

occurring among the lower items (see Figure 2-7).

Principal axis The axis of a 3-D model that most component axes adjoin,

for example, the torso axis of a quadruped 3-D model.

Reflectance function Usually denoted by ty(i,eg), the reflectance func-

tion associated with a surface specifies what fraction of the incident

light is reflected under different conditions of viewing and illumina-

tion. See Figure 3-75 and Section 3.8.

Reflectance map A graph that relates image intensities to surface orien-

tation, not usually in a one-to-one manner. Figures 3-76 to 3-79 show

some examples;

Representation A representation of a set of entities S is a formal scheme

for describing them, together with rules that specify how the scheme

applies to any particular one of the entities.

Retinal ganglion cells The final layer of cells in retinal processing. The

axons of these cells leave the retina through the so-called blind spot

and form the optic nerve.

Retinex Edwin Land's term for the processing of an image by removing

all gradual changes in intensity, such as might be caused by changes

in illumination, while leaving all sudden changes, such as might be

due to changes in reflectance.

Rhodopsin The light-sensitive visual pigment in the rods and cones, the

receptors of the eye.

Saccade A conjunctive eye movement can either be smooth or occur in

a preprogrammed ballistic jump called a saccade, which takes about

160 ms to program internally. Disjunctive eye movements, on the other

hand, are always smooth and are under continuous control based on

feedback about the disparity between the current vergence angle and

the desired vergence angle.

Shape The geometry of an object's physical surface.

Simple cells A class of orientationally sensitive cells in the striate cortex,

discovered by Hubel and Wiesel and defined as simple cells by the

linearity of their response to stimuli falling in their receptive fields.

Slant The angle by which a plane slants or dips away from the viewer's

frontal plane. Also called dip.

Spatial frequency The Fourier transform of a signal that varies in time

represents that signal as the sum of sine and cosine waves, each at a
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different temporal frequency. If the signal varies in space rather than

time, like a single image for instance, then the components by which

its Fourier transform represents it are its spatial frequencies, which

can be thought of as oriented sine wave gratings.

Spatialfrequency channel A channel that allows only a limited range of

spatial frequencies to pass through it. The early parts of the human
visual system incorporate a number of spatial frequency channels,

each ofwhich is effectively less than two octaves wide; that is, the ratio

of the maximum to the minimum frequency passed is less than 4 to 1.

Striate cortex The primary visual cortical receiving area in the monkey

and in man. So called because of the stria of Genarii, a band of white

matter running through only this region of the cortex.

Surface contour The image of a contour lying on a visible surface.

Synapse The junction between nerve cells occurring between the axon

of one and the dendrite or soma (cell body) of the next. Most synapses

are chemical—that is, messages are transmitted across them by release

of a chemical from the axon terminal—but some synapses are elec-

trical

Tachistoscope A device used in psychophysical experiments for exposing

the subject to brief visual stimuli.

3-D Model The basic building block of the 3-D model representation. It

specifies a model axis, which defines the overall extent of the shape;

the relative sizes and spatial arrangement of the (few) component axes

of the model; and pointers to the shapes associated with these axes

(see the boxes in Figure 5-3).

3-D Model representation An object-centered representation for shapes

that includes the use of volumetric primitives of various sizes,

arranged in a modular, hierarchical organization (see Figure 5-3).

Tilt The direction in which the surface slants away from the frontal plane.

2V2-D Sketch A viewer-centered representation of the depth and orien-

tation of the visible surfaces, including contours of discontinuity in

these parameters (see Figure 3-12).

Vergence eye movements See disjunctive eye movements.

Volterra series A way of representing a certain class of nonlinear systems.

Provided a function is sufficiently smooth, that is, has no discontinui-

ties or threshold or decision points, it can be expressed as a series of

polynomial terms; for example,

fixy) = ax + by + cxy + dx^y + . .

.

In the particular case of the flight control system of the housefly, only

the lower-order terms are important.

W cells, X cells, Y cells The three classes of retinal ganglion cells. The X-

cell-Y-cell distinction was originally discovered by C. Enroth-Cugell

and J. D. Robson, the W cells being discovered later. These classes
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have been isolated anatomically and physiologically. Y cells have the

largest cell bodies, the largest receptive fields and are the least fre-

quent (about 4% of the total ganglion cells). They have a high con-

duction velocity and relatively transient responses, and are subject to

the shift and Mcllwain effects, insensitive to color, and relatively more
common in the periphery. X cells are smaller than Y cells, have smaller

receptive fields, and occur more frequently than Y cells (about 60%
of retinal ganglion cells are X cells). They have medium conduction

velocity and relatively sustained responses, and are not so subject to

the shift and Mcllwain effects, often color sensitive, and relatively more
common toward the fovea. W cells are very small cells with slow

conduction velocities, forming perhaps 40% of the ganglion cell pop-
ulation. These cells, which are difficult to record from, are often direc-

tionally selective and may have other rather specific properties. Many
of these cells project to the superior colliculus.

Zero-crossing Point where a function s value changes its sign.
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Pitts, W., 110

Pixel, 31

Place tokens, 51

PLANNER system, 342

Poggendorff figure, 291

Poggio, T, 19, 26, 32, 34, 52, 63, 67, 85,

102, 107, 108-111, 113, 116-117,

122, 124, 125, 130, 146, 152, 154, 155,

269, 271, 335, 343

Pointillism, 356
Potter, J., 209
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Prazdny, K., 159, 188, 212, 214

Primal sketch, 37, 42, 52, 330, 350-351

and correspondence, 189-193

higher primitives in, 91-93

illustration of, 53

raw primal sketch, see Raw primal

sketch

Primitives, 51-52, 330

and correspondence problem, 185

extensions of, 310

higher primitives, 91-93

of raw primal sketch, 71

of shape representation, 300-302

Principal axis, 307-308, 316-317

Processes, 22-24, 330-331

grouping of, 91-98

implicit assumptions for, 267

information from images, 276

and modules, 102

and representations, 332

segmentation, 270-271

table of, 265

Program control structures, 271

Property lists, 28, 342

Psychophysics, 9-11, 14-15, 26-27,

101-102, 105

of brightness, lightness, and color, 251,

254, 260, 262

of early vision, 61-64

of the fly, 32-34

of motion, 159-162, 164, 166-167, 170,

179, 182, 189-196, 200, 206-209

of shape recognition, 325-328

of stereo vision, 111, 125-128, 141-144,

146-148, 150-151, 280-282, 286-287

of texture discrimination, 96-98

Pulling effect, 144

Pure sine waves, 133

Purkinje cells, 14

Ramachandran, V. S., 203

Random-dot stereograms. See

Stereograms

Rashbass, C, 128, 150

Raw primal sketch, 68-74

and color, 352-353

Real shape concept, 31

Receptive field of cell, 12

Recognition. See Shape recognition

Recognize, segment and, 35-36

Reductionist approach, 14

Reflectance, 17

adaptation reflectance, 253

and color, 250

function, 244

geometry distinguished, 43

and glossiness, 89

and intensity, 41

and shading, 243-245

Reflectance map
and photometric stereo, 249-250

and shading, 245-247

Regan, D., 125, 182

Reichardt, W, 32, 34, 110

Reitz, K. P., 43

Relaxation process, 323
Representation, 20-21, 25

of depth, 281-282

for early vision, 51-53, 71-73

property list for, 342

input representation, see Input

representation

for process, 23, 332

and psychophysics, 26, 27

sequence of, 36

shape representation, 272, 295-328

spatial arrangement of image, 80-81

tokens, 44

2V2-D sketch, 268-269, 275-294

uses of, 32

Representational theories of mind, 6

Resonating to invariants, 29-30

Retinal ganglion cells. See X cells; Y cells

Retinex theory, 17, 253-258

Retinocentric frame, 42, 283-284

Reversed phi phenomenon, 179

Rice, S. O., 135

Richards, W, 125, 144, 217, 252

Riggs, L. A., 128, 150

Rigidity assumption, 210-211

Rigidity constraint, 209-211

Riley, M, 94, 95, 191, 193, 199

Rites of Spring, 217, 218-219

Roberts, L. G., 17, 321

RobsonJ., 10, 61-62, 66, 172

ROCHA-MlRANDA, C. E., 14

Rock, I., 196

Rodieck, R. W., 64, 65, 172

Roman numeral system, 20, 21

Rosch, E., 27, 349

Rosenblatt, E, 212

ROSENFELD, A., 16, 271

Rotation and three-dimensional objects,

10-11

RUBENSTEIN, C. B., 252

Rumelhart, D. E., 347, 349

Russell, B., 344

Saccade, 150

Sampling theorem, 289
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Save, A, 125, 150

Schatz, B. R, 86, 97

Schiller, P. H., 14, 175

Secondary illumination, 243

Second-order directional derivatives,

56-57
Segment and recognize, 35-36
Segmentation, 270-271, 336
Semantics of objects, 355-359
Sense and Sensibilia, 30

Sense atoms, 340

Sense-data, 30

Sensitivity and shape representation, 298

Sequence of representations, 36
Shading, 239-250
and photometric stereo, 249-250
shape from, 19

Shadow boundaries, 88-89
and transparency, 90

Shape contours, 215-233; see also

Contour generators

occluding, see Occluding contours

and reflectance map, 246-247

surface contours, 226-233, 278

Shape from shading, 19, 239-250
Shape information, 37-38

Shape recognition, 295-328
and derivation, 321-325
requirements for, 326

Shape representation, 272, 295-328
Shapley, R. M., 172

Sheep, disparity detectors in, 154

Shepard, R. M., 10-11, 27, 349
Shirai, Y, 17

Short-range system, 160-162, 166-167
Sibson, R, 47, 340

Silhouettes, 217, 218-219

and generalized cone, 224

grassfire technique, 304-305
Silver, W. M., 249

Similarity, 47-49
and apparent motion, 185-186

and Gestalt movement, 186-187

Simon, H. A, 347

Simple cells, 66, 167-169, 174

Simultaneous contrast, 259-261
Sine waves, 133

Size and shape representation, 301-302
Sketch, 42

Slants, 27, 234

for axes, 323
and texture, 234, 235-238

Smith, R A, Jr., 144

Smoothness

and correspondence, 196

and shading, 248

and three-dimensional perception, 205

Spatial coincidence assumption, 70, 104

Spatial continuity, 49

Spatial frequency channels, 61-62, 170

for edge detection, 68-71

for stereopsis, 125-126, 128, 138-140

Spatial localization, contraint of, 68-70
Spatial organization, 93-94
Spatial relationships, 79-86
Specificity index, 318-320
Sperling, G., 122

Spivack, G.J., 252

Splitting of apparent motion, 202-203
Springer, R, 251

Stabilized-image conditions, 280-281

StammJ.S., 359-360
StarzecJ.J., 207

Stent, G., 349
Stepwise mental rotation, 10-11

Stereo acuity, 155

Stereo blindness, 125-126

Stereo disparity, 10

Stereograms, 9, 101-102

and apparent motion, 160-161

and cooperative algorithm, 119, 120

and depth, 146

double matches, 202

for interpolation, 286

large-disparity, 280-281

surface corrugations in, 43

and texture discrimination, 97
and vergence, 150-151

Stereo matching

algorithm, 26

and zero-crossings, 75

Stereopsis, 111-159

biological evidence, 125-127

computational theory, 336

constraints, 112-114

cooperative algorithms for, 116-124

and discontinuity, 290

and distance, 279-280

fundamental assumptions of, 115-116

and fusion, 144

and hysteresis, 126-127

matching process, see Matching process

Stereo vision, 100

Stevens' algorithm, 82-83
Stevens, K. A, 27, 47, 81-82, 84-86, 107,

226-233, 234-238, 344

Stick figure representation, 299,

304-305
Stone, J., 64, 65, 172
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Structure from motion, 184, 187-188,

205-212

and optical flow, 214

rigidity constraint, 209-211

Subjective contours, 50, 51

and apparent motion, 203

and virtual lines, 81

Sugie, N., 122, 123

Surface-based primitives, 301

Surface contours, 226-233, 278

Surface geometry changes, 276

Surface orientation, 27

discontinuities, 225-226

and disparity change, 156-159

gradient space of, 240-243

linear interpolation in, 290-291

and photometric stereo, 249-250

and 2V2-D sketch, 277

Surfaces, 44

contours, 226-233, 278

hierarchical organization, 44-45

texture, see Texture

Sussman, G. J., 342

Sutherland, N. S., 326

Suwa, M., 122, 123

SVAETICHIN, G., 12

Switkes, E., 47, 84

Symmetry, 310

Syntax, analysis of, 356-357

SZENTAGOTHAI,J., 14, 201

Tachistoscopic presentation of images,

150

Taylor, A. M., 35, 328, 355

Tenenbaum,J. M., 35, 271

Terminations, 76-79

of bars, 51

and correspondence, 189-191

Texture, 233-239

boundaries, 94-95, 97

discrimination, 96-98

isolation of elements, 234-238

and stereopsis, 146-147

Thompson, I. D., 164

3-D model, 37, 302-309, 330, 354-356

catalogue of, 318-321, 322

extensions of, 309-313

3-D model description, 306-307

derivation for, 313-317

Threshold

detection studies, 10

and retinex theory, 258

Thurston, M., 16

Tilt and texture, 234, 235-238

Time derivatives, 169-170

for channels, 170-172

Tokens, 44

boundaries, 93-96
collinearity of, 49

correspondence tokens, 188

and minimal mapping theory, 197

place tokens, see Place tokens

and stereo disparity, 114

Tolhurst, D. J., 64, 164, 170

Top-down school of thought, 100-101

Torre, V., 108-110,152

Trace theory of grammar, 29

Transformational grammar theory, 28-29,

344

Transparency, 89-90
Trichromatism, 9

image measurements, 262-264

Trigger features, 12

Trowbridge, T. S., 43

Tukey, T. W., 364

Two-color projection demonstration, 252

2V2-D sketch, 37, 42, 268-294, 330,

350-352
coordinate systems for, 283-285

discontinuities in, 288

general form of, 277-279

orientation and depth, 129

representation forms, 279-283

and segmentation, 270

and subjective contours, 81

and vergence movements, 149-151

Tyler, C. W., 43, 146, 290

Ullman, S, 52, 67, 86-88, 97, 102, 106,

111, 152, 159, 161, 162, 164-165, 167,

174-175, 179, 182-183, 185, 187, 188,

189-192, 193-201, 204-206,

208-211,214-215,288,343

Unconventional views, 328

Uniqueness

and matching, 115, 140-144

and shape recognition, 297

vanDoorn, A J., 214

Vatan, P., 314

Vectors, three-dimensional, 308-309

Velocity field, 51, 175-176, 179

and minimal mapping theory, 197-198

Vergence eye movements, 128

and 2V2-D sketch, 149-151

Very fast Fourier transform, 364

VlDYASAGAR, T. R, 203

Viewer-centered coordinates, 317-318

Viewpoint and intensity, 41

Virtual line, 81-86

Vividness, perceptual, 282

Volman, S. E, 14, 175
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Volterra series expansion, 34

Volumetric primitives, 301

von derHeydt, R., 154

Wallach, H., 9, 102, 105, 159, 182, 209

Waltz, D., 17, 225, 291, 344-345

Warrington, E., 27, 35, 36, 328, 349, 355

Watson, B. A., 170

Weisstein, N., 287

WeizenbaumJ., 347

Wertheimer, M., 8, 159

Westheimer, G., 128, 150, 155

Wheel, rotation of, 189, 190

White, 252-253

White, B. W, 285

White, G. R, 214

Whitterridge, D., 125, 154

Wiesel, T. N, 12-14, 16, 49, 135, 154, 175,

340, 343, 363

Williams, R H., 150

Wilson, H., 10, 62-64, 135, 170, 179

Winograd, T, 28, 341, 342, 344, 357, 364

Witkin, A., 230, 287

Woodham, RJ., 248, 249

Wright, M.J. , 164

X cells, 64, 65, 168-175, 337

Y cells, 64, 65, 168-175, 337

Zero-crossings, 54-68
and AND gates, 110

detection of segments, 66

directional selectivity, see Directional

selectivity

intervals between, 134-135, 136-137

and Logan's theorem, 67

matching algorithm, see Matching

algorithm

and matching process, 130

moving zero-crossing, detection of,

174-175

segments, 60-61

of pure sine wave, 133

slope, 60-61

and spatial coincidence assumption, 70

and spatial localization, 70

and stereo matching process, 75

and symbolism, 343

Zucker, S. W, 85, 271
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