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Note: Readers may require stereoscopic viewers in order to obtain the
three-dimensional effects of the stereo images illustrated in this book. These
viewers may be ordered from the following companies; please write to request
current prices.

Hubbard Scientific Company
P.O. Box 104
Northbrook, Illinois 60062

Edmund Scientific Company
1776 Edscorp Building
Barrington, New Jersey 08007

The reader may be able to obtain the stereoscopic effect without an optical
device: Hold the stereo image about ten inches away from the eyes and relax the
eyes as if staring into the distance. Eventually the left-hand member of the pair
seen by the right eye and the right-hand member of the pair seen by the left eye
will merge to produce what will appear to be a three-dimensional image.

It will help to hold a fingertip about halfway between the stereo pair and
your eyes. Adjust the position of the finger so that when looking with only your
left eye, you see the finger in front of the right edge of the right-hand member of
the pair. At the same time, when looking with your right eye only, try to see the
finger in front of the right edge of the left-hand member of the pair. When your
finger is so positioned, look at the finger with both eyes. This procedure will
bring the two members of the stereo pair into registration, but they will be out
of focus. Now relax your eyes and try to focus the stereo pair without losing the
fixation on your finger. This trick seems to get easier as you get older.



Contents

Detailed Contents xi

Preface xvii

PART I

INTRODUCTION AND
PHILOSOPHICAL PRELIMINARIES

General Introduction 3

Chapter 1

The Philosophy and the Approach 8

Background 8
Understanding Complex Information-Processing Systems 19
A Representational Framework for Vision 31

PART II
VISION

Chapter 2

Representing the Image 41

Physical Background of Early Vision 41
Zero-Crossings and the Raw Primal Sketch 54
Spatial Arrangement of an Image 79

vii



viii Contents

Light Sources and Transparency 86
Grouping Processes and the Full Primal Sketch 91

Chapter 3

From Images to Surfaces 99

Modular Organization of the Human Visual Processor 99
Processes, Constraints, and the Available Representations of an Image 103
Stereopsis 111
Directional Selectivity 159
Apparent Motion 182
Shape Contours 215
Surface Texture 233
Shading and Photometric Stereo 239
Brightness, Lightness, and Color 250
Summary 264

Chapter 4

The Immediate Representation of Visible Surfaces 268

Introduction 268
Image Segmentation 270
Reformulating the Problem 272
The Information to be Represented 275
General Form of the 2V%-D Sketch 277
Possible Forms for the Representation 279
Possible Coordinate Systems 283
Interpolation, Continuation, and Discontinuities 285
Computational Aspects of the Interpolation Problem 288
Other Internal Computations 291

Chapter 5

Representing Shapes for Recognition 295

Introduction 295
Issues Raised by the Representation of Shape 296
The 3-D Model Representation 302
Natural Extensions 309
Deriving and Using the 3-D Model Representation 313
Psychological Considerations 325



Contents

Chapter 6

Synopsis 329

PART III
EPILOGUE

Chapter 7

A Conversation 335

Introduction 335
A Way of Thinking 336

Glossary 362
Bibliography 369
Index 387






Detailed Contents

PREFACE xvii

PART I

INTRODUCTION AND
PHILOSOPHICAL PRELIMINARIES

GENERAL INTRODUCTION 3

Chapter 1

The Philosophy and the Approach 8
Background 8

Understanding Complex Information-Processing Systems 19
Representation and description 20
Process 22
The three levels 24
Importance of computational theory 27
The approach of J. J. Gibson 29

A Representational Framework for Vision 31
The purpose of vision 32
Advanced vision 34
To the desirable via the possible 36



Detailed Contents

PART II
VISION

Chapter 2

Representing the Image 41

Physical Background of Early Vision 41

Representing the image 44

Underlying physical assumptions 44
Existence of surfaces 44
Hierarchical organization 44
Similarity 47
Spatial continuity 49
Continuity of discontinuities 49
Continuity of flow 50

General nature of the representation 51

Zero-crossings and the Raw Primal Sketch 54
Zero-crossings 54
Biological implications 61
The psychophysics of early vision 61
The physiological realization of the VG filters 64
The physiological detection of zero crossings 64
The first complete symbolic representation of the image 67
The raw primal sketch 68
Philosophical aside 75

Spatial Arrangement of an Image 79

Light Sources and Transparency 86
Other light source effects 88
Transparency 89
Conclusions 90

Grouping Processes and the Full Primal Sketch 91
Main points in the argument 96
The computational approach and the psychophysics of texture
discrimination 96

Chapter 3

From Images to Surfaces 99

Modular Organization of the Human Visual Processor 99
Processes, Constraints, and the Available Representations of an Image 103
Stereopsis 111
Measuring stereo disparity 111
Computational theory 111



Detailed Contentis xiii

Algorithms for stereo matching 116
A cooperative algorithm 116
Cooperative algorithms and the stereo matching problem 122
Biological evidence 125
A second algorithm 127
Uniqueness, cooperativity, and the pulling effect 140
Panum’s fusional area 144
Impressions of depth from larger disparities 144
Have we solved the right problem? 148
Vergence movements and the 2"/2-D sketch 149
Neural implementation of stereo fusion 152
Computing distance and surface orientation from disparity 155
Computational theory 155
Distance from the viewer to the surface 155
Surface orientation from disparity change 156
Algorithm and implementation 159

Directional Selectivity 159

Introduction to visual motion 159
Computational theory 165
An algorithm 167
Neural implementation 169

Using directional selectivity to separate independently moving surfaces 175
Computational theory 175
Algorithm and implementation 177

Looming 182

Apparent Motion 182
Why apparent motion? 183
The two halves of the problem 184
The correspondence problem 188
Empirical findings 188
What is the input representation? 188
Two dimensionality of the correspondence process 193
Ullman’s theory of the correspondence process 196
A critique of Ullman’s theory 199
A new look at the correspondence problem 202
One problem or two? 202
Separate systems for structure and object constancy 204
Structure from Motion 205
The problem 205
A previous approach 207
The rigidity constraint 209
The rigidity assumption 210
A note about the perspective projection 211
Optical flow 212



Detailed Contents

The input representation 212
Mathematical results 213

Shape Contours 215

Some examples 216

Occluding contours 218
Constraining assumptions 219
Implications of the assumptions = 222

Surface orientation discontinuities 225

Surface contours 226
The puzzle and difficulty of surface contours 228
Determining the shape of the contour generator 229
The effects of more than one contour 230

Surface Texture 233
The isolation of texture elements 234
Surface parameters 234
Possible measurements 234
Estimating scaled distance directly 238
Summary 239

Shading and Photometric Stereo 239
Gradient space 240
Surface illumination, surface reflectance, and image intensity 243
The reflectance map 245
Recovery of shape from shading 248
Photometric stereo 249

Brightness, Lightness, and Color 250
The HelsonJudd approach 252
Retinex theory of lightness and color 253
Algorithms 255
Extension to color vision 256
Comments on the retinex theory 257
Some physical reasons for the importance of simultaneous contrast 259
Hypothesis of the superficial origin of nonlinear changes in intensity 261
Implications for measurements on a trichromatic image 262
Summary of the approach 264

Summary 264

Chapter 4

The Immediate Representation of Visible Surfaces 268

Introduction 268
Image Segmentation 270
Reformulating the Problem 272



Detailed Contents

The Information to be Represented 275

General Form of the 2%5-D Sketch 277

Possible Forms for the Representation 279

Possible Coordinate Systems 283

Interpolation, Continuation, and Discontinuities 285

Computational Aspects of the Interpolation Problem 288
Discontinuities 289
Interpolation methods 290

Other Internal Computations 291

Chapter 5

Representing Shapes for Recognition 295
Introduction 295

Issues Raised by the Representation of Shape 296

Criteria for judging the effectiveness of a shape representation 296
Accessibility 297
Scope and uniqueness 297
Stability and sensitivity 298

Choices in the design of a shape representation 298
Coordinate systems 298
Primitives 300
Organization 302

The 3-D Model Representation 302
Natural coordinate systems 303
Axis-based descriptions 304
Modular organization of the 3-D model representation 305
Coordinate system of the 3-D model 307

Natural Extensions 309
Deriving and Using the 3-D Model Representation 313
Deriving a 3-D model description 313
Relating viewer-centered to object-centered coordinates 317
Indexing and the catalogue of 3-D models 318
Interaction between derivation and recognition 321
Finding the correspondence between image and catalogued
model 322
Constraint analysis 322

Psychological Considerations 325

Chapter 6

Synopsis 329



Detailed Contents

PART HI
EPILOGUE

Chapter 7

In Defense of the Approach 335

Introduction 335
A Conversation 336

Glossary 362
Bibliography 369
Index 387



Preface

This book is meant to be enjoyed. It describes the adventures I have had
in the years since Marvin Minsky and Seymour Papert invited me to the
Artificial Intelligence Laboratory at the Massachusetts Institute of Technol-
ogy in 1973. Working conditions were ideal, thanks to Patrick Winston’s
skillful administration, to the generosity of the Advanced Research Projects
Agency of the Department of Defense and of the National Science Foun-
dation, and to the freedom arranged for me by Whitman Richards, under
the benevolent eye of Richard Held. I was fortunate enough to meet and
collaborate with a remarkable collection of people, most especially, Tomaso
Poggio. Included among these people were many erstwhile students who
became colleagues and from whom I learned much—XKeith Nishihara, Shi-
mon Ullman, Ken Forbus, Kent Stevens, Eric Grimson, Ellen Hildreth,
Michael Riley, and John Batali. Berthold Horn kept us close to the physics
of light, and Whitman Richards, to the abilities and inabilities of people.

In December 1977, certain events occurred that forced me to write
this book a few years earlier than I had planned. Although the book has
important gaps, which I hope will soon be filled, a new framework for
studying vision is already clear and supported by enough solid results to
be worth setting down as a coherent whole.

Many people have helped me to live through this somewhat difficult
period. Particularly, my parents, my sister, my wife Lucia, and Jennifer,
Tomaso, Shimon, Whitman, and Inge gave to me more than I often
deserved; although mere thanks are inadequate, I thank them. William
Prince steered me to Professor E G. Hayhoe and Dr. John Rees at Adden-
brooke’s Hospital in Cambridge, and them I thank for giving me time.

Summer 1979 David Marr
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General
Introduction

What does it mean, to see? The plain man’s answer (and Aristotle’s, too)
would be, to know what is where by looking. In other words, vision is the
process of discovering from images what is present in the world, and where
it is.

Vision is therefore, first and foremost, an information-processing task,
but we cannot think of it just as a process. For if we are capable of knowing
what is where in the world, our brains must somehow be capable of rep-
resenting this information—in all its profusion of color and form, beauty,
motion, and detail. The study of vision must therefore include not only the
study of how to extract from images the various aspects of the world that
are useful to us, but also an inquiry into the nature of the internal rep-
resentations by which we capture this information and thus make it avail-
able as a basis for decisions about our thoughts and actions. This duality—
the representation and the processing of information—lies at the heart of
most information-processing tasks and will profoundly shape our investi-
gation of the particular problems posed by vision.

The need to understand information-processing tasks and machines
has arisen only quite recently. Until people began to dream of and then to
build such machines, there was no very pressing need to think deeply
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about them. Once people did begin to speculate about such tasks and
machines, however, it soon became clear that many aspects of the world
around us could benefit from an information-processing point of view.
Most of the phenomena that are central to us as human beings—the
mysteries of life and evolution, of perception and feeling and thought—
are primarily phenomena of information processing, and if we are ever to
understand them fully, our thinking about them must include this per-
spective.

The next point—which has to be made rather quickly to those who
inhabit a world in which the local utility’s billing computer is still capable
of sending a final demand for $0.00—is to emphasize that saying that a job
is “only” an information-processing task or that an organism is “only” an
information-processing machine is not a limiting or a pejorative descrip-
tion. Even more importantly, I shall in no way use such a description to try
to limit the kind of explanations that are necessary. Quite the contrary, in
fact. One of the fascinating features of information-processing machines is
that in order to understand them completely, one has to be satisfied with
one’s explanations at many different levels.

For example, let us look at the range of perspectives that must be
satisfied before one can be said, from a human and scientific point of view,
to have understood visual perception. First, and I think foremost, there is
the perspective of the plain man. He knows what it is like to see, and unless
the bones of one’s arguments and theories roughly correspond to what
this person knows to be true at first hand, one will probably be wrong (a
point made with force and elegance by Austin, 1962). Second, there is the
perspective of the brain scientists, the physiologists and anatomists who
know a great deal about how the nervous system is built and how parts of
it behave. The issues that concern them—how the cells are connected, why
they respond as they do, the neuronal dogmas of Barlow (1972)—must be
resolved and addressed in any full account of perception. And the same
argument applies to the perspective of the experimental psychologists.

On the other hand, someone who has bought and played with a small
home computer may make quite different demands. “If” he might say,
“vision really is an information-processing task, then I should be able to
make my computer do it, provided that it has sufficient power, memory,
and some way of being connected to a home television camera.” The
explanation he wants is therefore a rather abstract one, telling him what to
program and, if possible, a hint about the best algorithms for doing so. He
doesn’t want to know about rhodopsin, or the lateral geniculate nucleus,
or inhibitory interneurons. He wants to know how to program vision.

The fundamental point is that in order to understand a device that
performs an information-processing task, one needs many different kinds
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of explanations. Part I of this book is concerned with this point, and it plays
a prominent role because one of the keystones of the book is the realization
that we have had to be more careful about what constitutes an explanation
than has been necessary in other recent scientific developments, like those
in molecular biology. For the subject of vision, there és no single equation
or view that explains everything. Each problem has to be addressed from
several points of view—as a problem in representing information, as a
computation capable of deriving that representation, and as a problem in
the architecture of a computer capable of carrying out both things quickly
and reliably.

If one keeps strongly in mind this necessarily rather broad aspect of
the nature of explanation, one can avoid a number of pitfalls. One conse-
quence of an emphasis on information processing might be, for example,
to introduce a comparison between the human brain and a computer. In
a sense, of course, the brain is a computer, but to say this without qualifi-
cation is misleading, because the essence of the brain is not simply that it
is a computer but that it is a computer which is in the habit of performing
some rather particular computations. The term computer usually refers to
a machine with a rather standard type of instruction set that usually runs
serially but nowadays sometimes in parallel, under the control of programs
that have been stored in a memory. In order to understand such a computer,
one needs to understand what it is made of, how it is put together, what its
instruction set is, how much memory it has and how it is accessed, and
how the machine may be made to run. But this forms only a small part of
understanding a computer that is performing an information-processing
task.

This point bears reflection, because it is central to why most analogies
between brains and computers are too superficial to be useful. Think, for
example, of the international network of airline reservation computers,
which performs the task of assigning flights for millions of passengers all
over the world. To understand this system it is not enough to know how
a modern computer works. One also has to understand a little about what
aircraft are and what they do; about geography, time zones, fares, exchange
rates, and connections; and something about politics, diets, and the various
other aspects of human nature that happen to be relevant to this particular
task.

Thus the critical point is that understanding computers is different
from understanding computations. To understand a computer, one has to
study that computer. To understand an information-processing task, one
has to study that information-processing task. To understand fully a partic-
ular machine carrying out a particular information-processing task, one has
to do both things. Neither alone will suffice.
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From a philosophical point of view, the approach that I describe is an
extension of what have sometimes been called representational theories
of mind. On the whole, it rejects the more recent excursions into the
philosophy of perception, with their arguments about sense-data, the mol-
ecules of perception, and the validity of what the senses tell us; instead,
this approach looks back to an older view, according to which the senses
are for the most part concerned with telling one what is there. Modern
representational theories conceive of the mind as having access to systems
of internal representations; mental states are characterized by asserting
what the internal representations currently specify, and mental processes
by how such internal representations are obtained and how they interact.

This scheme affords a comfortable framework for our study of visual
perception, and I am content to let it form the point of departure for our
inquiry. As we shall see, pursuing this approach will lead us away from
traditional avenues into what is almost a new intellectual landscape. Some
of the things we find will seem strange, and it will be hard to reconcile
subjectively some of the ideas and theories that are forced on us with what
actually goes on inside ourselves when we open our €yes and look at
things. Even the basic notion of what constitutes an explanation will have
to be developed and broadened a little, to ensure that we do not leave
anything out and that every important perspective on the problem is sat-
isfied or satisfiable.

The book itself is divided into three parts. In the first are contained
the philosophical preliminaries, a description of the approach, the repre-
sentational framework that is proposed for the overall process of visual
perception, and the way that led to it. I have adopted a fairly personal style
in the hope that if the reader understands why particular directions were
taken at each point, the reasons for the overall approach will be clearer.

The second part of the book, Chapters 2 to 6, contains the real analysis.
It describes informally, but in some detail, how the approach and frame-
work are actually realized, and the results that have been achieved.

The third part is somewhat unorthodox and consists of a set of ques-
tions and answers that are designed to help the reader to understand the
way of thinking behind the approach—to help him acquire the right prej-
udices, if you like—and to relate these explanations to his personal expe-
rience of seeing. I have often found that one or two of the remarks set out
in Part 11T have helped a person to see the point of part of the theory or to
circumvent some private difficulty with it, and 1 hope they may serve a
similar purpose here. The reader may find this section means more after
having read the first two parts of the book, but an early glance at it may
provide the motivation to take the trouble.
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The detailed exposition comes, then, in Part II. Of course, the subject
of human visual perception is not solved here by a long way. But over the
last six years, my colleagues and I have been fortunate enough to see the
establishment of an overall theoretical framework as well as the solution
of several rather central problems in visual perception. We feel that the
combination amounts to a reasonably strong case that the representational
approach is a useful one, and the point of this book is to make that case.
How far this approach can be pursued, of course, remains to be seen.



CHAPTER 1

The Philosophy
and the Approach

1.1 BACKGROUND

The problems of visual perception have attracted the curiosity of scientists
for many centuries. Important early contributions were made by Newton
(1704), who laid the foundations for modern work on color vision, and
Helmholtz (1910), whose treatise on physiological optics generates interest
even today. Early in this century, Wertheimer (1912, 1923) noticed the
apparent motion not of individual dots but of wholes, or “fields,” in images
presented sequentially as in a movie. In much the same way we perceive
the migration across the sky of a flock of geese: the flock somehow con-
stitutes a single entity, and is not seen as individual birds. This observation
started the Gestalt school of psychology, which was concerned with describ-
ing the qualities of wholes by using terms like solidarity and distinctness,
and with trying to formulate the “laws” that governed the creation of these
wholes. The attempt failed for various reasons, and the Gestalt school
dissolved into the fog of subjectivism. With the death of the school, many

8
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Figure 1-1. A random-dot stereogram of the type used extensively by Bela Julesz.
The left and right images are identical except for a central square region that is
displaced slightly in one image. When fused binocularly, the images yield the
impression of the central square floating in front of the background.

of its early and genuine insights were unfortunately lost to the mainstream
of experimental psychology.

Since then, students of the psychology of perception have made no
serious attempts at an overall understanding of what perception is, con-
centrating instead on the analysis of properties and performance. The tri-
chromatism of color vision was firmly established (see Brindley, 1970), and
the preoccupation with motion continued, with the most interesting devel-
opments perhaps being the experiments of Miles (1931) and of Wallach
and O’Connell (1953), which established that under suitable conditions an
unfamiliar three-dimensional shape can be correctly perceived from only
its changing monocular projection.*

The development of the digital electronic computer made possible
a similar discovery for binocular vision. In 1960 Bela Julesz devised
computer-generated random-dot stereograms, which are image pairs con-
structed of dot patterns that appear random when viewed monocularly but
fuse when viewed one through each eye to give a percept of shapes and
surfaces with a clear three-dimensional structure. An example is shown in
Figure 1-1. Here the image for the left eye is a matrix of black and white
squares generated at random by a computer program. The image for the

*The two dimensional image seen by a single eye.
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right eye is made by copying the left image, shifting a square-shaped region
at its center slightly to the left, and then providing a new random pattern
to fill the gap that the shift creates. If each of the eyes sees only one matrix,
as if the matrices were both in the same physical place, the result is the
sensation of a $quare floating in space. Plainly, such percepts are caused
solely by the stereo disparity between matching elements in the images
presented to each eye; from such experiments, we know that the analysis
of stereoscopic information, like the analysis of motion, can proceed inde-
pendently in the absence of other information. Such findings are of critical
importance because they help us to subdivide our study of perception into
more specialized parts which can be treated separately. I shall refer to these
as independent modules of perception.

The most recent contribution of psychophysics has been of a different
kind but of equal importance. It arose from a combination of adaptation
and threshold detection studies and originated from the demonstration
by Campbell and Robson (1968) of the existence of independent, spatial-
frequency-tuned channels—that is, channels sensitive to intensity variations
in the image occurring at a particular scale or spatial interval—in the early
stages of our perceptual apparatus. This paper led to an explosion of arti-
cles on various aspects of these channels, which culminated ten years later
with quite satisfactory quantitative accounts of the characteristics of the first
stages of visual perception (Wilson and Bergen, 1979). I shall discuss this
in detail later on.

Recently a rather different approach has attracted considerable at-
tention. In 1971, Roger N. Shepard and Jacqueline Metzler made line draw-
ings of simple objects that differed from one another either by a three-
dimensional rotation or by a rotation plus a reflection (see Figure 1-2).
They asked how long it took to decide whether two depicted objects dif-
fered by a rotation and a reflection or merely a rotation. They found that
the time taken depended on the three-dimensional angle of rotation nec-
essary to bring the two objects into correspondence. Indeed, the time
varied linearly with this angle. One is led thereby to the notion that a
mental rotation of sorts is actually being performed—that a mental descrip-
tion of the first shape in a pair is being adjusted incrementally in orientation
until it matches the second, such adjustment requiring greater time when
greater angles are involved.

The significance of this approach lies not so much in its results, whose
interpretation is controversial, as in the type of questions it raised. For until
then, the notion of a representation was not one that visual psychologists
took seriously. This type of experiment meant that the notion had to be
considered. Although the early thoughts of visual psychologists were naive
compared with those of the computer vision community, which had had
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(@) (®) ©

Figure 1-2. Some drawings similar to those used in Shepard and Metzler’s exper-
iments on mental rotation. The ones shown in (a) are identical, as a clockwise
turning of this page by 80° will readily prove. Those in (b) are also identical, and
again the relative angle between the two is 80°. Here, however, a rotation in depth
will make the first coincide with the second. Finally, those in (c) are not at all
identical, for no rotation will bring them into congruence. The time taken to decide
whether a pair is the same was found to vary linearly with the angle through which
one figure must be rotated to be brought into correspondence with the other. This
suggested to the investigators that a stepwise mental rotation was in fact being
performed by the subjects of their experiments.

to face the problem of representation from the beginning, it was not
long before the thinking of psychologists became more sophisticated (see
Shepard, 1979).

But what of explanation? For a long time, the best hope seemed to lie
along another line of investigation, that of electrophysiology. The devel-
opment of amplifiers allowed Adrian (1928) and his colleagues to record
the minute voltage changes that accompanied the transmission of nerve
signals. Their investigations showed that the character of the sensation so
produced depended on which fiber carried the message, not how the fiber
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was stimulated—as one might have expected from anatomical studies. This
led to the view that the peripheral nerve fibers could be thought of as a
simple mapping supplying the sensorium with a copy of the physical events
at the body surface (Adrian, 1947). The rest of the explanation, it was
thought, couldsafely be left to the psychologists.

The next development was the technical improvement in amplification
that made possible the recording of single neurons (Granit and Svaetichin,
1939; Hartline, 1938; Galambos and Davis, 1943). This led to the notion of
a cell’s “receptive field” (Hartline, 1940) and to the Harvard School’s famous
series of studies of the behavior of neurons at successively deeper levels
of the visual pathway (Kuffler, 1953; Hubel and Wiesel, 1962, 1968). But
perhaps the most exciting development was the new view that questions
of psychological interest could be illuminated and perhaps even explained
by neurophysiological experiments. The clearest early example of this was
Barlow’s (1953) study of ganglion cells in the frog retina, and I cannot put
it better than he did:

If one explores the responsiveness of single ganglion cells in the frog’s retina
using handheld targets, one finds that one particular type of ganglion cell is
most effectively driven by something like a black disc subtending a degree or
so moved rapidly to and fro within the unit's receptive field. This causes a
vigorous discharge which can be maintained without much decrement as long
as the movement is continued. Now, if the stimulus which is optimal for this
class of cells is presented to intact frogs, the behavioural response is often
dramatic; they turn towards the target and make repeated feeding responses
consisting of a jump and snap. The selectivity of the retinal neurons and the
frog’s reaction when they are selectively stimulated, suggest that they are “bug
detectors” (Barlow 1953) performing a primitive but vitally important form
of recognition.

The result makes one suddenly realize that a large part of the sensory
machinery involved in a frog’s feeding responses may actually reside in the
retina rather than in mysterious “centres” that would be too difficult to under-
stand by physiological methods. The essential lock-like property resides in
each member of a whole class of neurons and allows the cell to discharge
only to the appropriate key pattern of sensory stimulation. Lettvin e al. (1959)
suggested that there were five different classes of cell in the frog, and Barlow,
Hill and Levick (1964) found an even larger number of categories in the rabbit.
[Barlow et al.] called these key patterns “trigger features,” and Maturana et al.
(1960) emphasized another important aspect of the behaviour of these gan-
glion cells; a cell continues to respond to the same trigger feature in spite of
changes in light intensity over many decades. The properties of the retina are
such that a ganglion cell can, figuratively speaking, reach out and determine
that something specific is happening in front of the eye. Light is the agent by
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which it does this, but it is the detailed pattern of the light that carries the
information, and the overall level of illumination prevailing at the time is
almost totally disregarded. (p. 373)

Barlow (1972) then goes on to summarize these findings in the fol-
lowing way:

The cumulative effect of all the changes I have tried to outline above has been
to make us realise that each single neuron can perform a much more complex
and subtle task than bad previously been thought (emphasis added). Neurons
do not loosely and unreliably remap the luminous intensities of the visual
image onto our sensorium, but instead they detect pattern elements, discrim-
inate the depth of objects, ignore irrelevant causes of variation and are
arranged in an intriguing hierarchy. Furthermore, there is evidence that they
give prominence to what is informationally important, can respond with great
reliability, and can have their pattern selectivity permanently modified by early
visual experience. This amounts to a revolution in our outlook. It is now quite
inappropriate to regard unit activity as a noisy indication of more basic and
reliable processes involved in mental operations: instead, we must regard
single neurons as the prime movers of these mechanisms. Thinking is brought
about by neurons and we should not use phrases like “unit activity reflects,
reveals, or monitors thought processes,” because the activities of neurons,
quite simply, are thought processes.

This revolution stemmed from physiological work and makes us realize
that the activity of each single neuron may play a significant role in perception.

(p- 380)

This aspect of his thinking led Barlow to formulate the first and most
important of his five dogmas: ‘A description of that activity of a single nerve
cell which is transmitted to and influences other nerve cells and of a nerve
cell’s response to such influences from other cells, is a complete enough
description for functional understanding of the nervous system. There is
nothing else “looking at” or controlling this activity, which must therefore
provide a basis for understanding how the brain controls behaviour’ (Bar-
low, 1972, p. 380).

I shali return later on to more carefully examine the validity of this
point of view, but for now let us just enjoy it. The vigor and excitement of
these ideas need no emphasis. At the time the eventual success of a reduc-
tionist approach seemed likely. Hubel and Wiesel’s (1962, 1968) pioneer-
ing studies had shown the way; single-unit studies on stereopsis (Barlow,
Blakemore, and Pettigrew, 1967) and on color (DeValois, Abramov, and
Mead, 1967; Gouras, 1968) seemed to confirm the close links between
perception and single-cell recordings, and the intriguing results of Gross,
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Rocha-Miranda, and Bender (1972), who found “hand-detectors” in the
inferotemporal cortex, seemed to show that the application of the reduc-
tionist approach would not be limited just to the early parts of the visual
pathway.

It was, of course, recognized that physiologists had been lucky: If one
probes around in a conventional electronic computer and records the
behavior of single elements within it, one is unlikely to be able to discern
what a given element is doing. But the brain, thanks to Barlow’s first dogma,
seemed to be built along more accommodating lines—people were able
to determine the functions of single elements of the brain. There seemed
no reason why the reductionist approach could not be taken all the way.

[ was myself fully caught up in this excitement. Truth, I also believed,
was basically neural, and the central aim of all research was a thorough
functional analysis of the structure of the central nervous system. My enthu-
siasm found expression in a theory of the cerebellar cortex (Mart, 1969).
According to this theory, the simple and regular cortical structure is inter-
preted as a simple but powerful memorizing device for learning motor
skills; because of a simple combinatorial trick, each of the 15 million Pur-
kinje cells in the cerebellum is capable of learning over 200 different
patterns and discriminating them from unlearned patterns. Evidence is
gradually accumulating that the cerebellum is involved in learning motor
skills (Ito, 1978), so that something like this theory may in fact be correct.

The way seemed clear. On the one hand we had new experimental
techniques of proven power, and on the other, the beginnings of a theo-
retical approach that could back them up with a fine analysis of cortical
structure. Psychophysics could tell us what needed explaining, and the
recent advances in anatomy—the Fink-Heimer technique from Nauta’s lab-
oratory and the recent successful deployment by Szentagothai and others
of the electron microscope—could provide the necessary information
about the structure of the cerebral cortex.

But somewhere underneath, something was going wrong. The initial
discoveries of the 1950s and 1960s were not being followed by equally
dramatic discoveries in the 1970s. No neurophysiologists had recorded
new and clear high-level correlates of perception. The leaders of the 1960s
had turned away from what they had been doing—Hubel and Wiesel con-
centrated on anatomy, Barlow turned to psychophysics, and the mainstream
of neurophysiology concentrated on development and plasticity (the con-
cept that neural connections are not fixed) or on a more thorough analysis
of the cells that had already been discovered (for example, Bishop,
Coombs, and Henry, 1971; Schiller, Finlay, and Volman, 1976a, 1976b), or
on cells in species like the owl (for example, Pettigrew and Konishi, 1976).
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None of the new studies succeeded in elucidating the furiction of the visual
cortex.

It is difficult to say precisely why this happened, because the reasoning
was never made explicit and was probably largely unconscious. However,
various factors are identifiable. In my own case, the cerebellar study had
two effects. On the one hand, it suggested that one could eventually hope
to understand cortical structure in functional terms, and this was exciting.
But at the same time the study has disappointed me, because even if the
theory was correct, it did not much enlighten one about the motor sys-
tem—it did not, for example, tell one how to go about programming a
mechanical arm. It suggested that if one wishes to program a mechanical
arm so that it operates in a versatile way, then at some point a very large
and rather simple type of memory will prove indispensable. But it did not
say why, nor what that memory should contain.

The discoveries of the visual neurophysiologists left one in a similar
situation. Suppose, for example, that one actually found the apocryphal
grandmother cell.* Would that really tell us anything much at all? It would
tell us that it existed—Gross’s hand-detectors tell us almost that—but not
why or even how such a thing may be constructed from the outputs of
previously discovered cells. Do the single-unit recordings—the simple and
complex cells—tell us much about how to detect edges or why one would
want to, except in a rather general way through arguments based on econ-
omy and redundancy? If we really knew the answers, for example, we
should be able to program them on a computer. But finding a hand-
detector certainly did not allow us to program one.

As one reflected on these sorts of issues in the early 1970s, it gradually
became clear that something important was missing that was not present
in either of the disciplines of neurophysiology or psychophysics. The key
observation is that neurophysiology and psychophysics have as their busi-
ness to describe the behavior of cells or of subjects but not to explain such
behavior. What are the visual areas of the cerebral cortex actually doing?
What are the problems in doing it that need explaining, and at what level
of description should such explanations be sought?

The best way of finding out the difficulties of doing sornething is to
try to do it, so at this point I moved to the Artificial Intelligence Laboratory
at MIT, where Marvin Minsky had collected a group of people and a power-
ful computer for the express purpose of addressing these questions.

*A cell that fires only when one’s grandmother comes into view.
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The first great revelation was that the problems are difficult. Of course,
these days this fact is a commonplace. But in the 1960s almost no one
realized that machine vision was difficult. The field had to go through the
same experience as the machine translation field did in its fiascoes of the
1950s before it was at last realized that here were some problems that had
to be taken seriously. The reason for this misperception is that we humans
are ourselves so good at vision. The notion of a feature detector was well
established by Barlow and by Hubel and Wiesel, and the idea that extracting
edges and lines from images might be at all difficult simply cid not occur
to those who had not tried to do it. It turned out to be an elusive problem:
Edges that are of critical importance from a three-dimensional point of
view often cannot be found at all by looking at the intensity changes in an
image. Any kind of textured image gives a multitude of noisy edge seg-
ments; variations in reflectance and illumination cause no end of trouble;
and even if an edge has a clear existence at one point, it is as likely as not
to fade out quite soon, appearing only in patches along its length in the
image. The common and almost despairing feeling of the early investigators
like B.K.P. Horn and TO. Binford was that practically anything could happen
in an image and furthermore that practically everything did.

Three types of approach were taken to try to come to grips with these
phenomena. The first was unashamedly empirical, associated most with
Azriel Rosenfeld. His style was to take some new trick for edge detection,
texture discrimination, or something similar, run it on images, and
observe the result. Although several interesting ideas emerged in this way,
including the simultaneous use of operators* of different sizes as an
approach to increasing sensitivity and reducing noise (Rosenfeld and
Thurston, 1971), these studies were not as useful as they could have been
because they were never accompanied by any serious assessment of how
well the different algorithms performed. Few attempts were made to com-
pare the merits of different operators (although Fram and Deutsch, 1975,
did try), and an approach like trying to prove mathematically which oper-
ator was optimal was not even attempted. Indeed, it could not be, because
no one had yet formulated precisely what these operators should be trying
to do. Nevertheless, considerable ingenuity was shown. The most clever
was probably Hueckels (1973) operator, which solved in an ingenious way
the problem of finding the edge orientation that best fit a given intensity
change in a small neighborhood of an image.

*Operator refers to a local calculation to be applied at each location in the image, making
use of the intensity there and in the immediate vicinity.
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The second approach was to try for depth of analysis by restricting the
scope to a world of single, illuminated, matte white toy blocks set against
a black background. The blocks could occur in any shapes provided only
that all faces were planar and all edges were straight. This restriction
allowed more specialized techniques to be used, but it still did not make
the problem easy. The Binford—Horn line finder (Horn, 1973) was used to
find edges, and both it and its sequel (described in Shirai, 1973) made use
of the special circumstances of the environment, such as the fact that all
edges there were straight.

These techniques did work reasonably well, however, and they allowed
a preliminary analysis of later problems to emerge—roughly, what does
one do once a complete line drawing has been extracted from a scene?
Studies of this had begun sometime before with Roberts (1965) and Guz-
man (1968), and they culminated in the works of Waltz (1975) and Mack-
worth (1973), which essentially solved the interpretation problem for line
drawings derived from images of prismatic solids. Waltz’s work had a par-
ticularly dramatic impact, because it was the first to show explicitly that an
exhaustive analysis of all possible local physical arrangements of surfaces,
edges, and shadows could lead to an effective and efficient algorithm for
interpreting an actual image. Figure 1-3 and its legend convey the main
ideas behind Waltz’s theory.

The hope that lay behind this work was, of course, that once the toy
world of white blocks had been understood, the solutions found there
could be generalized, providing the basis for attacking the more complex
problems posed by a richer visual environment. Unfortunately, this turned
out not to be so. For the roots of the approach that was eventually suc-
cessful, we have to look at the third kind of development that was taking
place then.

Two pieces of work were important here. Neither is probably of very
great significance to human perception for what it actually accomplished—
in the end, it is likely that neither will particularly reflect human visual
processes—but they are both of importance because of the way in which
they were formulated. The first was Land and McCann’s (1971) work on the
retinex theory of color vision, as developed by them and subsequently by
Horn (1974). The starting point is the traditional one of regarding color as
a perceptual approximation to reflectance. This allows the formulation of
a clear computational question, namely, How can the effects of reflectance
changes be separated from the vagaries of the prevailing illumination? Land
and McCann suggested using the fact that changes in illumination are usu-
ally gradual, whereas changes in reflectance of a surface or of an object
boundary are often quite sharp. Hence by filtering out slow changes, those
changes due to the reflectance alone could be isolated. Horn devised a
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Figure 1-3.  Some configurations of edges are physically realizable, and some are
not. The trihedral junctions of three convex edges (a) or of three concave edges
(b) are realizable, whereas the configuration (c) is impossible. Waltz cataloged all
the possible junctions, including shadow edges, for up to four coincident edges.
He then found that by using this catalog to implement consistency relations [requir-
ing, for example, that an edge be of the same type all along its length like edge E
in (d)], the solution to the labeling of a line drawing that included shadows was
often uniquely determined.

clever parallel algorithm for this, and I suggested how it might be imple-
mented by neurons in the retina (Marr, 1974a).

I do not now believe that this is at all a correct analysis of color vision
or of the retina, but it showed the possible style of a correct analysis. Gone
are the ad hoc programs of computer vision; gone is the restriction to a
special visual miniworld; gone is any explanation i terms of neurons—
except as a way of implementing a method. And present is a clear under-
standing of what is to be computed, how it is to be done, the physical
assumptions on which the method is based, and some kind of analysis of
algorithms that are capable of carrying it out.
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The other piece of work was Horn’s (1975) analysis of shape from
shading, which was the first in what was to become a distinguished series
of articles on the formation of images. By carefully analyzing the way in
which the illumination, surface geometry, surface reflectance, and view-
point conspired to create the measured intensity values in an image, Horn
formulated a differential equation that related the image intensity values
to the surface geometry. If the surface reflectance and illumination are
known, one can solve for the surface geometry (see also Horn, 1977). Thus
from shading one can derive shape.

The message was plain. There must exist an additional level of under-
standing at which the character of the information-processing tasks carried
out during perception are analyzed and understood in a way that is inde-
pendent of the particular mechanisms and structures that implement them
in our heads. This was what was missing—the analysis of the problem as
an information-processing task. Such analysis does not usurp an under-
standing at the other levels—of neurons or of computer programs—but
it is a necessary complement to them, since without it there can be no real
understanding of the function of all those neurons.

This realization was arrived at independently and formulated together
by Tomaso Poggio in Tibingen and myself (Marr and Poggio, 1977; Marr,
1977b). It was not even quite new—Leon D. Harmon was saying something
similar at about the same time, and others had paid lip service to a similar
distinction. But the important point is that if the notion of different types
of understanding is taken very seriously, it allows the study of the infor-
mation-processing basis of perception to be made rigorous. It becomes
possible, by separating explanations into different levels, to make explicit
statements about what is being computed and why and to construct theo-
ries stating that what is being computed is optimal in some sense or is
guaranteed to function correctly. The ad hoc element is removed, and
heuristic computer programs are replaced by solid foundations on which
a real subject can be built. This realization—the formulation of what was
missing, together with a clear idea of how to supply it—formed the basic
foundation for a new integrated approach, which it is the purpose of this
book to describe.

1.2 UNDERSTANDING COMPLEX
INFORMATION-PROCESSING SYSTEMS

Almost never can a complex system of any kind be understood as a simple
extrapolation from the properties of its elementary components. Consider,
for example, some gas in a bottle. A description of thermodynamic effects—
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temperature, pressure, density, and the relationships among these fac-
tors—is not formulated by using a large set of equations, one for each of
the particles involved. Such effects are described at their own level, that of
an enormous collection of particles; the effort is to show that in principle
the microscopic and macroscopic descriptions are consistent with one
another. If one hopes to achieve a full understanding of a system as com-
plicated as a nervous system, a developing embryo, a set of metabolic
pathways, a bottle of gas, or even a large computer program, then one must
be prepared to contemplate different kinds of explanation at different lev-
els of description that are linked, at least in principle, into a cohesive whole,
even if linking the levels in complete detail is impractical. For the specific
case of a system that solves an information-processing problem, there are
in addition the twin strands of process and representation, and both these
ideas need some discussion.

Representation and Description

A representation is a formal system for making explicit certain entities or
types of information, together with a specification of how the system does
this. And I shall call the result of using a representation to describe a given
entity a description of the entity in that representation (Marr and Nishihara,
1978).

For example, the Arabic, Roman, and binary numeral systems are all
formal systems for representing numbers. The Arabic representation con-
sists of a string of symbols drawn from the set (0, 1, 2, 3, 4,5,6,7,8,9),
and the rule for constructing the description of a particular integer 7 is
that one decomposes 7 into a sum of multiples of powers of 10 and unites
these multiples into a string with the largest powers on the left and the
smallest on the right. Thus, thirty-seven equals 3 X 10" + 7 X 10°, which
becomes 37, the Arabic numeral system’s description of the number. What
this description makes explicit is the number’s decomposition into powers
of 10. The binary numeral system’s description of the number thirty-seven
is 100101, and this description makes explicit the number’s decomposition
into powers of 2. In the Roman numeral system, thirty-seven is represented
as XXXVIL

This definition of a representation is quite general. For example, a
representation for shape would be a formal scheme for describing some
aspects of shape, together with rules that specify how the scheme is applied
to any particular shape. A musical score provides a way of representing a
symphony; the alphabet allows the construction of a written representation
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of words; and so forth. The phrase “formal scheme” is critical to the defi-
nition, but the reader should not be frightened by it. The reason is simply
that we are dealing with information-processing machines, and the way
such machines work is by using symbols to stand for things—to represent
things, in our terminology. To say that something is a formal scheme means
only that it is a set of symbols with rules for putting them together—no
more and no less.

A representation, therefore, is not a foreign idea at all—we all use
representations all the time. However, the notion that one can capture
some aspect of reality by making a description of it using a symbol and
that to do so can be useful seems to me a fascinating and powerful idea.
But even the simple examples we have discussed introduce some rather
general and important issues that arise whenever one chooses to use one
particular representation. For example, if one chooses the Arabic numeral
representation, it is easy to discover whether a number is a power of 10
but difficult to discover whether it is a power of 2. If one chooses the binary
representation, the situation is reversed. Thus, there is a trade-off; any
particular representation makes certain information explicit at the expense
of information that is pushed into the background and may be quite hard
to recover.

This issue is important, because how information is represented can
greatly affect how easy it is to do different things with it. This is evident
even from our numbers example: It is easy to add, to subtract, and even to
multiply if the Arabic or binary representations are used, but it is not at all
easy to do these things—especially multiplication—with Roman numerals.
This is a key reason why the Roman culture failed to develop mathematics
in the way the earlier Arabic cultures had.

An analogous problem faces computer engineers today. Electronic
technology is much more suited to a binary number system than to the
conventional base 10 system, yet humans supply their data and require the
results in base 10. The design decision facing the engineer, therefore, is,
Should one pay the cost of conversion into base 2, carry out the arithmetic
in a binary representation, and then convert back into decimal numbers
on output; or should one sacrifice efficiency of circuitry to carry out oper-
ations directly in a decimal representation? On the whole, business com-
puters and pocket calculators take the second approach, and general pur-
pose computers take the first. But even though one is not restricted to
using just one representation system for a given type of information, the
choice of which to use is important and cannot be taken lightly. It deter-
mines what information is made explicit and hence what is pushed further
into the background, and it has a far-reaching effect on the ease and
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difficulty with which operations may subsequently be carried out on that
information.

Process

The term process is very broad. For example, addition is a process, and so
is taking a Fourier transform. But so is making a cup of tea, or going
shopping. For the purposes of this book, I want to restrict our attention to
the meanings associated with machines that are carrying out information-
processing tasks. So let us examine in depth the notions behind one simple
such device, a cash register at the checkout counter of a supermarket.

There are several levels at which one needs to understand such a
device, and it is perhaps most useful to think in terms of three of them.
The most abstract is the level of whar the device does and why. What it
does is arithmetic, so our first task is to master the theory of addition.
Addition is a mapping, usually denoted by +, from pairs of numbers into
single numbers; for example, + maps the pair (3,4) to 7, and I shall write
this in the form (3 + 4)— 7. Addition has a number of abstract properties,
however. It is commutative: both (3 + 4) and (4 + 3) are equal to 7; and
associative: the sum of 3 + (4 + 5) is the same as the sum of (3 + 4)
+ 5. Then there is the unique distinguished element, zero, the adding of
which has no effect: (4 + 0) — 4. Also, for every number there is a unique
“inverse.” written ( —4) in the case of 4, which when added to the number
gives zero: [4 + (—4)]— 0.

Notice that these properties are part of the fundamental theory of
addition. They are true no matter how the numbers are written—whether
in binary, Arabic, or Roman representation—and no matter how the addi-
tion is executed. Thus part of this first level is something that might be
characterized as what is being computed.

The other half of this level of explanation has to do with the question
of why the cash register performs addition and not, for instance, multipli-
cation when combining the prices of the purchased items to arrive at a
final bill. The reason is that the rules we intuitively feel to be appropriate
for combining the individual prices in fact define the mathematical oper-
ation of addition. These can be formulated as constraints in the following
way:

1. If you buy nothing, it should cost you nothing; and buying nothing
and something should cost the same as buying just the something. (The
rules for zero.)
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2. The order in which goods are presented to the cashier should not
affect the total. (Commutativity.)

3. Arranging the goods into two piles and paying for each pile sepa-
rately should not affect the total amount you pay. (Associativity; the basic
operation for combining prices.)

4. If you buy an item and then return it for a refund, your total expen-
diture should be zero. (Inverses.)

It is a mathematical theorem that these conditions define the operation of
addition, which is therefore the appropriate computation to use.

This whole argument is what I call the computational theory of the
cash register. Its important features are (1) that it contains separate argu-
ments about what is computed and why and (2) that the resulting operation
is defined uniquely by the constraints it has to satisfy. In the theory of visual
processes, the underlying task is to reliably derive properties of the world
from images of it; the business of isolating constraints that are both pow-
erful enough to allow a process to be defined and generally true of the
world is a central theme of our inquiry.

In order that a process shall actually run, however, one has to realize
it in some way and therefore choose a representation for the entities that
the process manipulates. The second level of the analysis of a process,
therefore, involves choosing two things: (1) a representation for the input
and for the output of the process and (2) an aigorithm by which the
transformation may actually be accomplished. For addition, of course, the
input and output representations can both be the same, because they both
consist of numbers. However this is not true in general. In the case of a
Fourier transform, for example, the input representation may be the time
domain, and the output, the frequency domain. If the first of our levels
specifies what and why, this second level specifies how. For addition, we
might choose Arabic numerals for the representations, and for the algo-
rithm we could follow the usual rules about adding the least significant
digits first and “carrying” if the sum exceeds 9. Cash registers, whether
mechanical or electronic, usually use this type of representation and algo-
rithm.

There are three important points here. First, there is usually a wide
choice of representation. Second, the choice of algorithm often depends
rather critically on the particular representation that is employed. And
third, even for a given fixed representation, there are often several possible
algorithms for carrying out the same process. Which one is chosen will
usually depend on any particularly desirable or undesirable characteristics

~ that the algorithms may have; for example, one algorithm may be much
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more efficient than another, or another may be slightly less efficient but
more robust (that is, less sensitive to slight inaccuracies in the data on
which it must run). Or again, one algorithm may be parallel, and another,
serial. The choice, then, may depend on the type of hardware or machinery
in which the algorithm is to be embodied physically.

This brings us to the third level, that of the device in which the process
is to be realized physically. The important point here is that, once again,
the same algorithm may be implemented in quite different technologies.
The child who methodically adds two numbers from right to left, carrying
a digit when necessary, may be using the same algorithm that is imple-
mented by the wires and transistors of the cash register in the neighbor-
hood supermarket, but the physical realization of the algorithm is quite
different in these two cases. Another example: Many people have written
computer programs to play tic-tac-toe, and there is a more or less standard
algorithm that cannot lose. This algorithm has in fact been implemented
by W. D. Hillis and B. Silverman in a quite different technology, in a com-
puter made out of Tinkertoys, a children’s wooden building set. The whole
monstrously ungainly engine, which actually works, currently resides in a
museum at the University of Missouri in St. Louis.

Some styles of algorithm will suit some physical substrates better than
others. For example, in conventional digital computers, the number of
connections is comparable to the number of gates, while in a brain, the
number of connections is much larger (X 10*) than the number of nerve
cells. The underlying reason is that wires are rather cheap in biological
architecture, because they can grow individually and in three dimensions.
In conventional technology, wire laying is more or less restricted to two
dimensions, which quite severely restricts the scope for using parallel
techniques and algorithms; the same operations are often better carried
out serially.

The Three Levels

We can summarize our discussion in something like the manner shown in
Figure 1-4, which illustrates the different levels at which an information-
processing device must be understood before one can be said to have
understood it completely. At one extreme, the top level, is the abstract
computational theory of the device, in which the performance of the device
is characterized as a mapping from one kind of information to another, the
abstract properties of this mapping are defined precisely, and its appro-
priateness and adequacy for the task at hand are demonstrated. In the
center is the choice of representation for the input and output and the
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Representation and Hardware
Computational theory  algorithm implementation
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algorithm for the trans-

formation?

Figure 1—4. The three levels at which any machine carrying out an information-
processing task must be understood.

algorithm to be used to transform one into the other. And at the other
extreme are the details of how the algorithm and representation are real-
ized physically—the detailed computer architecture, so to speak. These
three levels are coupled, but only loosely. The choice of an algorithm is
influenced for example, by what it has to do and by the hardware in which
it must run. But there is 2 wide choice available at each level, and the
explication of each level involves issues that are rather independent of the
other two.

Each of the three levels of description will have its place in the eventual
understanding of perceptual information processing, and of course they
are logically and causally related. But an important point to note is that
since the three levels are only rather loosely related, some phenomena
may be explained at only one or two of them. This means, for example,
that a correct explanation of some psychophysical observation must be
formulated at the appropriate level. In attempts to relate psychophysical
problems to physiology, too often there is confusion about the level at
which problems should be addressed. For instance, some are related
mainly to the physical mechanisms of vision—such as afterimages (for
example, the one you see after staring at a light bulb) or such as the fact
that any color can be matched by a suitable mixture of the three primaries
(a consequence principally of the fact that we humans have three types of
cones). On the other hand, the ambiguity of the Necker cube (Figure 1-5)
seems to demand a different kind of explanation. To be sure, part of the
explanation of its perceptual reversal must have to do with a bistable neural
network (that is, one with two distinct stable states) somewhere inside the
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Figure 1-5. The so-called Necker illusion, named after L. A. Necker, the Swiss
naturalist who developed it in 1832. The essence of the matter is that the two-
dimensional representation (a) has collapsed the depth out of a cube and that a
certain aspect of human vision is to recover this missing third dimension. The
depth of the cube can indeed be perceived, but two interpretations are possible,
(b) and (¢). A person’s perception characteristically flips from one to the other.

brain, but few would feel satisfied by an account that failed to mention the
existence of two different but perfectly plausible three-dimensional inter-
pretations of this two-dimensional image. :

For some phenomena, the type of explanation required is fairly
obvious. Neuroanatomy, for example, is clearly tied principally to the third
level, the physical realization of the computation. The same holds for syn-
aptic mechanisms, action potentials, inhibitory interactions, and so forth.
Neurophysiology, too, is related mostly to this level, but it can also help us
to understand the type of representations being used, particularly if one
accepts something along the lines of Barlow’s views that I quoted earlier.
But one has to exercise extreme caution in making inferences from neu-
rophysiological findings about the algorithms and representations being
used, particularly until one has a clear idea about what information needs
to be represented and what processes need to be implemented.

Psychophysics, on the other hand, is relatéd more directly to the level
of algorithm and representation. Different algorithms tend to fail in radi-
cally different ways as they are pushed to the limits of their performance
or are deprived of critical information. As we shall see, primarily psycho-
physical evidence proved to Poggio and myself that our first stereo-match-
ing algorithm (Marr and Poggio, 1976) was not the one that is used by the
brain, and the best evidence that our second algorithm (Marr and Poggio,
1979) is roughly the one that is used also comes from psychophysics. of
course, the underlying computational theory remained the same in both
cases, only the algorithms were different.
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Psychophysics can also help to determine the nature of a represen-
tation. The work of Roger Shepard (1975), Eleanor Rosch (1978), or Eliz-
abeth Warrington (1975) provides some interesting hints in this direction.
More specifically, Stevens (1979) argued from psychophysical experi-
ments that surface orientation is represented by the coordinates of slant
and tilt, rather than (for example) the more traditional (p, g) of gradient
space (see Chapter 3). He also deduced from the uniformity of the size of
errors made by subjects judging surface orientation over a wide range of
orientations that the representational quantities used for slant and tilt are
pure angles and not, for example, their cosines, sines, or tangents.

More generally, if the idea that different phenomena need to be
explained at different levels is kept clearly in mind, it often helps in the
assessment of the validity of the different kinds of objections that are raised
from time to time. For example, one favorite is that the brain is quite
different from a computer because one is parallel and the other serial. The
answer to this, of course, is that the distinction between serial and parallel
is a distinction at the level of algorithm; it is not fundamental at all—
anything programmed in parallel can be rewritten serially (though not
necessarily vice versa). The distinction, therefore, provides no grounds for
arguing that the brain operates so differently from a computer that a com-
puter could not be programmed to perform the same tasks.

Importance of Computational Theory

Although algorithms and mechanisms are empirically more accessible, it
is the top level, the level of computational theory, which is critically impor-
tant from an information-processing point of view. The reason for this is
that the nature of the computations that underlie perception depends more
upon the computational problems that have to be solved than upon the
particular hardware in which their solutions are implemented. To phrase
the matter another way, an algorithm is likely to be understood more
readily by understanding the nature of the problem being solved than by
examining the mechanism (and the hardware) in which it is embodied.
In a similar vein, trying to understand perception by studying only
neurons is like trying to understand bird flight by studying only feathers:
It just cannot be done. In order to understand bird flight, we have to
understand aerodynamics; only then do the structure of feathers and the
different shapes of birds’ wings make sense. More to the point, as we shall
see, we cannot understand why retinal ganglion cells and lateral geniculate
neurons have the receptive fields they do just by studying their anatomy
and physiology. We can understand how these cells and neurons behave



28

The Philosophy and the Approach

as they do by studying their wiring and interactions, but in order to under-
stand why the receptive fields are as they are—why they are circularly
symmetrical and why their excitatory and inhibitory regions have charac-
teristic shapes and distributions—we have to know a little of the theory of
differential operators, band-pass channels, and the mathematics of the
uncertainty principle (see Chapter 2).

Perhaps it is not surprising that the very specialized empirical disci-
plines of the neurosciences failed to appreciate fully the absence of com-
putational theory; but it is surprising that this level of approach did not
play a more forceful role in the early development of artificial intelligence.
For far too long, a heuristic program for carrying out some task was held
to be a theory of that task, and the distinction between what 2 program did
and how it did it was not taken seriously. As a result, (1) a style of expla-
nation evolved that invoked the use of special mechanisms to solve partic-
ular problems, (2) particular data structures, such as the lists of attribute
value pairs called property lists in the LISP programing language, were
held to amount to theories of the representation of knowledge, and (3)
there was frequently no way to determine whether a program would deal
with a particular case other than by running the program.

Failure to recognize this theoretical distinction between what and how
also greatly hampered communication between the fields of artificial intel-
ligence and linguistics. Chomsky’s (1965) theory of transformational gram-
mar is a true computational theory in the sense defined earlier. It is con-
cerned solely with specifying what the syntactic decomposition of an
English sentence should be, and not at all with how that decomposition
should be achieved. Chomsky himself was very clear about this—it is
roughly his distinction between competence and performance, though his
idea of performance did include other factors, like stopping in midutter-
ance—but the fact that his theory was defined by transformations, which
look like computations, seems to have confused many people. Winograd
(1972), for example, felt able to criticize Chomsky’s theory on the grounds
that it cannot be inverted and so cannot be made to run on a computer; I
had heard reflections of the same argument made by Chomsky’s colleagues
in linguistics as they turn their attention to how grammatical structure
might actually be computed from a real English sentence.

The explanation is simply that finding algorithms by which Chomsky’s
theory may be implemented is a completely different endeavor from for-
mulating the theory itself. In our terms, it is a study ata different level, and
both tasks have to be done. This point was appreciated by Marcus (1980),
who was concerned precisely with how Chomsky’s theory can be realized
and with the kinds of constraints on the power of the human grammatical
processor that might give rise to the structural constraints in syntax that
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Chomsky found. It even appears that the emerging “trace” theory of gram-
mar (Chomsky and Lasnik, 1977) may provide a way of synthesizing the
two approaches—showing that, for example, some of the rather ad hoc
restrictions that form part of the computational theory may be conse-
quences of weaknesses in the computational power that is available for
implementing syntactical decoding.

The Approach of J. J. Gibson

In perception, perhaps the nearest anyone came to the level of computa-
tional theory was Gibson (1966). However, although some aspects of his
thinking were on the right lines, he did not understand properly what
information processing was, which led him to seriously underestimate the
complexity of the information-processing problems involved in vision and
the consequent subtlety that is necessary in approaching them.

Gibson’s important contribution was to take the debate away from the
philosophical considerations of sense-data and the affective qualities of
sensation and to note instead that the important thing about the senses is
that they are channels for perception of the real world outside or, in the
case of vision, of the visible surfaces. He therefore asked the critically
important question, How does one obtain constant perceptions in everyday
life on the basis of continually changing sensations? This is exactly the right
question, showing that Gibson correctly regarded the problem of percep-
tion as that of recovering from sensory information “valid” properties of
the external world. His problem was that he had a much oversimplified
view of how this should be done. His approach led him to consider higher-
order variables—stimulus energy, ratios, proportions, and so on—as
“invariants” of the movement of an observer and of changes in stimulation
intensity.

“These invariants,” he wrote, “correspond to permanent properties of
the environment. They constitute, therefore, information about the per-
manent environment.” This led him to a view in which the function of the
brain was to “detect invariants” despite changes in “sensations” of light,
pressure, or loudness of sound. Thus, he says that the “function of the
brain, when looped with its perceptual organs, is not to decode signals,
nor to interpret messages, nor to accept images, nor to organize the sen-
sory input or to process the data, in modern terminology. It is to seek and
extract information about the environment from the flowing array of
ambient energy,” and he thought of the nervous system as in some way
“resonating” to these invariants. He then embarked on a broad study of
animals in their environments, looking for invariants to which they might
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resonate. This was the basic idea behind the notion of ecological optics
(Gibson, 1966, 1979).

Although one can criticize certain shortcomings in the quality of Gib-
son’s analysis, its major and, in my view, fatal shortcoming lies at a deeper
level and results from a failure to realize two things. First, the detection of
physical invariants, like image surfaces, is exactly and precisely an infor-
mation-processing problem, in modern terminology. And second, he vastly
underrated the sheer difficulty of such detection. In discussing the recovery
of three-dimensional information from the movement of an observer, he
says that “in motion, perspective information alone can be used” (Gibson,
1966, p. 202). And perhaps the key to Gibson is the following:

The detection of non-change when an object moves in the world is not as
difficult as it might appear. It is only made to seem difficult when we assume
that the perception of constant dimensions of the object must depend on the
correcting of sensations of inconstant form and size. The information for the
constant dimension of an object is normally carried by invariant relations in
an optic array. Rigidity is specified. (emphasis added)

Yes, to be sure, but how? Detecting physical invariants is just as difficult as
Gibson feared, but nevertheless we can do it. And the only way to under-
stand how is to treat it as an information-processing problem.

The underlying peint is that visual information processing is actually
very complicated, and Gibson was not the only thinker who was misled by
the apparent simplicity of the act of seeing. The whole tradition of philo-
sophical inquiry into the nature of perception seems not to have taken
seriously enough the complexity of the information processing involved.
For example, Austin’s (1962) Sense and Sensibilia entertainingly demo-
lishes the argument, apparently favored by earlier philosophers, that since
we are sometimes deluded by illusions (for example, a straight stick
appears bent if it is partly submerged in water), we see sense-data rather
than material things. The answer is simply that usually our perceptual
processing does run correctly (it delivers a true description of what is
there), but although evolution has seen to it that our processing allows for
many changes (like inconstant illumination), the perturbation due to the
refraction of light by water is not one of them. And incidentally, although
the example of the bent stick has been discussed since Aristotle, I have
seen no philosphical inquiry into the nature of the perceptions of, for
instance, a heron, which is a bird that feeds by pecking up fish first seen
from above the water surface. For such birds the visual correction might
be present.

Anyway, my main point here is another one. Austin (1962) spends
much time on the idea that perception tells one about real properties of
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the external world, and one thing he considers is “real shape,” (p. 66), a
notion which had cropped up earlier in his discussion of a coin that
“looked elliptical” from some points of view. Even so,

it had a real shape which remained unchanged. But coins in fact are rather
special cases. For one thing their outlines are well defined and very highly
stable, and for another they have a known and a nameable shape. But there
are plenty of things of which this is not true. What is the real shape of a
cloud? ... or of a cat? Does its real shape change whenever it moves? If not,
in what posture s its real shape on display? Furthermore, is its real shape such
as to be fairly smooth outlines, or must it be finely enough serrated to take
account of each hair? It is pretty obvious that there is no answer to these
questions—no rules according to which, no procedure by which, answers are
to be determined. (emphasis added), (p. 67)

But there are answers to these questions. There are ways of describing
the shape of a cat to an arbitrary level of precision (see Chapter 5), and
there are rules and procedures for arriving at such descriptions. That is
exactly what vision is about, and precisely what makes it complicated.

1.3 A REPRESENTATIONAL FRAMEWORK
FOR VISION

Vision is a process that produces from images of the external world a
description that is useful to the viewer and not cluttered with irrelevant
information (Marr, 1976; Marr and Nishihara, 1978). We have already seen
that a process may be thought of as a mapping from one representation to
another, and in the case of human vision, the initial representation is in no
doubt—it consists of arrays of image intensity values as detected by the
photoreceptors in the retina.

It is quite proper to think of an image as a representation; the items
that are made explicit are the image intensity values at each point in the
array, which we can conveniently denote by 7 (x,) at coordinate (x). In
order to simplify our discussion, we shall neglect for the moment the fact
that there are several different types of receptor, and imagine instead that
there is just one, so that the image is black-and-white. Each value of 7 (xy)
thus specifies a particular level of gray; we shall refer to each detector as
a picture element or pixel and to the whole array 7 as an image.

But what of the output of the process of vision? We have already agreed
that it must consist of a useful description of the world, but that require-
ment is rather nebulous. Can we not do better? Well, it is perfectly true
that, unlike the input, the result of vision is much harder to discern, let
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alone specify precisely, and an important aspect of this new approach is
that it makes quite concrete proposals about what that end is. But before
we begin that discussion, let us step back a little and spend a little time
formulating the more general issues that are raised by these questions.

The Purpose of Vision

The usefulness of a representation depends upon how well suited it is to
the purpose for which it is used. A pigeon uses vision to help it navigate,
fly, and seek out food. Many types of jumping spider use vision to tell the
difference between a potential meal and a potential mate. One type, for
example, has a curious retina formed of two diagonal strips arranged in a
V. If it detects a red V on the back of an object lying in front of it, the
spider has found a mate. Otherwise, maybe a meal. The frog, as we have
seen, detects bugs with its retina; and the rabbit retina is full of special
gadgets, including what is apparently a hawk detector, since it responds
well to the pattern made by a preying hawk hovering overhead. Human
vision, on the other hand, seems to be very much more general, although
it clearly contains a variety of special-purpose mechanisms that can, for
example, direct the eye toward an unexpected movement in the visual field
or cause one to blink or otherwise avoid something that approaches one’s
head too quickly.

Vision, in short, is used in such a bewildering variety of ways that the
visual systems of different animals must differ significantly from one
another. Can the type of formulation that I have been advocating, in terms
of representations and processes, possibly prove adequate for them all? I
think so. The general point here is that because vision is used by different
animals for such a wide variety of purposes, it is inconceivable that all
seeing animals use the same representations; each can confidently be
expected to use one or more representations that are nicely tailored to the
owner’s purposes.

As an example, let us consider briefly a primitive but highly efficient
visual system that has the added virtue of being well understood. Werner
Reichardt’s group in Tubingen has spent the last 14 years patiently unrav-
eling the visual flight-control system of the housefly, and in a famous col-
laboration, Reichardt and Tomaso Poggio have gone far toward solving
the problem (Reichardt and Poggio, 1976, 1979; Poggio and Reichardt,
1976). Roughly speaking, the fly’s visual apparatus controls its flight through
a collection of about five independent, rigidly inflexible, very fast respond-
ing systems (the time from visual stimulus to change of torque is only 21
ms). For example, one of these systems is the landing system; if the visual
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field “explodes” fast enough (because a surface looms nearby), the fly
automatically “lands” toward its center. If this center is above the fly, the fly
automatically inverts to land upside down. When the feet touch, power to
the wings is cut off. Conversely, to take off, the fly jumps; when the feet no
longer touch the ground, power is restored to the wings, and the insect
flies again.

In-flight control is achieved by independent systems controlling the
fly’s vertical velocity (through control of the lift generated by the wings)
and horizontal direction (determined by the torque produced by the asym-
metry of the horizontal thrust from the left and right wings). The visual
input to the horizontal control system, for example, is completely
described by the two terms

() + D(W)

where r and D have the form illustrated in Figure 1-6. This input describes
how the fly tracks an object that is present at angle s in the visual field and
has angular velocity . This system is triggered to track objects of a certain
angular dimension in the visual field, and the motor strategy is such that
if the visible object was another fly a few inches away, then it would be
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Figure 1-6. The horizontal component of the visual input R to the
fly’s flight system is described by the formula R = D) — r({) ¢,
where § is the direction of the stimulus and { is its angular velocity
in the fly’s visual field. D(¥) is an odd function, as shown in (a), which
has the effect of keeping the target centered in the fly’s visual field;
r(s) is essentially constant as shown in (b).



34

The Philosophy and the Approach

intercepted successfully. If the target was an elephant 100 yd away, inter-
ception would fail because the fly’s built-in parameters are for another fly
nearby, not an elephant far away.

Thus, fly vision delivers a representation in which at least these three
things are specified: (1) whether the visual field is looming sufficiently fast
that the fly should contemplate landing; (2) whether there is a small
patch—it could be a black speck or, it turns out, a textured figure in front
of a textured ground—having some kind of motion relative to its back-
ground; and if there is such a patch, (3) ¢ and § for this patch are delivered
to the motor system. And that is probably about 60% of fly vision. In par-
ticular, it is extremely unlikely that the fly has any explicit representation
of the visual world around him—no true conception of a surface, for
example, but just a few triggers and some specifically fly-centered param-
eters like ¢ and .

It is clear that human vision is much more complex than this, although
it may well incorporate subsystems not unlike the fly’s to help with specific
and rather low-level tasks like the control of pursuit eye movements. Never-
theless, as Poggio and Reichardt have shown, even these simple systems
can be understood in the same sort of way, as information-processing tasks.
And one of the fascinating aspects of their work is how they have managed
not only to formulate the differential equations that accurately describe the
visual control system of the fly but also to express these equations, using
the Volterra series expansion, in a way that gives direct information about
the minimum possible complexity of connections of the underlying neu-
ronal networks.

Advanced Vision

Visual systems like the fly’s serve adequately and with speed and precision
the needs of their owners, but they are not very complicated; very little
objective information about the world is obtained. The information is all
very much subjective—the angular size of the stimulus as the fly sees it
rather than the objective size of the object out there, the angle that the
object has in the fly’s visual field rather than its position relative to the fly
or to some external reference, and the object’s angular velocity, again in
the fly’s visual field, rather than any assessment of its true velocity relative
to the fly or to some stationary reference point.

One reason for this simplicity must be that these facts provide the fly
with sufficient information for it to survive. Of course, the information is
not optimal and from time to time the fly will fritter away its energy chasing
a falling leaf a medium distance away or an elephant a long way away as a
direct consequence of the inadequacies of its perceptual system. But this
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apparently does not matter very much—the fly has sufficient excess energy
for it to be able to absorb these extra costs. Another reason is certainly that
translating these rather subjective measurements into more objective qual-
ities involves much more computation. How, then, should one think about
more advanced visual systems—human vision, for example. What are the
issues? What kind of information is vision really delivering, and what are
the representational issues involved?

My approach to these problems was very much influenced by the
fascinating accounts of clinical neurology, such as Critchley (1953) and
Warrington and Taylor (1973). Particularly important was a lecture that
Elizabeth Warrington gave at MIT in October 1973, in which she described
the capacities and limitations of patients who had suffered left or right
parietal lesions. For me, the most important thing that she did was to draw
a distinction between the two classes of patient (see Warrington and Taylor,
1978). For those with lesions on the right side, recognition of a common
object was possible provided that the patient’s view of it was in some sense
straightforward. She used the words converntional and unconventional—
a water pail or a clarinet seen from the side gave “conventional” views but
seen end-on gave “unconventional” views. If these patients recognized the
object at all, they knew its name and its semantics—that is, its use and
purpose, how big it was, how much it weighed, what it was made of, and
so forth. If their view was unconventional—a pail seen from above, for
example—not only would the patients fail to recognize it, but they would
vehemently deny that it could be a view of a pail. Patients with left parietal
lesions behaved completely differently. Often these patients had no lan-
guage, so they were unable to name the viewed object or state its purpose
and semantics. But they could convey that they correctly perceived its
geometry—that is, its shape—even from the unconventional view.

Warrington’s talk suggested two things. First, the representation of the
shape of an object is stored in a different place and is therefore a quite
different kind of thing from the representation of its use and purpose. And
second, vision alone can deliver an internal description of the shape of a
viewed object, even when the object was not recognized in the conventional
sense of understanding its use and purpose.

This was an important moment for me for two reasons. The general
trend in the computer vision community was to believe that recognition
was so difficult that it required every possible kind of information. The
results of this point of view duly appeared a few years later in programs
like Freuder’s (1974) and Tenenbaum and Barrow’s (1976). In the latter
program, knowledge about offices—for example, that desks have tele-
phones on them and that telephones are black-——was used to help “seg-
ment” out a black blob halfway up an image and “recognize” it as a tele-
phone. Freuder’s program used a similar approach to “segment” and
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“recognize” a hammer in a scene. Clearly, we do use such knowledge in
real life; T once saw a brown blob quivering amongst the lettuce in my
garden and correctly identified it as a rabbit, even though the visual infor-
mation alone was inadequate. And yet here was this young woman calmly
telling us not only that her patients could convey to her that they had
grasped the shapes of things that she had shown them, even though they
could not name the objects or say how they were used, but also that they
could happily continue to do so even if she made the task extremely difficult
visually by showing them peculiar views or by illuminating the objects in
peculiar ways. It seemed clear that the intuitions of the computer vision
people were completely wrong and that even in difficult circumstances
shapes could be determined by vision alone.

The second important thing, I thought, was that Elizabeth Warrington
had put her finger on what was somehow the quintessential fact of human
vision—that it tells about shape and space and spatial arrangement. Here
lay a way to formulate its purpose—building a description of the shapes
and positions of things from images. Of course, that is by no means all that
vision can do; it also tells about the illumination and about the reflectances
of the surfaces that make the shapes—their brightnesses and colors and
visual textures—and about their motion. But these things seemed second-
ary; they could be hung off a theory in which the main job of vision was
to derive a representation of shape.

To the Desirable via the Possible

Finally, one has to come to terms with cold reality. Desirable as it may be
to have vision deliver a completely invariant shape description from an
image (whatever that may mean in detail), it is almost certainly impossible
in only one step. We can only do what is possible and proceed from there
toward what is desirable. Thus we arrived at the idea of a sequence of
representations, starting with descriptions that could be obtained straight
from an image but that are carefully designed to facilitate the subsequent
recovery of gradually more objective, physical properties about an object’s
shape. The main stepping stone toward this goal is describing the geometry
of the visible surfaces, since the information encoded in images, for exam-
ple by stereopsis, shading, texture, contours, Or visual motion, is due to a
shape’s local surface properties. The objective of many early visual com-
putations is to extract this information.

However, this description of the visible surfaces turns out to be unsuit-
able for recognition tasks. There are several reasons why, perhaps the most
prominent being that like all early visual processes, it depends critically
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on the vantage point. The final step therefore consists of transforming the
viewer-centered surface description into a representation of the three-
dimensional shape and spatial arrangement of an object that does not
depend upon the direction from which the object is being viewed. This
final description is object centered rather than viewer centered.

The overall framework described here therefore divides the derivation
of shape information from images into three representational stages: (Table
1-1): (1) the representation of properties of the two-dimensional image,

Table 1-1. Representational framework for deriving shape information from

images.
Name Purpose Primitives
Image(s) Represents intensity. Intensity value at each point

Primal sketch

2Y5-D sketch

3-D model rep-
resentation

Makes explicit important
information about the two-
dimensional image, primar-
ily the intensity changes
there and their geometrical
distribution and organiza-
tion.

Makes explicit the orienta-
tion and rough depth of the
visible surfaces, and con-
tours of discontinuities in
these quantities in a viewer-
centered coordinate frame.

Describes shapes and their
spatial organization in an
object-centered coordinate
frame, using a modular
hierarchical representation
that includes volumetric
primitives (i.e., primitives
that represent the volume
of space that a shape occu-
pies) as well as surface
primitives.

in the image

Zero-crossings

Blobs

Terminations and discontin-
uities

Edge segments

Virtual lines

Groups

Curvilinear organization
Boundaries

Local surface orientation
(the “needles” primitives)
Distance from viewer
Discontinuities in depth
Discontinuities in surface
orientation

3-D models arranged hier-
archically, each one based
on a spatial configuration of
a few sticks or axes, to
which volumetric or surface
shape primitives are
attached
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such as intensity changes and local two-dimensional geometry; (2) the
representation of properties of the visible surfaces in a viewer-centered
coordinate system, such as surface orientation, distance from the viewer,
and discontinuities in these quantities; surface reflectance; and some coarse
description of the prevailing illumination; and (3) an object-centered rep-
resentation of the three-dimensional structure and of the organization of
the viewed shape, together with some description of its surface properties.

This framework is summarized in Table 1-1. Chapters 2 through 5 give
a more detailed account.









CHAPTER 2

Representing
the Image

2.1 PHYSICAL BACKGROUND
OF EARLY VISION

We cannot develop a rigorous theory of early vision—the first stages of the
vision process—unless we know what the theory is for. We have already
seen that, in general terms, the aim is to develop useful canonical descrip-
tions of the shapes and surfaces that form the image. It is now time to state
the goals more boldly (Marr 1976, 1978).

There are four main factors responsible for the intensity values in an
image. They are (1) the geometry and (2) the reflectances of the visible
surfaces, (3) the illumination of the scene, and (4) the viewpoint. In an
image, all these factors are muddled up, some intensity changes being due
to one cause, others to another, and some to a combination. The purpose
of early visual processing is to sort out which changes are due to what
factors and hence to create representations in which the four factors are
separated.

41
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Roughly speaking, it is proposed that this goal is reached in two stages.
First, suitable representations are obtained of the changes and structures
in the image. This involves things like the detection of intensity changes,
the representation and analysis of local geometrical structure, and the
detection of illumination effects like light sources, highlights, and trans-
parency. The result of this first stage is a representation called the primal
sketch. Second, a number of processes operate on the primal sketch to
derive a representation—still retinocentric—of the geometry of the visible
surfaces. This second representation, that of the visible surfaces, is called
the 2¥2-dimensional (2%2-D) sketch. Both the primal sketch and the 2%2-D
sketch are constructed in a viewer-centered coordinate frame, and this is
the aspect of their structures denoted by the term sketch.

The necessity for representing spatial relations, with its attendant com-
plexities of how much should be made explicit and how much can safely
be left implicit, raises problems that are typical of and rather special to
vision. For example, the reader, especially if from a nonmathematical back-
ground, should not be put off by the notion of a coordinate frame, because
it is probably a much more general notion than the reader thinks. To say
that early visual representations are retinocentric does not literally imply
that a Cartesian coordinate system, marked out in minutes of arc, is some-
how laid out across the striate cortex, and that whenever some line or edge
is noticed it is somehow associated with its particular x- and y-coordinates,
whose values are somehow carried around by the neural machinery. This
process would be one way of making the representations, to be sure, but
no one would seriously propose it for human vision. There are many other
ways in which this scheme can be realized in humans—for example, an
(implicit) anatomical mapping that roughly preserves the spatial organi-
zation of the retina together with a representation that makes local relations
explicit (point A is 5 from point B in direction 35°) would seem plausible.

The important point about a retinocentric frame is that the spatial
relations represented refer to two-dimensional relations on the viewer’s
retina, not three-dimensional relations relative to the viewer in the world
around him, nor two-dimensional relations on another viewer’s retina, nor
three-dimensional relations relative to an external reference point like the
top of a mountain. To say that image point A is below image point B is a
remark in a retinocentric frame. To say one’s hand is to the left of and
below one’s chest is a remark in one’s own three-dimensional, viewer-
centered frame. To say that the tip of a certain cat’s tail is above and to the
left of its body is a remark in a coordinate frame that is centered on the
cat. They are all perfectly good ways of specifying rough spatial relation-
ships, yet none uses sets of numbers. One can speak of each of these frames
in terms of numbers—as if one was using (x, ¥, 2), for example—but that
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does not mean that they have to be implemented this way, and it is impor-
tant to bear this in mind.

Although it helps a great deal to formulate the purpose of early vision
in the rather straightforward terms of separating out the four factors of
geometry, reflectance, illumination, and viewpoint, it is important to be
aware of the sirnplifications that are involved in doing so. Perhaps the most
important simplification is the rather rigid distinction between surface
reflectance and surface geometry. In fact, these two notions are linked, and
the distinction between them can be rather imprecise, so that one must be
a little cautious when using them. A field of ripening wheat provides a
convenient illustration of some of the difficulties. When seen from close
by, the individual wheat stems form the reflecting surfaces, and the situation
is relatively straightforward. When viewed from afar, however, image res-
olution is insufficient to distinguish the stems; the field as a whole forms
the visible surface, and its reflectance function may now be very complex,
since it incorporates considerable variation that should more properly be
viewed as spatial (see, for example, Bouguer, 1957; Trowbridge and Reitz,
1975). Thinking of a distant wheat field or the coat of a cat as a surface is
probably not too unrealistic an approximation for the theory of perception.
We do see surfaces smoothed out. Tyler (1973), for example, found that
we cannot see surface corrugations in stereograms if their spatial fre-
quency is higher than about 4 cycles per degree.

In addition to these complexities, the illumination of a scene can only
rarely be described in simple terms: Diffuse illumination, reflections, mul-
tiple light sources (only some of which are visible), and illumination
between surfaces often conspire to create very complex illumination con-
ditions, which will probably never be solved analytically. Nevertheless, our
crude division into four categories has its uses. Provided that the variation
in depth from the viewer of the surface from which light is reflected is
small compared with the viewing distance, I shall assume that what is
viewed can be regarded as a reflecting surface, and that the relation
between its incident and reflected light may be described by a reflectance
function p that, for a given illumination and viewpoint, may have a complex
spatial structure.

Finally, a general point about the exposition. The purpose of these
representations is to provide useful descriptions of aspects of the real
world. The structure of the real world therefore plays an important role in
determining both the nature of the representations that are used and the
nature of the processes that derive and maintain them. An important part
of the theoretical analysis is to make explicit the physical constraints and
assumptions that have been used in the design of the representations and
processes, and I shall be quite careful to do this.
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Representing the Image

From an information-processing point of view, our primary purpose now
is to define a representation of the image of reflectance changes on a
surface that is suitable for detecting changes in the image’s geometrical
organization that are due to changes in the reflectance of the surface itself
or to changes in the surface’s orientation or distance from the viewer. If
one thinks for a minute about a smooth surface, then changes in orientation
and perhaps also in distance are likely to give rise to a change in image
intensity. If the surface is textured, then quantities like the orientation or
size of tiny elements on the surface—perhaps rough length and width—
and measures taken over a small area reflecting the density and spacing of
these elements yield the important clues in an image.

Hence we can see in a general way what our representation should
contain. It should include some type of “tokens” that can be derived reliably
and repeatedly from images and to which can be assigned values of attri-
butes like orientation, brightness, size (length and width), and position
(for density and spacing measurements). It is of critical importance that
the tokens one obtains correspond to real physical changes on the viewed
surface; the blobs, lines, edges, groups, and so forth that we shall use must
not be artifacts of the imaging process, or else inferences made from their
structure backwards to the structure of the surface will be meaningless. Let
us therefore take a look at the general nature of surface reflectance func-
tions, for this will give us important clues as to how we should structure
our early representations.

Underlying Physical Assumptions
Existenice of surfaces

Our first assumption is that it is proper to speak of surfaces at all, and it
refers to the discussion that we had earlier about wheat fields and cats’
coats. Stated precisely, it is that the visible world can be regarded as being
composed of smooth surfaces having reflectance functions whose spatial
structure may be elaborate.

Hierarchical organization

The second assumption has to do with the organization of this spatial
structure, and it may help to introduce the topic with some examples. As
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Figure 2—1. Some images of surfaces. Notice how different types of spatial organization occur
almost independently at different scales. An important aspect of early vision is concerned with

capturing these different organizations. (Reprinted by permission from Phil Brodatz, Textures: A
Photographic Album for Artists and Designers, Dover, 1966, pl. D11.)

we have already seen, the coat of a cat is composed at the finest level of
single hairs, each of which has its own reflectance function. At the next
level up, these are organized into a surface by being placed close and
parallel to one another. Then, over the coat so formed is the still higher-
level organization of surface markings and coloration. The surface of a
river has an analogous organization. At the basic level there is the flat water,
randomly perturbed by protrusions like rocks or prominences. Superim-
posed on this surface are ripples oriented by gusts of wind and patches of
weed and vegetation oriented by the flow of the river. There are analogous
levels of structure in many surfaces—a hedgerow, a fabric, a rush weave,
the bark of a tree, the grain of wood, a rock face, and so on (examine for
a moment the surfaces illustrated in Figure 2-1).
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Figure 2-2. In a herringbone pattern such as this, a clear part of the spatial orga-
nization consists of the vertical stripes. These cannot be recovered by Fourier
techniques such as band-pass filtering the images, but yield easily to grouping
processes. (Reprinted by permission from Phil Brodatz, Textures: A Photographic
Album for Artists and Designers, Dover, 1966, pl. 16, 17.)

From these examples, we see that the attributes carrying the valuable
information may emerge at any of a range of scales in the real world, and
hence even more so in images because of the additional transformations
introduced by the imaging process. Whatever tokens are, we must therefore
expect them to be capable of making image features explicit over a wide
range of sizes. Furthermore, it is important to realize that these different
levels of organization do not correspond simply to what would be seen
through medium band-pass spatial-frequency filters* centered on different
frequencies. Although several types of organization can be detected in
this way, many cannot—for example, the vertical stripes in the pattern of
Figure 2-2.

We can therefore formulate our second physical assumption: 7he spa-
tial organization of a surface’s reflectance function is often generated by
a number of different processes, each operating at a different scale. Con-
sequently, a representation that uses changes in the image of such surfaces
to find changes in depth and surface orientation must be capable of cap-
turing changes in attribute values applied to tokens that span a wide range
of sizes in the image. In other words, the primitives of our representation
must work at a number of different scales.

*Such filters eliminate all spatial frequency components in the image outside a fixed range
of frequencies.
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Similarity

Our third assumption is of a rather different kind. Suppose that we already
had a representation containing primitives of various sizes. It seems intu-
itively obvious that they should be kept separate in some way—that a given
large-scale descriptor should be compared with other large-scale descrip-
tors much more readily than with small-scale ones. And perhaps it also
seems obvious that tokens or descriptors having other extreme dissimilar-
ities—very different or even opposite-signed contrasts, for example—
should somehow be kept rather separate.

We can, in fact, find a physical basis for why this should be so, and it
is apparent in our earlier examples. Recall that among the various levels
of organization present in an animal’s coat, on the surface of a river, on the
bark of a tree, in woven fabric, and so forth, the processes that operated to
generate the reflectance function are relatively independent at each scale,
but the items for which each process is responsible are visually much more
similar to one another than to other things on the same surface. For exam-
ple, a given hair in a cat’s coat is much more similar to neighboring hairs
than to the stripes formed by the arrangement of thousands of hairs. Sim-
ilarity here may be measured in several ways, but a straightforward measure
based on local contrast, size (length and width), orientation, and color
would suffice (compare Jardine and Sibson, 1971, for a general discussion
of dissimilarity measures).

This observation gives us the means for selecting items from an image
during the assignment of primitives in its representation. It is important,
and may be formulated as our third physical assumption that the items
generated on a given surface by a reflectance-generating process acting at
a given scale tend to be more similar to one another in their size, local
contrast, color, and spatial organization than to other items on that sur-
face.

The importance of this type of similarity is illustrated by Figure 2-3.
Following Glass (1969), these patterns are created by superimposing on a
set of random dots the same set of dots but rotated or expanded a little
(Figure 2-3a). The effect works for tokens made of squares (Figure 2-3b)
or for pairs of tokens made in quite different ways (Figure 2—3c). If the
tokens are too different (Figure 2-3d), however, no pattern is seen. Glass
and Switkes (1976) showed that the effect fails if the dots have opposite
contrast or opponent colors. Stevens (1978, fig 51a) showed that if three
sets of dots are superimposed—the original, a rotated, and an expanded
set—no organization is visible. If, say, the rotated set is made much brighter
than the other two, then one sees the organization present in the dimmer
pairs. This proves that the effect is based on a symbolic comparison of the
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Figure 2—3. These displays are made by superimposing a random pattern of
tokens on a slightly rotated or expanded copy of the same pattern. The tokens can
be points or small squares () or larger squares (b). They do not have to be the
same—in (c) one set consists of squares and the other set of four dots—but they
do have to be similar. In (d), one set consists of quite large squares, and the other
of small dots. These are apparently too dissimilar for us to discern the expanding

structure there.
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Figure 2—4. More evidence for place tokens. In this diagram every subgroup is
defired differently, yet the collinearity of all of them is immediately apparent. This
suggests that each group causes a place token to be created, whose collinearity is
detected almost independently of the way the token is defined, provided that the
tokens represent sufficiently similar items (compare Fig. 2-3d). (Reprinted by per-
mission from D. Marr “Early processing of visual information,” Phil. Trans. R. Soc.
Lond. B 275 1976, fig. 10.)

properties of the local tokens and not, for example, on Hubel and Wiesel
simple-cell-like measurements acting directly on the images.

Spatial continuity

In addition to their intrinsic similarity, markings generated on a surface
by a single process are often spatially organized—they are arranged in
curves or lines and possibly create more complex patterns. The basic feature
is that markings often form smooth contours on a surface, and hence tokens
will do so in an image. We are ourselves very sensitive to spatial continuity.
We immediately see the items in Figure 2—4 (from Marr, 1976, fig. 10) as
being collinear, despite the fact that every item along the line is defined in
a different way: One is a blob, one is a small group of dots, one is the end
of a bar, and so forth. They are, however, all about the same size. Figure
2-5 (from Marroquin, 1976, fig. 7) provides another fascinating example.
There are very many continuous organizations buried in this pattern, and
each one seems to be trying to jump out and dominate the others.

Continuity of discontinuities

One consequence of the cohesiveness of matter is that objects exist in the
world and have boundaries. These give rise to the discontinuities in depth
or surface orientation with whose detection we are concerned, and an
important feature of such boundaries is that they often progress smoothly
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Figure 2—5. Evidence for the existence of active grouping processes. This pattern
apparently seethes with activity as the rival organizations seem to compete with
one another. (Reprinted by permission from J. L. Marroquin, “Human visual per-
ception of structure,” Master’s thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, 1976.)

across an image. We can assume, in fact, that the loci of discontinuities in
depth or in surface orientation are smooth almost everywbere. This is
probably the physical constraint that makes the mechanism of smooth
subjective contours a useful one (see Figure 2—6 and Section 4.8).

Continuity of flow

Finally, we must not forget that motion is extremely important for vision—
it is ubiquitous. Motion of the viewer or of a physical object can cause
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Figure 2—6.  Subjective contours. The visual system apparently regards changes in
depth as so important that they must be made explicit everywhere, including places
where there is no direct visual evidence for them.

movements in the images of that object. If the object is rigid, the motions
of the images of nearby portions of the object’s surface are similar. Hence,
the motions of portions of the object that are close to one another in the
image are usually similar. In particular, the velocity field of motion in the
image varies continuously almost everywhere, and if it is ever discontin-
uous at more than an isolated point, then a failure of rigidity (like an object
boundary) is present in the outside world. In particular, if direction of
motion is ever discontinuous at more than one point—along a line, for
example,—then an object boundary is preseni.

General Nature of the Representation

The important message of these physical constraints is that although the
basic elements in our image are the intensity changes, the physical world
imposes on these raw intensity changes a wide variety of spatial organi-
zations, roughly independently at different scales. This organization is
reflected in the structure of images, and since it yields important clues
about the structure of the visible surfaces, it needs to be captured by the
early representations of the image. Specifically, I propose doing this by a
set of “place tokens” that roughly correspond to oriented edge or boundary
segments or to points of discontinuity in their orientations, to bars (roughly
parallel edge pairs) or to their terminations; or to blobs—roughly, doubly
terminated bars. These primitives can be defined in very concrete ways—
from pure discontinuities in intensity—or in rather abstract ways. A blob
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can be defined from a cloud of dots, for example, or a boundary from
certain (but not all) kinds of texture change or from the lining up of a set
of tokens that are themselves defined in quite complex ways, as in the
example of Figure 2—4.

A rough illustration of the general idea appears in Figure 2—7; this
representational scheme is called the primal sketch (Marr, 1976). The crit-
ical ideas behind it are the following:

1. The primal sketch consists of primitives of the same general kind
at different scales—a blob has a rough position, length, width, and orien-
tation at whatever scale it is defined—but the primitives can be defined
from an image in a variety of ways, from the very concrete (a black ink
mark) to the very abstract (a cloud of dots).

2. These primitives are built up in stages in a constructive way, first
by analyzing and representing the intensity changes and forming tokens
directly from them, then by adding representations of the local geometrical
structure of their arrangement, and then by operating on these things with
active selection and grouping processes to form larger-scale tokens that
reflect larger-scale structures in the image, and so forth.

3. On the whole, the primitives that are obtained, the parameters
associated with them, and the accuracy with which they are measured are
designed to capture and to match the structure in an image so as to facilitate
the recovery of information about the underlying geometry of the visible
surfaces. This gives rise to a complex trade-off between the accuracy of the
discriminations that can be made and the value of making them. For exam-
ple, projected orientations in the image do change if the surface orientation
changes, but on the whole by only a rather small amount and probably
usually less than the typical variation in orientation to be found in the
objective distribution of markings on a surface. This means that except in
special situations, it is not worth having a very powerful apparatus for
making subtle orientation discriminations. On the other hand, because
only a very small relative movement is compelling evidence that two sur-
faces are separate, it is worth being very sensitive to relative movement.

The three main stages in the processes that derive the primal sketch
are (1) the detection of zero-crossings (Marr and Poggio, 1979; Marr, Pog-
gio, and Ullman, 1979; Marr and Hildreth, 1980); (2) the formation of the
raw primal sketch (Marr, 1976; Marr and Hildreth, 1980; Hildreth 1980);
and (3) the creation of the full primal sketch (Marr, 1976).



Image

Raw
primal
sketch

Level 1
tokens

Level 2
boundary

Figure 2—7. A diagrammatic representation of the descriptions of an image at
different scales which together constitute the primal sketch. At the lowest level, the
raw primal sketch faithfully follows the intensity changes and also represents ter-
minations, denoted here by filled circles. At the next level, oriented tokens are
formed for the groups in the image. At the next level, the difference in orientations
of the groups in the two halves of the image causes a boundary to be constructed
between them. The complexity of the primal sketch depends upon the degree to

which the image is organized at the different scales.
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2.2 ZERO-CROSSINGS AND
THE RAW PRIMAL SKETCH

Zero-Crossings

The first of the three stages described above concerns the detection of
intensity changes. The two ideas underlying their detection are (1) that
intensity changes occur at different scales in an image, and so their optimal
detection requires the use of operators of different sizes; and (2) that a
sudden intensity change will give rise to a peak or trough in the first
derivative or, equivalently, to a zero-crossing in the second derivative, as
illustrated in Figure 2-8. (A zero-crossing is a place where the value of a
function passes from positive to negative).

These ideas suggest that in order to detect intensity changes efficiently,
one should search for a filter that has two salient characteristics. First and
foremost, it should be a differential operator, taking either a first or second
spatial derivative of the image. Second, it should be capable of being tuned
to act at any desired scale, so that large filters can be used to detect blurry
shadow edges, and small ones to detect sharply focused fine detail in the
image.

Marr and Hildreth (1980) argued that the most satisfactory operator
fulfilling these conditions is the filter V%G, where V? is the Laplacian
operator (3%/0x* + 9*/3y*) and G stands for the two-dimensional Gaussian
distribution

_2r
Gxy)=e =

(@ (b) (©)

Figure 2—8. 'The notion of a zero-crossing. The intensity change (a) gives rise to
a peak (b) in its first derivative and to a (steep) zero-crossing Z (¢) in its second
derivative.
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Figure 2-9. V3G is shown as a one-dimensional function (a) and in two-dimen-
sions (b) using intensity to indicate the value of the function at each point. (¢) and
(d) show the Fourier transforms for the one- and two-dimensional cases respec-
tively. (Reprinted by permission from D. Marr and E. Hildreth, “Theory of edge
detection,” Proc. R. Soc. Lond. B 207, pp. 187-217.)

which has standard deviation o. VG is a circularly symmetric Mexican-
hat-shaped operator whose distribution in two dimensions may be
expressed in terms of the radial distance r from the origin by the formula

-1 2 =7
VZG(r)= 7 (1—2—7—2>e2"2
no a

Figure 29 illustrates the one- and two-dimensional forms of this operator,
as well as their Fourier transforms.
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Figure 2—10. Blurring images is the first step in detecting intensity changes in them. (a) In the
original image, intensity changes can take place over a wide range of scales, and no single operator
will be very efficient at detecting all of them. The problem is much simplified in an image that has
been blurred with a Gaussian filter, because there is, in effect, an upper limit to the rate at which
changes can take place. The first part of the edge detection process can be thought of as decom-
posing the original image into a set of copies, each filtered with a different-sized Gaussian, and
then detecting the intensity changes separately in each. (b) The image filtered with a Gaussian
having ¢ = 8 pixels; in (¢), ¢ = 4. The image is 320 by 320 elements. (Reprinted by permission
from D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. Lond. B 207, pp. 187-217.)

There are two basic ideas behind the choice of the filter V°G. The first
is that the Gaussian part of it, G, blurs the image, effectively wiping out all
structure at scales much smaller than the space constant o of the Gaussian.
To illustrate this, Figure 2—-10 shows an image that has been convolved with
two different-sized Gaussians whose space constants o were 8 pixels (Fig-
ure 2-10b) and 4 pixels (Figure 2-10c). The reason why one chooses the
Gaussian for this purpose, rather than blurring with a cylindrical pillbox
function (for instance), is that the Gaussian distribution has the desirable
characteristic of being smooth and localized in both the spatial and fre-
quency domains and, in a strict sense, being the unique distribution that
is simultaneously optimally localized in both domains. And the reason, in
turn, why this should be a desirable property of our blurring function is
that if the blurring is as smooth as possible, both spatially and in the
frequency domain, it is least likely to introduce any changes that were not
present in the original image.

The second idea concerns the derivative part of the filter, V2. The
great advantage of using it is economy of computation. First-order direc-
tional derivatives, like 8/dx or 8/dy, could be used, in which case one would
subsequently have to search for their peaks or troughs at each orientation
(as illustrated in Figure 2—8b); or, second-order directional derivatives, like
8%ax* or 9%8y’, could be used, in which case intensity changes would
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Figure 2—11. 'The spatial configuration of low-order differential operators. Oper-
ators like 8/ax can be roughly realized by filters with the receptive fields illustrated
in the figure. (a) 3/6x can be thought of as measuring the difference between the
values at two neighboring points along the x-axis. Similarly, (b) shows 4/dy. The
operator 4/ax” can be thought of as the difference between two neighboring values
of 8/dx, and so it takes the form shown in (¢). The other two second-order operators,
0%ay* and 9%/axdy, appear in (d) and (e), respecuvely Finally, the lowest-order
isotropic operator, the Laplacian (8%0x” + 9%ay*), which we denote by V2, has the
circularly symmetric form shown in (f).

correspond to their zero-crossings (see Figure 2-8c). However, the dis-
advantage of all these operators is that they are directional; they all involve
an orientation (see Figure 2—11, which illustrates the spatial organizations,
or “receptive fields,” in neurophysiological terms of the various first- and
second-order differential operators). In order to use the first derivatives,
for example, both a//dx and 8//dy have to be measured, and the peaks and
troughs in the overall amphtude have to be found. This means that the
signed quantity [(al/0x)® + (al/ay) ]~"* must also be computed.

Using second-order directional derivative operators involves prob-
lems that are even worse than the ones involved in using first-order deriv-
atives. The only way of avoiding these extra computational burdens is to
try to choose an orientation-independent operator The lowest-order iso-
tropic differential operator is the Laplacian V2, and fortunately it so hap-
pens that this operator can be used to detect intensity changes provided
the blurred image satisfies some quite weak requirements (Marr and Hil-
dreth, 1980).* Images on the whole do satisfy these requirements locally,

*The mathematical notation for blurring an image intensity function /(x, y) with a Gaussian
function G is G * I which is read G convolved with /. The Laplacian of this is denoted by
V2 (G * I) and a mathematical identity allows us to move the V? operator inside the convo-
lution giving V7 (G = I) = (V*G) #I.
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Figures 2—12, 13, 14. These three figures show examples of zero-crossing detec-
tion using V?G. In each figure, (a) shows the image (320 X 320 pixels); (b) shows
the image’s convolution with V?G, with w,_, = 8 (zero is represented by gray);
(¢) shows the positive values in white and the negative in black; (d) shows only the
ZEro-crossings.

so in practice one can use the Laplacian. Hence, in practice, the most
satisfactory way of finding the intensity changes at a given scale in an image
is first to filter it with the operator V°G, where the space constant of G is
chosen to reflect the scale at which the changes are to be detected, and
then to locate the zero-crossings in the filtered image.

Figures 2—12 to 2-14 show what an image looks like when processed
in this way. The numerical values in the V?G-filtered image are both positive
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Figure 2—13.

and negative, the overall average being zero. Positive values are repre-
sented here by whites, negative by blacks, and the value zero by an inter-
mediate gray. As we have seen, the critical fact about the operator VG is
that its zero-crossings mark the intensity changes, as seen at the Gaussian’s
particular scale. The figures show this well. In Figure 2-12(c), for instance,
the filtered image has been “binarized”—that is, positive values were all
set to +1 and negative values to —1, and in Figure 2-12(d) the zero-
crossings alone are shown. The advantage of the binarized representation
is that it also shows the sign of the zero-crossing—which side in the image
is the darker.
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Figure 2—14.

In addition, the slope of the zero-crossing depends on the contrast of
the intensity change, though not in a very straightforward way. This is
illustrated by Figure 2-15, which shows an original image together with
zero-crossings that have been marked with curves of varying intensity. The
more contrasty the curve, the greater the slope of the zero-crossing at that
point, measured perpendicularly to its local orientation.

Zero-crossings like those of Figures 2—12 to 215 can be represented
symbolically in various ways. I choose to represent them by a set of oriented
primitives called zero-crossing segments, each describing a piece of the
contour whose intensity slope (rate at which the convolution changes
across the segment) and local orientation are roughly uniform. Because of
their eventual physical significance, it is also important to make explicit
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Figure 2—15. Another example of zero-crossings; here, the intensity of the lines has been made
to vary with the slope of the zero-crossing, so that it is easier to see which lines correspond to the
greater contrast. (Courtesy BBC Horizon.)

those places at which the orientation of a zero-crossing changes “discon-
tinuously” The quotation marks are necessary because one can in fact prove
that the zero-crossings of VG * I can never change orientation discontin-
uously, but one can nevertheless construct a practical definition of discon-
tinuity. In addition, small, closed contours are represented as blobs, each
also with an associated orientation, average intensity slope, and size defined
by its extent along a major and minor axis. Finally, in keeping with the
overall plan, several sizes of operator will be needed to cover the range of
scales over which intensity changes occur.

Biological Implications

This computational scheme for the very first stages in visual processing
leads to an interpretation of many results from the psychophysical and
neurophysiological investigations into early vision and to a proposal for
the overall strategy behind the design of the first part of the visual pathway.

The psychophysics of early vision

In 1968, Campbell and Robson carried out some adaptation experiments.
They found that the sensitivity of subjects to high-contrast gratings was
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temporarily reduced after exposure to such gratings and this desensitiza-
tion was specific to the orientation and spatial frequency of the gratings.
The experimenters concluded that the visual pathway included a set of
»channels” that are orientation and spatial frequency selective.

This finding provided an explosion of articles investigating various
aspects of the detailed structure of these channels, culminating recently in
an elegant quantitative model for their structure in humans, constructed
on the basis of data from threshold detection studies by Wilson and Giese
(1977) and Wilson and Bergen (1979). The model is quite easy to under-
stand. The basic idea is that at each point in the visual field, there are four
size-tuned filters or masks analyzing the image. The spatial receptive fields
of these filters all have approximately the shape of a DOG, that is, of the
difference of two Gaussian distributions, but the smaller two filters exhibit
relatively sustained temporal properties, whereas the larger two are rela-
tively transient. The channels are labeled N, S, T, and U, in order of increas-
ing size, and their dimensions scale linearly with increasing eccentricity
(angular distance from the fovea). The S channel is the most sensitive under
both sustained and transient stimulation; the U channel is the least, having
only one-fourth to one-eleventh the sensitivity of the S channel. Wilson
himself made no statement about whether the filters were oriented, but
he measured their dimensions using light and dark lines. With these one-
dimensional stimuli, the widths of the central part of the receptive fields,
which I shall denote by the symbol w,_p, had the following values: N
channel, 3.1'; S channel, 6.2’; T channel, 11.7'; and U channel, 21'. The
receptive field sizes increase linearly with eccentricity, being about doubled
at 4° eccentricity. Essentially all of the psychophysical data on the detection
of spatial patterns below 16 cycles per degree at contrast threshold can be
explained by this model, together with the hypothesis that the detection
process is based on a form of spatial probability summation in the channels.

It is the VG filters, I think, that form the basis for these psychophys-
ically determined channels. The V*G operator approximates a band-pass
filter with a bandwidth at half power of 1.25 octaves. It can be approximated
closely by a DOG, the best approximation from an engineering point of
view being achieved when the two Gaussians that form the DOG have
space constants in the ratio 1:1.6. Figure 2-16 shows how good this approx-
imation is. Wilson’s estimate of the ratio for his sustained channels was
1:1.75.

In order to relate the numerical values of w, _;, measured by Wilson
and Bergen to the values of the diameter w,_, of the central part of the
receptive fields of the underlying V?G operators, one must remember to
multiply their values by V2, since all the measurements Wilson made
correspond to a linear projection of the circularly symmetric receptive
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Figure 2—16. The best engineering approximation to VG (shown by the contin-
uous line), obtained by using the difference of two Gaussians (DOG), occurs when
the ratio of the inhibitory to excitatory space constraints is about 1:1.6. The DOG
is shown here dotted. The two profiles are very similar. (Reprinted by permission
from D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. Lond. B
207, pp. 187-217.)

fields. Hence Wilson’s N channel would correspond to a V°G filter with
w,_ =31 V2 = 4.38', which corresponds to the diameter of about nine
foveal cones. This seems rather large for the smallest channel, and argu-
ments based on a theoretical analysis of acuity and resolution suggest that
a smaller one exists. The diameter w,_, of the central part of its receptive
field should be about 1’ 20", and because of diffraction in the eye, it could
correspond to the midget ganglion cells, whose receptive field centers are
driven by a single cone (see Marr, Poggio, and Hildreth, 1980).

Thus if Wilson’s figures are correct, they tell us the sizes that the initial
center—surround operators should have in order to produce the observed
psychophysical adaptation and other effects. These numbers can then in
principle be related to the measurements made by physiologists, in the
manner that we shall derive in the next section. The final point to note
here is that Campbell also found the adaptation to be orientation specific
(and it may also be specific for the direction of movement). This we attri-
bute to the stage at which zero-crossings are detected, which is best
explained by looking at the neurophysiology.
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The physiological realization of the VG filters

It has been known since Kuffler (1953) that the spatial organization of the
receptive fields of the retinal ganglion cells is circularly symmetric, with a
central excitatory region and an inhibitory surround. Some cells, called
on-center cells, are excited by a small spot of light shone on the center of
their receptive fields, and others are inhibited. Rodieck and Stone (1965)
suggested that this organization was the result of superimposing a small
central excitatory region on a larger inhibitory “dome” that extends over
the entire receptive field. Enroth-Cugell and Robson (1966) described the
two domes as Gaussians, thus describing the receptive field as a difference
of two Gaussians (a DOG). In addition, Enroth-Cugell and Robson divided
the larger retinal ganglion cells into two classes, X and Y, on the basis of
their temporal response properties. X cells show a fairly sustained
response, whereas the Y cells show a relatively transient one—a distinction
that is preserved at the lateral geniculate nucleus. Wilson’s sustained chan-
nels probably correspond to the physiological X cells, and the transient, to
the Y cells (Tolhurst, 1975).

Thus it is not too unreasonable to propose that the VG function is
what is carried by the X cells of the retina and lateral geniculate body,
positive values being carried by the on-center X cells, and negative values
by the off-center X cells. To illustrate the physiological point, Figure 2-17
compares the predicted X-cell responses, using V’G, against actual pub-
lished records of retinal and lateral geniculate cells, which we identified
as X cells, for three stimuli—an edge, a thin bar, and a wide bar. As we can
see, the qualitative agreement is very good. I shall discuss the function of
the Y cells in Section 3.4.

The physiological detection of zero-crossings

From a physiological point of view, zero-crossing segments are €asy to
detect without relying on the detection of zero values, which would be a
physiologically implausible idea. The reason is that just to one side of the
zero-crossing will lie a peak positive value of the filtered image V%G * 1,
and just to the other side, a peak negative value. These peaks will be roughly
w,_,/\/2 apart, where w,_y, is the width of the receptive field center of
the underlying filter V*G. Hence, just to one side, an on-center X cell will
be firing strongly, and just to the other side, an off-center X cell will be
firing strongly; the sum of their firings will correspond to the slope of the
zero-crossing—a high-contrast intensity change producing stronger firing
than a low-contrast change. The existence of a zero-crossing can therefore



2.2 Zero-Crossings and the Raw Primal Sketch 65

Edge Thin bar Wide bar

-
| axsmii

T |

aaid e Jb

Figure 2—17. Comparison of the predicted responses of on- and off-center X cells with electro-
physiological recordings. The first row shows the response to V°G * I for an isolated edge, a thin
bar (bar width = 0.5w, _,, where | _, is the width of the central excitatory region of the receptive
field projected onto a line), and a wide bar (bar width = 2.5w,__). The predicted traces are
calculated by superimposing the positive (in the second row) or the negative (in the fourth row)
parts of V°G = I on a small resting or background discharge. The corresponding physiological
responses (third and fifth rows) are taken from Dreher and Sanderson (1973, figs. 6d and 6e) for
the responses to an edge and from Rodieck and Stone (1965, figs. 1 and 2), using traces from bars
1° and 5° wide. (Reprinted by permission from D. Marr and S. Ullman, “Directional selectivity and
its use in early visual processing,” Phil. Trans. R. Soc. B 275, pp. 483-524.)
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Figure 2—18. A mechanism for detecting oriented zero-crossing segments. In (a),
if P represents an on-center geniculate X-cell receptive field, and Q an off-center,
then a zero-crossing must pass between them if both are active. Hence, if they are
connected to a logical AND gate as shown, the gate will detect the presence of the
zero-crossing. If several are arranged in tandem as in (b) and are also connected
by logical AND’s, the resulting mechanism will detect an oriented zero-crossing
segment within the orientation bounds given roughly by the dotted lines. Ideally,
we would use gates that responded by signaling their sum only when all their P
and Q inputs were active. (Reprinted, by permission, by D. Marr and E. Hildreth,
“Theory of edge detection,” Proc. R. Soc. Lond. B 207, pp. 187-217.)

be detected by a mechanism that connects an on-center cell and an off-
center cell to an AND gate,* as illustrated in Figure 2-18(a).

It is a simple matter to adapt this idea to create an oriented zero-
crossing segment detector: simply arrange on- and off-center X cells into
two columns, as illustrated in Figure 2-18(b). If these units are all con-
nected by AND gates or some suitable approximation to them, the result
will be a unit that detects a zero-crossing segment whose orientation lies
roughly between the dotted lines of Figure 2—18(b). This idea provides the
basis for the model of cortical simple cells, which we shall derive in Section
3 4. It is enough to note here that such units would be orientation depen-
dent and spatial-frequency-tuned (as well as directionally selective, after
the modifications of Section 3.4). These are the units, I believe, that Camp-
bell and Robson found that they could adapt in their 1968 experiments.

*A simple logical device that produces a positive output only when all of its inputs are positive.



2.2 Zero-Crossings and the Raw Primal Sketch

67

\;x)ﬁ/\/\/\/\M/*/\/\/
—X —
(a)
S0
~ /\ /\ AN /\ "\ /\V/\V/\U/\v,
12 24 o — x—»
(b) (©)

Figure 2—19. The meaning of Logan’s theorem. (a) A stochastic, band-limited
Gaussian signal f(x). (b) The passband—in the frequency domain—of an ideal
one-octave band-pass filter. (¢) The result f,(x) of filtering (a) with the filter
described by (b). Provided that (¢) has no zeros in common with its Hilbert trans-
form, Logan’s theorem tells us that (c) is determined, up to a multiplicative constant,
by the positions of its zero-crossings alone. The aspect of Logan’s result that is
important for early visual processing is that, under the right conditions, the zero-
crossings alone are very rich in information. (Reprinted by permission from D.
Marr, T. Poggio, and S. Ullman, “Bandpass channels, zero-crossings, and early visual
information processing,” J. Opt. Soc. Am. 69, 1979, fig. 1.)

The first complete symbolic representation of the image

Zero-crossings provide a natural way of moving from an analogue or con-
tinuous representation like the two-dimensional image intensity values
I(xp) to a discrete, symbolic representation. A fascinating thing about this
transformation is that it probably incurs no loss of information. The argu-
ments supporting this are not yet secure (Marr, Poggio, and Ullman, 1979)
and rest on a recent theorem of B. F. Logan (1977). This theorem states
that provided certain technical conditions are satisfied, a one-octave band-
pass signal can be completely reconstructed (up to an overall multiplicative
constant) from its zero-crossings. Figure 2-19 illustrates the idea; the proof
of the theorem is difficult, but consists essentially of showing that if the
signal is less than an octave in bandwidth, then it must cross the x-axis at
least as often as the standard sampling theorem requires.

Unfortunately, Logan’s theorem is not quite strong enough for us to
be able to make any direct claims about vision from it. The problems are
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twofold. First, the zero-crossings in the visual application lie in two dimen-
sions and not one, and it is often difficult to extend sampling arguments
from one dimension to two. Second, the operator VG is not a pure one-
octave band-pass filter; its bandwidth at half power is 1.25 octaves, and at
half sensitivity, 1.8 octaves. On the other hand, we do have extra informa-
tion, namely, the values of the slopes of the curves as they cross zero, since
this corresponds roughly to the contrast of the underlying edge in the
image. An analytical approach to the problem seems to be very difficult,
but in an empirical investigation, Nishihara (1981) found encouraging evi-
dence supporting the view that a two-dimensional filtered image can be
reconstructed from its zero-crossings and their slopes.

Figure 2-20 summarizes pictorially the point we have now reached.
It shows the image, of a sculpture by Henry Moore, as seen through three
different-sized channels; that is, it shows the zero-crossings of the image
after filtering it through V3G filters where the Gaussians, G, have three
different space constants. The next question is, What should we do with
this information?

The Raw Primal Sketch

Up to now I have studiously avoided using the word edge, preferring
instead to discuss the detection of intensity changes and their representa-
tion by using oriented zero-crossing segments. The reason for this is that
the term edge has a partly physical meaning—it makes us think of a real
physical boundary, for example—and all we have discussed so far are the
Lero values of a set of roughly band-pass second-derivative filters. We have
no right to call these edges, or, if we do have a right, then we must say sO
and why. This kind of distinction is vital to the theory of vision and probably
to the theories of other perceptual systems, because the true heart of visual
perception is the inference from the structure of an image about the struc-
wure of the real world outside. The theory of vision is exactly the theory of
how to do this, and its central concern is with the physical constraints and
assumptions that make this inference possible.

We meet this for the first time now, as we address the problem posed
by Figure 2-20—namely, How do we combine information from the dif-
ferent channels? The VG filters that are actually used by the visual system
are an octave or more apart, so there is no priori reason why the zero-
crossings obtained from the different-sized filters should be related. There
is, however, a physical reason why they often should be. It is a consequence
of the first of our physical assumptions of the last chapter, and it is called
the constraint of spatial localization (Marr and Hildreth, 1980). The things
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Figure 2-20. The image (a) has been convolved with V’G having w, p =
2V2 ¢ = 6,12, and 24 pixels. These filters span approximately the range of filters
that operate in the human fovea. (b), (c), and (d) show the zero-crossings thus
obtained. Notice the fine detail picked up by the smallest. This set of figures neatly
poses the next problem—How do we combine all this information into a single
description? (Reprinted by permission from D. Marr and E. Hildreth, “Theory of
edge detection,” Proc. R. Soc. Lond. B 204, pp. 301-328.)

in the world that give rise to intensity changes in an image are (1) illumi-
nation changes, which include shadows, visible light sources, and illumi-
nation gradients; (2) changes in the orientation or distance from the viewer
of the visible surfaces; and (3) changes in surface reflectance.

The critical observation here is that, at their own scale, these things
can all be thought of as spatially localized. Apart from the occasional dif-
fraction pattern, the visual world is not constructed of ripply, wavelike
primitives that extend over an area and that add together over it (compare
Marr, 1970, p. 169). By and large, the visual world is made of contours,
creases, scratches, marks, shadows, and shading, and these are spatially
localized. Hence, it follows that if a discernable zero-crossing is present in
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an image filtered through V3G at one size, then it should be present at the
same location for all larger sizes. If this ceases to be so at some larger size,
it will be for one of two reasons: Either two or more local intensity changes
are interfering—being averaged together—in the larger channel, or two
independent physical phenomena are operating to produce intensity
changes in the same region of the image but at different scales. An example
of the first situation is a thin bar, whose edges would be accurately located
by small channels but not by large ones. Situations of this kind can be
recognized by the presence of two nearby zero-crossings in the small
channels. An example of the second situation is a shadow superimposed
on a sharp reflectance change, which can be recognized if the zero-cross-
ings in the large channels are displaced relative to those in the smaller
ones. If the shadow has exactly the correct position<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>