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NEURAL DYNAMICS OF CATEGORY LEARNING 
AND RECOGNITION: ATTENTION, 

MEMORY CONSOLIDATION, AND AMNESIA 

Gail A. Carpenter1 and Stephen Grossberg$ 

Abstract 

A theory is developed of how recognition categories can be learned in response to 
a temporal stream of input patterns. Interactions between an attentional subsystem 
and an orienting subsystem enable the network to  self-stabilize its learning, without 
an external teacher, as the code becomes globally self-consistent. Category learning is 
thus determined by global contextual information in this system. The attentional sub- 
system learns bottom-up codes and top-down templates, or expectancies. The internal 
representations formed in this way stabilize themselves against recoding by matching 
the learned top-down templates against input patterns. This matching process detects 
structural pattern properties in addition to  local feature matches. The top-down tem- 
plates can also suppress noise in the input patterns, and can subliminally prime the 
network to  anticipate a set of input patterns. Mismatches activate a n  orienting subsys- 
tem, which resets incorrect codes and drives a rapid search for new or more appropriate 
codes. As the learned code becomes globally self-consistent, the orienting subsystem 
is automatically disengaged and the memory consolidates. After the recognition cat- 
egories for a set of input patterns self-stabilize, those patterns directly access their 
categories without any search or recoding on future recognition trials. A novel pattern 
exemplar can directly access an established category if it shares invariant properties 
with the set of familiar exemplars of that  category. Several attentional and nonspe- 
cific arousal mechanisms modulate the course of search and learning. Three types of 
attentional mechanism-priming, gain control, and vigilance- -are distinguished. Three 
types of nonspecific arousal are also mechanistically characterized. The nonspecific vig- 
ilance process determines how fine the learned categories will be. If vigilance increases 
due, for example, to  a negative reinforcement, then the system automatically searches 
for and learns finer recognition categories. The learned top-down expectancies become 
more abstract as the recognition categories become broader. The learned code is a 
property of network interactions and the entire history of input pattern presentations. 
The interactions generate emergent rules such as a Weber Law Rule, a 2/3 Rule, and 
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an Associative Decay Rule. No serial programs or algorithmic rule Structures are used. 
The interactions explain and predict properties of evoked potentials (processing nega- 
tivity, mismatch negativity, P300). Malfunction of the orienting system causes a formal 
amnesic syndrome analogous to that caused by malfunction of medial temporal brain 
structures: limited retrograde amnesia, long-range anterograde amnesia, failure of mem- 
ory consolidation, effective priming, and defective reactions to novel cues. Comparisons 
with alternative theories of amnesia are made. 

1. Introduction: Self-Organization of Recognition Categories 

A fundamental problem of perception and learning concerns the characterization of 
how recognition categories emerge as a function of experience. When such categories 
spontaneously emerge through an individual’s interaction with an environment, the pro- 
cesses are said to undergo self-organization (Basar, Flohr, Haken, and Mandell, 1983). 
This article develops a theory of how recognition categories can self-organize, and re- 
lates these results to recent data about evoked potentials and about amnesias due to 
malfunction of medial temporal brain structures. Results of evoked potential and clin- 
ical studies suggest which macroscopic brain structures could carry out the theoretical 
dynamics (Section 19). The theory also specifies microscopic neural dynamics, with 
local processes obeying membrane equations (Appendix). 

We focus herein upon principles and mechanisms that are capable of self-organizing 
stable recognition codes in response to arbitrary temporal sequences of input patterns. 
These principles and mechanisms lead to the design of a neural network whose param- 
eters can be specialized for applications to particular problem domains, such as speech 
and vision. In these domains, preprocessing stages prepare environmental inputs for 
the self-organizing category formation and recognition system. Work on speech and 
language preprocessing has characterized those stages after which such a self-organizing 
recognition system can build up codes for phonemes, syllables, and words (Grossberg, 
1978, 1985a; Grossberg and Stone, 1985). Work on form and color preprocessing has 
characterized those stages after which such a self-organizing recognition system can 
build up codes for visual object recognition [Grossberg and Mingolla, 1985a, 1985b). 

Code Stabilization by Top-Down Expectancies 
Mathematical analysis and computer simulations of the neural network described 

in the present article show how the network can learn bottom-up codes and top-down 
expectancies in response to a temporal stream of input patterns. The internal represen- 
tations formed in this way stabilize themselves against recoding in response to irrelevant 
input patterns by using the matching properties of the learned top-down expectancies. 
This code-stabilizing mechanism also suppresses noise in the input patterns, and can 
attentionally prime a network to anticipate an input pattern or category of input pat- 
terns. Moreover, the network automatically rescales its noise criterion to earh pattern 
context: A particular mismatched feature which is processed as noise in a complex 
pattern with many features may, in the context of a simple pattern with few features, 
signal a pattern mismatch. Thus the theory shows that a definition of signal vs. noise 
which is sensitive to the global structure of input patterns is an intrinsic property of the 
mechanisms whereby recognition codes for these patterns are learned in a self-stabilizing 
fashion. 

A tten tional and Orienting Subsystems 
The class of networks that we consider develops the adaptive reaonanee theory. The 

theory’s relationships to a wide variety of interdisciplinary data and other models is 
described in Grossberg (1976b, 1980, 1982, 1984a) and Grossberg and Stone (1985). 
In this theory, an interaction between two functionally complementary subsystems is 
needed to process familiar and unfamiliar events. Familiar events are processed within 
a consummatory, or attentional, subsystem. This subsystem establishes ever more pre- 
cise internal representations of and responses to familiar events. It also builds up the 
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Figure 1. Interactions between the attentional subsystem and the orienting subsystem: 
Adaptive bottom-up signals and top-down signals between levels F1 and Fz determine 
whether the input pattern will be matched or mismatched at F1. A match inhibits the 
orienting subsystem A. 

learned top-down expectations that help to stabilize the learned bottom-up codes of 
familiar events. By itself, however, the attentional subsystem is unable simultaneously 
to maintain stable representations of familiar categories and to create new categories for 
unfamiliar patterns. An isolated attentional subsystem is either rigid and incapable of 
creating new categories for unfamiliar patterns, or unstable and capable of ceaselessly 
recoding the categories for familiar patterns (Section 12). 

The second subsystem is an orienting subsystem that overcomes the rigidity of 
the attentional subsystem when unfamiliar events occur and enables the attentional 
subsystem to learn from these novel experiences. The orienting subsystem is essential 
for expressing whether a novel pattern is "familiar" and well represented by an existing 
category, or "unfamiliar" and in need of a new category. 

All input events start to be processed by the attentional subsystem. A familiar 
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Figure 2. A mismatch a t  F1 between the bottom-up input pattern and the top-down 
template, or expectancy, reduces inhibition from F1 to the orienting subsystem A. The 
orienting subsystem can then release a burst of nonspecific arousal capable of resetting 
short term memory (STM) at Fz. 

event can activate a top-down template, or expectancy, which it tries to match within 
the attentional subsystem (Figure 1). A successful approximate match can deform, 
amplify, and sustain in short-term memory (STM) the activity pattern that was initially 
activated by the input within the attentional subsystem. Amplified, or resonant, STM 
activities constitute the fully elaborated recognition event. They inhibit the orienting 
subsystem and engage the learning, or long-term memory (LTM), process. A familiar 
event can maintain or modify its prior learning as its recognition takes place. 

An unfamiliar event also starts to be processed by the attentional subsystem. Such 
an event may also activate a category which thereupon reads-out a top-down template. 
If the unfamiliar event can approximately match this template, then it can be recognized 
as an exemplar of the category on its first presentation. If the unfamiliar event is too 
different from familiar exemplars of the sampled category, then it cannot approximately 
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match this template (Figure 2). A mismatch within the attentional subsystem activates 
the orienting subsystem. Activation of the orienting subsystem functionally expresses 
the novelty, or unexpectedness, of the unfamiliar event. The orienting subsystem, in 
turn, rapidly resets the active representation within the attentional subsystem as it 
simultaneously energizes an orienting response. 

The reset of the attentional subsystem by the orienting subsystem leads to the selec- 
tion of a new representation within the attentional subsystem. This new representation 
may cause yet another mismatch, hence another STM reset event and the selection of 
yet another representation. In this way, the orienting subsystem mediates a rapid search 
which continues until a representation is found that does not cause a large mismatch. 
Then the search ends, an STM resonance develops, and the learning process can encode 
the active representation to which the search led. The system’s recognition Categories 
are hereby altered in either of two ways. If the search leads to an established category, 
then learning may change the criteria for accessing that category. If the search leads to 
uncommitted cells, then learning can add a new category to the recognition code. 

This search process, although unfolding serially in time, is not controlled by a serial 
mechanism. Rather, it is driven by the successive release of nonspecific orienting bursts 
that are triggered by automatic processing of mismatch events. The entire history of 
learning determines the order of search in the network and, in turn, the new learning 
which can occur at the end of a search. Thus the search process adaptively modifies itself 
as the knowledge encoded by the network evolves. By contrast, a prewired search tree 
could not, in principle, maintain its efficiency after unpredictable changes in knowledge 
occurred. Instead, the novelty-sensitive orienting subsystem, through its interactions 
with the evolving knowledge of the attentional subsystem, defines an efficient, self- 
adjusting search routine. 

Tuning of Categories by Attention 
The criterion of mismatch is also determined by a parallel mechanism. In particu- 

lar, a nonspecific vigilance, or attentional, parameter determines how fine the learned 
categories will be. If, for example, vigilance increases due to negative reinforcement or 
other attention-focusing agents, then the system will automatically search for and learn 
finer recognition categories. 

Direct Access to Familiar Categories and Memory Consolidation 
Although an unfamiliar event may initially drive a search for an internal representa- 

tion, after this representation is learned, future presentation of the input pattern need 
not engage the search process. Instead, the memory consolidates and a familiar input 
pattern can directly access its recognition category. That is, the familiar pattern can 
directly activate its code with neither search nor recoding. 

Top-Down Subliminal Priming 
A familiar event may, however, also engage the search process (Figure 3). This can 

occur when the system is primed to expect a different familiar event, so that a top-down 
expectancy is already active when the familiar event occurs. The familiar input event 
may mismatch this expectancy. A search will then be elicited leading to activation of 
the familiar event’s bottom-up code and top-down expectancy. Such a search resets the 
erroneous code so that the correct code can be activated, but does not lead to learning 
of a new category. By contrast, if the system is primed to expect a familiar event 
that then occurs, a resonance can develop more rapidly than in an unprimed network. 
Consequently, anticipation of a familiar event can enhance recognition of that event by 
the network. 

The model’s flexible and dynamic relationship between matching, orienting, atten- 
tion, and learning proves its worth by enabling efficient learning and self-stabilization of 
recognition categories with any prescribed refinement. The coarseness of the categories 
is not prewired. Nor is an identity match performed. In fact, the learned top-down 
expectancies become more abstract as the categories become broader. Moreover, the 
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Figure 3. Reset of a subliminal prime: (a) The top-down expectancy, or prime, sublim- 
inally activates F1 before the input pattern arrives. If the input pattern mismatches the 
prime, then an arousal burst from A can reset STM at Fa and thereby deactivate the 
prime. (b) Then F1 can access its correct Fa code. The subsequent match at F1 between 
the input pattern and a compatible top-down template prevents the input pattern from 
activating A and thereby erroneously resetting the correct Fz code. 

network automatically rescales its matching criterion so that even with a fixed level of 
attentional vigilance, the network can both differentiate finer detaila of simple input 
patterns and tolerate larger mismatches of complex input patterns. This same rescaling 
property defines the difference between irrelevant noise and significant pattern mis- 
matches. As with many other network properties, the rescaling property also emerges 
from interactions between the attentional subsystem and the orienting subsystem. If a 
mismatch within the attentional subsystem does not generate a search, then the mi5  
matched features are treated &s noise in the sense that they are eliminated from the 
critical feature pattern learned by the template. If the mismatch does generate a search, 
then the mismatched features may be included in the template of the category to which 
the search leads. Since the orienting subsystem is sensitive to the relative degree of 
match between an input pattern and a template, finer template mismatches with sim- 
ple input patterns may drive a search, whereas larger mismatches with complex input 
patterns may not. Thus whole activity pattern8 across a field of feature-selective cells, 
rather than activations of single cells or feature detectors, are the computational units 
of the network. 

Short Term Memory and Long Term Memory 
Although the top-down expectancies, or templates, that are learned by the network 

are computed using deterministic laws, they support the recognition of categories whose 
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degree of fuzziness can be tuned by altering the level of vigilance. The coexistence of 
deterministic computations with fuzzy, or seemingly probabilistic, recognitions is made 
possible in the network through interactions between short term memory (STM) and 
long term memory (LTM) mechanisms. Using its fuzzy recognition criteria, the network 
can transform a continuum of possible input patterns into a discrete set of recognition 
categories. 

Interaction of STM and LTM processes also enables the entire past learning experi- 
ence of the network to influence each of its future recognition and learning events. Thus 
the apparently evanescent moment of recognition, or resonance, embodies all the knowl- 
edge that the network has accumulated to that time. Recognition in such a network is 
intrinsically context-sensitive. 

Reconciling Local Features and Context-Sensitive Interactions 
Using its context-sensitive interactions the network is able both to maintain stable 

internal representations against erosion by irrelevant environmental fluctuations and 
to learn rapidly in a new environment. Although local properties of feature detection 
are necessary for building up such internal representations, local properties alone are 
insufficient to distinguish between relevant and irrelevant environmental inputs. The 
network’s ability to stabilize its learned codes against adventitious recoding is due to 
the same context-sensitive mechanisms that make every recognition event reflect the 
network’s global history of learning. 

Thus we are led to consider how a single network can reconcile local features with 
global context-sensitivity, serial search with parallel processing, discrete categories with 
continuously varying events, deterministic computations with fuzzy sets, and stable 
memory with rapid learning. 

2. Bottom-Up Adaptive Filtering and Contrast-Enhancement in Short 
Term Memory 

We now introduce in a qualitative way the main mechanisms of the theory. We 
do so by considering the typical network reactions to a single input pattern I within a 
temporal stream of input patterns. Each input pattern may be the output pattern of a 
preprocessing stage. The input pattern I is received at the stage F1 of the attentional 
subsystem. Pattern I is transformed into a pattern X of activation across the nodes of 
F1 (Figure 4). The transformed pattern X represents a pattern in short term memory 
(STM). In F1 each node whose activity is sufficiently large generates excitatory signals 
along pathways to target nodes at the next processing stage Fz. A pattern X of STM 
activities across F1 hereby elicits a pattern S of output signals from F1. When a signal 
from a node in F1 is carried along a pathway to Fa, the signal is multiplied, or gated, by 
the pathway’s long term memory (LTM) trace. The LTM gated signal (i.e., signal times 
LTM trace), not the signal alone, reaches the target node. Each target node sum up 
all of its LTM gated signals. In this way, pattern S generates a pattern T of LTM-gated 
and summed input signals to Fz (Figure 58). The transformation from S to T is called 
an adaptive fi l ter.  

The input pattern T to Fz is quickly transformed by interactions among the nodes 
of Fz. These interactions contrast-enhance the input pattern T. The resulting pattern 
of activation across Fz is a new pattern Y. The contrast-enhanced pattern Y, rather 
than the input pattern T, is stored in STM by Fz. 

A special case of this contrast-enhancement process, in which Fz chooses the node 
which receives the largest input, is here considered in detail. The chosen node is the 
only one that can store activity in STM. In more general versions of the theory, the 
contrast enhancing transformation from T to Y enables more than one node at a time 
to be active in STM. Such transformations are designed to simultaneously represent 
in STM many subsets, or groupings, of an input pattern (Cohen and Grossberg, 1985; 
Grossberg, 1985a). When F, is designed to make a choice in STM, it selects that global 
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Figure 4. Stages of bottom-up activation: The input pattern I generates a pattern of 
STM activation X across F1. Sufficiently active F1 nodes emit bottom-up signals to Fz. 
This signal pattern S is gated by long term memory (LTM) traces within the Fl -+ Fz 
pathways. The LTM-gated signals are summed before activating their target nodes in 
Fz. This LTM-gated and summed signal pattern T generates a pattern of activation Y 
across Fz. 

grouping of the input pattern which is preferred by the adaptive filter. This process 
automatically enables the network to partition all the input patterns which are received 
by F1 into disjoint sets of recognition categories, each corresponding to a particular node 
in Fz. The present article analyses in detail the design of such a categorical mechanism. 
This special case is both interesting in itself and a necessary prelude to the analysis of 
recognition codes in which multiple groupings of X are simultaneously represented by 
Y. 

Only those nodes of Fz which maintain stored activity in STM can elicit new learning 
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Figure 5. Search for a correct Fz code: (a) The input pattern I generates the specific 
STM activity pattern X at F1 as it nonspecifically activates A. Pattern X both inhibits 
A and generates the output signal pattern S. Signal pattern S is transformed into the 
input pattern T, which activates the STM pattern Y across Fz. (b) Pattern Y generates 
the top-down signal pattern U which is transformed into the template pattern V. If V 
mismatches I at F1, then a new STM activity pattern X' is generated at F1. The 
reduction in total STM activity which occurs when X is transformed into X' causes a 
decrease in the total inhibition from F1 to A. c )  Then the input-driven activation of A 
can release a nonspecific arousal wave to Fz, w h ich resets the STM pattern Y at Fz. (d) 
After Y is inhibited, its top-down template is eliminated, and X can be reinstated at 
F1. Now X once again generates input pattern T to Fz, but since Y remains inhibited 
T can activate a different STM pattern Y' at Fz. If the top-down template due to Y' 
also mismatches I at F1, then the rapid search for an appropriate Fz code continues. 
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at contiguous LTM traces. Whereas all the LTM traces in the adaptive filter, and thus 
all learned past experiences of the network, are used to determine recognition via the 
transformation IkX+S+T+Y, only those LTM traces whose STM activities in Fz 
survive the contrast-enhancement process can learn in response to the activity pattern 
X. 

The bottom-up STM transformation I-+X+S+ T+Y is not the only process that 
regulates network learning. In the absence of top-down processing, the LTM traces 
within the adaptive filter S+T (Figure 5a) can respond to certain sequences of input 
patterns by being ceaselessly recoded in such a way that individual events are never 
eventually encoded by a single category no matter how many times they are presented. 
An infinite class of examples in which temporally unstable codes evolve is described 
in Section 12. It was the instability of bottom-up adaptive coding that led Grossberg 
(1976a, 1976b) to introduce the adaptive resonance theory. 

In the adaptive resonance theory, a matching process at F1 exists whereby learned 
top-down expectancies, or templates, from Fa to F1 are compared with the bottom- 
up input pattern to F1. This matching process stabilizes the learning that emerges 
in response to an arbitrary input environment. The constraints that follow from the 
need to stabilize learning enable us to choose among the many possible versions of 
top-down template matching and STM processes. These learning constraints upon 
the adaptive resonance top-down design have enabled the theory to explain data from 
visual and auditory information processing experiments in which learning has not been a 
manipulated variable (Grossberg, 1980,1985a; Grossberg and Stone, 1985). The present 
article develops these mechanisms into a rigorously characterized learning system whose 
properties have been quantitatively analysed (Carpenter and Grossberg, 1985a, 1985b). 
This analysis has revealed new design constraints within the adaptive resonance theory. 
The system that we will describe for learned categorical recognition is one outcome of 
this analysis. 

3. Top-Down Template Matching and Stabilization of Code  Learning 

We now begin to consider how top-down template matchingcan stabilize code learn- 
ing. In order to do so, top-down template matching at F1 must be able to prevent 
learning at  bottom-up LTM traces whose contiguous Fa nodes are only momentarily ac- 
tivated in STM. This ability depends upon the different rates at which STM activities 
and LTM traces can change. The STM transformation I+X+ S-+T+Y takes place 
very quickly. By "very quickly" we mean much more quickly than the rate at which 
the LTM traces in the adaptive filter S+T can change. As soon as the bottom-up 
STM transformation X+Y takes place, the STM activities Y in FZ elicit a top-down 
excitatory signal pattern U back to F1. Only sufficiently large STM activities in Y elicit 
signals in U along the feedback pathways Fa +F,. 

As in the bottom-up adaptive filter, the top-down signals U are also gated by LTM 
traces before the LTM-gated signals are summed at F1 nodes. The pattern U of output 
signals from Fa hereby generates a pattern V of LTM-gated and summed input signals 
to F1. The transformation from U to V is thus also an adaptive filter. The pattern V 
is called a top-down ternplate, or learned ezpeetation. 

Two sources of input now perturb F1: the bottom-up input pattern I which gave rise 
to the original activity pattern X, and the top-down template pattern V that resulted 
from activating X. The activity pattern X' across F1 that is induced by I and V taken 
together is typically different from the activity pattern X that was previously induced 
by I alone. In particular, F1 acts to match V against I. The result of this matching 
process determines the future course of learning and recognition by the network. 

The entire activation sequence 
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takes place very quickly relative to the rate with which the LTM traces in either the 
bottom-up adaptive filter S+T or the top-down adaptive filter U-+V can change. Even 
though none of the LTM traces changes during such a short time, their prior learning 
strongly influences the STM patterns Y and X* that evolve within the network. We 
now discuss how a match or mismatch of I and V at F1 regulates the course of learning 
in response to the pattern I. 

4. Interactions Between Attentional and Orienting Subhystems: STM 

This section outlines how a mismatch at F1 regulates the learning process. With 
this general scheme in mind, we will be able to consider details of how bottom-up filters 
and top-down templates are learned and how matching takes place. 

Level F1 can compute a match or mismatch between a bottom-up input pattern 
I and a top-down template pattern V, but it cannot compute which STM pattern Y 
across Fz generated the template pattern V. Thus the outcome of matching at F1 must 
have a nonspecific effect upon Fa that can potentially influence all of the Fa nodes, any 
one of which may have read-out V. The internal organization of Fz must be the agent 
whereby this nonspecific event, which we call a reeet wave, selectively alters the stored 
STM activity pattern Y. The reset wave is one of the three types of nonspecific arousal 
that exist within the network. In particular, we suggest that a mismatch of I and V 
within F1 generates a nonspecific arousal burst that inhibits the active population in 
FZ which read-out V. In this way, an erroneous STM representation at Fz is quickly 
eliminated before any LTM traces can encode this error. 

The attentional subsystem and the orienting subsystem work together to carry 
out these interactions. All learning takes place within the attentional subsystem. All 
matches and mismatches are computed within the attentional subsystem. The orienting 
subsystem is the source of the nonspecific arousal bursts that reset STM within level Fz 
of the attentional subsystem. The outcome of matching within F1 determines whether 
or not such an arousal burst will be generated by the orienting subsystem. Thus the 
orienting system mediates reset of Fz due to mismatches within F1. 

Figure 5 depicts a typical interaction between the attentional subsystem and the 
orienting subsystem.In Figure Sa, an input pattern I instates an STM activity pattern 
X across F1. The input pattern I also excites the orienting population A, but pattern 
X at F1 inhibits A before it can generate an output signal. 

Activity pattern X also generates an output pattern S which, via the bottom-up 
adaptive filter, instates an STM activity pattern Y across FZ. In Figure 5b, pattern Y 
reads a top-down template pattern V into F1. Template V mismatches input I, thereby 
significantly inhibiting STM activity across F1. The amount by which activity in X is 
attenuated to generate X' depends upon how much of the input pattern I is encoded 
within the template pattern V. 

When a mismatch attenuates STM activity across F1, this activity no longer pre- 
vents the arousal source A from firing. Figure 5c depicts how disinhibition of A releases 
a nonspecific arousal burst to Fz. This arousal burst, in turn, selectively inhibits the 
active population in Fa. This inhibition is long-lasting. One physiological design for 
Fz processing which has these necessary properties is a dipole field (Grossberg, 1980, 
1984a). A dipole field consists of opponent processing channels which are gated by 
habituating chemical transmitters. A nonspecific arousal burst induces selective and 
enduring inhibition within a dipole field. In Figure Sc, inhibition of Y leads to inhibi- 
tion of the top-down template V, and thereby terminates the mismatch between I and 
V. Input pattern I can thus reinstate the activity pattern X across F1, which again 
generates the output pattern S from F1 and the input pattern T to Fz. Due to the 
enduring inhibition at FZ, the input pattern T can no longer activate the same pattern 
Y at Fa. A new pattern Y' is thus generated at Fa by I (Figure 5d). Despite the fact 

Reset and Search 
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that some Fz nodes may remain inhibited by the STM reset property, the new pattern 
Y' may encode large STM activities. This is because level Fz is designed so that its 
total suprathreshold activity remains approximately constant, or normalized, despite 
the fact that some of its nodes may remain inhibited by the STM reset mechanism. 
This property is related to the limited capacity of STM. A physiological process capa- 
ble of achieving the STM normalization property, based upon on-center off-surround 
interactions among cells obeying membrane equations, is described in Grossberg (1980, 
1983). 

The new activity pattern Y' reads-out a new top-down template pattern V'. If a 
mismatch again occurs at F1, the orienting subsystem is again engaged, thereby leading 
to another arousal-mediated reset of STM at Fz. In this way, a rapid series of STM 
matching and reset events may occur. Such an STM matching and reset series controls 
the system's search of LTM by sequentially engaging the novelty-sensitive orienting 
subsystem. Although STM is reset sequentially in time, the mechanisms which control 
the LTM search are all parallel network interactions, rather than serial algorithms. Such 
a parallel search scheme is necessary in a system whose LTM codes do not exist a priori. 
In general, the spatial configuration of codes in such a system depends upon both the 
system's initial configuration and its unique learning history. Consequently, no prewired 
serial algorithm could possibly anticipate an efficient order of search. 

The mismatch-mediated search of LTM ends when an STM pattern across Fz reads- 
out a top-down template which either matches I, to the degree of accuracy required by 
the level of attentional vigilance, or has not yet undergone any prior learning. In the 
latter case, a new recognition category is established as a bottom-up code and top-down 
template are learned. 

We now begin to consider details of the bottom-up/top-down matching process 
across F1. The nature of this matching process is clarified by a consideration of how F1 
distinguishes between activation by bottom-up inputs and top-down templates. 

5. Attentional Gain Control a n d  Attentional Priming 

The importance of the distinction between bottom-up and top-down processing 
becomes evident when one observes that the same top-down template matching process 
which stabilizes learning is also a mechanism of attentional priming. Consider, for 
example, a situation in which F2 is activated by a level other than F1 before F1 is 
itself activated. In such a situation, Fa can generate a top-down template V to F1. 
The level F1 is then primed, or ready, to receive a bottom-up input that may or may 
not match the active expectancy. Level F1 can be primed to receive a bottom-up 
input without necessarily eliciting suprathreshold output signals in response to the 
priming expectancy. If this were not possible, then every priming event would lead to 
suprathreshold consequences. Such a property would prevent subliminal anticipation of 
a future event. 

On the other hand, an input pattern I must be able to generate a suprathreshold 
activity pattern X even if no top-down expectancy is active across F1 (Figure 5). How 
does F1 know that it should generate a suprathreshold reaction to a bottom-up input 
pattern but not to a top-down input pattern? In both cases, an input pattern stimu- 
lates F1 cells. Some auxiliary mechanism must exist to distinguish between bottom-up 
and top-down inputs. We call this auxiliary mechanism attentional gain control to dis- 
tinguish it from attentional priming by the top-down template itself. The attentional 
priming mechanism delivers specific template patterns to F1. The attentional gain con- 
trol mechanism has a nonspecific effect on the sensitivity with which F1 responds to the 
template pattern, as well as to other patterns received by F1. Attentional gain control 
is one of the three types of nonspecific arousal that exist within the network. With the 
addition of attentional gain control, we can explain qualitatively how F1 can tell the 
difference between bottom-up and top-down signal patterns. 
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The need to dissociate attentional priming from attentional gain control can also 
be seen from the fact that top-down priming events do not lead necessarily to sublim- 
inal reactions at F1. Under certain circumstances, top-down expectancies can lead to 
suprathreshold consequences. We can, for example, experience internal conversations 
or images at will. Thus there exists a difference between the read-out of a top-down 
template, which is a mechanism of attentional priming, and the translation of this op- 
eration into suprathreshold signals due to attentional gain control. An “act of will” 
can amplify attentional gain control signals to elicit a suprathreshold reaction at F1 in 
response to an attentional priming pattern from F2. 

Figures 6 and 7 depict two schemes whereby supraliminal reactions to bottom-up sig- 
nals, subliminal reactions to top-down signals, and supraliminal reactions to matched 
bottom-up and top-down signals can be achieved. Figures 6d and 7d show, in addi- 
tion, how competitive interactions across modalities can prevent F1 from generating a 
supraliminal reaction to bottom-up signals, as when attention shifts from one modality 
to another. 

Both of the attentional gain control schemes in Figures 6 and 7 satisfy the same 
functional requirements. Both schemes are formally equivalent; that is, they obey the 
same system of differential equations. Both schemes can also explain the same body of 
psychological data. Each scheme can, for example, be used to clarify and modify the 
distinction between “automatic activation” and “conscious attention” that has arisen 
from psychological experiments on word recognition and related phenomena concerning 
human information processing (Grossberg and Stone, 1985). Physiological data are 
needed to choose one scheme over the other. In particular, within Figure 7, but not 
Figure 6, the bottom-up input pattern activates an attentional gain control channel. 
Thus in the scheme of Figure 6, bottom-up inputs activate two nonspecific processing 
channels, the attentional gain control channel within the attentional subsystem and 
the nonspecific arousal channel within the orienting subsystem. Herein, we will often 
motivate our formal constructions by considering the scheme in Figure 6, but its should 
not be forgotten that both schemes are formally, if not physiologically, equivalent. 

6. Matching: The 2/3 Rule 

We can now outline the matching and coding properties that are used to generate 
learning of self-stabilizing recognition categories. Two different types of properties need 
to be articulated: the bottom-up coding properties which determine the order of search, 
and the top-down matching properties which determine whether an STM reset event 
will be elicited. Order of search is determined entirely by properties of the attentional 
subsystem. The choice between STM reset and STM resonance is dependent upon 
whether or not the orienting subsystem will generate a reset wave. This computation 
is based on inputs received by the orienting subsystem from both the bottom-up input 
pattern I and the STM pattern which F1 computes within the attentional subsystem 
(Figure 5). Both the order of search and the choice between reset and resonance are 
sensitive to the matched patterns a8 a whole. This global sensitivity is key to the design 
of a single system capable of matching patterns in which the number of coded features, 
or details, may vary greatly. Such global context-sensitivity is needed to determine 
whether a fixed amount of mismatch should be treated as functional noise, or as an 
event capable of eliciting search for a different category. For example, one or two details 
may be sufficient to differentiate two small but functionally distinct patterns, whereas 
the same details, embedded in a large, complex pattern may be quite irrelevant. 

We first discuss the properties which determine the order of search. Network in- 
teractions which control search order can be described in terms of three rules: the 2/3 
Rule, the Weber Law Rule, and the Associative Decay Rule. 

The 2/3 Rule follows naturally from the distinction between attentional gain control 
and attentional priming. It says that two out of three signal sources must activate an 
F1 node in order for that node to generate suprathreshold output signals. In Figure 6a, 
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Figure 6. Matching by 2/3 Rule: (a) In this example, nonspecific attentional gain 
control signals are phasically activated by the bottom-up input. In this network, the 
bottom-up input arouses two different nonspecific channels: the attentional gain control 
channel and the orienting subsystem. Only F1 cells that receive bottom-up inputs and 
gain control signals can become supraliminally active. (b) A top-down template from F2 
inhibits the attentional gain control source as it subliminally primes target F1 cells. (c) 
When a bottom-up input pattern and a top-down template are simultaneously active, 
only those F1 cells that receive inputs from both sources can become supraliminally 
active, since the gain control source is inhibited. (d) Intermodality inhibition can shut 
off the gain control source and thereby prevent a bottom-up input from supraliminally 
activating F1. 



NeuraI Llynamics of chtegory Learning and Recognition 253 

TONIC 
GAIN coeml 

+I I 

(a> 

I I 

+I 

F1 

F2 

F1 

1 F2 

Figure 7. This figure differs from Figure 6 only in that the attentional gain control 
source is tonically active. 
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for example, during bottom-up processing, a suprathreshold node in F1 is one which 
receives a specific input from the input pattern I and a nonspecific attentional gain 
control signal. All other nodes in F1 receive only the nonspecific gain control signal. 
Since these cells receive inputs from only one pathway they do not fire. 

In Figure 6b, during top-down processing, or priming, some nodes in F1 receive a 
template signal from Fz, whereas other nodes receive no signal whatsoever. All the 
nodes of F1 receive inputs from at most one of their three possible input sources. Hence 
no cells in F1 are supraliminally activated by a top-down ternplate. 

During simultaneous bottom-up and top-down signaling, the attentional gain control 
signal is inhibited by the top-down channel (Figure 6c). Despite this fact, some nodes 
of F1 may receive sufficiently large inputs from both the bottom-up and the top-down 
signal patterns to generate suprathreshold outputs. Other nodes may receive inputs 
from the top-down template pattern or the bottom-up input pattern, but not both. 
These nodes receive signals from only one of their possible sources, hence do not fire. 
Cells which receive no inputs do not fire either. Thus only cells that are conjointly 
activated by the bottom-up input and the top-down template can fire when a top-down 
template is active. The 2/3 Rule clarifies the apparently paradoxical process whereby 
the addition of top-down excitatory inputs to F1 can lead to an overall decrease in Fl's 
STM activity (Figures 5a and 5b). 

7. Direct Access To Subsets and Supersets 

The Weber Law Rule can be motivated by considering the following situation. Sup- 
pose that a bottom-up input pattern I(') activates a network in which pattern I(') has 
already been perfectly coded by the adaptive filter from F1 to Fz. Suppose, moreover, 
that another pattern I(') has also been perfectly coded and that I(') contains I(') as a 
subset; that is, I(2) equals I(') at all the nodes where I(') is positive. If I(') and I(') 
are sufficiently different, they should have access to distinct categories at Fz. However, 
since I(2) equals I(') at their intersection, and since all the F1 nodes where I(2) does 
not equal I(') are inactive when I(') is presented, how does the network decide between 
the two categories when I(') is presented? This question suggests that, in response to 
an input pattern I(') that is perfectly coded, the node v1 in Fz which codes I(') should 
receive a bigger signal from the adaptive filter than the node uz in F2 which codes a 
superset I(%) of I(') (Figure 6a). In order to realize this constraint, the LTM traces at 
uz which filter I(') should be smaller than the LTM traces at v1 which filter I('). Since 
the LTM traces at vz were coded by the superset pattern I('), this constraint suggests 
that larger input patterns are encoded by smaller LTM traces. Thus the absolute sizes 
of the LTM traces projecting to the different nodes ul and vz reflect the overall sizes of 
the input patterns I(') and I(') coded by these nodes. 

The relative sizes of the LTM traces projecting to a single node reflect the internal 
structuring of the input patterns coded by that node. Consider, for example, the LTM 
traces in pathways between F1 cells where I(') equals zero and the Fz node u1 (Figure 
8b). During learning of I('), these LTM traces decay toward zero. By contrast, consider 
the LTM traces to v2 in pathways from F1 cells that are activated by I(') but not I('). 
These LTM traces become large as learning of I(2) proceeds. 

The preceding discussion suggests a constraint that enables a subset I(') to selec- 
tively activate its node u1 rather than the node corresponding to a superset I('). On 
the other hand, the superset I(z) should be able to directly activate its node vz rather 
than the node v1 of a subset I('). However, the positive LTM traces of u1 are larger 
than the corresponding LTM traces of uz, and presentation of I(') activates the entire 
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Figure 8. Weber law and associative decay rules for long term memory: When input 
I(') activates F1, node u1 at Fz is chosen. When input I(') activates F1, node u2 at Fz 
is chosen. (a) Because I(') is a superset of I('), the LTM traces in pathways to u1 from 
F1 nodes that are activated by I(') are larger than the LTM traces to v2 in pathways 
from these same F1 nodes. (b) Consider F1 nodes that are activated by I(2) but not 
I(]). The LTM traces in their pathways to u1 are small. In contrast, the LTM traces in 
their pathways to u2 are large, as are all the other LTM traces to u2 whose pathways 
are activated by I('). 
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subset pattern I(1). The fact t,hat I(') is filtered by more positive LTM traces at u2 than 
it is at w1 must be able to compensate for the larger size of the LTM traces at ul. By 
establishing a proper balance between the size and the number of positive LTM traces, 
the Weber Law Rule allows both I(') and I(%) to have direct access to their respective 
nodes 01 and u2. 

8. Weber Law Rule and Associative Decay Rule for Long Term Memory 

We now describe more precisely the two learning rules whereby the LTM traces 
allow direct access to both subset and superset Fa codes. The conjoint action of a 
Weber Law Rule and an Associative Decay Rule for the learned sires of LTM traces 
has the desired properties. To fix ideas, suppose that each input pattern I to F1 is a 
pattern of 0's and 1's. Let 1 I ) denote the number of 1's in the input pattern I. The 
two rules can be summarized as follows. 

Associative Decay Rule 
After learning of I has taken place, LTM traces in the bottom-up coding pathways 

and the top-down template pathways between an inactive F1 node and an active Fz 
node equal 0, or at least are very small. Associative learning within the LTM traces can 
thus cause decreases as well as increases in the sizes of the traces. This is a non-Hebbian 
form of associative learning. 

Weber Law Rule 
After learning input pattern I, LTM traces in bottom-up coding pathways corre- 

sponding to active F1 and F z  nodes equal 

By ('4, the size of each positive LTM trace which codes I decreases as I Z I increases. 

which code I(') have size 
Consider again the subset I(') and the superset I@). By (2), the positive LTM traces 

(3) 
a 

p+ 1 I(') 1 
and the positive LTM traces which code I(2) have size 

where I I( ' )  (<) 
old. Thus the total input to  u1 has size 

1. When I(') is presented at F1, I I(')  I nodes in F1 are suprathresh- 

and the total input to u2 has size 

Because I I(')  1, it follows that Jll > Jlz .  Thus I(') activates u1 instead of 9 .  
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When I(2) is presented at F1, 1 I(’)  I nodes in F1 are suprathreshold. Thus the total 
input to v2 is 

We now invoke the Associative Decay Rule. Because I(2) is a superset of I(]), only those 
F, nodes in that are also activated by I(’) project to positive LTM traces at ul. 
Thus the total input to v1 is 

Both 5 2 2  and Jzl are expressed in terms of the function 

which is an increasing function of t .  Since I I(’) I<) I(’)  1, Jzz > 521. Thus the superset 
I(2) activates its node uz more than the subset node v1. 

Thus the conjoint action of a Weber Law Rule and an Associative Decay Rule for 
bottom-up learning permits direct access to the Fz nodes of both subset and superset 
input patterns. The Weber Law Rule is the outcome of mass action competitive inter- 
actions, as we will illustrate in the Appendix. These competitive interactions may occur 
among the nodes of F1 or among the LTM traces abutting each Fz node. We hereby 
suggest how the functional problem of direct access to subset and superset codes may 
be mechanistically solved by nonlinear neural interactions. 

0. Fast Learning and Slow Learning: The Direct Access Rule 

In order to characterize the course of learning, the rate of change of the LTM traces 
on each learning trial must be specified. In this article, we consider cases in which, on 
every learning trial, the LTM traces can reach the new equilibrium values imposed by the 
input pattern on that trial. We call these / a t  learning cases. We have also considered 
cases in which the LTM traces change too slowly to reach the new equilibrium values 
imposed by the input pattern on a single trial. We call these the slow learning cases. 

During both fast learning and slow learning, the STM traces change more quickly 
than the LTM traces, and the learning process eventually self-stabilizes. However, 
the system is more sensitive to the ordering of the input patterns during fast learning 
than during slow learning. During slow learning, each LTM trace averages across time 
intervals that are much longer than a single trial, and thereby becomes less sensitive 
to the ordering of the inputs. In the next section, we will show how the input order 
can influence the choice of coding categories in the fast learning case. Slow learning is 
considered in Carpenter and Grossberg (198513). 

We note, finally, that the 2/3 Rule and the Weber Law Rule suggest how the initial 
values of STM traces and LTM traces should be chosen. The choice of initial STM 
traces is simple: the system starts out at equilibrium, or with zero STM traces, and the 
STM traces quickly return to equilibrium after each input pattern shuts off. 

Initial LTM traces need to be chosen differently in the bottom-up adaptive filter than 
in the top-down adaptive filter. Due to the Weber Law Rule, the individual bottom-up 
LTM traces that are learned in response to large input patterns will be relatively small. 
In order for presentation of a perfectly coded large pattern to directly access its coded 
node, rather than an uncoded node, the initial values of the bottom-up LTM traces 
must be smaller than the learned LTM values corresponding to large input patterns. 
In addition, although some bottom-up LTM traces may initially equal zero, other LTM 
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traces abutting each Fz node must initially be positive in order for F1 to excite that 
node at all. 

Due to the 2/3 Rule, the initial top-down LTM traces cannot be too small. When 
an input pattern first chooses an F2 node, the LTM traces that gate the top-down 
template of that node must satisfy the 2/3 Rule even before any template learning 
occurs. If the top-down LTM traces started out too small, no F1 node would receive 
enough top-down input to satisfy the 2/3 Rule. Consequently, the whole system would 
shut down. Top-down learning is thus a type of learning-by-selection. 

In summary, bottom-up LTM traces start out small, whereas top-down LTM traces 
start out large. Bottom-up learning and top-down learning sculpt the spatial distribu- 
tion of their LTM traces, as well as their overall sizes, through time. The constraint 
that the initial sizes of the top-down LTM traces be large is a consequence of the 2/3 
Rule. The constraint that the initial sizes of the bottom-up LTM traces be small is 
needed to guarantee direct access to perfectly coded Fz nodes. We therefore call this 
latter constraint the Direct Access Rule. 

10. Stable Choices in Short Term Memory 

We can now begin to characterize the order of search in a network that obeys 
the following constraints: 1) Fast learning occurs (Section 9 ; (2 Input patterns are 
composed of 0’s and 1’s; (3 \ The 2/3 Rule holds (Section 0); 1 J  4) he Weber Law Rule 
holds (Section 8); (5) The Direct Access Rule holds (Section 9). 

This discussion of search order does not analyse whether or not an STM reset event 
will stop the search at any given step. The criteria for STM reset are provided in 
Section 15. Other things being equal, a network with a higher level of vigilance will 
require better F1 matches, and hence will search more deeply, in response to each input 
pattern. Thus when an input pattern is presented, the set of learned filters and templates 
depends upon the prior levels of vigilance. The same ordering of input patterns may thus 
generate different LTM encodings due to the prior settings of the nonspecific vigilance 
parameter. The present discussion considers the order in which search will occur in 
response to a single input pattern which is presented after an arbitrary set of filters and 
templates has been learned. 

A simple function determines the order in which encoded Fz nodes uj are searched 
in response to an input pattern I. This function, which we call the Order Function, is 
defined as follows. 

Order Function 

In equation (lo), V(j)  denotes the top-down template pattern that is read-out by node 
ul of F2. Since only one node at a time is active in F2, the total template read-out by 
F2 is the template corresponding to the node which is active at that time. 

After I has been presented to F1, but before Fa becomes active, function T, in 
(10) is the total bottom-up input to node u,. As in Section 8, term a(P+ I V(3) 
in (10) is a consequence of the Weber Law Rule. This term describes the size of the 
positive learned LTM traces which abut u,. Term I V(J) n I I describes the number of 
pathways abutting node u3 which have positive learned LTM traces and which carry 
positive signals when input I is presented. The total number of pathways abutting u, 
which have positive learned LTM traces is 1 V(3) 1. This is true because a bottom-up 
LTM trace from node u, in F1 to node u, in Fz grows due to learning if and only if the 
corresponding top-down LTM trace from u, to u, grows due to learning. There are as 
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many positive learned LTM traces in pathways leading t o  u, as there are in pathways 
leading from u,. At times when input I is registered by F,, only 1 V ( J ) n I  I of these 
1 V ( j )  I pathways are activated. The total input to  node u, in Fz is thus given by T, in 
(10). 

Level Fz chooses that  node u, which receives the largest input Tj ,  If we order the 
inputs in terms of decreasing size, as in 

T,, > T I 2  > T,3 > . . . , 

then node wj1 is initially chosen by Fz. After w,, is chosen, it reads-out template V(31) 
t o  PI .  When V ( h )  and I both perturb F1, a new activity pattern X' is registered a t  
F1, as in (1) and Figure 5b. A new bottom-up signal pattern from F1 to Fz may then 
be registered at  Fz. How can we be sure that  uJ1 will continue to receive the largest 
input from F1 after its template V(J1)  is processed by Fl? The 2/3 Rule provides this 
guarantee as follows. 

The 2/3 Rule shuts off those active F1 nodes whose top-down LTM traces from u , ~  
are zero due to prior learning of V(J1) .  A top-down LTM trace becomes zero if and 
only if the corresponding bottom-up LTM trace becomes zero. Thus F1 nodes which 
are deactivated by the 2/3 Rule connect to  bottom-up pathways whose LTM traces 
abutting u , ~  are zero. Hence, these pathways make no contribution to the total input 
T,, to  node u,,. Thus the total input T,, is not altered due to read-out of the template 

All other inputs T, are either unchanged or decrease due to  deactivation of some F1 
nodes by the 2/3 Rule. In general, after the template V(J1)  acts at F1, the total input 
to node u, at  Fz is 

Vh). 

(12) 
a I v ( d n v ( j l ) n I  I 

P t  I V ( J )  I 
By (II), T,, was the maximal input to Fz before template V(31) was read-out. By (10) 
and (12) T,] remains the maximal input to Fz after V ( h )  is read-out. In summary, 
the 2/3 Rule stabilizes the STM choice at Fz before and after read-out of a top-down 
template. 

Were the 2/3 Rule not operative, read-out of the template V(J1) might supraliminally 
activate many F1 nodes that had not previously been activated by the input I alone. 
These new F1 activations could cause a different Fz node to  be chosen, and its template 
could cause yet another Fz node to  be chosen. A rapid and non-terminating series of 
Fz choices could hereby be generated by an input I. Later Fz choices in this series could 
be activated by F1 nodes which receive no inputs whatsoever from I. The 2/3 Rule 
prevents this type of chaotic result from occurring. In other words, it instates a type of 
pattern matching within F1 which ensures that the choice of FZ nodes remains linked 
to the input pattern I. 

11. Order of Search and the Subset Recoding Property 

Because Fz can make choices which are not changed by read-out of the chosen node's 
template, the ordering of the bottom-up signals 
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Figure 9. Three types of relationships between input pattern I and template pattern 
V: (a) Subset template. (b) Superset template. (c) Mixed template. 

by size, namely 
Tjl > Tj2 > Tj3 > . . . , (11) 

determines the order 
V ’  V ’  , V j 3 ,  ... 11’ 12 

of search. Thus simple algebraic computations enable one to predict the order of search 
in this network. 

To discuss the order of search in response to the input pattern I, we define three 
types of learned templates: subset templates, superset templates, and mixed templates. 
The LTM traces of a subset template V are large only at a subset of the F1 nodes which 
are activated by the input pattern I (Figure Qa). The LTM traces of a superset template 
V are large at all the F1 nodes which are activated by the input pattern I, as well as at 
some F1 nodes which are not activated by I (Figure 9b). The LTM traces of a mixed 
template V are large at some. but not all, the F1 nodes which are activated by the input 
pattern I, as well as at some F1 nodes which are not activated by I (Figure Qc). 

If a search ends when a prescribed template V ( j )  = V is being read-out by the Fz 
node v,, then this template’s LTM traces recode to the new template V ( j )  = V n I. This 
conclusion follows from the conjoint action of the 213 Rule and the Associative Decay 
Rule. Only F1 nodes in the set V n1 can remain supraliminal due to the 2/3 Rule, 
and the LTM traces of pathways between w ,  and inactive F1 nodes converge to zero 
due to the Associative Decay Rule. Thus, after learning occurs, the active template 
V ( j )  = V ,  whether it began as a subset template, a superset template, or a mixed 
template, is recoded into the subset template V ( j )  = V n I  by the input pattern I. This 
subset recoding property is a key requirement for code stability. 

12. Example of Code Instability 

We now illustrate the importance of the subset recoding property by describing how 
its absence can lead to a temporally unstable code. In the simplest type of code insta- 
bility example, the code becomes unstable because neither top-down template nor reset 
mechanisms exist (Grossberg, 1976a). Then, in response to certain input sequences that 
are repeated through time, a given input pattern can be ceaselessly recoded into more 
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than one category. In the example that we will now describe, the top-down template 
signals are active and the reset mechanism is functional. However, the inhibitory top- 
down attentional gain control signals (Figures 6c and 7c) are chosen too small for the 
2/3 Rule to hold at F1. We show also that a larger choice of attentional gain control sig- 
nals restores code stability by reinstating the 2/3 Rule. These simulations also illustrate 
three other points: how a novel exemplar can directly access a previously established 
category; how the category in which a given exemplar is coded can be influenced by 
the categories which form to encode very different exemplars; and how the network 
responds to exemplars as coherent groupings of features, rather than to isolated feature 
matches or mismatches. 

Figure 10a summarizes a computer simulation of unstable code learning. Figure 10b 
summarizes a computer simulation that illustrates how reinstatement of the 2/3 Rule 
can stabilize code learning. The format used in this figure will also be used in displaying 
our other computer simulations. We therefore describe this figure in detail. 

The first column of Figure 10a describes the four input patterns that were used in 
the simulation. These input patterns are labeled A, B, C, and D. Patterns B, C, and D 
are all subsets of A. The relationships among the inputs that make the simulation work 
are aa follows: 

Code Instability Example 

D c C c A ,  

B c  A ,  (15) 

These results thus provide infinitely many examples in which an alphabet of just four 
input patterns cannot be stably coded without the 2/3 Rule. The numbers 1, 2, 3, . . . 
listed in the second column itemize the presentation order. The third column, labeled 
BU for Bottom-Up, describes the input pattern that was presented on each trial. In 
both Figures 10a and lob, the input patterns were periodically presented in the order 
ABCAD. 

Each of the Top-Down Template columns in Figure 10 corresponds to a different 
node in F2, with column 1 corresponding to node u1, column 2 Corresponding to node 
u2, and so on. Each row summarizes the network response to its input pattern. The 
symbol RES, which stands for reeonancc, designates the node in F2 which codes the 
input pattern on that trial. For example, u2 codes pattern C on trial 3, and u1 codes 
pattern B on trial 7. The patterns in a given row describe the templates after learning 
has occurred on that trial. 

In Figure 10a, input pattern A is periodically recoded: On trial 1, it is coded by ul;  
on trial 4, it is coded by uz; on trial 6, it is coded by 4; on trial 9, it is coded by u2. 
This alternation in the nodes u1 and uz which code pattern A repeats indefinitely. 

Violation of the 2/3 Rule occurs on trials 4, 6, 8, 9, and so on. This violation is 
illustrated by comparing the template of up on trials 3 and 4. On trial 3, the template 
of u2 is coded by pattern C, which is a subset of pattern A. On trial 4, pattern A is 
presented and directly activates node Va. Because the 2/3 Rule does not hold, pattern 
A remains supraliminal in F, even after the subset template C is read-out from uz. 
Thus no search is elicited by the mismatch of pattern A and its subset template C. 
Consequently the template of u2 is recoded from pattern C to its superset pattern A. 

In Figure lob, by contrast, the 2 3 Rule does hold due to a larger choice of the 

ings that ultimately stabilizes. In particular, on trial 4, node 02 reads-out the subset 
template C, which mismatches the input pattern A. The numbers beneath the template 

attentional gain control parameter. T l! UB the network experiences a sequence of recod- 



262 Chapter 4 

(4 
UNSTABLE CODING 

(b) 
STABLE CODING 

TOP-DOWN TEMPLATES TOP-DOWN TEMPLATES 
BU 1 2 3 4  

A# 1 # 8 N O D E l  
RES 

BU 1 2 3 4  
# # N O D E l  

RES 

2 ,  m 
RES 

Bm z m m  

* 3 -  m c- 3 - m  

RES 

'y 
RES RES 

D" 4 a # NODE2: 4 # # N O D E 3 :  
RES 2/3 RULE FAILS 2 1 RES SEARCH 

5 ++ m 5 ++ m ++ m ++ 
RES RES 

% m+'# N O D E 3  
RES 

# # " N O D E l  
RES 

7 m m + + m  

a -  m 

++ 
7 ,  m 

RES RES 

++ % 
RES 

w 
RES 

# m gs NODE2 

++ 
RES RES 

a -  m 

NODE 4: # m +' Iye # LAST 
2 3 1 RES RECODING 

++ ye # m 10 ++ m 10 ++ 

l1 # # " N O D E l  11 % m +'=# DIRECT 

12 m m 
ACCESS RES 

++ M # 

13 * 13 * ++ w # 
12 m m 

++ 
RES RES 

RES RES 

14 # mlC+w# 
RES 

l4 % m gs N O D E 2  

15 +* 15 +* m + + - #  
++ 
RES R ES 

m 

Figure 10. Stabilization of categorical learning by the 2/3 Rule: In both (a) and (b), 
four input patterns A, B, C, and D are presented repeatedly in the list order ABCAD. 
In (a), the 2/3 Rule is violated because the top-down inhibitory gain control mechanism 
be weak (Figures 6c and 7c). Pattern A is periodically coded by v1 and "2. It is never 
coded by a single stable category. In (b), the 2/3 Rule is restored by strengthening the 
top-down inhibitory gain control mechanism. After some initial recoding during the 
first two presentations of ABCAD, all patterns directly access distinct stable categories. 
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symbols in row 4 describe the order of search. First, uz’s template C mismatches A. 
Then u1’s template B mismatches A. Finally A activates the uncommitted node v3,  
which resonates with F1 as it learns the template A. 

Scanning the rows of Figure lob, we see that pattern A is coded by u1 on trial 1; by 
u3 on trials 4 and 6; and by u4 on trial 9. On all future trials, input pattern A is coded 
by v4. Moreover, all the input patterns A, B, C, and D have learned a stable code by 
trial 9. Thus the code self-stabilizes by the second run through the input list ABCAD. 
On trials 11 through 15, and on all future trials, each input pattern chooses a different 
node (A .+ u4; B -+ u l ;  C + us; D + v2) .  Each pattern belongs to a separate category 
because the vigilance parameter was chosen to be large in this example. Moreover, 
as explained in Section 7, after code learning stabilizes, each input pattern directly 
activates its node in Fz without undergoing any additional search. Thus after trial 9, 
only the “RES” symbol appears under the top-down templates. The patterns shown in 
any row between 9 and 15 provide a complete description of the learned code. Examples 
of how a novel exemplar can activate a previously learned category are found on trials 
2 and 5 in Figures 10a and lob. On trial 2, for example, pattern B is presented for the 
first time and directly accesses the category coded by u l ,  which was previously learned 
by pattern A on trial 1. In terminology from artificial intelligence, B activates the same 
categorical “pointer,” or “marker,” or “index” as in A. In so doing, B does not change 
the categorical “index,” but it may change the categorical template, which determines 
which input patterns will also be coded by this index on future trials. The category 
does not change, but its invariants may change. 

An example of how presentation of very different input patterns can influence the 
category of a fixed input pattern is found through consideration of trials 1, 4, and 9 in 
Figure lob. These are the trials on which pattern A is recoded due to the intervening 
occurrence of other input patterns. On trial 1, pattern A is coded by u l .  On trial 4, A 
is recoded by v3 because pattern B has also been coded by u1 and pattern C has been 
coded by u2 in the interim. On trial 9, pattern A is recoded by u4 both because pattern 
C has been recoded by u3 and pattern D has been coded by v2 in the interim. 

In all of these transitions, the global structure of the input pattern determines which 
F2 nodes will be activated, and global measures of pattern match at F1 determine 
whether these nodes will be reset or allowed to resonate in STM. 

13. Search of Subsets, Supersets,  a n d  Mixed Sets 

Before the code in Figure 10b finally stabilizes, it searches the network in the order 
characterized by (13). We now describe implications of this search order in a case of 
special interest, which includes the example described in Figure lob. This is the case 
wherein parameter p in (10) is “small.” By small, we mean that parameter p satisfies 
the inequality 

where 1 I Jmax is the largest number of F1 nodes that are activated by any input pattern 
I. The following assertions are proved in Carpenter and Grossberg (1985b). 

A. Subset Templates 
Suppose that there exist learned templates which are subsets of the input pattern I 

(Figure 9a). Then, if inequality (18) holds, the first node in F2 to be chosen corresponds 
to the largest subset template V. Whether or not template V can match the input I well 
enough to prevent STM reset of Fz depends upon the choice of the vigilance parameter, 
as well as upon how much smaller V is than I. If V = I, then reset never occurs. In 
this case, the Direct Access Rule (Section 9) implies that the node corresponding to V 
is chosen first. This node’s template V covers I at F1. Consequently, no reduction in 
F1 activity is caused by the 2/3 Rule, and STM reset does not occur. 



264 Chapter 4 

If the first chosen node does not cover I, then reset may occur. If reset does occur, 
then the network continues to search Fz nodes which possess subset templates. Search 
order proceeds from larger to smaller subset templates. This search order follows from 
(lo), (ll), and (13), because, whenever V(j) c I, then V(i)nZ = V(j), so that the order 
function T ,  satisfies 

Thus the order in which subset templates are searched is determined by the relative 
sizes of 1 V(j) I across all subset templates. Figure 10b illustrates these subset search 
properties. On trial 9, for example, in response to the input pattern A, the nodes 
corresponding to the subset templates C, B, and D are searched in order of decreasing 
template size, as in (17). 

B. Superset Templates and No Mixed Templates 
Suppose that the network has searched all learned subset templates corresponding 

to the input pattern I. We now consider the subsequent search order by breaking up 
the possibilities into several cases. In this section, we suppose that no mixed templates 
have been learned, but that at least one superset template has been learned. 

Our main conclusion is that, if all subset templates have already been reset, then 
the system will code input I using the Fz node u j  with the smallest superset template 
V(j) = V. Due to this coding event, V(i) will be recoded to 

The network chooses the smallest superset template first because 

whenever V 1 I .  Thus the smallest of the superset templates generates the largest 
bottom-up input T,. The network does not reset this choice because the superset 
template V completely covers the input pattern I at F1. By the 2/3 Rule, the F1 
activity pattern caused by I alone persists after the superset template takes effect. No 
reduction of F1 activity is caused by the superset template. Hence its Fz code is not 
reset by the orienting subsystem. Thus the same property which guarantees stable 
choices in STM (Section 10) also implies that search ends if it can reach the smallest 
superset template. 

It remains to explain why subsets are searched before supersets, and why supersets 
are searched before uncommitted nodes. 

Given a subset template V(') and a superset template V(j) of the input pattern I, 

and 

It follows from (18), (22), (23), and (24) that 

Ti > Ti1 (25) 
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and hence that subset templates are searched before superset templates. This property 
depends critically on the small choice of P in (18). 

Nodes with superset templates are searched before uncommitted nodes due to the 
same property t,hat guarantees direct access to perfectly coded nodes. In Section 9 we 
noted that initial bottom-up LTM values must be chosen small enough to permit direct 
access to nodes which perfectly code any input pattern. In particular, 

where zo is the maximal size of any initial bottom-up LTM trace, and a@+ I V(j) is 
the learned LTM value corresponding to the superset template V(j). The total bottom- 
up input to an uncommitted node in response to input I is thus at most zo I I 1, which 
is less than the total bottom-up input a I I I (a+ I V(J) I)-' to a superset node v,. 

C. Superset Templates and Mixed Templates 
Suppose that the network has already searched its subset templates. Suppose also 

that both superset templates and mixed templates have previously been learned. Section 
13B showed that, if a node with a superset template is activated, then the input pattern 
will be coded by that node. In particular, the node's template will be recoded to match 
the input pattern perfectly. We now characterize the circumstances under which the 
network will search mixed templates before it searches superset templates. 

Consider nodes u, which code mixed templates V(') with respect to the input pattern 
I. Also let V(J) be the smallest superset template corresponding to I. Then 

and 

A mixed template V(') will be searched before the superset template V(J) if and only if 

T, > TJ 

When parameter B satisfies (18), inequality (29) holds if and only if 

(v( i )nI l  1 1 1  >- I V(') I I v(J) I .  
This fact is proved in Carpenter and Grossberg (1985b). 

Since a search always ends when a superset node is chosen, only nodes v,  whose 
mixed templates satisfy (30) can possibly be searched. These nodes are searched in 
order of decreasing I V(') n I  1 )  V(i) 1-l. If two nodes have the same ratio, then the one 
with the larger mixed template is searched first. If the search reaches the node V J  with 
the smallest superset template, then it terminates at v J .  

D. Mixed Templates But No Superset Templates 
Suppose that the network has already searched its subset templates. Suppose that 

mixed templates, but no superset templates, have previously been learned. In this 
situation, the search can end by choosing either a node vt with a mixed template V(') 
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or a node which has not previously been chosen. For example, a node u, with mixed 
template will be chosen before a new node if 

where zo is the maximal initial size of the bottom-up LTM traces. Recall that 

for all templates V(')  in order to enable perfectly coded nodes to be directly accessed. 
Inequality (31) can thus hold when I V(')  n1 I is not too much smaller than 1 I I. 

E. Neither Mixed Templates Nor Superset Templates 
In this case, after all subset nodes are searched, the previously uncommitted nodes 

are searched. Their initial bottom-up input sizes to Fz depend upon the choice of initial 
LTM traces. Thus the order of search among the uncommitted nodes is determined by a 
random factor. The first uncommitted node that is activated ends the search and codes 
the input pattern I. This is true because all initial top-down LTM traces are chosen 
large enough to satisfy the 2/3 Rule (Section 9). 

In case there are no uncommitted nodes to be searched after all committed nodes 
are rejected, then the input pattern cannot be coded by the network. This property is 
a consequence of the network's ability to buffer, or protect, its codes against persistent 
recoding by unappropriate events. 

Figures 11 and 12 depict two coding sequences that illustrate the main points in 
the preceding discussion. In Figure 11, each of nine input patterns was presented once. 
We consider the order of search that occurred in response to the final input pattern I 
that was presented on trial 9. By trial 8, nodes w1 and v2 had already encoded subset 
templates of this input pattern. On trial 9, these nodes were therefore searched in order 
of decreasing template size. Nodes 2'3, u4,  u5, and u6 had encoded mixed templates 
of the input pattern. These nodes were searched in the order q + us + v4. This 
search order was not determined by template size per se, but was rather governed by 
the ratio I V(' )  n I  1 1  V( ' )  1-l in (30). These ratios for nodes v3,  u5, and u4 were 9/10, 
14/16, and 7/8, respectively. Since 14/16 = 7/8, node 215 was searched before node up 
because I V ( 5 )  I= 16 > 8 =I V ( 4 )  1. The mixed template node 7 4  was not searched. After 
searching v5, the network activated the node u7 which possessed the smallest superset 
template. A comparison of rows 8 and 9 in column 7 shows how the superset template 
of v7 was recoded to match the input pattern. Node v7 was searched before node v6 

because the ratio I I I (  V(') 1-l = 17/21 was larger than I V @ )  n Z 1 1  V@) 1 -  = 14/18. 
The eight input patterns of Figure 12 were chosen to illustrate a search followed by 

coding of an uncommitted node. The last input pattern I in Figure 12 was the same 
as the last input pattern in Figure 11. In Figure 12, however, there were no superset 
templates corresponding to input pattern I. Consequently I was coded by a previously 
uncommitted node ua on trial 8. In particular, on trial 8, the network first searched the 
nodes with subset templates in the order 02 4 q. Then the mixed template nodes were 
searched in the order v4 -+ Vvg + w5 -+ u7. The mixed template node v3 was not searched 
because its template badly mismatched the input pattern I. Instead, the uncommitted 
node vg was activated and learned a template that matched the input pattern. 

If parameter p is not small enough to satisfy inequality (18), then mixed templates 
or superset templates may be searched before subset templates. The order of search 
when p violates (18) is characterized in Carpenter and Grossberg (1985b). In all cases, 
direct access of a perfectly coded pattern is achieved. 

1 
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Figure 11. Computer simulation to illustrate order of search: On trial 9, the input 
pattern first searches subset templates, next searched some, but not all, mixed tem- 
plates, and finally recodes the smallest superset template. A smaller choice of vigilance 
parameter could have terminated the search at  a subset template or mixed set template 
node. 

14. The Nature of Categorical  Invariance During Learning 

The preceding discussion casts new light on the issue of how invariant properties of 
a category can persist even while new learning takes place. Two main cases need to  be 
differentiated. In the first case, a novel input pattern is coded by a node whose bottom- 
up filter and top-down template have previously undergone learning. In the second case, 
a novel input pattern is coded by a previously unchosen node. Our remarks herein will 
focus on the first case. 

In this case, presentation of the novel input pattern does not immediately change 
the number of categories that are coded by the network, nor the set of nodes which 
code these categories in STM at  Fz. Output signals from FZ generate the network’s 
observable responses. Hence, in this case, the novel pattern is assimilated into the 
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Figure 12. Computer simulation to illustrate order of search: On trial 8 ,  the input pat- 
tern first searches subset templates and then searches some, but no all, mixed templates 
before choosing an uncommitted node, whose template learns the input pattern. 

previously established set of categorical alternatives and observable responses. At least 
two different types of learning can accompany such an assimilation process: learning 
that is external to the categorical recognition process and learning that is internal to 
this process. 

As an example of external learning, suppose that the novel input is associated with a 
different reinforcement schedule than previous inputs in the same category. New learn- 
ing between the category in Fz and reinforcement mechanisms may alter the network's 
response to all the inputs in the category. Thus the very fact of membership in the same 
category may force forgetting of old external contingencies as new category exemplars 
are associated with new external contingencies. 

As an example of internal learning, we consider the following facts. Even if a novel 
input pattern is coded by an "old" Fz node, this input pattern may alter the bottom-up 
filter and topdown template corresponding to that node. In so doing, the novel input 
pattern may alter the categorical boundaries of the network as a whole. Input patterns 
which were coded by prescribed nodes on previous trials may no longer be coded by the 
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same nodes when they are presented later on. Thus, even if the number of categories 
and their pathways to overt responses do not change, the categorical invariants may 
change. 

The 2/3 Rule implies, however, that the filters and templates of a category are 
subsets of all the input patterns that are coded by that category. Adding a new input 
pattern to a category through learning can only refine further the filters and templates 
of the category. Thus, after a template becomes a subset of an input pattern by coding 
that pattern, the template remains a subset of the input pattern for all future time, 
no matter how many times the template is refined as other input patterns join the 
same category. As a template becomes progressively finer, the mismatch between the 
template and the largest input patterns coded by its category becomes progressively 
greater. If this mismatch becomes too great, then some of these large input patterns 
may eventually be recoded. For example, in Figure lob, pattern B is coded by node 
trl on trial 2, and no new categories are established. Later, however, when pattern A 
is next presented on trial 4, it can no longer adequately match the template from node 
q ,  as it did after trial 1. Hence pattern A establishes a new category. 

Two main conclusions follow from these considerations. First, the code learning 
process is one of progressive refinement of distinctions. The distinctions that emerge are 
the resultant of all the input patterns which the network ever experiences, rather than 
of some preassigned features. Second, the matching process compares whole patterns, 
not just separate features. For example, two different templates may overlap an input 
pattern to F1 at the same set of feature detectors, yet the network could reset the Fz node 
of one template yet not reset the Fz node of the other template. The degree of mismatch 
of template and input as a whole determines whether recoding will occur. Thus the 
learning of categorical invariants resolves two opposing tendencies. As categories grow 
larger, and hence code increasingly global invariants, the templates which define them 
become smaller, and hence base the code on sets of critical feature groupings. This 
article shows how these two opposing tendencies can be resolved, leading to dynamic 
equilibration, or self-stabilization, of recognition categories in response to a prescribed 
input environment. 

The next section describes how a sufficiently large mismatch between an input pat- 
tern and a template can lead to STM reset, while a sufficiently good match can terminate 
the search and enable learning to occur. 

15. Vigilance, Orienting, and  Reset 

We now show how matching within the attentional subsystem at F1 determines 
whether or not the orienting subsystem will be activated, thereby leading to reset of the 
attentional subsystem at Fz. The discussion can be broken into three parts: 

A. Distinguishing Active Mismatch from Passive Inactivity 
A severe mismatch at F1 activates the orienting subsystem A. In the worst possible 

case of mismatch, none of the F1 nodes can satisfy the 2 3 Rule, and thus no supraliminal 

totally inactive, the orienting subsystem must surely be engaged. 
On the other hand, F1 may be inactive simply because no inputs whatsoever are 

being processed. In this case, activation of the orienting subsystem is not desired. How 
does the network compute the difference between active mismatch and passive inactivity 
at F1? 

This question led Grossberg (1980) to assume that the bottom-up input source 
activates two parallel channels (Figure 5a). The attentional subsystem receives a specific 
input pattern at F1. The orienting subsystem receives convergent inputs at A from all 
the active input pathways. Thus the orienting subsystem can be activated only when 
F1 is actively processing bottom-up inputs. 

activation of F1 can pccur. Thus in the worst case o c mismatch, wherein F1 becomes 



270 Chapter 4 

B. Competition between the Attentional and Orienting Subsystems 
How, then, is a bottom-up input prevented from resetting its own Fz code? What 

mechanism prevents the activation of A by the bottom-up input from always resetting 
the STM representation at Fz? Clearly inhibitory pathways must exist from F1 to A 
(Figure 5a). When F1 is sufficiently active, it prevents the bottom-up input to A from 
generating a reset signal to Fa. When activity at F1 is attenuated due to mismatch, 
the orienting subsystem A is able to reset Fz (Figure 5b,c,d). In this way, the orienting 
subsystem can distinguish between active mismatch and passive inactivity at F1. 

Within this general framework, we now show how a finer analysis of network dynam- 
ics, with particular emphasis on the 2 /3  Rule, leads to a vigilance mechanism capable 
of regulating how coarse the learned categories will be. 

C. Collapse of Bottom-Up Activation due to Template Mismatch 
Suppose that a bottom-up input pattern has activated F1 and blocked activation 

of A (Figure 5a). Suppose, moreover, that F1 activates an Fz node which reads-out a 
template that badly mismatches the bottom-up input at F1 (Figure 5b). Due to the 
2/3 Rule, many of the F1 nodes which were activated by the bottom-up input alone are 
suppressed by the top-down template. Suppose that this mismatch event causes a large 
collapse in the total activity across F1, and thus a large reduction in the total inhibition 
which F1 delivers to A. If this reduction is sufficiently large, then the excitatory bottom- 
up input to A may succeed in generating a nonspecific reset signal from A to Fz (Figure 

In order to characterize when a reset signal will occur, we make the following natural 
assumptions. Suppose that an input pattern I sends positive signals to I I 1 nodes of 
F1. Since every active input pathway projects to A, I generates a total input to A that 
is proportional to 1 I I. We suppose that A reacts linearly to the total input 7 I I I. We 
also assume that each active F1 node generates an inhibitory signal of fixed size to A. 
Since every active F1 node projects to A, the total inhibitory input 6 I X I from F1 to 
A is proportional to the number 1 X 1 of active F1 nodes. When -y I I I> 6 I X 1, A 
receives a net excitatory signal and generates a nonspecific reset signal to F2 (Figure 

In response to a bottom-up input pattern I of size I I ! ,  as in Figure 5a, the total 
inhibitory input from F1 to A equals 6 I 11, so the net input to A equals (7 - 6) 1 I I. 
In order to prevent A from firing in this case (Figure 5a), we assume that 6 2 7 .  We 
call 

5c). 

5c). 

(32) 
7 

P = x  

the vigilance parameter of the orienting subsystem. The constraints 6 2 7 2 0 are 
equivalent to 0 5 p 5 1. The size of p determines the proportion of the input pattern 
which must be matched in order to prevent reset. 

When both a bottom-up input I and a top-down template V(i) are simultaneously 
active (Figure 5b), the 2 /3  Rule implies that the total inhibitory signal from Fl to A 
equals 6 I V(3) n I I. In this case, the orienting subsystem is activated only if 

7 1 I I> 6 1 ~ ( j )  n I 1; (33) 

that is, if 

The function which determines whether or not F2 will be reset in response to an input 
pattern I is called the Reset Function. Inequality (34) shows that the Reset Function 
should be defined as follows. 



Neural Dynamics of Category Learning and Recognition 

Reset Function 

The Reset Function R ,  and the Order Function 

27 1 

determine how the search will proceed. 
This Iine of argument can be intuitively recapitulated as follows. Due to the 2/3 

Rule, a bad mismatch at F1 causes a large collapse of total F1 activity, which leads to 
activation of A. In order for this to happen, the system must maintain a measure of the 
prior level of total F1 activity and compare this criterion level with the collapsed level 
of total F1 activity. The criterion level is computed by summing bottom-up inputs at 
A. This sum can provide a criterion because it is proportional to the initial activation 
of F1 by the bottom-up input, and yet it remains unchanged as the matching process 
unfolds in real-time. 

Figure 13 summarizes the total network architecture. It includes the modulatory 
processes, such as attentional gain control, which regulate matching within F1, as well 
as the modulatory processes, such as orienting arousal, which regulate reset within 
Fz. Figure 13 also includes an attentional gain control process at Fz. Such a process 
enables offset of the input pattern to terminate all STM activity within the attentional 
subsystem in preparation for the next input pattern. In this example, STM storage can 
persist after the input pattern terminates only if an internally generated or intermodality 
input source maintains the activity of the attentional gain control system. 

16. Distinguishing Signal from Noise in Pa t te rns  of Variable Complexity: 
Weighing the Evidence 

A variety of important properties follow from the conception outlined in Section 15 
of how the orienting system is engaged by mismatch within the attentional subsystem. 
These properties all address the fundamental issue of how a system can distinguish 
between signal and noise as it processes inputs of variable complexity. 

We now indicate how the network automatically rescales its noise criterion as the 
complexity of the input pattern varies. In particular, even with fixed parameters, the 
network can tolerate larger mismatches in response to larger input patterns. Suppose, 
for example, that the network processes two input patterns at different times. One input 
pattern I(') activates just a few F1 feature detectors, whereas the other input pattern 
I(z) activates many F1 feature detectors; that is, 

Suppose, moreover, that I(') activates the Fz node vl, I(') activates the Fz node v 2 ,  and 
that 

lv(1) n I( ' )  ~ ( 2 )  n ~ ( 2 )  1 . (37) 

In other words, both input patterns overlap their templates by the same amount. Due 
to (36), however, 
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Figure 13. Anatomy of the attentional-orienting system: This figure describes all the 
interactions of the model without regard to which components are active at any given 
time. 

By inequalities (34) and (38), the network is more likely to reset u2 in response to I@) 
than it is to reset u1 in response to I(1). Thus a fixed amount of match with a large input 
pattern provides less evidence for coding than the same amount of match with a small 
input pattern. If (37) holds, then the larger pattern I(2) disagrees with the template 
at more features than does the smaller pattern I('). Hence, by (38), u2 may be reset 
whereas 211 may not be reset; this will, in fact, be the case when p lies between R1 and 
Rz. 
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The rescaling property shows that the network processes input patterns as a whole. 
The functional units of the network are activation patterns across a field of feature 
detectors, rather than individual activations of feature detectors. 

If the network does not reset v1 in response to I('), then the template of v1 is refined 
to equal the intersection V ( ' )  n I ( ' ) .  In other words, given that the network accepts 
the evidence that I(') should be coded by wl, it then suppresses as noise the features at 
which I(') disagrees with V('), both in STM and in LTM. 

Using this property, the network can also distinguish finer differences between small 
input patterns than between large input patterns. Suppose that the amount of mismatch 
between a small input pattern I(') and its template V(') equals the amount of mismatch 
between a large input pattern I(') and its template V('); that is, 

Thus v1 is more likely to be reset by I(') than is v2 to be reset by I('). This shows 
that a fixed amount of mismatch offers more evidence for reset when the input pattern 
is simple than when it is complex. Otherwise expressed, since the network is reset 
by smaller mismatches when processing smaller input patterns, it automatically makes 
finer distinctions between smaller input patterns than between larger input patterns. 

The simulation in Figure 14 illustrates how the network automatically rescales its 
matching criterion. On the first four presentations, the patterns are presented in the 
order ABAB. By trial 2, coding is complete. Pattern A directly accesses node w1 on 
trial 3, and pattern B directly accesses node w z  on trial 4. Thus patterns A and B are 
coded within different categories. On trials 5-8, patterns C and D are presented in the 
order CDCD. Patterns C and D are constructed from patterns A and B, respectively, by 
adding identical upper halfs to A and B. Thus, pattern C differs from pattern D at the 
same locations where pattern A differs from pattern B. However, because patterns C and 
D represent many more active features than patterns A and B, the difference between 
C and D is treated as noise, whereas the difference between A and B is considered 
significant. In particular, both patterns C and D are coded within the same category 
on trials 7 and 8. 

The network's different categorization of patterns A and B vs. patterns C and D 
can be understood as follows. The core issue is: why on trial 2 does B reject the node 
u1 which has coded A, whereas D on trial 6 accepts the node u3 which has coded C? 
This occurs despite the fact that the mismatch between B and V(') equals the mismatch 
between D and V(3): 

as in equation (39). The reason can be seen by comparing the relevant reset functions: 

and 
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Figure 14. Distinguishing noise from patterns of inputs of variable complexity: Input 
patterns A and B are coded by the distinct category nodes v1 and u2, respectively. Input 
patterns C and D include A and B as subsets, but also possess idential subpatterns of 
additional features. Due to this additional pattern complexity, C and D are coded by 
the same category node v3. At this vigilance level ( p  = .8), the network treats the 
difference between C and D as noise, and suppresses the discordant elements in the u3 
template. By contrast, it treats the difference between A and B as informative, and 
codes the difference in the q and u2 templates, respectively. 

In this simulation, the vigilance parameter p = .8. Thus 

RIB P R3D. (44) 

By (34), pattern B resets w1 but D does not reset v3. Consequently, B is coded by a 
different category than A, whereas D is coded by the same category &s C. 

17. Vigilance Level Tunes Categorical Coarseness: Environmental Feed- 
back 

The previous section showed how, given each fixed vigilance level, the network 
automatically rescales its sensitivity to patterns of variable complexity. The present 
section shows that changes in the vigilance level can regulate the coarseness of the 
categories that are learned in response to a fixed sequence of input patterns. 
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A low vigilance level leads to learning of coarse categories, whereas a high vigilance 
level leads to learning of fine categories. Suppose, for example, that a low vigilance level 
has led to a learned grouping of inputs which need to be distinguished for successful 
adaptation to a prescribed input environment. Suppose, moreover, that a punishing 
event occurs as a consequence of this erroneous grouping. Such a punishing event may 
have multiple effects on the organism. In addition to its negative reinforcing effects, we 
suppose that it also has a direct cognitive effect; namely, it increases attentive sensitivity 
to the environment. Such an increase in sensitivity is modeled within the network by 
an increase in the vigilance parameter, p. Increasing this single parameter enables the 
network to discriminate patterns which previously were lumped together. Once these 
patterns are coded by different categories in Fz, the different categories can be associated 
with different behavioral responses. 

In this way, environmental feedback such as a punishing event can act as a “teacher” 
for a self-organizing recognition system. This teaching function does not take the form 
of an algorithm or any other type of pattern-specific information. Rather, it sets a single 
nonspecific parameter whose interaction with the internal organization of the network 
enables the network to parse more finely whatever input patterns happen to occur. 
The vigilance parameter will be increased, for example, if all the signals from the input 
pattern to A are nonspecifically amplified, so that parameter 7 increases. A nonspe- 
cific decrease in the size of signals 6 from F1 to A will also increase p. Alternatively, 
reinforcement-activated nonspecific excitatory input to A can also facilitate mismatch- 
mediated activation of A. The process whereby the level of vigilance is monitored is 
one of the three types of nonspecific arousal that exist within the network. 

Figure 15 describes a series of simulations in which four input patterns-A, B, C, 
D-are coded by a network with 4 nodes in Fz. In this simulation, A c B c C c D. 
The different parts of the figure show how categorical learning changes with changes of 
p. The simulation shows that any consecutive pair of patterns-(A, B), (B, C), (C, D)- 
can be coded in the same category at different vigilance levels. When p = .8 (Figure 
15a), 4 categories are learned: (A)(B)(C)(D). When p = .7 (Figure 15b), 3 categories 
are learned: (A) B)(C,D). When p = .6 (Figure 15c), 3 different categories are learned: 
(A)(B,C)(D). W I en p = .5 (Figure 15d), 2 categories are learned: (A,B)(C,D). When 
p = .3 (Figure 15e), 2 different categories are learned: (A,B,C,)(D). When p = .2 
(Figure 15f), all the patterns are lumped together into a single category. 

18. Universal Recognition Design Across Modalities 

The properties that we have demonstrated using illustrative simulations generalize 
to the coding of arbitrary sequences of input patterns. The ability to group arbitrary 
inputs is needed, we suggest, because the same mechanisms of grouping are used across 
modalities. Each modality, such as speech and vision, undergoes multiple stages of 
preprocessing through which different invariant properties of its environmental inputs, 
are abstracted. These abstract representations then feed, as input patterns, into an 
attentional-orienting system. We suggest that the attentional-orienting system obeys 
the same processing rules across modalities. In this sense, the attentional-orienting 
system realizes a universal processing design. 

In order to illustrate how such a network codifies a more complex series of patterns, 
we show in Figure 16 the first 20 trials of a simulation using alphabet letters as input 
patterns. In Figure 16b, p = .8. 
Three properties are notable in these simulations. First, choosing a different vigilance 
parameter can determine different coding histories, such that higher vigilance induces 
coding into finer categories. Second, the network modifies its search order on each trial 
to reflect the cumulative effects of prior learning, and bypasses the orienting system to 
directly access categories after learning has taken place. Third, the templates of coarser 
categories tend to be more abstract because they must approximately match a larger 
number of input pattern exemplars. 

In Figure 16a, the vigilance parameter p = .5. 
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Figure 15. Influence of vigilance level on categorical groupings: As the vigilance 
parameter p decreases, the number of categories progressively decreases. 
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Figure 16. Alphabet learning: Different vigilance levels cause different numbers of 
letter categories to form. 
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Given p = .5, the network groups the 26 letter patterns into 8 stable categories 
within 3 presentations. In this simulation, Fz contains 15 nodes. Thus 7 nodes remain 
uncoded because the network self-stabilizes its learning after satisfying criteria of vig- 
ilance and global code self-consistency. Given p = .8 and 15 Fz nodes, the network 
groups 25 of the 26 letters into 15 stable categories within 3 presentations. The 26th 
letter is rejected by the network in order to self-stabilize its learning while satisfying its 
criteria of vigilance and global code self-consistency. These simulations show that the 
network’s use of processing resources depends upon an evolving dynamical organization 
with globally context-sensitive properties. This class of networks is capable of orga- 
nizing arbitrary sequences of arbitrarily complex input patterns into stable categories 
subject to the constraints of vigilance, global code self-consistency, and number of nodes 
in F, and Fz. If slow learning rather than fast learning rates are used (Section 9), then 
the categorical code may be learned more slowly but it still enjoys the critical properties 
just listed. 

19. Interdisciplinary Relationships: Word Recognition, Evoked Poten- 
tials, a n d  Medial Temporal Amnesia 

In this article, we have described the formal properties of a neural network which is 
capable of self-stabilizing its learning of recognition categories. The theory which this 
network develops arose from an analysis of several types of data, and is currently being 
refined through its use in explaining other types of data. 

For example, the adaptive resonance theory acticipated the discovery of the pro- 
cessing negativity evoked potential and has successfully predicted several important 
properties of the processing negativity, mismatch negativity, and P300 evoked poten- 
tials. A review of these applications is found in Grossberg (1984a . This article is 
contained in a book (Karrer, Cohen, and Tueting, 1984) which inc 1‘ udes detailed de- 
scriptions of relevant evoked potential data. The attentional-orienting network enhibits 
properties that are homologous to those of evoked potentials. In particular, the process 
whereby a top-down attentional prime is matched against a bottom-up input pattern at 
F1 may be compared with data about the proceaaing negativity evoked potential. The 
process whereby the orienting subsystem is activated at A when a mismatch occurs may 
be compared with data about the mismatch negativity evoked potential. The process 
whereby STM is reset at F2 in response to an unexpected event may be compared with 
data about the P900 evoked potential. 

The bottom-up and top-down interactions within the attentional subsystem have 
also been used to explain and predict data about word recognition and recall in normal 
subjects (Grossberg, 1984b, 1985a; Grossberg and Stone, 1985). In these data analyses, 
concepts such as attentional gain control and attentional primimg, which we have here 
related to code stabilization via the 2/3 Rule (Section 12), have enabled us to clarify and 
modify empirical models of “automatic activation” and “conscious attention” (Neely, 
1977; Posner and Snyder, 1975a, 1975b). 

Certain abnormal learning and recognition phenomena are strikingly similar to prop- 
erties of a damaged attentional-orienting system. In considering this comparison, it is 
necessary to keep in mind that the attentional-orienting system is only one component 
in a larger neural theory of learning and memory. In particular, we do not herein ex- 
tend this comparison to consider theoretical circuits for learned cognitive-motivational 
interactions, for serially ordered language utterances, or for sensory-motor coordination. 
Despite these limitations, it is of interest that injury to the orienting subsystem gener- 
ates a type of amnesia that is reminiscent of amnesia in human patients, such as H.M., 
who have suffered injury to their medial temporal brain structures (Lynch, McGaugh, 
and Weinberger; 1984; Squire and Butters, 1984). In making this comparison, we will 
focus on issues relating to retrograde and anterograde amnesia, memory consolidation, 
impaired reactions to novel events, and differences between priming and recognition 
capabilities. 
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Suppose that the orienting subsyst,em ceases to function. Then the network can- 
not generate a search for new recognition categories. Consequently it cannot build up 
new recognition codes that would require a depthful search. On the other hand, well- 
established recognition categories can be directly accessed. Since they do not require 
intervention of the orienting subsystem, recognition codes which were established before 
the orienting subsystem failed are still accessible. Codes which were partially learned 
when the orienting subsystem failed may suffer variable degrees of impairment. Thus, 
failure of the orienting subsystem generates an amnesic syndrome with temporally lim- 
ited retrograde amnesia and a temporally prolonged anterograde amnesia. 

This amnesic syndrome is, in some respects, consistent with the following statement 
of Squire and Cohen (1984). “The medial temporal region establishes a relationship with 
distributed memory storage sites in neocortex and perhaps elsewhere; it then maintains 
the coherence of these ensembles until, as a result of consolidation, they can be main- 
tained and can support retrieval on their own . . . the amnesic deficit is due to impaired 
consolidation” (p.45). In a normal attentional-orienting system, memory consolidation 
occurs as the system progresses from searching the attentional subsystem via the ori- 
enting subsystem to directly accessing its learned codes without engaging the orienting 
subsystem. During this consolidation process, the orienting subsystem is disengaged 
as unfamiliar environmental events gain familiarity by building learned recognition cat- 
egories. The amnesic syndrome of the attentional-orienting subsystem is thus due to 
“impaired consolidation,” in agreement with Squire and Cohen (1984). However, the 
orienting subsystem does not “maintain the coherence of these ensembles.” Rather, 
when these ensembles become coherent and globally self-consistent, they disengage the 
orienting subsystem. 

The role played by the orienting subsystem in driving a search for a globally self- 
consistent code coexists with its equally important role in enabling the network to react 
to the mismatches generated by unexpected and/or unfamiliar events. This latter role is 
the basis for calling this system the orienting subsystem (Grossberg, 1982, 1984a). The 
theory thus shows how memory consolidation and novelty detection can be mediated 
by the same structure, which is suggested to be a medial temporal brain structure such 
as hippocampus. This interpretation is consistent with data concerning the inability 
of hippocampectomized rats to orient to novel cues (O’Keefe and Nadel, 1978) and 
with the rogressive reduction in novelty-related hippocampal potentials as learning 
proceeds [Deadwyler, West, and Lynch, 1979; Deadwyler, West, and Robinson, 1981). 
In summary, ablation of the orienting subsystem, and by interpretation medial temporal 
brain regions such as hippocampus, can interfere both with reactions to novel cues and 
with memory consolidation. 

The attentional-orienting subsystem clarifies how normal priming and abnormal 
recognition can coexist in amnesia. In brief, the attentional priming mechanism may be 
intact even if the orienting subsystem is not working. An attentional prime can improve 
recognition by facilitating direct access to the correct learned category. These properties 
are consistent with data showing effective priming in amnesic patients (Cohen, 1984; 
Graf, Squire, and Mandler, 1984; Mattis and Kovner, 1984; Warrington and Weiskrantz, 
1970, 1974). 

The dynamics of the attentional-orienting system also shed new light on concepts 
about the properties of multiple memory systems (Lynch, McGaugh, and Weinberger, 
1984; Squire and Butters, 1984). These memory systems have been given different 
names by different authors. Ryle (1949) distinguished “knowing that” from “knowing 
how”; Bruner (1909) discussed “memory with record” and “memory without record” ; 
Mishkin (1982) analysed “memories” and “habits”; Squire and Cohen (1984) contrasted 
“declarative memory” and “procedural memory.” The attentional-orienting system may 
be classified, at least qualitatively, as a “declarative memory” system because it governs 
“the storage of or access to memory ordinarily acquired during the learning experience” 
(Squire and Cohen, 1984, p.39). Recent theoretical progress has enabled such a learned 
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recognition system to be clearly distinguished, on the level of neural mechanism, from 
the learning systems which govern the acquisition of sensory-motor coordinations and 
plans (Grossberg, 1985a, 1985b; Grossberg and Kuperstein, 1985). These sensory-motor 
learning circuits provide examples of “procedural memory” systems. 

When analysed on the level of mechanism, however, different types of memory sys- 
tems cannot be neatly separated. For example, Squire and Cohen (1984) assume that 
attentional priming mechanisms form part of a procedural memory system becauae they 
are effective in amnesics whose recognition memory is impaired. In an attentional- 
orienting system, priming mechanisms form part of the attentional subsystem. The 
attentional subsystem, however, governs “the storage of or access to memory ordinarily 
acquired during the learning experience” (Squire and Cohen, 1984, p.39 . Hence, by this 

system, not a procedural memory system. This difficulty reflects the general propo- 
sition that “procedures” cannot be separated from the contents, or “facts,” that they 
manipulate, either in recognition systems or sensory-motor systems. This proposition 
in necessitated by the fact that the contents are learned, and thus the procedures must 
be defined interactively with respect to the evolving contents in order to be effective. 
In a sensory-motor system, the contents may not be “facts” that represent recognition 
events. They may represent different types of information, such as terminal motor maps, 
or short term memory patterns of temporal order information over item representations 
(Cohen and Grossberg, 1985; Grossberg and Kuperstein, 1985). These contents define 
the “procedures” which govern how the sensory-motor systems will operate. 

Another example of this interdependence can be seen in the attentional-orienting 
system. This system, on the level of mechanism, exhibits both “procedural” and ”declar- 
ative” elements. Moreover, it is a defect of its procedures that leads to amnesia for its 
facts. The ”procedures” of the attentional-orienting system are the search routines 
that are mediated by the orienting subsystem. The orienting subsystem cannot search 
except through its interactions with the attentional subsystem, in keeping with the 
goal of the search to preserve old “facts” while learning new “facts” within the atten: 
tional subsystem. Thus there can be no search programs-no independently definable 
procedures-within the orienting subsystem because the global organization of the codes 
being searched changes during learning. 

In summary, the processing terms which have been chosen to emphasize the separate- 
ness of multiple memory systems-such as procedures and facts-become less clear-cut 
on the mechanistic level. Both types of process seem to exist in each memory system. 
This observation does not deny the basic fact that different memory systems react to 
environmental inputs in different ways, so that a patient may be able to learn a sensory- 
motor skill without being able to recognize a person’s face. However, it does clarify how 
an amnesic can use familiar visual recognition codes as the inputs which trigger new 
learning within a sensory-motor system, without also generating new visual recogni- 
tion codes within the very object recognition system which processes the visual signals. 
In other words, these results suggest how H.M. may use familiar Yacts” to generate 
novel “procedures” without also learning to recognize the unfamiliar “facts” that are 
perceptually grouped in new ways during the “procedures.” 

We conclude with a prediction. If the data about evoked potentials and medial 
temporal amnesics both reflect a common level of neural processing, then the mismatch 
negativity and P300 evoked potential of medial temporal amnesic patients should be 
much more impaired than their processing negativity evoked potentials during atten- 
tional priming experiments, with the processing negativity tested in a match situation 
and the mismatch negativity and P300 tested in a mismatch situation. 

criterion, attentional priming mechanisms should be included in a dec 1 arative memory 
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APPENDIX 
NETWORK EQUATIONS 

STM Equations 

The STM activity of any node uk in F1 or Fz obeys a membrane equation of the 
form 

('41) 
d 
dt -Xk = -Ask + ( B  - CXk)Jk+ - D z k J i ,  

where Jk+ and J i  are the total excitatory input and total inhibitory input, respectively, 
to uk and A, B, C, D are nonnegative parameters. If C > 0, then the STM activity 
s k ( t )  remains within the finite interval [O,BC-'] no matter how large the inputs Jk+ 
and J i  are chosen. 

We denote nodes in F1 by ut,  where i = 1 , 2 , .  . . , M. We denote nodes in Fz by u J ,  
where j = M + 1, M + 2 , .  . . , N. Thus by ( A l ) ,  

d 
('42) 

(A31 

S x l  = -Alxa + ( B ,  - Clx,)J: - D ~ X J -  

d 
dt 3 

and 
-X = - A ~ x ,  + (Bz - C ~ X , ) J :  - Dzz,J,-. 

The input J: is a sum of the bottom-up input Z, and the top-down template 

where f(x,) is the signal generated by activity x i  of u j ,  and zi i  is the LTM trace in the 
pathway from uj to u,. 

The inhibitory input Ja7 controls the attentional gain: 

Thus J,- = 0 if and only if Fz is inactive (Figures 6 and 7). 
The inputs and parameters of STM activities in Fz were chosen so that the Fz 

node which received the largest input from F1 wins the competition for STM activity. 
Theorems in Ellias and Grossberg (1975), Grossberg (1973), and Grossberg and Levine 
(1975) show how these parameters can be chosen. The inputs J,' and J3- have the 
following form. 

Input J: adds a positive feedback signal g ( z j )  from uj to itself to the bottom-up 
adaptive filter input 

TI = C h(xt)zaj 9 (A71 
I 
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where h(s,) is the signal emitted by v, and z , ~  is the LTM trace in the pathway from u, 
to v J .  Input JJ- adds up negative feedback signals g ( z k )  from all the other nodes in Fz: 

J,: = c &). 
t#i 

Such a network behaves approximately like a binary switching circuit: 

zi = { 0" if T; > max(Tk : k # j )  
otherwise. 

LTM Equations 

of the form 
The LTM trace of the bottom-up pathway from v, to  u, obeys a learning equation 

( A l l )  
d 
ZzIJ = f(zJ)[-H¶J21J + K h ( z Z ) ] '  

In ( A l l ) ,  term f ( z J )  is a postsynaptic sampling, or learning, signal because f(zj) = 0 
implies $zI3 = 0. Term f(z,) is also the output signal of v3 to pathways from v, to F1, 
as in (A4).  

The LTM trace of the top-down pathway from uJ to v, also obeys a learning equation 
of the form 

( A 1 4  

(-413) 

d 
& Z J ¶  = f(z,)[-H,,z,, -t W z , ) ] .  

In the present simulations, the simplest choice of H,, was made for the top-down LTM 
traces: 

H,, = H = constant. 

A more complex choice of H,, was made for the bottom-up LTM traces. This was 
done to directly generate the Weber Law Rule of Section 8 via the bottom-up LTM 
process itself. The Weber Law Rule can also be generated indirectly by exploiting 
a Weber Law property of competitive STM interactions across F1. Such an indirect 
instantiation of the Weber Law Rule enjoys several advantages and will be developed 
elsewhere. In particular, it would enable us to also choose Ha3 = H = constant. Instead, 
we allowed the bottom-up LTM traces at each node vj to compete among themselves for 
synaptic sites. Malsburg and Willshaw (1981) have used a related idea in their model 
of retinotectal development. In the present usage, it wrm essential to choose a shunting 
competition to generate the Weber Law Rule, unlike the Malsburg and Willshaw usage. 
Thus we let 

HI, = Lh(z8) -k h(zk). (-414) 
k#: 

A physical interpretation of this choice can be seen by rewriting ( A l l )  in the form 

By (AlS) ,  when the postsynaptic signal f(z;) is positive, a positive presynaptic signal 
h(zj) commits receptor sites to the LTM process zj; a t  a rate (K - Lz,j)h(zi)f(z;). 
Simultaneously, signals h(zk),  k # i, which reach u, at different regions of the us' 



Neural Dynamics of Category Learning and Recognition 283 

membrane compete for sites which are already committed to z,, via the mass action 
competitive terms - z , , f ( z , )h ( z~ ) .  When z,, equilibrates to these competing signals, 

The signal function h ( w )  was chosen to rise quickly from 0 to 1 at a threshold activity 
level wo. Thus if u, is a suprat,hreshold node in F1, (A16) approximates 

where I X I is the number of active nodes in F1. Thus zij obeys a Weber Law Rule if 
L > 1. By comparison with (2), a = K and = L - 1. 

STM Reset System 

The simplest possible mismatch-mediated activation of A and STM reset of Fz by 
A were implemented in the simulations. As outlined in Section 15, each active input 
pathway sends an excitatory signal of size 7 to A. Potentials z, of F1 which exceed a 
signal threshold T generate an inhibitory signal of size -6 to A. Population A, in turn, 
generates a nonspecific reset wave to Fz whenever 

7 I I I  -6 I XI> 0, ( A W  

where I is the current input pattern and I X I is the number of nodes across F1 such 
that zi > T. The nonspecific reset wave shuts off the active Fz node until the input 
pattern I shuts off. Thus (A10) must be modified to shut off all Fz nodes which have 
been reset by A during the presentation of I. 
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