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0 ne of the central goals of com- 
puter science is to design intelli- 
gent machines capable of 

autonomous learning and skillful perfor- 
mance within complex environments that 
are not under strict external control. Many 
scientists have turned to a study of human 
capabilities as a source of new ideas for 
designing such machines. When a scientist 
undertakes such a study, he or she encoun- 
ters a number of basic issues, of which we 
are all aware through our own personal 
experiences: 

Why do we pay attention? Why do we 
learn expectations about the world? In 
particular, how do we cope so well with 
unexpected events? And, how do we man- 
age to do as well as we do when we are on 
our own and do not have a teacher as a 
guide? How do we learn what combina- 
tions of facts are useful for dealing with a 
given situation, and what combinations of 
facts are irrelevant? How do we recognize 
familiar facts so quickly even though we 
have stored many other pieces of informa- 
tion? How do we combine knowledge 
about the external world with information 
about our internal needs to quickly make 
decisions that have a good chance of satis- 
fying those needs? Finally, what do all of 
these properties have in common? 

The adaptive resonance 
theory suggests a 

solution to the 
stability-plasticity 
dilemma facing 

designers of learning 
systems. 

The stability-plasticity 
dilemma and ART 

Researchers have found one answer to 
these questions through the attempt to 
solve a basic design problem, called the 
stability-plasticity dilemma, faced by all 
intelligent systems capable of autono- 
mously adapting in real time to unexpected 
changes in their world. A developing the- 

,ral 

ory called adaptive resonance theory, or 
ART, suggests a solution to this problem. 

The stability-plasticity dilemma asks: 
How can a learning system be designed to 
remain plastic, or adaptive, in response to 
significant events and yet remain stable in 
response to irrelevant events? How does 
the system know how to switch between its 
stable and its plastic modes to achieve sta- 
bility without rigidity and plasticity with- 
out chaos? In particular, how can it 
preserve its previously learned knowledge 
while continuing to learn new things? And, 
what prevents the new learning from wash- 
ing away the memories of prior learning? 

We can easily dramatize the ubiquity of 
this problem: Imagine that you grew up in 
Boston before moving to Los Angeles, but 
periodically return to Boston to visit your 
parents. Although you may need to learn 
many new things to enjoy life in Los 
Angeles, these new learning experiences do 
not prevent you from remembering how to 
find your parent’s house or otherwise get 
around Boston. A multitude of similar 
examples illustrate our ability to success- 
fully adapt to environments where rules 
may change-without necessarily forget- 
ting our old skills. Moreover, we are capa- 
ble of successfully adapting to  
environments where rules may change 
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unpredictably, and we can do so even if no 
one tells us that the environment has 
changed. We can adapt, in short, without 
a teacher, through direct confrontation 
with our experiences. Such adaptation is 
called self-organization in the network 
modeling literature. 

One of the key computational ideas 
rigorously demonstrated within the adap- 
tive resonance theory is that top-down 
learned expectations focus attention upon 
bottom-up information in a way that pro- 
tects previously learned memories from 
being washed away by new learning, and 
enables new learning to be automatically 
incorporated into the total knowledge base 
of the system in a globally self-consistent 
way. 

The ART architectures discussed here 
are neural networks that self-organize sta- 
ble recognition codes in real time in 
response to arbitrary sequences of input 
patterns. Within such an ART architec- 
ture, the process of adaptive pattern recog- 
nition is a special case of the more general 
cognitive process of hypothesis discovery, 
testing, search, classification, and learn- 
ing. This property opens up the possibil- 
ity of applying ART systems to more 
general problems of adaptively processing 
large abstract information sources and 
databases. This article outlines the main 
computational properties of these ART 
architectures, while comparing and con- 
trasting these properties with those of 
alternative learning and recognition sys- 
tems. Technical details are described in 
greater detail elsewhere,’*’ and several 
books collect articles in which the theory 
was developed through the analysis and 
prediction of interdisciplinary data about 
the brain and behavior.334 

Competitive learning 
models 

ART models grew out of an analysis of 
a simpler type of adaptive pattern recog- 
nition network, often called a competitive 
learning model. Competitive learning 
models developed in the early 1970s 
through contributions of Christoph von 
der Malsburg’ and Stephen Grossberg, 
leading to the description of these models 
in 1976 in several forms in which they are 
used today.6 Authors such as Shun-ichi 
Amari,’ Leon Cooper,* and Teuvo 
Kohonen’ have further developed these 
models. Kohonen’ has made particularly 
strong use of competitive learning in his 

work on self-organizing maps. 
Grossberg4 has provided a historical dis- 
cussion of the development of competitive 
learning models. 

In a competitive learning model (see Fig- 
ure I), a stream of input patterns to a net- 
work Fl can tram the adaptive weights, or 
long-term memory (LTM) traces, that 
multiply the signals in the pathways from 
Fl to a coding level F2. In the simplest 
such model, input patterns to  FI  are nor- 
malized before passing through the adap- 
tive filter defined by the pathways from 
Fl to F2. Level F2 is designed as a competi- 
tive network capable of choosing the node 
which receives the largest total input 
(“winner-take-all”). The winning popula- 
tion then triggers associative pattern learn- 
ing within the vector of LTM traces which 
sent its inputs through the adaptive filter. 

For example, as in Figure 1 ,  let I, 
denote the input to the ith node v, of F, ,  i 
= 1,2 ,..., M, let x, denote the activity, or 
short-term memory (STM) trace, of v,; let 
x, denote the activity, or STM trace, of 
the j th  node v, of F2, j = A4 + 1 ,..., N, 
and let z,, denote the adaptive weight, or 
long-term memory (LTM) trace, of the 
pathway from v, to v,. Then let 

be the normalized activity of vi in 
response to the input pattern I = (II, 
Z2, .  . . ,IM). For simplicity, let the output 
signal Si of vi equal xi. Let 

M 

i =  I 
q = ~ X i Z O  

be the total signal received at vj from F I ,  
let 

(3) 1 ifTj> max(Tk : k # j )  
o ifq<max(Tk: k # j )  

summarize the fact that the node xj in F2 
which receives the largest signal is chosen 
for short-term memory storage, and let a 
differential equation 

d 
-Zij  dt = EX,( - ZV + x; )  (4) 

specify that only the vector Zj  = (z l j ,  
23,. . . ,zw) of adaptive weights which abut 
the winning node vi is changed due to 
learning. Vector Zj learns by reducing the 

error between itself and the normalized 
vector X = (x,,  x2,. . . ,xM) in the direction 
of steepest descent. 

Several equivalent ways describe how 
such a system recognizes input patterns I 
presented to F, . The winning node v, in Fz 
is said to code, classify, cluster, partition, 
compress, or orthogonalize these input 
patterns. In engineering, such a scheme is 
said to perform adaptive vector quantiza- 
tion. In cognitive psychology, it is said to 
perform categorical pe r~ep t ion .~  

In categorical perception, input patterns 
are classified into mutually exclusive 
recognition categories separated by sharp 
categorical boundaries. A sudden switch 
in pattern classification can occur if an 
input pattern is deformed so much that it 
crosses one of these boundaries and 
thereby causes a different node vj to win 
the competition within F2. Categorical 
perception, in the strict sense of the word, 
occurs only if Fz makes a choice. In more 
general competitive learning models, com- 
pressed but distributed recognition codes 
are generated by the model’s coding level 
or ~ e v e l s . ~ . ~ . ~  

In response to certain input environ- 
ments, a competitive learning model pos- 
sesses very appealing properties. It has 
been mathematically proved6 that, if not 
too many input patterns are presented to 
Fl ,  or if the input patterns form not too 
many clusters, relative to the number of 
coding nodes in F2, then learning of the 
recognition code eventually stabilizes and 
the learning process elicits the best distri- 
bution of LTM traces consistent with the 
structure of the input environment. 

Despite the demonstration of input 
environments that can be stably coded, it 
has also been shown, through explicit 
counterexamples,1*’36 that a competitive 
learning model does not always learn a 
temporally stable code in response to an 
arbitrary input environment. In these 
counterexamples, as a list of input patterns 
perturbs level F1 through time, the 
response of level F2 to thesume input pat- 
tern can differ on each successive presen- 
tation of that input pattern. Moreover, the 
F2 response to a given input pattern might 
never settle down as learning proceeds. 

Such unstable learning in response to a 
prescribed input is due to the learning that 
occurs in response to the other intervening 
inputs. In other words, the network’s 
adaptability, or plasticity, enables prior 
learning to be washed away by more recent 
learning in response to a wide variety of 
input environments. In fact, infinitely 
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many input environments exist in which 
periodic presentation of just four input 
patterns can cause temporally unstable 
learning.',2 

Learning can also become unstable due 
to simple changes in an input environment. 
Changes in the probabilities of inputs, or 
in the deterministic sequencing of inputs, 
can readily wash away prior learning. 
Moreover, this instability problem is not 
peculiar to competitive learning models. 
The problem is a basic one because it arises 
from a combination of the very features of 
an adaptive coding model that, on the sur- 
face, seem so desirable: its ability to learn 
from experience and its ability to code, 
compress, or categorize many patterns 
into a compact internal representation, 
Due to these properties, when a new input 
pattern I retrains a vector Z, of LTM 
traces, the set of all input patterns coded 
by vJ also changes because a change in Z, 
in Equation 2 can reverse the inequalities 
in Equation 3 in response to many of the 
input patterns previously coded by vJ. 

Learning systems that can become 
unstable in response to many input envi- 
ronments cannot safely be used in autono- 
mous machines that might be 
unexpectedly confronted by one of these 
environments on the job. Adaptive reso- 
nance theory was introduced in 1976 to 
show how to embed a competitive learn- 
ing model into a self-regulating control 
structure whose autonomous learning and 
recognition proceed stably and efficiently 
in response to an arbitrary sequence of 
input patterns. 

Self-stabilized learning 
in an arbitrary input 
environment 

Figure 2 schematizes a typical example 
from a class of architectures called ART 
1. It has been mathematically proved' 
that an ART 1 architecture is capable of 
stably learning a recognition code in 
response to an arbitrary sequence of 
binary input patterns until it utilizes its full 
memory capacity. Moreover, the adaptive 
weights, or LTM traces, of an ART 1 sys- 
tem oscillate at most once during learning 
in response to an arbitrary binary input 
sequence, yet do not get trapped in spuri- 
ous memory states or local minima. After 
learning self-stabilizes, the input patterns 
directly activate the F2 codes that best rep- 
resent them. 

As in a competitive learning model, an 
ART architecture encodes a new input pat- 

I 

STM ACTIVITY PATTERN (Y) 
xi 

4 \ 'M 
INPUT PATTERN (I) 

Figure 1. Stages of bottom-up activation: The input pattern Igenerates a pattern of 
STM activation X = (XI, xz, ..., xw) across F l .  Sufficiently active Fl nodes emit 
bottom-up signals to Fz. This signal pattern S is multiplied, or gated, by long-term 
memory (LTM) traces tii within the F1 -+ F2 pathways. The LTM-gated signals are 
summed before activating their target nodes in Fz. This LTM-gated and summed 
signal pattern T ,  where Ti = tiSizji, generates a pattern of STM activation Y = 
(xw + . . ,xN) across Fz . 

I 

I I 

Figure 2. Matching by the 2/3 Rule: In (a), a top-down expectation from F2 inhibits 
the attentional gain control source as it subliminally primes target Fl cells. Dotted 
outline depicts primed activation pattern. In (b), only F, cells that receive bottom- 
up inputs and gain control signals can become supraliminally active. In (c), when a 
bottom-up input pattern and a top-down template are simultaneously active, only 
those F, cells that receive inputs from both sources can become supraliminally 
active. In (d), intermodality inhibition can shut off the Fl gain control source and 
thereby prevent a bottom-up input from supraliminally activating Fl,  as when 
attention shifts to a different input channel. Similarly, disinhibition of the F1 gain 
control source in (a) may cause a top-down prime to become supraliminal, as dur- 
ing an internally willed fantasy. 

March 1988 19 

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on June 19,2023 at 05:42:28 UTC from IEEE Xplore.  Restrictions apply. 



tern, in part, by changing the adaptive 
weights, or LTM traces, of a bottom-up 
adaptive filter. This filter is contained in 
the pathways leading from a feature rep- 
resentation field Fl to a category repre- 
sentation field F2. In an ART network, 
however, a second, top-down adaptive fil- 
ter, contained in the pathways from F2 to 
F,, leads to the crucial property of code 
self-stabilization. Such top-down adaptive 
signals play the role of learned expecta- 
tions in an ART system. Before consider- 
ing details about how the ART control 
structure automatically stabilizes the 
learning process, we will sketch how self- 
stabilization occurs in intuitive terms. 

Suppose that an input pattern Zactivates 
Fl .  Let Fl in turn activate the code, or 
hypothesis, symbolized by the node vI1 at 
Fz which receives the largest total signal 
from F l .  Then, Fz quickly reads out its 
learned top-down expectation to  FI  , 
whereupon the bottom-up input pattern 
and top-down learned expectation are 
matched across F l .  If these patterns are 
badly matched, then a mismatch event 
takes place at F1 which triggers a reset 
burst to F2. This reset burst shuts off node 
vII for the remainder of the coding cycle, 
and thereby deactivates the top-down 
expectation controlled by vII. Then, FI 
quickly reactivates essentially the same 
bottom-up signal pattern to Fz as before. 
Level F2 reinterprets this signal pattern, 
conditioned on the hypothesis that the 
earlier choice vII was incorrect, and 
another node v,’ is automatically chosen. 

The parallel search, or hypothesis test- 
ing, cycle of bottom-up adaptive filtering 
from Fl to F2, code (or hypothesis) selec- 
tion at F2, read-out of a top-down learned 
expectation from F2 to F l ,  matching at Fl ,  
and code reset at F2 now repeats itself 
automatically at a very fast rate until one 
of three possibilities occurs: (1) a node vJm 
is chosen whose top-down expectation 
approximately matches input I; (2) a previ- 
ously uncommitted F2 node is selected; or 
(3) the full capacity of the system is used 
and cannot accommodate input I .  Until 
one of these outcomes prevails, essentially 
no learning occurs, because all the STM 
computations of the hypothesis testing 
cycle proceed so quickly that the more 
slowly varying LTM traces in the bottom- 
up and top-down adaptive filters cannot 
change in response to them. Significant 
learning occurs in response to an input pat- 
tern only after the hypothesis testing cycle 
that it generates comes to an end. 

If the hypothesis testing cycle ends in an 
approximate match, then the bottom-up 

ART architectures 
differ fmm other 
popular neural 

network learning 
schemes in a number 

of basic ways. 

input pattern and the top-down expecta- 
tion quickly deform the activity pattern X 
= ( X I  ,xz.. . . ,XM) across Fl into a net pat- 
tern that computes a fusion, or consensus, 
between the bottom-up and top-down 
information. This fused pattern represents 
the attentional focus of the system. When 
fusion occurs, the bottom-up and top- 
down signal patterns mutually reinforce 
each other via feedback and the system 
gets locked into a resonant state of STM 
activation. Only then can the LTM traces 
learn. What they learn is any new informa- 
tion about the input pattern represented 
within the fused activation pattern across 
Fl. The fact that learning occurs only in 
the resonant state suggested the name 
“adaptive resonance theory.” Thus, the 
system allows alteration of one of its prior 
learned codes only if an input pattern is 
sufficiently similar to what it already 
knows to risk a further refinement of its 
knowledge. 

If the hypothesis testing cycle ends by 
selecting an uncommitted node at F2, then 
the bottom-up and top-down adaptive 
filters linked to this node learn the Fl acti- 
vation pattern generated directly by the 
input. No top-down alteration of the Fl 
activation pattern occurs in this case. If the 
full capacity has been exhausted and no 
adequate match exists, learning is auto- 
matically inhibited. 

In summary, an ART network refines 
its already learned codes based upon new 
information that can be safely accommo- 
dated into them via approximate matches, 
selects new nodes for initiating learning of 
novel recognition categories, or defends its 
fully committed memory capacity against 
being washed away by the incessant flu of 
new input events. 

Alternative learning 
schemes 

Many computational details have been 
worked out to make this scheme work well 
in an autonomous setting.’.’ Before we 
describe some of these details, we should 
note that ART architectures differ from 
other popular neural network learning 
schemes, such as autoassociators, the 
Boltzmann machine, and back propaga- 
tion’-” in a number of basic ways. These 
differences are schematized in Table 1. 

The most robust difference is that an 
ART architecture is designed to learn 
quickly and stably in real time in response 
to a possibly nonstationary world with an 
unlimited number of inputs until it utilizes 
its full memory capacity. Many alternative 
learning schemes become unstable unless 
they learn slowly in a controlled stationary 
environment with a carefully selected total 
number of inputs and do not use their full 
memory capacity.” For example, a learn- 
ing system that is not self-stabilizing 
experiences a capacity catastrophe in 
response to an unlimited number of 
inputs: New learning washes away mem- 
ories of prior learning if too many inputs 
perturb the system. To prevent this from 
happening, either the total number of 
input patterns that perturbs the system 
needs to be restricted, or the learning pro- 
cess itself must be shut off before the 
capacity catastrophe occurs. 

Shutting off the world is not possible in 
many real-time applications. In particular, 
how can such a system allow a familiar 
input to be processed and recognized, but 
block the processing of a novel input pat- 
tern before the pattern destabilizes its prior 
learning? In the absence of a self- 
stabilization mechanism, an external 
teacher must act as the system’s front end 
to independently recognize the inputs and 
make the decision. Shutting off learning at 
just the right time to prevent either a 
capacity catastrophe or a premature termi- 
nation of learning would also require an 
external teacher. In either case, the exter- 
nal teacher must be able to carry out the 
recognition tasks that the learning system 
was supposed to carry out. Hence, non- 
self-stabilizing learning systems are not 
capable of functioning autonomously in 
ill-controlled environments. 

In learning systems that need an exter- 
nal teacher to supply the correct represen- 
tation to be learned, the learning process 
is often driven by mismatch between 
desired and actual outputs.”’” Such 
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schemes must learn slowly, and in a sta- 
tionary environment, or risk unstable 
oscillations in response to the mismatches. 
They can also be destabilized if the exter- 
nal teaching signal is noisy, because such 
noise creates spurious mismatches. 

These learning models also tend to get 
trapped in local minima, or globally incor- 
rect solutions. Models such as simulated 
annealing and the Boltzmann machine” 
use internal system noise to escape local 
minima and approach a more global mini- 
mum. An externally controlled (tempera- 
ture) parameter regulates this process by 
making it converge ever more slowly to a 
critical value. 

In contrast, approximate matches, 
rather than mismatches, drive the learning 
process in ART. Learning in the 
approximate-match mode enables rapid 
and stable learning to occur while buffer- 
ing the system’s memory against external 
noise. The hypothesis testing cycle replaces 
internal system noise as a scheme for dis- 
covering a globally correct solution. It 
does not use an externally controlled tem- 
perature parameter or teacher. 

Matching by the 2/3 
rule 

One of the key constraints on the design 
of the ART 1 architecture is its rule for 
matching a bottom-up input pattern with 
a top-down expectation at F l .  This rule, 
called the 2/3 Rule,’ is necessary to regu- 
late both the hypothesis testing cycle and 
the self-stabilization of learning in an ART 
1 system. 

The 2/3 Rule reconciles two properties 
whose simplicity tends to conceal their 
fundamental nature: In response to an 
arbitrary bottom-up input pattern, FI 
nodes can be supraliminally activated; that 
is, activated enough to generate output sig- 
nals to other parts of the network and 
thereby to initiate the hypothesis testing 
cycle. In response to an arbitrary top- 
down expectation, however, Fl nodes are 
only subliminally activated; they sensitize, 
prepare, or attentionally prime FI for 
future input patterns that may or may not 
generate an approximate match with this 
expectation, but do not, in themselves, 
generate output signals. Such a subliminal 
reaction enables an ART system to antic- 
ipate future events and thus to function as 
an “intentional” machine. In particular, 
if an attentional prime is locked into place 
by a high-gain top-down signal source, 
then an ART system can automatically 

Table 1. ART awhitectures compared to other learning schemes. 

A m  architecture Alternative learning properties 
Real-time (on-line) learning 

Nonstationary world 

Self-organizing (unsupervised) 

Memory self-stabilizes in response to 
arbitrarily many inputs 

Effective use of full memory capacity 

Maintain plasticity in an unexpected 
world 

Learn internal top-down expectations 

Active attentional focus regulates 
learning 

Slow or fast learning 

Learn in approximate-match phase 

Use self-regulating hypothesis testing to 
globally reorganize the energy 
landscape 

Fast adaptive search for best match 

Rapid direct access to codes of familiar 
events 

Variable error criterion (vigilance 
parameter) sets coarseness of 
recognition code in response to 
environmental feedback 

All properties scale to arbitrarily large 
system capacities 

Lab-time (off-line) learning 

Stationary world 

Teacher supplies correct answer 
(supervised) 

Capacity catastrophe in response to 
arbitrarily many inputs 

Can only use partial memory capacity 

Externally shut off plasticity to prevent 
capacity catastrophe 

Externally impose costs 

Passive learning 

Slow learning or oscillation catastrophe 

Learn in mismatch phase 

Use noise to perturb system out of local 
minima in a fixed energy landscape 

Search tree 

Recognition time increases with code 
complexity 

Fixed error criterion in response to 
environmental feedback 

Key properties deteriorate as system 
capacity increased 

suppress all inputs that do not fall into a 
sought-after recognition category, yet 
amplify and hasten the processing of all 
inputs that do.3 

To implement the 2/3 Rule, we need to 
assure that FI can distinguish between 
bottom-up and top-down signals, so that 
it can supraliminally react to the former 
and subliminally react to  the latter. In 
ART 1, this distinction is determined by a 
third Fl input source, called an atten- 
tional gain control channel, that responds 
differently to bottom-up and top-down 
signals. 

Figure 2 describes how this gain control 
source works. When activated, it excites 
each FI  node equally. The 213 Rule says 
that at least two out of three input sources 
are needed to supraliminally activate an 

Fl node; the three are a bottom-up input, 
a top-down input, and a gain control 
input. In the top-down processing mode 
(see Figure 2a), each Fl node receives a 
signal from at most one input source and, 
hence, is only subliminally activated. In 
the bottom-up processing mode (Figure 
2b), each active bottom-up pathway can 
turn on the gain control node, whose out- 
put, once on, is independent of the total 
number of active bottom-up pathways. 
Then, all Fl nodes receive at least a gain 
control input, but only those nodes that 
also receive a bottom-up input are 
supraliminally activated. 

When both bottom-up and top-down 
inputs reach Fl (see Figure 2c), the gain 
control source is shut off, so that only 
those Fl nodes which receive top-down 
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confirmation of the bottom-up input are 
supraliminally activated. In this case, the 
2/3 Rule maintains supraliminal activity 
only within the spatial intersection of the ATTENTIONAL ORlENllNG 

SUBSYSTEM SUBSYSTEM bottom-up input pattern and the top-down 
expectation. Consequently, if a bottom-up 
input pattern, as in Figure 2b, causes the 
read-out of a badly matched top-down 
expectation, as in Figure 2c, then the total 
number of supraliminally active FI nodes 
can suddenly decrease, thereby causing a 
decrease in the total output signal emitted 
by Fl .  This property is used heavily in 
controlling the hypothesis testing and self- 
stabilization processes, as we will show 
next. 

m b  
PATTERN 

Figure 3. ART 1 system: Two successive stages, F, and F2, of the attentional sub- 
system encode patterns of activation in short-term memory (STM). Bottom-up and 
top-down pathways between Fl and F2 contain adaptive long-term memory (LTM) 
traces which multiply the signals in these pathways. The remainder of the circuit 
modulates these STM and LTM processes. Modulation by gain control enables Fl 
to distinguish between bottom-up input patterns and top-down priming, or expec- 
tation, patterns, and to match these bottom-up and top-down patterns by the 2/3 
Rule. Gain control signals also enable F2 to react supraliminally to signals from Fl 
while an input pattern is on. The orienting subsystem generates a reset wave to F2 
when sufficiently large mismatches between bottom-up and top-down patterns 
occur at Fl.  This reset wave selectively and enduringly inhibits previously active F2 
cells until the input is shut off. 

Figure 4. Alphabet learning: Code learning by ART 1 in response to the first 
presentation of the first 20 letters of the alphabet is shown. Two different vigilance 
levels were used, e = .5 and e = .8. Each row represents the total code learned 
after the letter at  the left-hand column of the row is presented at  F,. Each column 
represents the learning, through time, of the top-down LTM vector, or expectation, 
corresponding to the F2 node whose index is listed at the top of the column. These 
LTM vectors do not, in general, equal the input patterns which change them 
through learning. Instead, each expectation acts like a novel type of prototype for 
the entire set of practiced input patterns coded by that node, as well as for 
unfamiliar input patterns that share invariant properties with this set. The simula- 
tion illustrates the "fast learning" case, in which the altered LTM traces reach a 
new equilibrium in response to each new stimulus. Slow learning is more gradual 
than this. 

Automatic control of 
hypothesis testing 

An ART architecture automates its 
hypothesis testing cycle through interac- 
tions between an attentional subsystem 
and an orienting subsystem. These sub- 
systems in the ART 1 architecture are 
schematized in Figure 3. 

The orienting subsystem A generates an 
output signal only when a mismatch 
occurs between a bottom-up input pattern 
and top-down expectation at level Fl of 
the attentional subsystem. Thus, A func- 
tions like a novelty detector. The output 
signal fromA is called an STMreset wave 
because it selectively inhibits the active 
node@) at level F2 of the attentional sub- 
system. The novelty detector A thereby 
disconfirms the F2 hypothesis that led to 
the Fl mismatch. 

The 2/3 Rule controls the reset wave 
emitted by A as follows: When a bottom- 
up input pattern is presented, each of the 
active input pathways to FI also sends a 
signal to the orienting subsystem A, where 
all of these signals are added up. When the 
input pattern activates Fl ,  each of the 
activated Fl nodes sends an inhibitory sig- 
nal to A. The system is designed so that the 
total inhibitory signal is larger than the 
total excitatory signal. Thus, in the 
bottom-up mode, the balance between 
active Fl nodes and active input lines pre- 
vents a reset wave from being triggered. 
(Note that level F1 in ART 1 is not nor- 
malized as it was in Equation 1 of the com- 
petitive learning model and in the ART 2 
systems discussed below. The decision of 
whether and how to normalize depends 
upon the design of the whole system.) 

This balance is upset when a top-down 
expectation is read out that mismatches the 
bottom-up input pattern at F, .  As in Fig- 
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ure 2c, the total output from F, then 
decreases by an amount that grows with 
the severity of the mismatch. If the attenu- 
ation is sufficiently great, then inhibition 
from FI to A can no longer prevent A 
from emitting a reset wave. A parameter 
e called the vigiluncepurumeter determines 
how large a mismatch will be tolerated 
beforeA emits a reset wave. High vigilance 
forces the system to search for new cate- 
gories in response to small differences 
between input and expectation. Then, the 
system learns to classify input patterns into 
a large number of fine categories. Low vig- 
ilance enables the system to tolerate large 
mismatches and thus group together input 
patterns according to a coarse measure of 
mutual similarity. The vigilance parame- 
ter may be placed under external control, 
being increased, for example, when the 
network is "punished" for failing to dis- 
tinguish two inputs that give rise to differ- 
ent consequences. 

Figure 4 schematizes learning in 
response to the first 20 input presentations 
of a computer simulation of alphabet 
learning. After presenting the 20th input, 
nine recognition categories have formed 
when e = .8, but only four categories have 
been formed when e = .5. In this com- 
puter experiment, learning self-stabilized 
after at most three presentations of the 26 
letters at any level of vigilance, and the 
learned LTM codes were more abstract- 
that is, less letter-like-at lower levels of 
vigilance. 

Figure 5 illustrates how these properties 
of the interaction between levels F l ,  F2, 
and A regulate the hypothesis testing cycle 
of the ART 1 system. In Figure 5a, an 
input pattern Zgenerates an STM activity 
pattern X across F I .  The input pattern I 
also excites the orienting subsystem A,  but 
pattern X at Fl inhibits A before it can 
generate an output signal. Activity pattern 
X also elicits an output pattern S which 
activates the bottom-up adaptive filter T 
= Z S ,  where Zis the matrix of bottom-up 
LTM traces. As a result, an STM pattern 
Y becomes active at F2. In Figure 5b, pat- 
tern Y generates a top-down output U 
through the adaptive filter V = Z U ,  where 

is the matrix of top-down LTM traces. 
Vector Vis the top-down expectation read 
into Fl .  Expectation V mismatches input 
I ,  significantly inhibiting STM activity 
across F l .  The amount by which activity 
in Xis  attenuated to generate the activity 
pattern X* depends upon how much of the 
input pattern l i s  encoded within the expec- 
tation V ,  via the 2/3 Rule. 

When a mismatch attenuates STM 

J. I 

I I 

Figure 5. ART 1 hypothesis testing cycle: In (a), the input pattern Zgenerates the 
STM activity pattern X at Fl as it activates A .  Pattern X both inhibits A and gener- 
ates the bottom-up signal pattern S. Signal pattern S is transformed via the adap- 
tive filter into the input pattern T = ZS, which activates the compressed STM 
pattern Y across F2. In (b), pattern Y generates the top-d,own signal pattern U 
which is transformed by the top-down adaptive filter V = .&!J into the expectation 
pattern V .  If V mismatches I at Fl, then a new STM activity pattern X *  is generated 
at Fl. The reduction in total STM activity that occurs when X i s  transformed into 
X* causes a decrease in the total inhibition from Fl to A .  In (c), then, the input- 
driven activation of A can release a nonspecific arousal wave to Fz, which resets the 
STM pattern Y at F2. In (d), after Y is inhibited, its top-down expectation is elimi- 
nated, and X can be reinstated at Fl. Now X once again generates input pattern T 
to Fz, but since Y remains inhibited Tcan activate a different STM pattern Y* at 
Fz. If the top-down expectation due to Y* also mismatches I at Fl, then the rapid 
search for an appropriate F2 code continues. 

activity across F, ,  the total size of the 
inhibitory signal from FI  to A is also 
attenuated. If the attenuation is suffi- 
ciently great, inhibition from F,  to A can 
no longer prevent the arousal source A 
from firing. Figure 5c depicts how disin- 
hibition of A releases an arousal burst to 
F2 which equally, or nonspecifically, 
excites all the F2 cells. The cell popula- 
tions of F2 react to such an arousal signal 
in a state-dependent fashion. In the special 
case that F2 chooses a single population 
for STM storage, the arousal burst selec- 
tively inhibits, or resets, the active popu- 
lation in F2. This inhibition is 
long-lasting. 

In Figure 5c, inhibition of Y leads to 
removal of the top-down expectation V ,  
and thereby terminates the mismatch 

between Iand V. Input pattern Ican thus 
reinstate the original activity pattern X 
across F, ,  which again generates the out- 
put pattern S from F,  and the input pat- 
tern T t o  F2. Due to the enduring 
inhibition at F2, the input pattern T can 
no longer activate the original pattern Y at 
F2. Level FZ has been conditioned by the 
disconfirmation of the original hypothe- 
sis. A new pattern Y* is thus generated at 
F2 by I (see Figure 5d). 

The new activity pattern Y* reads out a 
new top-down expectation V*. If a mis- 
match again occurs at F, ,  the orienting 
subsystem is again engaged, leading to 
another arousal-mediated reset of STM at 
F2. In this way, a rapid series of STM 
matching and reset events may occur. Such 
an STM matching and reset series controls 
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Figure 6. Category grouping by ART 2 of 50 analog input patterns into 34 recogni- 
tion categories. Each input pattern Z is depicted by a graph as a function of abscissa 
values i (i = l...M), with successive ordinate Zi values connected by straight lines. 
The category structure established upon one complete presentation of the 50 inputs 
thereafter remains stable if the same inputs are presented again. 

Figure 7. Lower vigilance implies coarser grouping. The same ART 2 system as 
used in Figure 6 has here grouped the same 50 inputs into 20 recognition categories. 
Note, for example, that Categories 1 and 2 of Figure 6 are joined in Category 1; 
Categories 14, 15, and 32 are joined in Category 10; and Categories 19-22 are 
joined in Category 13. 

the system’s hypothesis testing and search 
of LTM by sequentially engaging the 
novelty-sensitive orienting subsystem. 

Although STM is reset sequentially in 
time by this mismatch-mediated, self- 
terminating LTM search process, the 
mechanisms that control the LTM search 
are all parallel network interactions, rather 
than serial algorithms. Such a parallel 
search scheme continuously adjusts itself 
to  the system’s evolving LTM codes. The 

LTM code depends on both the system’s 
initial configuration and its unique learn- 
ing history, and hence cannot be predicted 
by a prewired search algorithm. Instead, 
the mismatch-mediated engagement of the 
orienting subsystem triggers a process of 
parallel self-adjusting search that tests 
only the hypotheses most likely to succeed, 
given the system’s unique learning history. 

The mismatch-mediated search of LTM 
ends when an STM pattern across F2 

reads out a top-down expectation that 
approximately matches I( to  the degree of 
accuracy required by the level of atten- 
tional vigilance) or that has not yet under- 
gone any prior learning. In the former 
case, the accessed recognition code is 
refined based on any novel information 
contained in the input I; that is, based 
upon the activity pattern resonating at F, 
that fuses together bottom-up and top- 
down information according to the 2/3 
Rule. In the latter case, a new recognition 
category is established as a new bottom-up 
code and top-down template are learned. 

ART 2: Learning to 
recognize an analog 
world 

Although self-organized recognition of 
binary patterns is useful in many applica- 
tions, such as recognition of printed or 
written text, as in Figure 4, many other 
applications require the ability to catego- 
rize arbitrary sequences of analog (includ- 
ing binary) input patterns. A class of 
architectures, generically called ART 2, 
has been developed for this purpose.* 

Given the enhanced capabilities of ART 
2 architectures, a sequence of arbitrary 
input patterns can be fed through an arbi- 
trary preprocessor before the output pat- 
terns of the preprocessor are fed as inputs 
into an ART 2 system for automatic clas- 
sification. Figure 6 illustrates how an ART 
2 architecture has quickly learned to sta- 
bly classify 50 analog input patterns, cho- 
sen to challenge the architecture in 
multiple ways, into 34 recognition categor- 
ies after a single learning trial. Figure 7 
illustrates how the same 50 input patterns 
have been quickly classified into 20 coarser 
categories after a single learning trial, 
using a smaller setting of the vigilance 
parameter. 

ART 2 architectures can autonomously 
classify arbitrary sequences of analog 
input patterns into categories of arbitrary 
coarseness while suppressing arbitrary 
levels of noise. They accomplish this by 
modifying the ART 1 architecture to 
incorporate solutions of several additional 
design problems into their circuitry. In 
particular, level F, is split into separate 
sublevels for receiving bottom-up input 
patterns, for receiving top-down expecta- 
tions, and for matching the bottom-up and 
top-down data, as in Figure 8. 

Three versions of the ART 2 architec- 
ture are now being applied to  problems 
such as visual pattern recognition, speech 
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perception, and radar classification. In 
addition to research on ART undertaken 
at several universities, applications are also 
being developed at government laborato- 
ries and industrial firms including the MIT 
Lincoln Laboratory; Booz-Allen and 
Hamilton, Inc.; Hecht-Nielsen Neu- 
rocomputer Corp.; Science Applications 
International Corp.; the U.S. Army 
Research Center at Redstone Arsenal; and 
Wright-Patterson Air Force Base. 

Invariant visual pattern 
recognition 

Researchers from Boston University 
and the MIT Lincoln Laboratory are col- 
laborating to carry out an application to 
invariant visual pattern recognition. This 
application uses a three-stage preproces- 
sor, summarized in Figure 9. 

First, the image figure to be recognized 
is detached from the image background 
using laser radar sensors. This can be 
accomplished by intersecting the images 
formed by two laser sensors: the image 
formed by a range detector focused at  the 
distance of the figure and the image 
formed by another laser detector capable 
of differentiating figure from back- 
ground, such as a doppler image when the 
figure is moving or the intensity of laser 
return when the figure is ~tat i0nary. l~ 

The second stage of the preprocessor 
contains a neural network, called a bound- 
ary contour ~ y s t e m , ~ * ~  that detects, shar- 
pens, regularizes, and completes the 
boundaries within noisy images. 

The third stage of the preprocessor con- 
tains a Fourier-Mellin filter, whose output 
spectra are invariant under such image 
transformations as 2D spatial translation, 
dilation, and r0tati0n.l~ 

Thus, the input patterns to ART 2 are 
the invariant spectra of completed bound- 
ary segmentations of laser radar sensors. 
By setting ART 2 parameters to suppress 
(up to) a prescribed level of input noise and 
to tolerate (up to) a prescribed level of 
input deformation, this system defines a 
compact circuit capable of autonomously 
learning to recognize visual targets that are 
deformed, rotated, dilated, and shifted. 
Although this preprocessor does not pur- 
port to provide a biological solution to the 
problem of invariant visual object recog- 
nition, we know that the mammalian vis- 
ual cortex does carry out computations 
analogous to aspects of the second and 
third stages of this p r e p r o c e ~ s o r . ~ ~ ~ * ' ~  

Figure 8. A typical ART 2 architecture. Open arrows indicate specific patterned 
inputs to target nodes. Filled arrows indicate nonspecific gain control inputs. The 
gain control nuclei (large filled circles) nonspecifically inhibit target nodes in 
proportion to the Lz-norm of STM activity in their source fields. As in ART 1, gain 
control (not shown) coordinates STM processing with input presentation rate. 

The three R's: 
Recognition, 
reinforcement, and 
recall 

Recognition is only one of several 
processes whereby an intelligent system 
can learn a correct solution to a problem. 
Reinforcement and recall are no less 
important in designing an autonomous 
intelligent system. 

Reinforcement, notably reward and 
punishment, provides additional informa- 
tion in the form of environmental 
feedback based on the success or failure of 
actions triggered by a recognition event. 
Reward and punishment calibrate whether 
the action has or has not satisfied internal 
needs, which in the biological case include 
hunger, thirst, sex, and pain reduction, but 
may in machine applications include a 
wide variety of internal cost functions. 
Reinforcement can modify the formation 
of recognition codes and can shift 
attention to focus upon those codes whose 
activation promises to satisfy internal 
needs based on past experience. For 
example, both green and yellow bananas 
may be recognized as part of a single 
recognition category until reinforcement 
signals, contingent upon eating the 

t 

t 
INPUT PATTERNS 

Figure 9. A three-stage preprocessor for 
the ART 2 system enables input patterns 
that are deformed, shifted, dilated, and 
rotated to be recognized as exemplars of 
the same category. The preprocessor 
passes laser radar images that separate 
figure from background through a 
boundary segmentation network and 
then through a Fourier-Mellin trans- 
form. The Fourier-Mellin spectra are 
the inputs to ART 2. 
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Figure 10. A self-organizing architecture for invariant pattern recognition and 
recall that can be expanded, as noted in the text, to include reinforcement mechan- 
isms capable of focusing attention upon internally desired classes of external 
events. 

bananas, differentiate them into separate 
categories. 

Recall can generate equivalent responses 
or actions to input events classified by 
different recognition codes. For example, 
printed and script letters might generate 
distinct recognition codes, yet can also 
elicit identical learned naming responses. 

Our own research program during the 
past two decades at Boston University has 
been devoted to discovering and imple- 
menting models of self-organizing 
biological systems wherein all the 
ingredients of recognition, reinforcement, 
and recall join together in a single inte- 
grated The system depicted in 
Figure 10 provides a framework for imple- 
menting some of these circuit designs. In 
particular, as ART 2 self-organizes 
recognition categories in response to the 
preprocessed inputs, its categorical choices 
at the F2 classifying level self-stabilize 
through time. In examples wherein F2 
makes a choice, ART 2 can be used as the 
first level of an ART 1 architecture, or yet 
another ART 2 architecture. Let us call the 
classifying level of this latter architecture 

F3. Level F3 can be used as a source of 
pre-wired priming inputs to F2. 

Alternatively, as in Figure 10, self- 
stabilizing choices by F3 can quickly be 
learned in response to the choices made at 
F2. Then, F3 can be used as a source of 
self-organized priming inputs to F2, and a 
source of priming patterns can be 
associated with each of the F3 choices via 
mechanisms of associative pattern learn- 
i r ~ g . ~  After learning of these primes, turn- 
ing on a particular prime can activate a 
learned F3 -. F2 top-down expectation. 
Then F2 can be supraliminally activated 
only by an input exemplar which is a mem- 
ber of the recognition category of the 
primed F2 node. 

The architecture ignores all but the 
primed set of input patterns. In other 
words, the prime causes the architecture to 
pay attention only to expected sources of 
input information. Due to the spatial 
invariance properties of the preprocessor, 
the expected input patterns can be trans- 
lated, dilated, or rotated in 2D without 
damaging recognition. Due to the similar- 
ity grouping properties of ART 2 at a futed 

level of vigilance, suitable deformations of 
these input patterns, including deforma- 
tions due to no more than anticipated 
levels of noise, can also be recognized. 

The output pathways from level F2 of 
ART 2 to the postprocessor can learn to 
recall any spatial pattern or spatiotem- 
poral pattern of outputs by applying the- 
orems about associative learning in a type 
of circuit called an aval~nche.~ In partic- 
ular, distinct recognition categories can 
learn to generate identical recall responses. 
Thus, the architecture as a whole can sta- 
bly self-organize an invariant recognition 
code and an associative map to an arbi- 
trary format of output patterns. 

The interactions (priming -ART) and 
(ART -, postprocessor) in Figure 10 can 
be modified so that output patterns are 
read out only if the input patterns have 
yielded rewards in the past and if the 
machine’s internal needs for these rewards 
have not yet been satisfied.3v4 In this var- 
iation of the architecture, the priming pat- 
terns supply motivational signals for 
releasing outputs only if an input exemplar 
from an internally desired recognition cat- 
egory is detected. The total circuit forms 
a neural network architecture which can 

stably self-organize an invariant pat- 
tern recognition code in response to a 
sequence of analog or binary input 
patterns 

be attentionally primed to ignore all 
but a designated category of input patterns 

automatically shift its prime as it satis- 
fies internal criteria in response to actions 
based upon the recognition of a previously 
primed category of input patterns and 

learn to  generate an arbitrary 
spatiotemporal output pattern in response 
to any input pattern exemplar of an acti- 
vated recognition category. 

Such circuits, and their real-time adap- 
tive autonomous descendents, may prove 
useful in some of the many applications 
where preprogrammed rule-based sys- 
tems, and systems requiring external 
teachers not naturally found in the appli- 
cations environments, fear to tread. 

Self-stabilization of 
speech perception and 
production 

The insights gleaned from the design of 
ART 2 have also begun to clarify how we 
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can design hierarchical learning systems 
with multiple ART levels. Figure 11 shows 
a hierarchical ART system for learning to 
recognize and produce speech. The system 
self-stabilizes its learning in real time with- 
out using a teacher. This ART architecture 
is being developed at Boston University by 
Michael Cohen, Stephen Grossberg, and 
David Stork. Top-down ART expectation 
mechanisms at several levels of the archi- 
tecture help to self-stabilize learned codes 
and to self-organize the selection of invar- 
iant recognition properties. Of particular 
interest in this speech architecture is the 
role of top-down expectation signals from 
the architecture’s articulatory, or motor, 
system to its auditory, or perception, sys- 
tem. These expectations help to explain 
classical results from motor theory, which 
state that speech is perceived in terms of 
how it would have been produced, even 
during passive listening. 

The key insights of the motor theory 
take on new meaning through the self- 
stabilizing properties of top-down 
articulatory-to-auditory expectations. 
These expectations self-stabilize the 
learned imitative associative map that 
transforms the perceptual codes which 
represent heard speech into motor codes 
for generating spoken speech. In so doing, 
the articulatory-to-auditory expectations 
deform the bottom-up auditory STM pat- 
terns via 2/3 Rule-like matching into acti- 
vation patterns consistent with invariant 
properties of the motor commands. These 
motorically modified STM codes are then 
encoded in long-term memory in a 
bottom-up adaptive filter within the audi- 
tory system itself. This bottom-up adap- 
tive filter activates a partially compressed 
speech code at the auditory system’s next 
processing level. The motorically modified 
speech code is thus activated during pas- 
sive listening as well as during active imi- 
tation. 

Psychophysiological 
and neurophysiological 
predictions of ART 

Although applications of ART to com- 
puter science depend upon the computa- 
tional power of these systems for solving 
real-world problems, ART systems are 
also models of the biological processes 
whose analysis led to their discovery. In 
fact, in addition to suggesting mechanis- 
tic explanations of many interdisciplinary 
data about the mind and brain, the theory 
has also made a number of predictions 

Auditory Art iculatory  
Perception Motor 

System 

code of item lists 

I 
Temporal Order code 
in  working memory 

Par t i a l ly  
C o m p r e s s e d  

Item code Motor Code 
(MO t o r Synergies)  

Pa r t i a l ly  
C o m p r e s s e d  Im i ta t ive  

Audi tory  Code ~ s s o c i a t i v e (  

Articulatory- 
to-Auditory 1 I /Expectation 

F e a t u r e  
D e t e c t o r s  

P r e s e n t  
P o s i t i o n  

Figure 11. Schematic of some processing stages in an architecture for a self- 
organizing speech perception and production system. The left-hand side of the fig- 
ure depicts five stages of the auditory model; the right-hand side depicts four stages 
of the motor model. The pathways from the partially compressed auditory code to 
the motor system learn an imitative associative map which joins auditory feedback 
patterns to the motor commands that generated them. These motor commands are 
compressed via bottom-up and top-down adaptive filters within the motor system 
into motor synergies. The synergies read out top-down learned articulatory-to- 
auditory expectations, which select the motorically consistent auditory data for 
incorporation into the learned speech codes of the auditory system. 

partially supported by experiments. For modulation of feature detector develop- 
example, in 1976, it was predicted that ment, and Wolf Singer reported atten- 
both norepinephrine (NE) mechanisms tional modulation in 1982. In 1978, a word 
and attentional mechanisms modulate the length effect in word recognition 
adaptive development of thalamocortical paradigms was predicted. In 1982 and 
visual featuredetectors. In 1976and 1978, 1983, Samuel, van Santen, and Johnston 
Kasamatsu and Pettigrew described NE reported a word length effect in word 
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superiority experiments. In 1978 and 1980, 
a hippocampal generator of the P300 
event-related potential was predicted. In 
1980, Halgren and his colleagues reported 
the existence of a hippocampal P300 
generator in humans. The existence and 
correlations between other event-related 
potentials, such as processing negativity 
(PN), early positive wave (P120), and 
N200 were also predicted in these theoret- 
ical articles. These predictions and suppor- 
tive data are described in several recent 
books.3v4 

ligence. They also suggest novel computa- 
tional theories and real-time adaptive 
neural network architectures with promis- 
ing properties for tackling some of the out- 
standing problems in computer science 
and technology today. 0 
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