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By examining the experimental data on the statistical properties of nat- 
ural scenes together with (retinal) contrast sensitivity data, we arrive 
at a first principles, theoretical hypothesis for the purpose of retinal 
processing and its relationship to an animal's environment. We argue 
that the retinal goal is to transform the visual input as much as pos- 
sible into a statistically independent basis as the first step in creating 
a redundancy reduced representation in the cortex, as suggested by 
Barlow. The extent of this whitening of the input is limited, however, 
by the need to suppress input noise. Our explicit theoretical solutions 
for the retinal filters also show a simple dependence on mean stimu- 
lus luminance: they predict an approximate Weber law at low spatial 
frequencies and a De Vries-Rose law at high frequencies. Assuming 
that the dominant source of noise is quantum, we generate a family 
of contrast sensitivity curves as a function of mean luminance. This 
family is compared to psychophysical data. 

1 The Retina and the Visual Environment __ 

An animal must have knowledge of its environment. As Barlow (1989) 
has emphasized, one important type of knowledge that needs to be stored 
in the brain is knowledge of the statistical properties of sensory messages. 
This provides an animal with data about the regular structures or features 
in its environment. New sensory messages can then be compared to 
expectations based on this background data; for example, the background 
data can be subtracted. In this way, one can argue, the brain is able to 
discover unexpected events and new associations. Here we explicitly 
explore the possibility that even the retina knows some of the statistical 
properties of visual messages. Our prejudice is that discovering how 
this information is used in the retina will not only help explain retinal 
processing but will be invaluable in applying this idea to the cortex. 

To discover what the retina knows about the statistics of its environ- 
ment, it is first necessary to find out just what characterizes the ensemble 
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of visual messages in a natural environment. An important step in this 
direction has been taken by Field (19871, who has been analyzing pictures 
of "natural" scenes, such as landscapes without human-made objects as 
well as pictures of human faces. As Field has argued, these represent a 
very small subset of all possible images: all possible arrangements and 
values of a set of pixels. What he found is that naturaI images have 
unique and clearly defined statistical properties. 

The first statistical measure Field calculated is the two-dimensional 
spatial autocorrelator 

R ( X , Y )  = ( W L ( Y ) )  (1.1) 

which is defined as the average over many scenes (or the average over 
one large scene assuming ergodicity) of the product of luminance levels 
L ( x )  and L(y) at two spatial points x and y. Actually, by homogeneity 
of natural scenes the autocorrelator is only a function of the relative 
distance: R ( x  - y). One can thus define the spatial power spectrum, which 
is the Fourier transform of the autocorrelator R(f)  = Jdxe","R(x).  This is 
the quantity that Field directly measured. What he found is 

1 R(f) - - 
I f ?  

which corresponds to a scale invariant autocorrelator: under a global 
rescaling of the spatial coordinates x --f a x  the autocorrelator R ( a x )  -+ 

R ( x ) .  Although this scale invariant spatial power spectrum is by no 
means a complete characterization of natural scenes, it is the simplest 
regularity they possess. The retina, being the first major stage in visual 
processing, is not expected to have knowledge beyond the simplest as- 
pects of natural scenes and hence for understanding the retina the power 
spectrum may be sufficient. 

The question at this stage is what is the relationship between this 
property of the visual environment and the observed visual processing 
by the retina? To answer this, let us explore what happens to the spatial 
power spectrum of the visual signal after it is processed by the retina. 
The output of one major class of retinal ganglion cells' is known to be 
related to the light input approximately through a linear filter: 

(1.2) 

where L ( x )  is the light intensity at point x ,  O ( x j )  is the output of the 
jth ganglion cell, and K(xj  - x) is the linear ganglion cell kernel (xi is the 
center of the cell's receptive field. Here we assume translation invariance 
of the kernel K, which means that all ganglion cell kernels are the same 
function, but translated on the retina). Once adapted to bright light, 
this ganglion cell kernel, in spatial frequency space, is a bandpass filter. 

O ( x l )  = / d x  K ( x ,  - x )  L ( x )  = K .  L 

2X-cells in cat, P-pathway cells in monkey. 
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Typical retinal filters at high luminosity are shown in Figure 1A and C: 
where the experimental responses K(f) [actually the contrast sensitivity 
which is K(f) times the mean luminance 101 are plotted against stimulus 
frequency. The data shown in Figure 1A are from De Valois et al. (1974), 
while the data in Figure 1C are from Kelly (1972). 

Now to see how the power spectrum is modified by the retina, we 
need only multiply the input spectrum R(f )  by K(f)K*(f) since the average 
output spectrum is (O(f)O*(f))  = ((K(f)L(f))(K(f)L.(f))*). We can also 
plot the square root of this output spectrum - the amplitude spectrum 
- simply by multiplying the experimentally measured kernels K(f) in 
Figure 1A and C by the input amplitude spectrum 

&f) = lfl-1 

This has been done in Figure 1B and D, which shows an intriguing re- 
sult. At low frequencies, the input spectrum lfl-2 is converted into a flat 
spectrum at the retinal output: (O(f)O*(f))  constant. This whitening of 
the input by the retina continues up to the frequency where the kernels 
in Figure 1A and C peak. Had this whitening continued up to the sys- 
tem's cutoff frequency, this would have meant the ganglion cell outputs 
would be completely decorrelated in space. This is because a white or flat 
spectrum in frequency space Fourier transforms into a delta function in 
space, giving (O(xi)O(x,)) N 6,. In other words, the signals on different 
ganglion cell nerve fibers would be statistically independent. So it ap- 
pears that the retina is attempting to decorrelate its input, at least down 
to the scale of the peak frequency. 

The idea that the brain is attempting to transform its sensory input 
to a statistically independent basis has been suggested by Goodall (1960) 
and Barlow (1989) (see also Barlow and Foldiak 1989), and has been dis- 
cussed by many others. Barlow has emphasized that one advantage of 
having a statistically independent set of outputs Oi is that all of their 
joint probabilities Pi+.. can be obtained directly from knowledge of the 
relatively small set of individual probabilities Pi. The values of the indi- 
vidual Pi can also be represented by taking the output strengths 0, to be 
proportional to their improbability, - log(Pi), that is, to the amount of in- 
formation in each output. This then gives a very compact representation 
of not only the signals, but also their probabilities. In such a statistically 

3Actually, what is plotted in Figure 1A and C are the results of psychophysical con- 
trast sensitivity measurements, rather than of single ganglion cell responses. The single- 
cell results, however, are qualitatively similar, and in this short paper for conciseness 
we compare theory exclusively to psychophysical results (all figures). In general, we 
believe that the psychophysical data represent an envelope of the collection of single- 
cell contrast sensitivities. Then, given our assumption of translation invariance, the 
psychophysical envelope and the single-cell results should coincide. However, we do 
not exclude the possibility of a more complicated relationship between psychophysical 
and single-cell contrast sensitivities. 
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Figure 1: Retinal filters (A, C) in Fourier space at high mean luminosities, taken 
from the contrast sensitivity data of De Valois et al. (1974) (A) and Kelly (1972) 
(C). B (D) is the data in A (C) multiplied by l/jfl, which is the amplitude spec- 
trum of natural scenes. This gives the retinal ganglion cells' output amplitude 
spectrum. Notice the whitening of the output at low frequencies. The ordinate 
units are arbitrary. 

independent basis, the outputs 0, represent "features," for example, in 
English text they would correspond roughly to "words"; they are the 
statistical structures that carry useful information. Finding these features 
effectively reduces the redundancy in the original sensory messages, leav- 
ing only the so-called "textual" (not predictable) information. One may 
therefore state this goal of statistical independence in information theory 
Ianguage as a type of redundancy reduction. 

Based on the experimental evidence in Figure 1B and D, one might 
advance the hypothesis that the goal of the retinal processing is to pro- 
duce a decorrelated representation of an image. However, this cannot 
be the only goal in the presence of input noise such as photon noise or 
biochemical transduction noise. In that case, decorrelation alone would 
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be a very dangerous computational strategy as we now illustrate: If the 
retina were to whiten all the way up to the cutoff frequency or resolu- 
tion limit, the kernel K(f) would be proportional to If1 up to that limit. 
This would imply a constant average squared response KRK' to "natu- 
ral'' signals L ( x ) ,  which for R N If/-* have large spatial power at low 
frequencies and low power at high frequencies. But this same K(f) N If1 
acting on input noise whose spatial power spectrum is approximately 
flat (noise is usually already decorrelated) has a very undesirable effect, 
since it amplifies the noise at high frequencies where noise power, unlike 
signal power, is not becoming small. Therefore, even if input noise were 
not a major problem without decorrelation, after complete decorrelation 
(or whitening up to cutoff) it would become a problem. Also, if both 
noise and signal are decorrelated at the output, it is no longer possible to 
distinguish them. Thus, if decorrelation is a strategy, there must be some 
guarantee that no significant input noise is passed through the retina to 
the next stage. 

Further evidence that the retina is concerned about not passing signif- 
icant amounts of input noise is found in experiments in which the mean 
stimulus luminance is lowered. In response to this change, the ganglion 
cell kernel K(f)  makes a transition from bandpass to lowpass filtering. 
This is just the type of transition expected if the kernel is adapting to 
a lower signal to noise ratio, since lowpass filtering is a standard sig- 
nal processing technique for smoothing away noise. Such a bandpass to 
lowpass transition also occurs when the temporal modulation frequency 
of the stimulus is increased (the retinal kernel is actually a function of 
both the spatial frequency f and the temporal frequency w, which has 
up to now been suppressed). In this case too there is an effective de- 
crease in the spatial signal to noise ratio, so it is also evidence for noise 
suppression. 

In a previous paper (Atick and Redlich 1990) we found an infor- 
mation theoretic formalism that unifies redundancy reduction and noise 
suppression. That formalism predicts all the qualitative aspects of the 
experimental data. However, it is highly technical and uses parameters 
that do not seem to have clear physical roles. This makes it more difficult 
to do quantitative comparisons with experiments, since the necessary de- 
pendence of these parameters on, for example, mean luminance is not 
intuitive. In this paper we adopt a modular approach where noise sup- 
pression and redundancy reduction are done in separate stages. This has 
two advantages: first it produces parameters with more direct physical 
meaning, and second it gives a clearer theoretical understanding of the 
purpose of retinal processing. 

In the next section we formulate our theory mathematically making 
more concrete the heuristic notions of decorrelation and noise suppres- 
sion. We then derive a simple theoretical retinal transfer function, and 
compare it to experiments. 
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2 Decorrelation as a Computational Strategy in Retina 

2.1 Decorrelation in the Absence of Noise. In the previous section, 
we gave some experimental evidence leading to the hypothesis that the 
goal of retinal processing is to produce a representation with reduced re- 
dundancy. This implies a representation where the ganglion cell activities 
are as decorrelated as possible (more generally, statistically independent), 
given the inherent problem of input noise in the retina. In this section, 
we formulate this notion as a mathematical theory of the retina. We first 
set up the decorrelation problem ignoring noise, and later introduce the 
simple but important modification needed for noise suppression. 

The outputs {O(x,)} of the array of ganglion cells are completely 
decorrelated iff (O(xi)O(xJ)) - 6,, where the brackets denote an ensemble 
average over natural stimuli. In general, due to the presence of noise, the 
retina will not decorrelate completely. Instead the filter K will only tend 
to decorrelate (or decorrelate up to a given scale). For this reason it is 
most natural to formulate the problem in terms of a variational principle 
with an “energy” or cost functional, E { K } ,  that grades different kernels 
according to how well they decorrelate the output. Any constraints on 
this process are easily incorporated as penalty terms in the energy func- 
tional. To find the correct energy functional for decorrelation one may 
use Wegner’s theorem (Bodewig 19561, which states that 

(2.1) det( O(xi)O(xj)) I n( o’(xI)) 
I 

with equality if and only if the matrix (O(xl)O(xJ)) is diagonal. This 
means that decorrelation can be achieved by keeping det(O(x,)O(x,)) 
fixed and minimizing n,(@(x,)). One reason for keeping det(O(x,)O(x])) 
= det(KTRK) fixed is that this ensures a reversible transformation, since 
it is the same as requiring det(KTK) > 0. [Here we are treating the kernel 
as a matrix KIJ = K(x, - X J ) . ]  

Actually, there are a couple of mathematical steps that lead to a sim- 
pler energy functional. First, with the assumption of translation invari- 
ance we can minimize (O’(x0)) for one ganglion cell at location xo instead 
of n,(02(xl)) .  Again by translation invariance, this is equivalent to mini- 
mizing the explicitly invariant expression C, ( 0 2 ( x l ) )  = Tr(KRKT). Finally, 
it is more convenient to hold fixed logdet(KTK) rather than det(KTK). 
Thus4 

(2.2) 

p is a lagrange multiplier used to fix det(KTK) to some value, but since 
we do not know this value we will subsequently treat p as a parameter 
penalizing small det(KTK). 

E { K }  = Tr(KRKT) - p log det(KTK) 

4We should point out that the decorrelating filter K that minimizes 2.2 is not the usual 
Karhunen-Loeve transform which would be the Fourier transform for translationally 
invariant R.  This KL transform gives a nonlocal, nontranslationally invariant K. 
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To find the kernel K that minimizes equation 2.2, it is best to work in 
frequency space, where traces such as Tr(KRKT) become integrals over 
frequencies. Also, the second term in equation 2.2 can be converted to 
an integral, by first using the matrix identity log det(KTK) = Tr log(KTK). 
The equivalent energy functional becomes 

E { K }  = /df  IK(f)12 R(f) - p/dflog(K(f)12 

which when varied with respect to K(f) gives 

(2.3) 

(2.4) 

With Field’s R( f )  - l/lfI2, this gives the whitening filter K(f) - @ I f ( .  
Having arrived at the energy functional [equation 2.2 (or 2.311 as the 

one that produces decorrelation, it is now straightforward to explain its 
information theoretic interpretation. Minimizing the first term in equa- 
tion 2.2 is equivalent (see Atick and Redlich 1990) to minimizing the 
sum of bit entropies C,H, = -~,JdO,P(O,)log[P(O,)], where P ( 0 , )  is 
the probability density for the ith ganglion cell output 0, = O(x,). The 
second term in equation 2.2 is the change in entropy H (including correla- 
tions, not just bit entropy) due to the retinal transformation, so requiring 
this term to vanish would impose the constraint that no information is 
lost - this is related to requiring reversibility, although it is stronger. 
Therefore minimizing E in equation 2.2 has the effect of reducing the 
ratio of bit entropy to true entropy: C , H , / H ,  which is what we mean 
here by redundancy. Minimizing this ratio reduces the number of bits 
carrying the information H ;  technically, it reduces all but the first order 
redundancy. Also, one can prove that C, H,  I H with equality only when 
the O(x,) are statistically independent, so minimizing this ratio produces 
statistically independent outputs. 

2.2 Introducing the Noise. Since here we are primarily interested in 
testing redundancy reduction, we take a somewhat simplified approach 
to the problem with noise. As discussed earlier, instead of doing a full- 
fledged information theoretic analysis (as in Atick and Redlich 1990), we 
work in a formalism where the signal is first low-pass filtered to eliminate 
noise. The resulting signal is then decorrelated as before. Actually, since 
we will be comparing with real data, we have now to be more explicit 
about the stages of processing that we believe precede the decorrelation 
stage. 

In Figure 2 we show a schematic of the signal processing stages that 
we assume take place in the retina. First, images from natural scenes 
pass through the optical medium of the eye and in doing so their im- 
age quality is lowered. It is well known that this effect can be taken 
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Figure 2: Schematic of the signal processing stages assumed to take place in the 
retina. 

into account by multiplying the images by the optical rnodulution frunsfev 
function or MTF of the eye, a function of spatial frequency that is mea- 
surable in purely non-neural experiments. In fact, an exponential of the 
form exp[-(lfl/fc)"], for some scale fc characteristic of the animal (in pri- 
mates fc - 22 c/deg and Q - 1.4) is a good approximation to the optical 
MTF. The resulting image is then transduced by the photoreceptors and 
is low-pass filtered to eliminate input noise. Finally, we assume that it is 
decorrelated. In this model, the output-input relation takes the form 

0 = K . [A4 . ( L  + n )  + no] (2.5) 

where the dot denotes a convolution as defined in equation 1.2. n ( x )  is 
the input noise (such as quantum noise) while no(xi) is some intrinsic 
noise that models postreceptor synaptic noise. Finally, M is the filter that 
takes into account both the optical MTF as well as the low-pass filtering 
needed to eliminate noise. An explicit expression for M will be derived 
below. 

With this model, the energy functional determining the decorrelation 
filter K is 

where V(f) = (ln(f)I2) and g(f) = (lno(f)I2) are the input and synaptic 
noise powers, respectively. This energy functional is the same as that in 
equation 2.3 but with the variance R(f)  replaced by the output variance 
of 0 in equation 2.5. 
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As before, the variational equations SE/SK = 0 are easy to solve for K .  
The experimentally measured filter Kexp is then this variational solution, 
K ,  times the filter M: 

(2.7) M(f) Jir 
IKexp(f)l = IWl M(f) = 

(M2(f) [R(f) + P] + G}’” 
An identical result can be obtained in space-time trivially by replacing the 
autocorrelator R(f) and the filter M(f) by their space-time analogs R(f, w) 
and M(f, w), respectively, with w the temporal frequency. However, we 
focus here on the purely spatial problem where we have Field’s (1987) 
measurement of the spatial autocorrelator R(f)  of natural scenes: R(f) = 
C/IflZ. 

2.3 Deriving the Low-Pass Filter. In our explicit expression for Kexp, 
below, we shall use the following low-pass filter 

The exponential term is the optical MTF while the first term is a low-pass 
filter that we derive next. The reader who is not interested in the details 
of the derivation can skip this section without loss of continuity. 

It is not clear in the retina what principle dictates the choice of the 
low-pass filter or how much of the details of the low-pass filter influence 
the final result. In the absence of any strong experimental hints, of the 
type that imply redundancy reduction, we shall try a simple information 
theoretic principle to derive an M: We will insist that the filter M should 
be chosen such that the filtered signal 0’ = M . (L + n )  carries as much 
information as possible about the ideal signal L subject to some constraint. 
To be more explicit, the amount of information carried by 0’, about L,  is 
the mutual information I(O’,L). However, as is well known (for L and 
n statistically independent gaussian variables, see Shannon and Weaver 
1949) I(O’, L) = [H(O’) -Noise Entropy], and thus if we maximize I(O’, L )  
keeping fixed the entropy H(0’ )  we achieve a form of noise suppression. 

We can now formulate this as a variational principle. To simplify the 
calculation we assume gaussian statistics for all the stochastic variables 
involved. The output-input relation including quantization units, n4, 
takes the form 0’ = M . ( L  + n )  + n,. A standard calculation leads to 

Similarly, one finds for the entropy H(0’ )  = - Jdf log[M(R + N2) + I$]. 
The variational functional or energy for smoothing can then be written 
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as E{M}  = -l(O‘, L )  - qH(0’) .  It is not difficult to show that the optimal 
noise suppressing solution 6E/6M = 0 takes the form 

with the parameter 7 - q10 in order to hold H(O’) fixed with mean 
luminance. Actually, below we will be working in the regime where the 
quantization units are much smaller than the signal and noise powers 
and hence we can safely drop the -1 term in M I  since the 17 term dom- 
inates for small q. We can also ignore any overall factors in M that are 
independent of f .  This then is the form that we exhibit in the first term 
in equation 2.8. 

2.4 Analyzing the Solution. Let us now analyze the form of the com- 
plete solution 2.7, with M given in equation 2.8. In Figure 3 we have 
plotted Kexp(f) (curve a) for a typical set of parameters. We have also 
plotted the filter without noise R(f)-*I2 (equation 2.4) (curve b) and M(f) 
(equation 2.8) (curve c). There are two points to note: at low frequency 
the kernel Kexp( f )  (curve a) is identically performing decorrelation, and 
thus its shape in that regime is completely determined by the statistics of 
natural scenes: the physiological functions M and N drop out. At high 
frequencies, on the other hand, the kernel coincides with the function M, 
and the power spectrum of natural scenes R drops out. 

We can also study the behavior of the kernel in (equation 2.7) as a 
function of mean luminosity 10. If one assumes that the dominant source 
of noise is quantum noise, then the dependence of the noise parameter 
on 10 is simply =  ION'^ where N’ is a constant independent of 10 and 
independent of frequency (flat spectrum). This gives an interesting result. 
At low frequency where Kexp goes like 1 1 4  its I. dependence will be 
Kexp N 1/10 (recall R N and the system exhibits a Weber law behavior, 
that is, its contrast sensitivity IoKexp is independent of 10. While in the 
other regime - at high frequency - where the kernel asymptotes M with 
P > R then Kexp N l/I:l2 which is a De Vries-Rose behavior IoKeXp N 

This predicted transition from Weber to De Vries-Rose with increasing 
frequency is in agreement with what is generally found (see Kelly 1972, 
Fig. 3). 

Given the explicit expression in equation 2.7 and the choice of quan- 
tum noise for N we can generate a set of kernels as a function of 10. The 
resulting family is shown for primates in Figure 4. We need to empha- 
size that there are no free parameters here which depend on 10. The only 
variables that needed to be fixed were the numbers fc, a, p, and N’ and 
they are independent of lo. Also we work in units of synaptic noise no, 
so the synaptic noise power is set to one. We have superimposed 
on this family the data from the experiments of Van Ness and Bouman 
(1967) on human psychophysical contrast sensitivity. It does not take 
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Figure 3: Curve a is the predicted retinal filter from equation 2.7 for a typical 
set of parameters, while curve b is R(f)-'/2, which is the pure whitening filter. 
Finally, curve c is the low-pass filter M. The figure shows that at low frequen- 
cies curves a and b coincide and thus the system is whitening, while at high 
frequencies curves a and c coincide and thus the retinal filter is determined by 
the low-pass filter. 

much imagination to see that the agreement is very reasonable especially 
keeping in mind that this is not a fit but a parameterfree prediction. 

3 Discussion 

One major aim of this paper has been to answer the question, what does 
the retina know about its visual environment? Our initial answer comes 
from noting that the experimental ganglion cell kernel whitens the 
spatial power spectrum of natural scenes found in completely indepen- 
dent experiments by Field (1987). This shows that the retinal code has 
been optimized - assuming whitening as a design principle - for an 
environment with a lfl-2 spectrum. In other words, the retina knows at 
least one statistical property of natural scenes: the spatial autocorrelator. 
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Figure 4: The family of solid curves are the predicted retinal filters (equation 2.7) 
at different 10 separated by one log units, assuming that the dominant source 
of input noise is quantum noise (N2 N l o ) .  No other parameters depend on lo. 
The fixed parameters are fc = 22 c/deg, a! = 1.4, p = 2.7 x lo5, N’ = 1.0. The 
data are from human psychophysical contrast sensitivity measurements of Van 
Ness and human (1967). 

But what is useful about whitening the input signal? One possible 
answer is that whitening compresses the (photoreceptor) input signal so 
that it can fit into a channel with a more limited dynamical range, or 
capacity. Such a limitation may be a physical one in the retina such as at 
the bipolar cell input synapses or it may be in the ganglion cell output 
cable, the optic nerve (see also Srinivisan et al. 1982). Another possible 
explanation for the whitening is Barlow’s idea that a statistically inde- 
pendent, or redundancy reduced representation is desirable as a cortical 
strategy for processing sensory data. From this point of view, the reti- 
nal filter is only performing the first step in reducing redundancy, by 
reducing second-order statistics (correlation). With this explanation, the 
capacity limitation is located further back in the brain, and may be best 
understood as an effective capacity limit, which is due to a computational 
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bottleneck, for example, the attentional bottleneck of - 40 bits/sec. Of 
course, since redundancy reduction usually allows compression of a sig- 
nal, there is no reason both explanations for whitening - physical bot- 
tleneck in the retina or computational bottleneck in cortex - must be 
mutually exclusive. Also, to paraphrase Linsker (19891, the brain may 
create physiological capacity limitations at one stage in order to force an 
encoding whose true utility is in its use as part of a larger strategy, such 
as Barlow’s redundancy reduction. 

There is, however, some evidence favoring the cortical redundancy 
reduction hypothesis: First, assuming a physiological bottleneck in the 
retina implies that the output code has a fixed and limited number of 
states available, and these are fewer than the number of states at the 
input. If one assumes that all of these outputs states are being used max- 
imally at all luminosities, this produces a dependence on l a  that does not 
match experiment. One finds that such a capacity limitation constraint 
predicts a Weber ( K  - 10) type scaling with I. at all frequencies so long as 
the kernel is bandpass; this is contradicted by experiments that show a 
significant decrease in contrast sensitivity (Derrington and Lennie 1982), 
for example, at peak frequency, even while there is little change in the 
shape of the kernel. Second, some animals show bandpass (whitening) 
filtering even at very low luminosities where the input signal to noise is 
such that no capacity limitation is likely. Third, the ganglion cell band- 
pass characteristic is sharpened at later stages, such as in the LGN, and 
in monkeys some cortical cells have receptive fields very much like those 
of ganglion cells (Hubel and Wiesel 1974). Finally, some animals have 
orientation selective cells already in their retinas. This, together with the 
third point, suggests that whitening (giving bandpass filtering) is likely to 
be a first stage in a strategy of visual processing which is continued in the 
cortex, and which may also explain, for example, orientation selectivity. 

To finally decide on the true purpose of the retinal whitening of nat- 
ural scenes will require more experiments. In particular, to avoid some 
assumptions, it would be best to experimentally measure the correlation 
between ganglion cell outputs (also cortical cells) for an animal in its 
natural environment. Because of the need to suppress noise, as shown 
here, we would predict some correlation for nearby ganglion cells, but 
a much smaller correlation length for ganglion cells than for the natural 
luminance signal. Also, the stimulus must be the animal’s natural envi- 
ronment, or at least have a lfl-2 spectrum, because of course any other 
type of input correlation will show up as output correlation. 

Beyond such questions about the purpose or presence of decorrela- 
tion, we should stress that without considering the problem of noise one 
cannot fully explain the form of the experimental ganglion cell kernel. In 
fact, too much whitening of a signal that includes noise can be dangerous. 
This is an obvious point that has not always been appreciated. We find 
consideration of this need to suppress noise is the only other ingredient 
needed in order to explain an abundance of experimental data. It gives 
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an explanation of the relatively low peak frequency of the retinal filter 
in bright light. It also leads to the prediction of a bandpass to lowpass 
transition with decreasing mean stimulus luminance. In fact, our solu- 
tions predict an approximately Weber behavior at low frequencies, and 
assuming quantum noise, an approximately De Vries-Rose behavior at 
high frequencies. 

The same property of our solutions that leads to the observed behavior 
with changing luminance also explains another set of experiments: a 
similar bandpass to lowpass transition is observed when the temporal 
frequency of the stimulus is increased. That is, the effect of lowering 10 
is predicted to be very close to the effect of raising temporal frequency. 
A more complicated relationship between color processing and changes 
in stimulus frequency is also predicted by our theory, as  is the cone to 
rod transition. So a very large class of experimental observations can 
all be explained as the consequence of a single principle. They also, as 
mentioned, probe more specific properties of an animal's environment, so 
they further test the dependence of retinal processing on environment. 
All of these space-time-color-luminance interactions are explored in a 
separate paper (Atick et al. 1992). 
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