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To navigate, the brain combines self-motion information with 
sensory landmarks to form a position estimate. The neural 
substrates thought to support such position coding include 

functionally defined medial entorhinal cortex (MEC) cell types1, 
namely grid cells2, head direction cells3,4, border cells5,6 and speed 
cells7,8. Together, these neurons generate an internal map of space, 
with their codes emerging from interactions between self-motion 
cues, such as locomotion and optic flow, and sensory cues from 
environmental landmarks.

However, the principles by which MEC cells integrate self-motion 
versus landmark cues remain incompletely understood. While sev-
eral works indicate that grid cell patterns rely on self-motion cues2,9–11,  
increasing evidence suggests that grid patterns emerge from a 
complex interaction between self-motion and sensory landmarks. 
For example, grid cells deform when the geometry of the environ-
ment changes, depend on environmental boundaries to maintain 
an error-free spatial map, and destabilize after visual landmarks are 
removed2,12–19. How multisensory self-motion cues combine to drive 
MEC speed cells remains equally unknown. Speed cells retain speed 
tuning in darkness, but firing rates decrease16, suggesting that visual 
inputs calibrate their response. In addition, while previous works 
often ascribe the neural basis of path integration to MEC function-
ally defined cell types1,2,9, the degree to which behaviorally measured 
path integration position estimates and MEC neural codes follow 
the same cue combination principles remains unclear13–17.

Here we examine the principles by which both mouse behavior 
and MEC cell classes integrate self-motion with visual landmark cues 
(Fig. 1a). To do this, we analyzed the neural activity and behavior of 
mice while they explored virtual reality (VR) environments20,21. By 
combining these experimental approaches with an attractor-based 
network model, we propose a framework for understanding how 
optic flow, locomotion and landmark cues interact to generate MEC 
firing patterns and behavioral position estimates during navigation.

Results
We recorded MEC neural activity in 21 mice as they navigated 
unidirectional VR linear tracks for water rewards (Fig. 1b–d and 
Supplementary Figs. 1 and 2). Spatially responsive cells were clas-
sified on the basis of their tuning in an open field (grid n =​ 151 
of 1,136, border n =​ 160 of 1,136; Methods) and identified in VR 
by matching waveforms (781 of 1,136 cells; 96 of 151 grid cells, 
97 of 160 border cells; Fig. 1b,c and Supplementary Fig. 3). Many 
cells had spatially stable firing fields in VR, with VR stability val-
ues similar to those observed on a real-world linear track22 (mean 
stability ±​ s.d.: grid, 0.40 ±​ 0.24; border, 0.54 ±​ 0.23; Fig. 1e,f and 
Supplementary Fig. 4). In VR, border cells were more stable than 
grid cells (Wilcoxon rank-sum P =​ 4.4 ×​ 10–5), and the firing rate 
of border cells peaked near visual landmarks (repeated-measures 
ANOVA P =​ 0.016; Fig. 1e and Methods). In contrast, grid cell firing 
rates were more uniformly distributed across the track (repeated-
measures ANOVA P =​ 0.18; Fig. 1e). This suggests that grid and 
border cells are driven by different cues in VR, with border cell fir-
ing likely determined by the locations of landmarks. We next inves-
tigated this further by manipulating the virtual environment.

To ascertain the contribution of locomotion versus visual cues 
(optic flow and visual landmarks) to the firing patterns of MEC 
neurons, we put these cues into conflict by altering the gain of  
the transformation between the rotation of the ball and transla-
tion of the VR track (Fig. 2)21. Manipulations followed an A–B–A′​ 
design, with gain in B decreasing (0.5×​) or increasing (1.5×​) the 
visual scene translation (Fig. 2a). To avoid plasticity in the repre-
sentation of the virtual environment, we limited the number of 
gain manipulation trials for each session (5 for gain decrease; 10 
for gain increase). Grid cell (total n =​ 80, gain decrease n =​ 65, gain 
increase n =​ 56) and border cell (total n =​ 68, gain decrease n =​ 44, 
gain increase n =​ 48) firing patterns were analyzed with respect to 
virtual position on the track (Fig. 2b–d and Supplementary Fig. 5). 
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We considered three possible response types to altered gain: that 
the spatial firing pattern might degenerate, coherently remap or 
remain unchanged (Fig. 2c).

Grid and border cells retain stable patterns during gain manipu-
lations. We first examined whether the spatial firing patterns of grid 
or border cells degenerated during gain manipulations. We quanti-
fied degeneration by computing the spatial stability within matched 
numbers of A- and B-period trials (Methods). Grid and border cell 
stability did not significantly decrease from the A to B period, except 
for grid gain increase sessions, in which stability decreased but was 
comparable to B-period values observed during all other gain ses-
sions (Fig. 3a). Mean firing rates did not change (Supplementary 
Fig. 6a). To quantify structured changes in firing rate maps during 
gain manipulations, we next identified cells that remained stable 
(stability >​ 0.2 in both A and B), a criterion that was satisfied by 
the majority of grid and border cells (Fig. 3a and Supplementary 
Fig. 7a). For subsequent analyses of structured changes in firing pat-
terns, only stable trial blocks were used.

Gain changes cause coherent remapping in grid cells but little 
change in border cells. Next we analyzed whether stable grid 
and border cell firing patterns change during gain manipulations 
by computing spatially lagged cross-correlations between A- and 
B-period rate maps (Fig. 3b). This cross-correlation measure dis-
criminates among the possibilities shown in Fig. 2c. For example, 
a large cross-correlation peak at zero spatial lag indicates firing 
patterns do not change between baseline and a gain manipulation. 
This would be expected if grid or border cells were driven by visual 
cues, thereby locking their firing patterns to position on the virtual 

track, regardless of any change in gain. Alternatively, a large peak at 
a nonzero spatial lag indicates coherent remapping in which firing 
patterns systematically shift due to a gain change. Finally, the lack 
of a large peak indicates a more complex remapping. For cells with 
multiple stable gain manipulation responses, correlations were aver-
aged across manipulations.

For adjacent blocks of 5 trials within baseline, grid and border 
cells had high cross-correlations centered around zero spatial lag, 
confirming that these cells had spatially stable patterns in the baseline 
condition (correlation ±​ s.e.m.: grid gain decrease (33), 0.54 ±​ 0.03; 
border gain decrease (28), 0.60 ±​ 0.03; grid gain increase (37), 
0.56 ±​ 0.02; border gain increase (30), 0.61 ±​ 0.03; Fig. 3b). Grid cells 
remapped during both gain decreases and increases, as indicated by 
the low A–B cross-correlations at zero lag (correlation ±​ s.e.m.: gain 
decrease, 0.07 ±​ 0.03; Wilcoxon test versus baseline P =​ 9.4 ×​ 10–7; gain 
increase =​ 0.17 ±​ 0.03, Wilcoxon test versus baseline P =​ 1.7 ×​ 10–7;  
Fig. 3b). In contrast, border cells remained remarkably stable dur-
ing gain increases, but partially remapped during gain decreases  
(correlation ±​ s.e.m.: gain decrease, 0.34 ±​ 0.05; Wilcoxon test versus 
baseline P =​ 0.00022; gain increase, 0.54 ±​ 0.04; Wilcoxon test versus 
baseline P =​ 0.16; Fig. 3b). Even during gain decreases, however, bor-
der cells had significantly higher A–B correlations at zero lag than 
grid cells (Wilcoxon rank-sum test versus grid cells, gain decrease 
P =​ 7.8 ×​ 10–5; gain increase P =​ 4.0 ×​ 10–8; Fig. 3b). These data dem-
onstrate that while grid and border cells had similar baseline stabil-
ity, grid cells remapped during gain manipulations, whereas border 
cells primarily remained locked to the visual cues.

Grid cells respond asymmetrically to gain increases and 
decreases. We then characterized the nature of grid cell remapping  
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Fig. 1 | Functionally identified MEC cell types in real and virtual environments. a, Schematic of cue sources and types in VR. Cues can come from visual 
or locomotor input (cue source). Visual cues can provide information regarding visual landmarks (cue type) or self-motion in the form of optic flow (cue 
type). Locomotor cues also provide information regarding self-motion (cue type). b, The open field (OF) environment was a 90 ×​ 90 cm square box with 
a single polarizing cue card. c, Following OF recordings, mice were immediately transferred to the VR setup. d, Example grid, border and speed cells 
recorded in OF (top row) and VR (bottom row). Grid and border cell VR data show firing rate (top) and spikes over trials (raster plots, bottom). Speed-
cell data are plotted as a heat map of instantaneous firing rate with respect to running speed, with colors indicating the percentage of time bins with the 
corresponding firing rate and running speed. e, Average grid-cell firing rate (top) and border-cell firing rate (bottom) as a function of track location in 
baseline VR sessions. Only cells with stability >​0.2 were analyzed (n =​ 85 grid cells, 87 border cells). Shaded regions show mean ±​ s.e.m. Vertical green 
lines show the locations of landmarks, and horizontal dashed black lines show the 5th, 50th and 95th percentiles of a shuffled distribution of firing rates. 
Asterisks indicate firing rate peaks that exceeded the 95th percentile of the shuffled distribution. f, Grid and border cells had significantly higher stability 
than shuffled distributions on the VR track (P <​ 1 ×​ 10–30, n =​ 96 grid cells, 97 border cells, Wilcoxon rank-sum tests).
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during gain manipulations. For gain increases, a large peak in  
the A–B cross-correlation occurred at +​ 12 cm, indicating a shift 
of the rate map forward along the track by this amount (correla-
tion ±​ s.e.m.: 0.30 ±​ 0.04, n =​ 37; Fig. 3b). Cross-correlation peaks 
for individual cells were similar in magnitude between gain change 
and baseline, but shifted by varying amounts, resulting in a lower 
mean peak (peak correlation ±​ s.e.m.: baseline, 0.58 ±​ 0.02; gain 
change, 0.52 ±​ 0.03; P =​ 0.14; shift ±​ s.e.m.: baseline, –1.7 ±​ 0.5 cm; 
gain change, 14.4 ±​ 7.1 cm; P =​ 0.0099, Wilcoxon tests; Fig. 3b, bot-
tom). For gain decreases, a smaller but still nonzero peak in the 
average A–B cross-correlation curve was present at –6 cm (cor-
relation ±​ s.e.m.: 0.10 ±​ 0.03, n =​ 33; Wilcoxon test versus zero, 
P =​ 0.0089; Wilcoxon test gain decrease versus gain increase peak, 
P =​ 0.00057; Fig. 3b). Unlike for gain increases, the peaks of indi-
vidual grid cells’ A–B cross-correlations were smaller during gain 
decrease compared to baseline but were not shifted backward (peak 
correlation ±​ s.e.m.: baseline, 0.57 ±​ 0.02; gain change, 0.37 ±​ 0.03; 
P =​ 1.4 ×​ 10–5; mean cross-correlation shift ±​ s.e.m.: baseline, 
–2.2 ±​ 0.5 cm; gain change, 16.5 ±​ 9.2 cm; P =​ 0.050; Wilcoxon tests; 
Fig. 3b, bottom). These results indicate that grid cells retained a 
coherent, but shifted, rate map during gain increases but not gain 
decreases. In contrast, some border cells shifted backward during 

gain decreases, whereas others were stable (shift ±​ s.e.m.: baseline, 
–0.3 ±​ 0.9 cm; gain change, –27.4 ±​ 7.1 cm; Wilcoxon P =​ 0.00086), 
leading to an average A–B cross-correlation that peaked near zero 
(–2 cm) but with a leftward skew (Fig. 3b). Practically all bor-
der cells remained highly stable, with minimal shifts during gain 
increases (for shift, P =​ 0.16; for change in peak, P =​ 0.94; Wilcoxon 
tests, Fig. 3b).

Next we asked whether grid cells rescale during gain changes. The 
degree of rescaling can provide insight into the relative weighting of 
visual and motor speed input for grid cell path integration calcula-
tions, with larger degrees of rescaling indicating a larger influence of 
motor speed cues. For example, if motor cues are the primary input 
determining grid firing patterns, we should see a decrease in the 
grid spatial scale with respect to virtual position that matches the 
degree of gain decrease (Fig. 2b). To test this, we computed average 
autocorrelations of the rate maps in the A and B periods (Fig. 3c, 
top). We then contracted or expanded the A-period autocorrelo-
gram and correlated this rescaled map with the B-period autocorre-
logram (Fig. 3c, bottom). For gain decreases, these maps maximally 
overlapped when the baseline was scaled by a factor of 0.61, indicat-
ing that the field size of grid firing patterns decreased and rescaled 
by 78% (100% corresponds to a factor of 0.5; mean ±​ s.e.m. over 

H
z

H
z

T
ria

l
T

ria
l

H
z

H
z

T
ria

l
T

ria
l

d

a

400 virtual cm, 400 real cm

Baseline (A): 1×
≥15 trials

G
ai

n 
de

cr
ea

se
G

ai
n 

in
cr

ea
se

Grid Border

A

B

A

B

400 virtual cm, 800 or 267 real cm

Gain change (B): 0.5× or 1.5×
5 or 10 trials

Baseline (A′): 1×
≥15 trials 400 virtual cm, 400 real cm

0

20

1

5

0

20

1

5

0

20

1

5

0

20

1

5

0

15

1

5

0

10

1

5

0

20

10

0

20

1

10

1

4000

0

20

1

5

0

30

1

5

4000
Virtual cm Virtual cm Virtual cm Virtual cm Virtual cm Virtual cm

0

10

1

10

0

10

1

10

4000

0

75

1

10

0

75

400
1

10

0

0

20

1

10

400
1

10
0

40

0

0

5

1

10

0

10

0 400
1

10

0

30

1

5

0

20

1

5

0

30

1

5

0

30

1

5

c

Degeneration Phase shift Rescaling

Coherent remapping

No change

A

B

H
z

H
z

T
ria

l
T

ria
l

Virtual cm Virtual cm Virtual cm Virtual cm

Possible outcomes

Locomotion onlyVision only

Gain decrease Gain increaseGain decrease Gain increase

b

0

20

1

5

0

10

1

5

Fig. 2 | Gain manipulations place visual and locomotor cues in conflict. a, Experimental design. Mice ran ≥​15 trials of baseline gain (A period) followed by 
5 or 10 trials of gain decrease or gain increase (0.5×​ or 1.5×​; B period). Gain decrease changed the real distance the animal had to run to reach the end of 
the track from 400 cm to 800 cm; gain increase changed this distance to 267 cm. Following the gain change period, mice ran a second baseline period of  
≥​15 trials (A′​ period). b, Illustration showing two potential responses of grid or border cells to gain manipulations, with firing patterns plotted with respect 
to virtual position on the track. If the spatial firing pattern reflects only the influence of visual cues, no change in the spatial pattern would be observed 
during gain changes. If the spatial firing pattern reflects only the influence of locomotor cues, the frequency of the spatial pattern would increase in gain 
decreases and decrease in gain increases. c, We considered the following possible response types to gain manipulations: no change, degeneration, phase 
shift and rescaling. The last two are subtypes of coherent remapping. d, Example grid cell (left) and border cell (right) responses during baseline (A, top 
and bottom row), gain decrease (B, top row) and gain increase (B, bottom row).

Nature Neuroscience | VOL 21 | AUGUST 2018 | 1096–1106 | www.nature.com/natureneuroscience1098

http://www.nature.com/natureneuroscience


ArticlesNATure Neuroscience

individual cells, 54 ±​ 13%; Fig. 3c). Importantly, these scale changes 
were not a rescaling of the original firing pattern, but reflected new 
maps with smaller grid scales (Supplementary Fig. 6g,h). For gain 

increases, the maximum was obtained at a scale factor of 1.10, indi-
cating that the field size of grid firing patterns increased and res-
caled by 20% (100% corresponds to a factor of 1.5; mean ±​ s.e.m. 
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over individual cells, 12 ±​ 12%; Fig. 3c), significantly less than in 
gain decrease (Wilcoxon rank-sum P =​ 0.016). Border cells showed 
minimal rescaling in both manipulations (gain decrease scaling fac-
tor =​ 0.96, 8%; gain increase scaling factor =​ 0.96, –8%; Fig. 3c).

These rescaling results did not reflect rate map instability, as 
they were qualitatively identical when examining only the most 
stable cells (Supplementary Fig. 7). Moreover, within-trial autocor-
relations, which are not affected by firing pattern drift across tri-
als, showed similar results (Supplementary Fig. 7), as did changes 
in the number and size of firing fields (Supplementary Fig. 6). 
Grid cell responses were relatively uniform across the environ-
ment (Supplementary Fig. 8). Taken together, these analyses 
revealed that grid cells responded differently to gain increases and 
decreases: shifting in gain increases, with an occasional loss of fields 
(Supplementary Figs. 5 and 6e), and remapping and rescaling in 
gain decreases.

What mechanism might drive the grid rescaling we observed 
during gain manipulations? If grid cells estimate position using self-
motion, then grid spacing should be inversely proportional to the 
magnitude of the velocity input to grid cells. In our experiments, 
this velocity input reflects a combination of locomotor and optic 
flow cues. The observed grid rescaling of 78% in gain decrease but 
only 20% in gain increase suggests that locomotor inputs exert a 
greater influence on grid cells in gain decrease. We next sought to 
investigate possible sources of this asymmetry by examining MEC 
speed signals during gain manipulations.

Multiple MEC speed signals respond asymmetrically to gain 
increases and decreases. In MEC, speed cells7,8,23 and theta oscil-
lations7,24 carry information about running speed. We first analyzed 
speed cells, which could provide input to grid cells8. As the mouse’s 
real running speed did not change during gain manipulations, we 
analyzed speed cells with respect to real running speed on the ball; 
in the previous section, grid and border cells were analyzed with 
respect to virtual position on the track. Thus, for these analyses, 
if locomotor cues are the primary input determining speed cell 
responses, the slope of firing rate as a function of speed should 
remain constant between baseline and gain conditions. If visual 
cues are the primary input determining speed cell responses, speed 
cell slope should increase with gain increases and decrease with gain 
decreases (Fig. 4a).

Speed cells were identified based on open field and VR recordings 
(n =​ 33 gain decrease, 41 gain increase; Fig. 4b,c and Supplementary 
Fig. 9; Methods). The mean firing rate of speed cells during running 
(speed >​ 2 cm/s) significantly increased in gain increases but did 
not change in gain decreases, suggesting that like grid cells, speed 
cells respond asymmetrically to gain manipulations (firing rate 
(Hz) ±​ s.e.m.: gain decrease A, 9.65 ±​ 1.63; B, 10.21 ±​ 1.71; Wilcoxon 
P =​ 0.16; gain increase A, 10.83 ±​ 1.51; B, 13.31 ±​ 1.96; Wilcoxon 
P =​ 7.1 ×​ 10–5). To explore this further, we estimated the instanta-
neous firing rate by smoothing vectors of spike counts across time 
bins (~16.7 ms) and then linearly regressed instantaneous firing 
rate against running speed for each speed cell individually. Linear 
regression slopes significantly increased in gain increase but did 
not change in gain decrease (slope (cm–1) ±​ s.e.m.: gain decrease 
A, 0.095 ±​ 0.014; B, 0.085 ±​ 0.013; Wilcoxon P =​ 0.17; gain increase 
A, 0.115 ±​ 0.016; B, 0.142 ±​ 0.020; Wilcoxon P =​ 0.0013; Fig. 4c,e). 
Intercepts of the linear fits did not change in either case (Fig. 4c,e 
and Supplementary Fig. 10). To estimate the percent weighting of 
visual cues by speed cells during gain changes, we converted plots 
of B-period slope versus A-period slope into polar coordinates and 
computed the average angle of the response (Fig. 4f). This method 
is robust to the overinfluence of speed cells with large slopes. 
Here full locomotor weighting corresponds to an angle of 45° and 
full visual weighting corresponds to arctan(0.5), or 26.6°, in gain 
decrease and arctan(1.5), or 56.3°, in gain increase. Angles were not 

significantly different from 45° during gain decrease but were sig-
nificantly larger than 45° during gain increase (mean ±​ s.e.m.: gain 
decrease, 42.8 ±​ 2.2°, P =​ 0.37; gain increase, 51.0 ±​ 1.6°, P =​ 0.0011; 
Wilcoxon test versus 45°; Fig. 4g,h). Expressed as a percentage, 
speed cell visual weights were larger during gain increase than gain 
decrease (mean ±​ s.e.m.: gain decrease, 11.9 ±​ 12.0%; gain increase, 
52.9 ±​ 13.8%; Wilcoxon test P =​ 0.0503; Fig. 4i). Together, these 
findings show that, as a population, speed cells weighed visual cues 
more highly in gain increase than in gain decrease, mirroring the 
asymmetry found in grid cells.

Another MEC signal that is modulated by running speed is 
theta frequency of the local field potential24,25. We found that peak 
theta frequency was significantly higher in gain increase compared 
to baseline, but did not change in gain decrease (Supplementary  
Fig. 11a). Moreover, we found that the slope of theta frequency  
with respect to running speed significantly changed in gain increase 
but not gain decrease (Supplementary Fig. 11b,c). These results 
show that visual cues affect local field potential theta in MEC more 
for gain increases than decreases, paralleling the asymmetric effect 
of visual cues on speed cells during gain manipulations.

A coupled-oscillator attractor network model elucidates princi-
ples for the integration of landmarks and self-motion. Combined, 
our data point to an asymmetry in the integration of locomotion 
and visual cues by grid and speed cells during gain changes. What 
underlying principles govern this cue-integration process? Previous 
work has shown that grid cells rely on self-motion input10, which 
can reflect locomotion and optic flow cues, as well as an error-
correcting signal provided by landmarks12. However, gain changes 
alter the relationship between distance traveled and the locations 
of landmarks, as well as the relationship between locomotion and 
optic flow. Therefore, the responses observed in our data likely 
reflect a complex interaction between the effects gain changes have 
on these different relationships. To better understand these dynam-
ics, we modeled the integration of self-motion with landmark input 
in a 1D attractor network (Fig. 5).

We added external landmark inputs to standard attractor-based 
path integration machinery, in which grid cells are modeled as a 1D 
periodic network of neurons with short-range excitatory and long-
range inhibitory synaptic weight profiles (Fig. 5a and Supplementary 
Math Note)26–29. In the absence of external input, this neural archi-
tecture yields a family of steady-state bump activity patterns, in 
which grid cell responses are generated when the animal’s velocity 
is used to drive phase advance in the network27,30. External land-
mark inputs drive neuronal activity that changes as a function of the 
animal’s position relative to landmark cues and serve to reinforce 
the phase of the attractor network (Fig. 5b,c)12,26. In this framework, 
gain changes correspond to a mismatch between the phase, or posi-
tion estimate, of the attractor network (red arrow, Fig. 5a,c) and the 
phase of the landmark input (blue arrow, Fig. 5b,c). In this situation, 
landmark inputs exert a corrective force on the attractor phase, pull-
ing it toward the landmark phase (Fig. 5d). The dynamics governing 
this process are analogous to a coupled-oscillator system, in which 
the two oscillators are grid cells, described by the attractor phase, 
and landmark inputs, described by the landmark phase. Coupled-
oscillator systems are well studied in physics31 and provide a clarify-
ing analogy for the cue-integration process here.

In the model, gain manipulations lead to two response types 
depending on how much path integration and landmark inputs dis-
agree. In the ‘subcritical’ regime, when the two disagree by a small 
amount, landmark inputs continuously correct the evolving phase of  
the attractor network and force it to keep pace with the landmarks, 
albeit at a constant phase difference (Fig. 5e,f). In this situation, an 
equilibrium is reached wherein the grid pattern shifts, but does not 
change in scale. By contrast, in the ‘supercritical’ regime, when path 
integration and landmarks disagree by a large amount, the phase 
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advance of the attractor network due to path integration breaks free 
from the landmark inputs. A consequence of this freedom, or deco-
herence, is that grid firing patterns remap and rescale (Fig. 5e,g).  
We derived a decoherence number D that demarcates the subcritical  
and supercritical regimes (Supplementary Math Note):

ω
=

− ⋅
D

k k v( )A L

The subcritical regime corresponds to –1 <​ D <​ 1. Outside this 
range, responses are supercritical. Here, kA – kL is the degree of mis-
match between the velocity-driven attractor advance and landmark 
inputs, v is the running speed of the mouse (assumed to be constant 
in the model), and ω is the strength of the landmark input. These 
three variables determine whether the response will be sub- or 
supercritical. Importantly, kA corresponds to the self-motion input 
received by the attractor network. This does not need to be linear 

with respect to VR gain, if the percentage weighting of locomotor 
versus visual speed cues changes with VR gain. In this way, we have 
derived a quantitative framework for understanding the interac-
tions between velocity signals, path integration and landmarks in 
MEC codes.

Strikingly, our grid cell gain decrease data resembled the model’s 
supercritical regime, and gain increase data resembled the sub-
critical regime (Fig. 3b,c versus Fig. 5f,g). The model’s supercriti-
cal regime also explains the small bump in the cross-correlation 
during gain decreases (Fig. 3b) and the partial rescaling (Figs. 3c 
and 5g). What could drive this asymmetry in regimes across the 
two gain changes? We can combine our model with experimen-
tal measurements to answer this question. First, the mouse’s run-
ning speed (v) was not different between baseline and either gain 
change (Supplementary Fig. 2), leaving landmark strength (ω) and 
velocity input (kA) as candidate sources of the asymmetry. While 
the possibility remains that the partial remapping of border cells we 
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only the influence of locomotor cues, no change in the slope would be observed during gain changes. If the speed slope reflects only the influence of visual 
cues, the speed slope would decrease in gain decreases and increase in gain increases. b, Two example speed cell responses to gain decrease. Heat maps 
show instantaneous firing rate versus running speed, with colors indicating occupancy over time bins. White dashed lines show least-squares linear fits 
to data. c, Slope and intercept of linear fits did not significantly change for speed cells during gain decrease (n =​ 33; P =​ 0.17 slopes, P =​ 0.99 intercepts, 
Wilcoxon tests). d,e, Same as b,c, but for gain increase. In contrast to gain decrease experiments, slope of linear fit increased during gain increase 
(n =​ 41; P =​ 0.0013, Wilcoxon test). Intercepts did not change (P =​ 0.79, Wilcoxon test). f, Schematic showing the angle of a speed cell response to gain 
manipulation, based on the slope of the linear fit in the A period and the B period. The response of an individual neuron is illustrated as a black dot and 
the angle measured as θ. g, Distribution of angles for speed cells during gain decrease. Dotted lines show locomotion (loc.) response (45°) and visual 
(vis.) response (26.6°). h, Same as f, but for gain increase. Dotted lines show locomotion response (45°) and visual response (56.3°). i, Angles from f and 
g converted to percentages. Visual weights were higher during gain increase (g.i., green) than gain decrease (g.d., pink) (n =​ 33 g.d., 41 g.i.; P =​ 0.0503, 
Wilcoxon rank-sum test). Error bars: mean ±​ s.e.m. * P =​ 0.0503, ** P <​ 0.01, *** P <​ 0.001.
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from position u to u′​ on the ring. This synaptic weight profile creates a set of steady-state ‘bump’ patterns that can be described by the phase angle θA of 
peak activity. When conjunctive velocity tuning is added and the synaptic weight profiles are offset in the direction of preferred velocity, velocity inputs 
move the bump around the attractor at a rate given by kAv. b, Landmark input to the attractor network pins the attractor phase to a certain phase θL that 
depends on the position of the landmarks. c, Hebbian learning alters the learned landmark pinning phase θL (blue arrows) to make it consistent with 
attractor phase θA (red arrows), which advances as a result of path integration (black arrow). d, Illustration of a gain change, in which landmark input 
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state exists, and the difference between the attractor phase and the landmark phase will continually change (supercritical regime). f, The attractor phase 
(red arrows) and landmark phase (blue arrows) during baseline (top row) and gain change (bottom row) in the subcritical regime (0 <​ |D| <​ 1). Right: 
cartoons of the expected A–B cross- and autocorrelations (cross-corr and autocorr) in the subcritical regime. Note the similarity to the gain increase 
response (Fig. 3b). g, Same as f, but in the supercritical regime (|D| >​ 1), where the grid pattern breaks free of landmark inputs and rescales. Note, however, 
that even in this regime the influence of landmarks is still present, leading to a small peak in the cross-correlation and an incomplete rescaling of the 
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linearly integrates locomotion and visual speed can only lead to both supercritical (supercrit) or both subcritical (subcrit) responses to symmetric gain 
manipulations (h). By contrast, gain-dependent integration of visual and locomotor cues, as we observed in our speed cell data (Fig. 4), can explain the 
asymmetric grid cell response to gain manipulations (i).
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observed during gain decreases contributed to a reduction in the 
strength of landmark input (Fig. 3b), the firing rates of border and 
other spatially stable cells did not change during gain manipulations 
(Supplementary Figs. 6, 8, 12 and 13). This suggests that the asym-
metry in grid cell gain change responses does not reflect differences 
in landmark input strength (ω). Finally, gain-dependent integra-
tion of visual and locomotor speed cues in the velocity input to the 
attractor, as was observed in speed cells, could lead to asymmetri-
cal grid responses (Fig. 5h,i). Using our experimentally measured 
speed cell data, we calculate that |Dg.d.| in the gain decrease (g.d.) 
condition exceeds |Dg.i.| in the gain increase (g.i.) condition by a fac-
tor of 1.9 (95% CI 1.2–3.0) (Supplementary Math Note). This differ-
ence in |D| thus drives the grid cell responses into the supercritical 
regime during gain decreases, while grid cell responses remain in 
the subcritical regime during gain increases, explaining the asym-
metric grid response to the two gain manipulations.

The asymmetry of the grid cell response to gain increases and 
decreases can now be understood as follows. During gain increase, 
speed cells are driven more by optic flow than locomotion (Fig. 4).  
This makes the phase advance of the attractor more similar to the 
rate of advance of visual landmarks. Thus, there is only a weak 
disagreement between path integration and landmarks, leading 
to the subcritical regime (|D| <​ 1) in which grid cells shift rela-
tive to baseline. In contrast, during gain decrease, speed cells are 
more strongly driven by locomotion. Thus, there is a larger dis-
agreement between path integration and landmarks, leading to 
the supercritical regime (|D| >​ 1) in which the attractor phase 
breaks free from landmark correction and grid patterns rescale 
and remap. Generalization of this framework to 2D gave similar 
results (Supplementary Math Note).

However, despite the match between experimental observa-
tions and model predictions based on grid and speed cell popula-
tion responses, the responses of individual pairs of speed and grid 
cells were uncorrelated (Supplementary Fig. 14). This suggests that 
grid cells either integrate input from many MEC speed cells, such 
that the correlation with any individual speed cell is weak, integrate 
input from a specific subset of speed cells that our methods could 
not identify, or receive speed information from another source.

Grid cell responses to an intermediate gain change follow the 
predictions of the model. To further test our model, we recorded 
grid cells in a third gain change condition, gain =​ 0.75 (n =​ 11 
grid cells from 5 mice; Fig. 6). We used our model to predict how 
grid cells should respond to this gain change. First, we defined 
the percent mismatch between landmarks and self-motion as 

× ∣ − ∣%Loc gain 1 , where %Loc is the percent locomotion in the 
speed input to the attractor (Supplementary Math Note). This mis-
match, when large enough, drives grid cells into the supercritical 
regime. Since visual and locomotor cues were weighted roughly 
equally by speed cells at gain =​ 1.5 (Fig. 4), we estimated that our 
gain increase experiments created a 25% mismatch between land-
marks and self-motion, rather than the 50% mismatch that would 
have been created if speed inputs were purely locomotor at this gain 
value. While we are unsure of the weighting of locomotor and visual 
speed inputs at gain =​ 0.75 (Fig. 6a), the maximum amount of mis-
match that could be generated by gain =​ 0.75 is 25%, which would 
occur if speed inputs were 100% locomotor. Thus, the maximum 
possible decoherence number for gain =​ 0.75 is equal and opposite 
to the decoherence number for gain =​ 1.5 (Fig. 6a). Therefore, since 
responses to gain =​ 1.5 were within the coherent regime, the model 
strongly predicts that gain =​ 0.75 will be within the coherent regime 
and that grid fields will shift backwards on the track by an amount 
less than or equal to the amount that they shifted forward during 
gain =​ 1.5, without rescaling. Strikingly, this is what we observed 
in our data (Fig. 6b–e), providing further support for our model 
(Supplementary Fig. 15).

Integration of visual and locomotor cues in a path integration 
task. Finally, we asked whether the cue combination principles 
observed in grid and speed cells are reflected in behavior. We devel-
oped a path integration task wherein mice were trained to run 
200 cm along a virtual track for an automatic water reward (Fig. 7a). 
Trials were interleaved with periods of complete darkness that var-
ied in length (30–130 cm long). No fixed landmarks were present 
on the track but black and white squares that were randomized on 
each trial provided optic flow. Recordings from a similar VR track 
showed that grid cells remained stable for up to 200 cm and speed 
cell signals remained intact, suggesting that these signals were avail-
able in this task (Supplementary Fig. 16).

Leveraging the tendency of mice to spontaneously slow in antici-
pation of reward (Fig. 7b and Supplementary Video 1), we omitted 
rewards on a subset of trials (1 in 5) and used the running speed tra-
jectory of the mouse as a readout of its perceived location (Fig. 7c). 
In reward omission trials, distance from the onset of the visual cues 
was more predictive of running speed than time (all P <​ 1 ×​ 10–6, 
n =​ 3 mice; Supplementary Fig. 17). Therefore, in this task, mice 
integrated some combination of visual and locomotor speed to com-
pute distance traveled. We then interleaved a subset of gain change 
trials (1 in 5, counterbalanced with reward omission trials; Fig. 7a). 
Gains were chosen such that the average real distance run on the 
track remained constant, to avoid retraining the mouse to run a dif-
ferent distance (gain decreases 0.92, 0.86, 0.8, 0.75; gain increases 
1.09, 1.2, 1.33, 1.5). We used average running speed traces in gain 
change reward omission trials to compute the relative contribu-
tions of visual and motor speed cues to animals’ distance estimates 
(Methods). Like grid cells and speed signals, mice weighted visual 
cues more during gain increases than gain decreases (Fig. 7d,e). 
This demonstrates that the asymmetrical gain change responses 
observed in the electrophysiological data extend to behavior.

Discussion
Here we found principled regimes under which behaviorally mea-
sured position estimates and MEC codes differentially weight 
the influence of visual landmark and self-motion cues. First, we 
found that conflicts between locomotion and visual cues caused 
grid cells to remap in an asymmetric manner, with gain increases 
causing phase shifts and gain decreases causing grid scale changes.  
This asymmetry was mirrored by multiple MEC speed signals. 
Second, we developed a coupled-oscillator attractor model that 
explained how grid responses to gain manipulations could arise 
from competition between conflicting self-motion and landmark 
cues. This model successfully predicted grid responses to an inter-
mediate gain change. Finally, we used a path integration task to 
demonstrate a behavioral asymmetry in the weighting of visual ver-
sus locomotor cues that matched grid and speed responses. Taken 
together, these findings provide a framework for understanding 
the dynamics of cue combination in MEC neural codes and navi-
gational behavior. This framework could be useful in interpret-
ing grid cell responses to different environmental geometries, in 
which distortion13,19, shearing15, spatial frequency changes14,32 or 
remapping33,34 could reflect competition between landmark and 
self-motion inputs or context- or experience-dependent changes 
in these inputs13,18. We have begun to explore the implications of 
our model for these situations29.

Our combined experimental and modeling results indicate that 
asymmetric speed input is likely to be the cause of the asymmetric 
grid response to gain manipulations, but the origin of and reasons  
for this asymmetry remain to be determined. Inputs from visual cor-
tex, where both locomotion and optic flow influence the speed tun-
ing of neurons35, compose a substantial fraction of cortical inputs to 
MEC36–38 and could include signals that are asymmetric with respect 
to VR gain. For example, visual cortex receives thalamic projections 
that respond to the degree to which running speed exceeds visual 
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speed39. In addition, MEC receives projections from extrastriate 
visual cortical regions that preferentially respond to fast-moving 
stimuli37,40,41. These inputs are presumably important for processing 
visual stimuli during running and could be more activated during 
gain increases. Intriguingly, it is precisely in the gain increase con-
dition that optic flow is a more salient cue for speed, compared to 

locomotion, suggesting that the increased reliance on visual cues 
for computing speed during gain increases may be consistent with 
optimal Bayesian principles for cue combination42.

The ability of the path integration system to operate in both sub-
critical and supercritical regimes likely serves an adaptive purpose 
during navigation. For example, the subcritical regime is appropriate  
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P <​ 0.01; no correction for multiple comparisons). Bottom: locations of the peaks of the A–B and baseline cross-correlations of individual cells (red, 
gain =​ 0.75; black, baseline). Cross-correlation peaks were shifted backward compared to baseline (shift ±​ s.e.m., gain =​ 0.75, –9.3 ±​ 4.0 cm; baseline, 
–2.5 ±​ 4.4 cm; one-sided Wilcoxon test P =​ 0.027). d, Grid cell shifts during gain =​ 0.75 and gain =​ 1.5. The signs of shifts at gain =​ 1.5 (which were forward 
along the track) have been flipped to directly compare them with shifts at gain =​ 0.75 (which were backward along the track). The model predicts that 
backward shifts during gain =​ 0.75 should be less than or equal to forward shifts during gain =​ 1.5. That is what we observed in the data (shift ±​ s.e.m., 
gain =​ 0.75, –9.3 ±​ 4.0 cm, n =​ 11; sign-flipped shift ±​ s.e.m., gain =​ 1.5, –14.4 ±​ 7.1 cm, n =​ 37; Wilcoxon rank sum P =​ 0.14). e, Average rate map 
autocorrelations during the B period of gain =​ 0.75 manipulations (red; n =​ 11), the B period of gain =​ 0.5 manipulations (gray; n =​ 33), and baseline  
(black; n =​ 11). As predicted by the model, we did not observe significant rescaling in gain =​ 0.75. Error bars: mean ±​ s.e.m.
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when landmark input is close enough to path integration to be used  
for error correction12. However, if landmarks change location or 
become unreliable, creating a large disagreement between landmark 
input and path integration, the network can enter the supercritical 
regime and pull free from the influence of landmarks. The deco-
herence threshold could therefore reflect the animal’s expectations 
about the reliability of landmark input42. This idea that nonlinear 
cue integration serves an adaptive purpose during navigation may 
be a more general principle of parahippocampal computation. 
Recent work used VR gain changes to show that hippocampal place 
cells integrate visual and locomotor information nonlinearly21. 
These data strongly resemble the subcritical regime of our model, 
raising the possibility that some of the principles we reveal govern-
ing the integration of different information sources by both MEC 
neural codes and behavior may generalize to other brain regions 
that support navigation43–46.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41593-018-0189-y.
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Methods
Statistics. All data were analyzed in MATLAB. Unless otherwise noted, all tests 
are two-sided, correlation coefficients represent Pearson’s correlation, values are 
presented as mean ±​ s.e.m., and n values indicate number of neurons. Only non-
parametric tests were used to assess significance of results, specifically Wilcoxon 
signed-rank tests for paired data and Wilcoxon rank-sum tests for unpaired data. 
Data collection and analysis were not performed blind to the conditions of the 
experiments. All animals except mouse 1 experienced both gain decreases and gain 
increases, which were presented in a randomized order on each day. No statistical 
methods were used to predetermine sample sizes, but our sample sizes are similar 
to those reported in previous publications21,22,47. For additional information 
regarding sample sizes, statistics and reproducibility, please see the accompanying 
Life Sciences Reporting Summary.

Subjects. All techniques were approved by the Institutional Animal Care and Use 
Committee at Stanford University School of Medicine. Recordings were made 
from 21 C57BL/6 mice aged 6 weeks to 6 months at the time of surgery (18–28 g). 
All mice were female except mice 19 and 21, which were male. Mice were singly 
housed in transparent cages on a 12-h light-dark cycle and experiments were 
performed during the light phase.

In vivo surgery. Anesthesia was induced with isoflurane (4%; maintained at  
0.5–3%) followed by injection of buprenorphrine (0.1 mg/kg). Mice were 
unilaterally implanted in the right hemisphere with a microdrive (Axona)  
carrying two (17 mice), four (3 mice) or eight (1 mouse) 17-µ​m platinum-iridium 
(90% and 10%, respectively) wire tetrodes and a custom-built metal headbar 
containing two holes for head fixation. Immediately before surgery, tetrodes  
were platinum electroplated to reduce the impedance to 200 k at 1 kHz. The 
microdrive was affixed to the skull using dental cement and jewelers’ screws,  
one of which was used to ground the electrodes. The tetrodes were implanted  
3.3–3.4 mm from the midline, 0.4–0.5 mm in front of the transverse sinus, and 
800 µ​m below the dura at an angle of 0–2 degrees in the posterior direction in  
the sagittal plane.

Training. Following surgery, mice were singly housed and allowed free access to 
food and water for >​3 d, after which they were water deprived. Each day, mice were 
given 1 mL of water and weighed to ensure that their weight remained above 80% 
of baseline. After 2 d of water deprivation, mice were accustomed to head fixation 
for 2 d (20 min/d) and trained to drink water from a custom lick port. They were 
then trained to run in virtual reality (see below) on a semi-infinite training track 
with small water rewards (~2 µ​L) delivered every 50 cm, until they ran an average 
of at least 5 cm/s in a 20-min training session. The training track was visually 
distinct from the track on which cells were recorded.

Data collection and spike sorting. The open field environment was a 
90 ×​ 90 ×​ 30 cm black box with a white cue card attached to the middle of one 
wall. In some open field sessions, a smaller box was used (70 ×​ 70 ×​ 30 cm). The 
room was dimly lit, and some distal cues were visible. Mice were connected to 
the equipment via an AC-coupled unity-gain operational amplifier attached to a 
counterbalanced cable that allowed free movement through the arena. To track 
the mouse’s position in the open field, the recording system tracked the position 
of two light-emitting diodes (LEDs), one large and one small, on the headstage 
by means of an overhead video camera. Position estimates in the open field were 
based on the tracking of these LEDs. Mice foraged for crumbled cereal until they 
had explored the entire box (coverage >​ 70%; 20 to 120 min). Between open field 
sessions, the test box was cleaned with soapy water.

After an open field recording session, mice were immediately transferred 
to the VR setup to minimize tetrode drift (Supplementary Fig. 3). In the VR 
setup, head-fixed mice ran on a 20-cm-diameter polystyrene ball (Graham 
Sweet Studios) or, in some cases, a 15.2-cm-diameter foam roller (ethylene vinyl 
acetate). Both were constrained to rotate about one axis. The ball’s or cylinder’s 
rotation was measured by a high-resolution quadrature encoder (Yumo, 
1024 P/R) and processed by a microcontroller (Arduino UNO). The virtual 
environment was generated using commercial software (Unity 3D) and updated 
according to the motion signal. Virtual reality position traces were synchronized 
to recording traces using 1-Hz timing pulses generated by the recording software. 
The virtual scene was spherically corrected using video manipulation software 
(MadMapper) and back-projected onto a 35.6-cm transparent plastic hemisphere 
over which projector fabric was stretched. The projection covered 180° of the 
mouse’s field of view horizontally and 90° vertically, with a black drape hanging 
from the plastic hemisphere edges to eliminate visual cues outside this field of 
view. In some experiments, the virtual scene was displayed on three 24-inch 
monitors surrounding the mouse. The gain of the linear transformation from 
ball rotation to translation along the virtual track was calibrated so that the 
virtual track was 4 m long. The standard cue-rich track contained three sections 
with distinct wall patterns and several distal landmarks (Fig. 1). During optic 
flow experiments, mice ran on a track with optic flow cues along the length of 
the track (Supplementary Fig. 16). At the end of the track, the mouse received a 
water reward (5 µ​L) and was teleported to the beginning of the track for the next 

trial. Water rewards were delivered using a solenoid (Cole-Parmer) triggered 
from the virtual environment software, generating an audible click with  
water delivery.

Voltage signals were amplified and band-pass filtered between 0.8 and 6.7 kHz. 
Triggered spikes were stored to a disk at 48 kHz (50 samples per waveform). 
EEG was recorded from one of the electrodes and low-pass filtered at 500 Hz, 
sampled at 4,800 Hz and stored with the unit data. Spikes were sorted offline 
using Klustakwik48 followed by manual curation of clusters. Only clusters with 
at least 100 spikes in open field and firing rate >​0.2 Hz in VR were included. For 
inclusion in the manipulation sessions, the firing rate of a given neuron had to be 
at least 0.2 Hz in both the A and B periods. Cluster quality was assessed using spike 
waveform and the refractory period in the spike time autocorrelation. Clusters 
were matched manually between open field and VR, and the normalized center-
of-mass distance between clusters was calculated to assess the quality of cluster 
matching (Supplementary Fig. 3). After all data collection in the open field and 
VR, tetrodes were moved ventrally by ≥​ 25 µ​m.

Histology. At the end of recording, electrodes were not moved and a small 
electrolytic lesion was made at the last site at which cells were recorded (two 
8-s pulses of 20 µ​A current). The mice were then killed with an overdose of 
pentobarbital and transcardially perfused with phosphate-buffered saline (PBS) 
followed by 4% paraformaldehyde. Brains were extracted and stored in 4% 
paraformaldehyde for at least 24 h. Brains were then rapidly frozen, cut into 30-µ​m  
sagittal sections with a cryostat, mounted and stained with cresyl violet. The 
positions of the tips of the recording electrodes were determined from digital 
pictures of the brain sections and the tetrode location was marked as the center of 
the lesion. Histological sections were examined to confirm that the recorded cells 
were located in the MEC, based on the reference Allen Brain Atlas and The Mouse 
in Stereotaxic Coordinates49 (Supplementary Fig. 1).

Virtual reality behavior. Running speed in VR was computed by dividing the 
difference in position between adjacent time bins by the difference in time. This 
vector was then smoothed with a Gaussian kernel with s.d. =​ 10 bins (~170 ms). 
Average running speeds at each location on the track were computed by averaging 
the instantaneous speeds that occurred within each position bin (bin size =​ 2 cm; 
Supplementary Fig. 2c,e). To compute the angular velocities experienced by the 
mouse during running, we converted running speed into angular velocity as a 
function of location on the hemispherical screen by empirically measuring the 
displacement of the visual cues in degrees following fixed rotations of the ball 
(Supplementary Fig. 2d). At running speeds of 35 cm/s, which were typical along 
the length of the track (Supplementary Fig. 2c), angular velocities ranged from 
0° s−1 in front of the mouse (at infinity) to 240° s−1 at the edge of the screen, well 
within the range of speeds that optimally drive V1 neurons in mouse40. To check 
whether VR behavior varied over sessions, we computed average running speed in 
each of the first 30 trials for sessions in which there were no gain manipulations 
(Supplementary Fig. 2b).

For gain manipulations, the animal performed ≥​15 trials with gain =​ 1 (A),  
5 or 10 trials with altered gain (B), and ≥​15 trials with gain =​ 1 (A′​) (Fig. 2).  
In gain increase sessions, animals ran 10 B trials to allow the collection of a  
greater number of spikes. In some gain manipulation experiments, the mouse  
ran several alternating blocks of baseline and gain change. Each baseline block had 
at least 15 trials, and each gain change block was either 5 trials (gain decrease) or 
10 trials (gain increase).

Linear path integration behavioral task. Three female C57BL/6 mice age  
3–6 months were trained on the VR linear path integration task (Fig. 7).  
Two of these mice had tetrode implants; electrophysiological data from one was 
included in this study (m18). The third mouse was implanted with a headbar,  
but no tetrode drive. Mice were accustomed to head fixation, water-deprived,  
and trained to lick water from the lick port following the same procedure as  
the tetrode-implanted mice. Following this initial training, mice were exposed to 
the VR path integration track but with the reward at 100 cm rather than 200 cm, 
with rewards omitted 1 in every 5 trials but no gain changes. When they started  
to slow at the reward location (mean speed within 25 cm of the reward site  
had to be ≥​10 cm/s less than the mean speed between 0 and 50 cm from the  
start of the track), the reward location was moved to 150 cm. When they passed 
this same criterion with the reward at 150 cm, the reward was moved to 200 cm, 
and when they passed at 200 cm, they were considered fully trained. To compute 
average speed traces (Fig. 7b,c), mean speed in each position bin (bin size =​ 2 cm) 
was computed for each trial and then averaged across trials. Out of 10 mice that 
began training, 3 reached completion by meeting the criteria described above.  
The other 7 mice failed to progress beyond one of the steps described above.  
After completing training, mice ran sessions in which, following an initial block  
of 10 baseline trials, the gain was changed in 1 out of every 5 trials. These trials 
were counterbalanced with reward omission trials, such that on 1 in 5 gain change 
trials the reward was also omitted. On a given gain change session, two gains 
were used: one gain decrease (one of 0.92, 0.86, 0.8 or 0.75) and one gain increase 
(one of 1.09, 1.2, 1.33 or 1.5), matched such that the average distance on the track 
remained constant.
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To compute mutual information between running speed and either distance or 
time (Supplementary Fig. 17a), we used the formula:

∑ ∑. . =

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where x is either distance or time since the start of the trial, s is the running speed 
of the mouse, p x s( , )i j  is the probability that distance or time is in bin i and speed 
is in bin j, p x( )i  is the probability that distance or time is in bin i, and p s( )j  is the 
probability that speed is in bin j. Here the ranges of each variable (distance or 
time and running speed) were split into 200 bins each. Mutual information was 
calculated for each session separately. Gain change trials were excluded from this 
analysis.

To compute the percent weighting of visual cues during gain changes, baseline 
average speed traces were stretched by varying amounts and correlated with gain 
changed running speed profiles. The stretch factor with the highest correlation was 
chosen. We then plotted −1 1

gain factor  versus ∣ − ∣1 stretch factor  (Fig. 7d). Taking 
the absolute value displayed gain decreases and gain increases on the same axis, 
and taking the reciprocal of the gain factor was necessary because this analysis 
was done in real, not virtual, coordinates. Fully visual behavioral responses will lie 
along the 1:1 diagonal whereas fully locomotor behavioral responses will lie on the 
y =​ 0 line. We converted each of these points to a percentage (Fig. 7e) by computing

= × ∣ − ∣

−
percent 100 1 stretch factor

1
visual 1

gain factor

To test whether responses to gain manipulations systematically changed over 
time, possibly reflecting a slow learning or sensitization process, we computed 
visual percentages in each session separately and plotted them as a function of 
session number (Supplementary Fig. 17b).

Cell type classification. Cell type classification was based on open field 
recordings. To characterize open field firing fields, position data were binned into 
2.5 ×​ 2.5 cm bins and the path was smoothed with a 21-sample boxcar window 
filter. Maps for number of spikes and time were smoothed separately using a 
quasi-Gaussian kernel over the adjacent 5 ×​ 5 bins50. All data were speed filtered 
and only epochs of instantaneous running speeds ≥​2.5 cm/s included. Putative 
excitatory cells were separated from putative interneurons on the basis of mean 
open field firing rate. Putative interneurons (n =​ 79) had mean firing rate >​10 Hz  
in the open field. Putative excitatory cells (n =​ 702) were then classified as grid 
and border using published scores4,6,50. An adaptive smoothing method was 
used before the calculation of grid and border scores. To identify grid cells, we 
generated a grid score by taking a circular sample of the autocorrelation centered 
on the central peak and comparing it to rotated versions of the same circular 
sample (60 and 120 versus 30°, 90° and 150°)50. Border cells were identified using 
a previously published border score6. To define head direction cells, we plotted  
the firing rate of a neuron relative to the mouse’s directional heading, divided  
into 0.5-degree bins and smoothed with a 14.5-degree mean window filter.  
The strength of directional tuning was defined as the length of the mean 
vector for the circular distribution of firing rate. See “Speed cell analyses” for 
classification of speed cells.

To determine score thresholds for cell classification, we performed a shuffling 
procedure50. For each cell, spikes were time shifted along the animal’s recorded 
trajectory by a random interval (ranging from 20 ms to the total trial length minus 
20 ms), with the end of the trial wrapped to the beginning. This procedure was 
repeated 100 times for each cell, with a firing rate map and relevant score (grid 
score, border score, mean vector length score) computed for each permutation. 
Cells were classified as a particular functional cell type when their score exceeded 
the 95th percentile of scores generated in the shuffled dataset (grid score 
P95 =​ 0.349, border score P95 =​ 0.523, head direction score P95 =​ 0.154)50,51. Spatial 
VR cells (Supplementary Fig. 12) were defined as cells that were not classified as 
grid, border or head direction, but had spatial stability >​0.5 in VR (see “Grid and 
border cell analyses” for definition of spatial stability).

Grid and border cell analyses. Spatial stability in VR. In the VR environment, 
firing rate vectors were generated by splitting the track into 2-cm bins and dividing 
the number of spikes in each bin by the dwell time in that bin. Periods when the 
mouse’s speed was less than 2 cm/s were excluded from analysis. The resulting 
firing rate vector was smoothed using a Gaussian filter (s.d. =​ 2 cm). Spatial stability 
was defined as the correlation of the firing rate map generated separately in the first 
versus second half of the recording session.

Firing patterns of grid and border cells during baseline sessions. To check for 
non-uniformities in grid and border cell firing rate across the track (Fig. 1e), we 
analyzed grid and border cells with spatial stability >​0.2, ensuring that the cells 
had significant positional tuning. Repeated-measures ANOVA with Greenhouse–
Geisser correction was used to test for the influence of spatial position on the 
population firing rate of grid and border cells (Fig. 1e). To create the percentiles 

shown on the average tuning curve plot (Fig. 1e), 2-cm spatial bins were shuffled 
randomly with respect to the track, differently for each cell (1,000 shuffles). Then 
the 5th, 50th and 95th percentiles of firing rate were computed for each spatial bin 
in the shuffled data.

Grid and border cell analyses in gain manipulations. To analyze changes in grid  
and border cell firing patterns during gain changes, we compared the A and the  
B period of gain manipulation sessions. While the A period was usually 15 or more 
trials, for these analyses we only used the last n trials of A, where n is the number 
of trials in B, thereby matching the number of trials between the two periods.  
To be kept for analysis, cells had to have a firing rate of at least 0.2 Hz and 
stability >​0.2 in both periods. The firing patterns of this set of cells, which were 
the majority, were therefore nonrandom and could be meaningfully analyzed. 
Some cells were recorded during multiple gain manipulations. For these cells, gain 
manipulation sessions that passed the firing rate and stability thresholds were 
analyzed separately and then averaged together before reporting final statistics.  
All analyses of grid and border cell responses to gain manipulations were 
performed in the virtual reference frame; that is, with respect to virtual position  
on the track rather than real distance run on the ball.

Computing cross-correlations and autocorrelations. Cross-correlations were 
computed between the A- and B-period firing rate maps, and autocorrelations  
were computed for the two periods separately for grid and border cells (Figs. 3b,c  
and 6c,e), as well as spatial VR cells (Supplementary Fig. 12d–f) and head 
direction cells (Supplementary Fig. 13d–f). To estimate the percent rescaling from 
autocorrelations, the mean baseline (A period) autocorrelation map was stretched 
by different amounts (0.5 to 1.5 in increments of 0.01) and correlated with the 
average gain change (B period) autocorrelation map, using linear interpolation 
where necessary to match the stretched A-period data to the B-period data 
(Figs. 3c and 6e and Supplementary Figs. 12f and 13f). This was also done for 
each grid cell individually (values reported in the Results). In addition, for grid 
and border cells, we computed firing rate on single trials, in the same manner 
as the full session, and created single-trial autocorrelation maps that were then 
averaged across trials (Supplementary Fig. 7d) or shown for each trial individually 
(Supplementary Fig. 7e). This allowed us to include unstable cells (stability <​ 0.2), 
which may have firing rate maps that drift across trials but consistent field size 
from trial to trial. To test whether scale changes were due to a simple rescaling 
of the baseline pattern, baseline firing rate maps were stretched (0.5 to 1.5 in 
increments of 0.01) and correlated with gain change maps. The average correlation 
at each stretch value was computed for grid and border cells in gain increases and 
gain decreases (Supplementary Fig. 6g).

Outer products of firing rate maps. We visualized A–B cross-correlations across all 
locations on the track by computing average outer products between the A- and 
B-period firing rate maps (Supplementary Fig. 8a). Specifically, for each cell we 
normalized the A- and B-period firing rate vectors by subtracting the mean and 
dividing by the s.d. Then we computed the outer product matrix, whose i,jth entry is

⋅��frA frBi j

where �frAi
 is the normalized firing rate at position i in the A period and �frBj

 is the 
normalized firing rate at position j in the B period. Outer product matrices were 
averaged across cells. Outer products were also taken between the A period and 
itself and the B period and itself.

Computing cross-correlations and autocorrelations for different track segments. We 
checked whether the phase shifts and scale changes seen in grid cells varied across 
the track by computing cross- and auto-correlations in the three segments of the 
track with different patterns on the walls, which could possibly be associated 
with different strengths of landmark input (Supplementary Fig. 8b,c). Population 
averages of cross- and autocorrelations in these three track segments were 
computed, and cells were also analyzed individually. Locations of peaks in the 
cross-correlation were used to identify the phase shift for each cell, and the scale 
changes were estimated by identifying the point at which the single-cell firing rate 
autocorrelation fell below 0.2. One-way ANOVA on individual cells’ phase shifts 
and scale changes did not identify differences between these values in different 
segments of the track (Supplementary Fig. 8b,c).

Identification of significant grid and border firing fields. To further analyze 
individual cells’ responses, we identified significant firing fields in grid and border 
cells as follows (Supplementary Fig. 6b)52. First, shuffled firing rate distributions 
were created by shuffling spikes by a constant temporal offset (ranging from 20 ms 
to the total trial length minus 20 ms), which was different for each trial, 1,000 times 
and recomputing the smoothed firing rate for each permutation. Then firing fields 
were identified as contiguous groups of at least three bins that exceeded the 85th 
percentile of the shuffled distribution. Fields were extended by no more than one 
bin to the left and/or right if this adjacent bin exceeded the 70th percentile of the 
shuffled distribution. Fields were excluded if they did not have spikes on more than 
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20% of trials, thus excluding fields that had spikes on only 1 of 5 trials during gain 
decreases or 2 of 10 trials during gain increases. Fields were combined if there was 
only one non-field bin separating them.

Analysis of grid cells on a real linear track. Spiking data from grid cells recorded 
while animals navigated a real linear track (Supplementary Fig. 4g) were taken 
from a published study22. This dataset contained 64 grid cells from 7 male mice. 
Grid cells were identified on the basis of separate open field recordings in exactly 
the same manner as in the rest of this paper. Linear track sessions were split into 
left-moving and right-moving epochs on the basis of speed thresholds of >​2 cm/s 
(right-moving) and <​ –2 cm/s, after the speed trace had been smoothed with a 
Gaussian kernel (s.d. =​ 200 ms). Half-and-half stability was computed for left-
moving and right-moving epochs separately and then averaged together by cell 
(Supplementary Fig. 4h).

Speed cell analyses. We identified speed cells as follows. Instantaneous speed was 
calculated by dividing change in position by change in time for each temporal bin 
(OF =​ 20 ms, VR =​ 16.7 ms). Periods when the animal moved <​2 cm/s or >​100 cm/s 
were removed. The speed trace was smoothed with a Gaussian kernel (s.d. =​ 10 
bins, or 200 ms in OF, 167 ms in VR). Instantaneous firing rate was estimated by 
smoothing the vector of spike counts in each time bin with a Gaussian kernel 
(s.d. =​ 20 bins, or 400 ms in open field, 334 ms in VR). The speed score was defined as 
the Pearson correlation between instantaneous speed and instantaneous firing rate8. 
The speed slope and intercept were calculated using least-squares linear regression. 
We identified speed cells as neurons with speed score higher than the 95th percentile 
of shuffled distributions in both open field and VR (P95 open field =​ 0.06, P95 
VR =​ 0.12; shuffling procedure performed in the same manner as that for grid, 
border and head direction cells). Because running speed and position were correlated 
in the VR environment (Supplementary Fig. 2), we next split the track into eight 
50-cm bins and required that the average of the speed scores calculated separately 
in each bin, weighted by the number of spikes in each bin, be greater than the 95th 
percentile of a shuffled distribution (P95 =​ 0.10). Specifically, this score was

ρ
ρ

=
∑ = n

n
i i i

binned
1

8

where n is the total number of spikes, i is the spatial bin (one of eight 50-cm bins 
along the 400-cm track), ni is the number of spikes in the ith bin, and ρi is the speed 
score calculated in the ith bin. For gain manipulation sessions, speed cells had to 
meet the two VR criteria in both the A and the B periods, as well as the open field 
criterion. Speed cell response to gain manipulations was analyzed by calculating 
the speed score relative to real running speed (real cm/s) because speeds did not 
vary between baseline and gain changes (Supplementary Fig. 2), making it more 
straightforward to compare data in these coordinates. To visualize speed cell data, 
we split the range of running speed and instantaneous firing rate into 10 bins each 
and created 2D heat maps in which the intensity of each bin was proportional to the 
amount of time that speed and firing rate were within that bin (for example, Fig. 4b).

To calculate the degree to which visual versus locomotor cues drove speed cells 
during gain changes, we examined the slopes of linear fits to A- and B-period data 
(Fig. 4). These slopes were converted to an angle as follows:
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Because all slopes were positive by the definition of speed cells, these angles  
ranged between 0 and π​/2 (0 and 90°). We converted angles into percent visual 
weights as follows:
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−π
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where G is the gain factor (0.5 in gain decrease, 1.5 in gain increase). As a control, 
we performed the same analyses on data from the A′​ period (Supplementary Fig. 10a).  
Only the first 10 trials of the A′​ period were used to match trial numbers with gain 
increases. Finally, quadratic fits to data were computed in addition to linear fits 
using least-squares regression (Supplementary Fig. 10b):

θ θ θ= + +fr s s0 1 2
2

where fr is instantaneous speed cell firing rate and s is instantaneous running 
speed. We added the constraints θ0 ≥​ 0, θ1 ≥​ 0 and θ2 ≤​ 0 to give these fits a 
saturating shape.

Theta analyses. We analyzed local field potential (LFP) theta oscillations as 
follows. For each session, LFP signals were extracted and sampled at 250 Hz, and 
a theta score was calculated as the ratio between power in the 6–10 Hz band and 
the 10–14 Hz band. To proceed, we required that this score be greater than 3. We 
then pooled data by mouse by concatenating LFP traces from multiple sessions. 

This step was necessary because individual sessions, with 5 or 10 gain change trials, 
were too short to adequately estimate theta frequency–running speed slopes.  
We excluded mice with fewer than 3 sessions with significant theta for the same 
reason (3 mice excluded: m4, m17 and m20). One mouse did not run any gain 
increase sessions (m1). This left 17 mice with 89 sessions (gain decrease) and  
16 mice with 95 sessions (gain increase). We filtered the LFP using a third-order 
bandpass Butterworth filter between 4 and 12 Hz, computed the power spectrum 
and found the frequency with peak power in baseline, gain decrease and gain 
increase (Supplementary Fig. 11a). We calculated instantaneous theta frequency, 
amplitude and phase using a Hilbert transform. In periods where running speed 
was greater than 5 cm/s, the slope and intercept of theta frequency with respect to 
running speed were calculated using least-squares linear regression. Slopes and 
intercepts of linear fits were compared between baseline, gain decrease and gain 
increase (Supplementary Fig. 11b). Slope changes were converted into an angle 
that varied between 0 and 90°, with full locomotor weighting corresponding to an 
angle of 45° and full visual weighting corresponding to arctan(0.5), or 26.6°, in gain 
decrease and arctan(1.5), or 56.3°, in gain increase (Supplementary Fig. 11c). These 
angles were then converted into percentage weights of visual versus locomotor cues 
(Supplementary Fig. 11c).

Pairs of grid and speed cells. To analyze correlations between grid and speed cells, 
we identified all pairs of recorded units in which one was a grid cell and the other 
was a speed cell (Supplementary Fig. 14a). Conjunctive grid ×​ speed cells were 
also included in this analysis. Recordings from the same pair in different sessions 
were treated as separate data points (26 grid cells, 17 speed cells and 11 conjunctive 
grid ×​ speed, 58 unique grid–speed pairs). We computed the percent weighting 
of visual cues based on the change in speed cell slope (Fig. 4) and the change 
in field size (Supplementary Fig. 6c,d) and correlated these metrics across pairs 
(Supplementary Fig. 14b). We then averaged speed slopes and field sizes by session, 
recomputed visual weights, and computed correlations across sessions in which 
both speed and grid cells were recorded (Supplementary Fig. 14c).

Optic flow track. During optic flow experiments (Supplementary Fig. 16), mice ran 
on a 400-cm track with black and white bars on the walls (spatial period =​ 13 cm) 
but no visual landmarks along the length of the track. On the optic flow track, 
average angular velocities of the visual cues during peak running speeds ranged 
from 0° s−1 straight ahead to 240° s−1 at 90 degrees to the mouse. These values are 
well within the range at which visual cortex neurons respond to moving bars40. Grid 
cells drifted slowly on the cue-rich track, as in previous observations of grid cells in 
VR53 (Supplementary Fig. 16a). As this led to lower whole-session stability on the 
cue-rich track, we examined trial-to-trial stability as follows (Supplementary Fig. 
16b,c). First, single-trial firing rate vectors were created by smoothing the vector of 
spike counts in each spatial bin for each trial with a Gaussian kernel (s.d. =​ 5 cm). 
We then calculated the Pearson correlation between single-trial firing rate vectors in 
every pair of adjacent trials and averaged over trials. A sliding window analysis was 
used to measure the stability of the firing rate maps as a function of position on the 
track. Firing rate maps were computed separately for the first and second half of the 
session. We then calculated Pearson’s correlation between the firing rate in the first 
and second half of the session in a 50-cm window that was moved across the track 
in increments of 1 bin. To assess the response of speed cells, we compared cells that 
passed the speed cell criteria on the cue-rich track to cells that passed on the optic 
flow track (Supplementary Fig. 16d).

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. Custom MATLAB scripts used to analyze the data are available 
upon reasonable request.

Data availability. All data are available from the authors upon reasonable request.
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