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A One-dimensional model

One dimensional representation of an attractor network Consider a large population of neurons living
on a one-dimensional neural sheet. For analytical simplicity, we consider the sheet to be continuous, so that
position on the sheet is described by a continuous coordinate u, with the firing rate of a neuron at position u
given by s(u). Each neuron interacts with neighboring neurons through a translation-invariant connectivity,
yielding the dynamics

ds (u)
dt

= −s(u) + F
[∫

u′
J(u− u′)s(u′)

]
. (1)

Here J(u− u′) defines the synaptic weight from a cell at position u′ to one at u, and F is a nonlinearity.
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Figure 1: Schematic of a one-dimensional periodic neural sheet with short-range excitation (red arrows) and
longer range inhibition (blue arrows). This yields a 1D family of bump-attractor states sSS (u− θA), which are
mapped onto a single periodic variable θA representing the translation of the bump pattern.

Many appropriate choices of J and F , corresponding for example to short range excitation and long range
inhibition, will yield a family of stable, or steady state, localized bump activity patterns sSS (u− θA),
parameterized by the position of their peak θA. Furthermore, for simplicity, we assume periodic boundary
conditions on the neural sheet; both the coordinate u along the sheet, and the coordinate θA specifying a
point on the manifold of stable attractor patterns, are angles defined modulo 2π (Fig. 1).

One-dimensional representation of path integration We can mathematically show (details in [1]) that
in this representation, adding velocity-conjuctive cells to the network yields dynamics for path integration
(Fig. 2a, b):

dθA

dt
= v · kA. (2)
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Here kA is a constant of proportionality that relates animal velocity to the rate of phase advance in the
attractor network (2π/Grid Spacing). Solving Eq. 2 allows us to recover path integration, where the resulting
integrated attractor phase is only a function of the current position x(t):

θA(t) = θA(x(t)) = kA · x(t). (3)

The observed firing rate of a cell at neural sheet position u is, likewise, simply a function of animal position
given by:

s (u, x) = sSS(u− θA(x)) = sSS(u− kA · x). (4)

Because sSS has a neural sheet periodicity of 2π, the spatial firing pattern will have a periodicity of 2π/kA.K
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Figure 2: Path integration achieved with a 1D neural sheet and velocity-conjunctive cells. a) When the
animal moves east, east-conjunctive cells with biased outgoing connections move the attractor pattern in
the positive u direction. b) When the animal moves west, the attractor pattern is moved in the negative u
direction. c) Schematic of a landmark cell correcting the attractor bump pattern. A single landmark cell will,
given enough time, pull the peak of the bump pattern towards the strongest landmark-attractor synapse,
regardless of the direction of the initial offset.

One Dimensional Representation of Landmark Cells We model landmark cells as sensory driven cells
i whose firing rates are entirely a function of the animal’s immediate position: Firingi(t) = Hi(x(t)). We
assume every landmark cell forms feed-forward connections to all cells in the attractor network with position
dependent synaptic weights Wi(u). This yields a complex coupled dynamics between neurons and
synapses, where the distribution of attractor network activity patterns, or phases, drives plasticity in
synapses from landmark cells to the attractor network (Fig. 2c). In turn, these synaptic weights modify the
evolution of the attractor network phase. Despite this complexity, we will see that these dynamics reduce to a
simple set of effective dynamics for short-term orientation:

d

dt
θA = kA · dx/dt︸ ︷︷ ︸

Path Integration

+
∑
i

Hi(x(t))Force
(
θiL − θA

)︸ ︷︷ ︸
Landmark Cells

, (5)

where all the synaptic weights of a landmark cell Wi(u) can be represented by a single variable θiL. We note
that the dynamics for orientation of the attractor state to landmarks are first-order, in that the combination of
path-integration and landmark input determine the velocity of position self-estimate, not the acceleration.
This force function has the same qualitative form as sin

(
θiL − θA

)
, so we approximate it as such.

We next turn to understanding the outcome of this coupled dynamics and how it relates to mapping the
environment.
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Linear Track Consider an animal running along a linear track at constant running velocity, having a
position x = vt. The animal has a 1D attractor network with state θA which evolves with a path integration
gain of kA. Without landmarks, the equation for the state of the attractor network is:

dθA

dt
= kAv. (6)

Consider a scenario in which landmark cells that have uniformly distributed landmark fields are added. After
the landmark positions have been learned, each landmark cell has a learned state of θiL = kA(G = 1)xi,
where xi is the firing field center of that landmark cell. Instead of considering individual landmark cells, it is
simpler to consider average phase θL(x) of landmark cells firing at a particular location x. After learning, the
landmark phases match up with the path integration of the animal, and θL(x) = kL(G = 1)x, where
kL(G = 1) = kA(G = 1) = k0, the path-integration constant the animal had when it was learning the
environment. We note that k0 is the baseline spatial frequency (2π/Grid Spacing). Eq. 5 then becomes:

dθA

dt
= kAv + ω · sin (θL(x(t))− θA(t))

= kAv + ω · sin (kLvt− θA(t)).
(7)

Gain Manipulation When the gain value is manipulated, the velocity in virtual reality (VR) space
becomes Gv, x(t) = Gvt, and the attractor dynamics become:

dθA

dt
= kAv + ω · sin (θL(x(t))− θA(t))

= kAv + ω · sin (k0Gvt− θA(t)).
(8)

This is equivalent to Eq. 7 where we make the scaling kL(G) = k0 ·G.

kA(G)v + ω · sin (kL(G)vt− θA(t)). (9)

If self-motion input is purely visual, then kA(G) will also be proportional to gain, and there is no mismatch
between kA(G), kL(G); if self-motion input is purely locomotor, then kA(G) is independent of gain. The
general relation is:

kA(G) = k0 · (1 + ∆G[1−%Loc(G)]) (10)

Where %Loc is the percent of velocity input that is locomotor, and ∆G = G− 1. We examine the case where
kA 6= kL.

Solving To solve Eq. 9, it is helpful to move to the rotating reference frame of the landmarks, to examine
how the difference between the phase of the attractor network and the average phase of landmark cells
which are firing, ∆θ(t) = [θA(t)− θL(x(t))], evolves as:

d∆θ
dt

= d[θA(t)− θL(x(t))]
dt

= (kA − kL) v + ω · sin (θL (x(t))− θA(t)) = (kA − kL) v− ωsin(∆θ). (11)

To understand which ratios are important, we make the above equations dimensionless by defining a
dimensionless time:

τ = t/ω (12)
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giving dimensionless equations

d∆θ
dτ

= (kA − kL) v
ω

− sin(∆θ) = D− sin(∆θ) (13)

where we have defined a dimensionless “Decoherence number”

D(G) = (kA(G)− kL(G)) v
ω

= −k0 ·
v ·%Loc(G) ·∆G

ω
. (14)

The behavior of Eq. 13, and thus the measured firing rate maps, falls into three regimes defined by the
decoherence number.

e D = 0 0 < |D| < 1 |D| > 1
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Figure 3: The three regimes of Eq. 13. In the first regime, where D = 0, the steady state will be at ∆θ = 0.
In the second, subcritical, regime, where 0 < |D| < 1, there will still be a steady state, but with a shifted
phase ∆θ having the same sign as D. In the third, critical regime, there is no steady state, and ∆θ(t) instead
reaches a steady cycle. Positive decoherence numbers are shown here; negative decoherence numbers will
give rise to negative shifts of equal magnitude. See also Fig. 5 in the main text.

No gain manipulation (zero decoherence number) When the linear track has not been manipulated,
the internal representations of path integration and landmarks are in register, i.e. kL = kA. This means D = 0
(Fig. 3 Left). Therefore, ∆θ = 0, and the attractor network phase is exactly the phase of surrounding
landmarks.

(θA)G=1 (x) = kLx (15)

Small gain manipulation (small decoherence number) When |D| < 1, Eq. 11 is solved with a constant
shift between the the attractor network state and the landmarks, which saturates at a fixed value of
∆θ(t) = sin−1 (D) (Fig. 3 Middle). This gives us a gain-manipulated solution which is simply a phase-shifted
version of the non gain-manipulated solution:

(θA)GM (x) = k0 · x + sin−1 (D) , (16)

where the phase shift depends on a combination of the animal speed, gain manipulation, and landmark
strength. We can express this phase shift as a spatial shift in observed firing patterns as a function of virtual
position x:
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(θA)GM (x) = k0 ·

[
x + sin−1 (D)

k0

]
= (θA)G=1 (x + ∆x) , (17)

where the spatial shift is given by:

∆x = sin−1 (D)
k0

. (18)

Large gain manipulation (large decoherence number) When |D| > 1, there is no constant ∆θ which
can solve Eq. 11; instead, ∆θ(t) follows a cyclic pattern (Fig. 3 Right). Despite this remapping, the effect of
landmarks on the attractor network does not disappear entirely. This leads to two experimental signatures
that we can see.

Cross-correlation due to uneven precession While all ∆θ will be seen in the critical regime, they will
not be observed at equal frequencies. For example, when D > 1 (gain decrease condition), when the
advancing attractor phase is behind the landmark phase, the pull from landmarks accelerates the relative
precession rate. When the attractor phase is ahead of the landmark phase, the pull from landmarks slows
the relative precession (Fig. 4a) This waxing and waning of the precession rate results in the network
spending more time in an advanced attractor phase:

Prob(∆θ) ∝ [d∆θ/dt]−1 ∝ [D− sin(∆θ)]−1 (19)

leading to a small peak in the cross-correlation (Main Figure 5g.)

Mean Precession Rate The new firing field spacing will be in between the original spacing and the
spacing given by the new velocity input; this is because the effect of landmarks on the attractor network does
not disappear entirely. Instead, the new number of fields will be a weighted average between the original
number and the number given by the new gain condition:

Fractional Change in Number of Fields = kA − kL

kL
· Precess(D), (20)

where the mean procession rate Precess(D) is a function of the decoherence number that varies between 0
and 1 (Fig. 4b).

Proof of mean precession rate We can calculate the dimensionless rate of precession by calculating the
change in time with respect to precession.

dτ

d∆θ = [D− sin(∆θ)]−1 ⇒ Precession Time = τ(∆θ = 2π)− τ(∆θ = 0) =
∫ 2π

∆φ=0
[D− sin(∆θ)]−1 (21)

This gives a mean precession rate of

Precession Rate = 2π∫ 2π
0 [D− sin(∆θ)]−1 = D · 2π∫ 2π

0

[
1− sin(∆θ)

D

]−1 = D · Precess(D) (22)
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Figure 4: a) Schematic of waxing and waning of precession rates. At ∆θ > 0 the precession rate is slowed
by the landmarks (High Probability of Observing), while at ∆θ < 0 the precession is accelerated (Low
Probability of Observing). b) Plot of the precession number as a function of decoherence number. For
|D| < 1, Precess(D) = 0. In the limit of D→ 1+, the system is barely critical and precesses very slowly as
Precess(D)→ 0+. In the limit of D→∞, Precess(D)→ 1. Note that the same behavior applies for negative
decoherence numbers, as Precess(D) = Precess(−D).

Where we have defined the dimensionless “precession number” which is a function of the decoherence
number

Precess(D) = 2π∫ 2π
0

[
1− sin(∆θ)

D

]−1
.

(23)

Moving back to our original units gives the average rate of phase advancement, which we can simplify

¯(
dθ

dt

)
= dθL

dt
+ ∆̄θ

dt
= vkL + D · Precess(D) · ω = vkL + (kA − kL) v

ω
· Precess(D) · ω = (24)

v · [kL (1− Precess(D)) + kA · Precess(D)], (25)

and thus the number of fields observed will be given by a weighted average of kL and kA, with the weighting
given by the decoherence number:

Fractional Change in Number of Fields = kA − kL

kL
· Precess(D) (26)

B Effect of grid spacing

Here, we consider the dependence of our results on grid spacing. In the model, grid spacing is inversely
proportional to kA(G = 1), which we call k0. The decoherence number can then be written as

D(G) = v ·∆k
ω

= −v · k0 ·%Loc(G) ·∆G
ω

(27)

Where %Loc is the percent of velocity input that is locomotor, and ∆G = G− 1. Note that the decoherence
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number will thus be inversely proportional to grid spacing (2π/k0). 1 One prediction of Eq. 27 is that the
decoherence transition will occur at less extreme gain values for grid cells with small spacing, as
D ∝ k0 ·∆G (Supplementary Fig. 15a).

Since we only recorded a small number of gain values, we cannot observe a grid-spacing-dependent
decoherence transition. However, we are able to examine the effect of grid spacing on firing pattern shifts in
the sub-critical regime in our dataset. Counterintuitively, the predicted shift in firing patterns at fixed gain will
not have a strong dependence of the grid spacing. According to Eq. 16, the phase shift will be larger for
small grid spacing:

∆θ = sin−1 (D) = −sin−1
(

k0 ·
v ·%Loc ·∆G

ω

)
∝∼ k0 (28)

Where the last step comes from the small-angle approximation sin−1(D) ≈ D. However, the spatial shift is
equal to the phase shift times the grid spacing, and thus will yield only a slight dependence on grid spacing
(Supplementary Fig. 15b):

∆x = sin−1 (D)/k0 = −
sin−1

(
k0 · v·%Loc·∆G

ω

)
k0

≈ v ·%Loc ·∆G
ω

. (29)

This is what we observe in our data (Supplementary Fig. 15c-f).

C Generalization to Two-Dimensional Attractor Networks

For generalization to two dimensional attractor networks, we now have grid cells on a two-dimensional
neural sheet (Fig. 5 a). The state of the attractor network is represented by a vector ~θA. This vector is
periodic, and unlike the 1D attractor state θA, it is periodic on a rhombus (Fig. 5 b), such that:

~θA ≡ ~θA + (2π, 0) ≡ ~θA + (π,
√

3π), (30)

where the vector (π,
√

3π) = 2π(cos(60◦), sin(60◦)) corresponds to the 60◦ periodicity of the network.
Likewise, the multiple peak synaptic strengths of each landmark cell can be represented as a
two-dimensional vector ~θL(Fig. 5 f1) which lives on the same periodic rhombus as ~θA:

~θL ≡ ~θL + (2π, 0) ≡ ~θL + (π,
√

3π) (31)

The full dynamics are:

d~θA

dt
= ~kAv + ω · Force

(
~θA(t)− ~θL(t)

)
,

d~θL

dt
= ~kLv. (32)

After learning, the landmark phases match up with the path integration of the animal, and
~θA(x) = ~kL(G = 1)x, where ~kA(G = 1) = ~kL(G = 1) = ~k0, the path-integration constant the animal had when
it was learning the environment. The magnitude of ~k0 is inversely proportional to the grid spacing; its
direction gives the angle of the observed slice through the 2D grid pattern [2]. The force law (Fig. 5 d)

1It is possible that ω and %Loc are functions of k0. Here we assume they are both held constant.
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chosen is a truncated sin function:

Force( ~∆θ) =

 − sin
(∣∣∣ ~∆θ∣∣∣) · ~∆θ

| ~∆θ |

∣∣∣ ~∆θ ∣∣∣ < π

0
∣∣∣ ~∆θ∣∣∣ ≥ π. (33)

We can, likewise, get a set of dimensionless equations similar to in the 1D case

d ~∆θ
dτ

= v

(
~kA −~kL

)
v

ω
− Force( ~∆θ) = ~D− Force( ~∆θ) (34)

Where we have defined a dimensionless decoherence vector

~D(G) =

(
~kA(G)−~kL(G)

)
v

ω
. (35)

For convenience, we decompose this decoherence vector into a magnitude and direction, ~D = D · D̂.
We can likewise characterize this into three regimes, analogous to the three regimes of Eq. 13.

No gain manipulation (zero decoherence vector) When the linear track has not been manipulated, the
internal representations of path integration and landmarks are in register, meaning ~D = 0. Therefore, ~∆θ = 0,
and the attractor network phase as function of position x is exactly the phase of surrounding landmarks.(

~θA

)
G=1

(x) = ~kLx (36)

Small gain manipulation (small decoherence vector) When |~D| < 1, Eq. 34 is solved with a constant
shift between the the attractor network state and the landmarks(Fig. 5 e1), which saturates at a fixed value of

~∆θ(t) = sin−1 (D) · D̂ (37)

This gives us a gain-manipulated solution which is simply a phase-shifted version of the non
gain-manipulated solution: (

~θA

)
GM

(x) = ~k0 · x + sin−1 (D) · D̂ (38)

where the phase shift depends on a combination of the animal speed, gain manipulation, and landmark
strength. Because the decoherence vector points in the same direction as ~kL, we can express this phase
shift as a spatial shift in observed firing patterns as a function of virtual position x:

(
~θA

)
GM

(x) = ~k0 ·

x + sin−1 (D)∣∣∣~k0

∣∣∣
 = (θA)G=1 (x + ∆x) (39)

Where the spatial shift is given by:

∆x = sin−1 (D)∣∣∣~k0

∣∣∣ . (40)
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Large gain manipulation (large decoherence vector) When |~D| > 1, there is no constant ~∆θ which can
solve Eq. 34; instead, ~∆θ(t) follows a complicated trajectory. Unlike the 1D case, the decohered regime has
many sub-regimes. When ~k0, and thus ~D point in the (1, 0) or the (1/2,

√
3/2) directions, the behavior is

effectively one-dimensional-this corresponds to the linear track being perfectly oriented along a particular
axis of the animal’s grid, and we recover the solution of Eq. 13, yielding rescaling of patterns (Fig. 5 f1).

However, when ~k0, and thus ~D are not entirely aligned with a periodic direction, we see a steady cycle that
involves shifts in ~∆θ orthogonal to the decoherence vector (Fig. 5 e2). The resulting slice through a 2D grid
will have some combination of an orthogonal offset (Fig. 5 f2), a mean angular offset (Fig. 5 f3), and
curvature (Fig. 5 f4). This will not only change the observed number of firing fields, but will also cause some
fields to appear and disappear entirely, yielding not only rescaling but also remapping. We observed these
effects in our data (Supplementary Fig. 5 and 6). There are other decohered sub-regimes which involve
simultaneous precession in multiple directions; these yield the same effects of orthogonal shift, angular
offset, and curvature of the 2D slice.
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Figure 5: a) A 2D neural sheet with short-range excitation and long-range inhibition, analogous to Fig. 1.
Each neuron on the continuous sheet now has coordinates u = (u1, u2). b) A 2D analogue of the reduced
dimension attractor state representation of Fig. 1. A periodic multi-bump state (high firing rate in red) can
be represented by a two-dimensional variable ~θA over the periodic rhombus. Lines drawn on top represent
the “unit cell” to guide the eye. As the animal moves at a rate of v, the underlying attractor state moves
at a rate of ~kA · v. c) The landmark cell Hebbian weights have the same profile as 2D attractor states. As
the animal travels along the track, the peak synaptic weight of firing landmark cells will also be translated.
d) Analogously, there is a force law, where the state of an attractor network ~θA will be pulled towards the
landmark state ~θL. e1) Schematic of one of many decohered regimes. When |~D| < 1, ∆~θA approaches
a steady state, yielding a constant shift in observed firing fields. e2) When |~D| > 1, there is no steady
state, and ∆~θA will precess around the rhombus. The decoherence vector can be decomposed into two
components-one parallel to the periodicity of the rhombus, and another which is orthogonal. There will be
precession in the parallel direction (horizontal), and a net (but fluctuating) shift in the orthogonal (vertical)
direction. f1) If a decohered ~θA took the same path through the 2D grid as it did in the original gain condition,
this would result in a simple rescaling of the observed firing pattern. However, because ∆~θA evolves in 2D,
it will not in general precess around ∆~θA = 0. The dynamics in general will yield a slice through a 2D grid
with some combination of orthogonal offset (f2), mean angular offset (f3), and curvature (f4). Each of these
effects will yield new and dropped fields, yielding not only rescaling but also remapping.
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