
Chaotic Balanced State in a Model of CorticalCircuitsC. van Vreeswijk and H. SompolinskyRacah Institute of Physics and Center for Neural ComputationHebrew UniversityJerusalem, 91904 Israel10 March 1998AbstractThe nature and origin of the temporal irregularity in the electricalactivity of cortical neurons in vivo are still not well understood. Weconsider the hypothesis that this irregularity is due to a balance ofexcitatory and inhibitory currents into the cortical cells. We study anetwork model with excitatory and inhibitory populations of simplebinary units. The internal feedback is mediated by relatively largesynaptic strengths, so that the magnitude of the total excitatory aswell as inhibitory feedback is much larger than the neuronal threshold.The connectivity is random and sparse. The mean number of connec-tions per unit is large but small compared to the total number of cellsin the network. The network also receives a large, temporally regularinput from external sources. An analytical solution of the mean-�eldtheory of this model which is exact in the limit of large network sizeis presented. This theory reveals a new cooperative stationary stateof large networks, which we term a balanced state. In this state, abalance between the excitatory and inhibitory inputs emerges dynam-ically for a wide range of parameters, resulting in a net input whosetemporal uctuations are of the same order as its mean. The inter-nal synaptic inputs act as a strong negative feedback, which linearizesthe population responses to the external drive despite the strong non-linearity of the individual cells. This feedback also greatly stabilizes1



the system's state and enables it to track a time-dependent input ontime scales much shorter than the time constant of a single cell. Thespatio-temporal statistics of the balanced state is calculated. It isshown that the auto-correlations decay on a short time scale yieldingan approximate Poissonian temporal statistics. The activity levels ofsingle cells are broadly distributed and their distribution exhibits askewed shape with a long power-law tail. The chaotic nature of thebalanced state is revealed by showing that the evolution of the micro-scopic state of the network is extremely sensitive to to small deviationsin its initial conditions. The balanced state generated by the sparsestrong connections is an asynchronous chaotic state. It is accompaniedby weak spatial cross-correlations, the strength of which vanishes inthe limit of large network size. This is in contrast to the synchronizedchaotic states exhibited by more conventional network models withhigh connectivity of weak synapses.1 IntroductionThe �ring patterns of neurons in the cortex of intact animals often exhibit astrong degree of temporal irregularity. This can be seen by the broad Inter-Spike-Interval Histogram (ISI) of cortical neurons which are typically close tothose generated by a Poisson process with a short refractory period (Abeles,1991, Bair et al. 1994, Burns and Webb 1976, Douglas et al. 1991, Softkyand Koch 1993). The irregular neuronal dynamics is also manifested in intra-cellular recordings of the membrane potential which exhibit strong temporaluctuations. One of the long standing problems in cortical dynamics is un-derstanding the origin of this irregularity and its computational implications(Douglas and Martin 1991, Ferster and Jagadeesh 1992). In vitro exper-iments show that cortical neurons �re in a relatively regular fashion whenthey are injected with a constant current. Thus the irregularity of the in vivoneuronal activity must be due to uctuations in their synaptic input (Holtet al. 1996, Mainen and Sejnowski 1995). These uctuations may be dueto variations in the intensity of the sensory stimuli or may result from thestochastic action of synapses. However, since cortical cells have thousands ofsynaptic contacts, one would expect that the summation of the synaptic in-puts at the soma averages out most of the uctuations in the synaptic inputand yields a membrane potential with only a small residual uctuation. This2



is a particularly di�cult issue in conditions where the cortex is vigorouslyactive so that the cell receives many synaptic inputs within a single integra-tion time constant (Holt et al. 1996, Softky and Koch 1993). One possibleresolution of this problem is to assume that the uctuating synaptic inputsare substantially correlated and therefore are not averaged out. Indeed, thespike trains of pairs of neurons in cortex and in thalamus are often corre-lated in a relatively narrow time scale (of the order of 10msec) (Abeles 1991,Gray and Singer 1989, Perkel et al. 1967a,b, Vaadia et al. 1995). However,the observed size of these correlations indicates that in general only a smallfraction of the neuronal activity is tightly correlated. Another possibility,which is addressed in this paper, is that although the inputs to a cell areonly weakly correlated, the cell is sensitive to the residual correlations in thesomatic potential.Several mechanisms that generate enhanced sensitivity of a cell to smalluctuations in its potential have been explored (Bell et al. 1994, Ermentroutand Gutkin 1996, Gerstein and Mandelbrot 1964, Shadlen and Newsome1994,1995, Softky 1995, Troyer and Miller 1996). One possibility is that theexcitatory and inhibitory inputs to a cortical cell are balanced in such a waythat leaves the cell's average potential close to threshold and its �ring pat-tern is therefore susceptible to small uctuations. An interesting questionthen is what might be the mechanism that leads to this balance. An in-teresting recent study (Tsodyks and Sejnowski 1995) explored the possibleinvolvement of local cortical dynamics in balancing excitation and inhibition.This numerical study invoked a strong stochasticity in the synaptic action inthe form of a large failure probability. In a related study (Amit and Brunel1996a,b), the variability in the network activity is at least partially due touctuating external inputs to the local network. In addition, both studies donot properly address important issues concerning the behavior of the modelsand the robustness of their variability as the network size is scaled-up.In this paper we investigate the hypothesis that the intrinsic deterministicdynamics of local cortical networks is su�cient to generate strong variabil-ity in the neuronal �ring patterns. Neuronal dynamics is highly non-linear,hence it may seem natural to expect that neuronal networks with deter-ministic dynamics will exhibit chaotic behavior. However, studies of simplemodels of large networks with a high degree of connectivity (Abbott andVan Vreeswijk 1993, Gerstner and Van Hemmen 1993, Grannan et al. 1992,Hansel et al. 1995, Van Vreeswijk 1996, Wilson and Cowan 1972) reveal3



that in the absence of external sources of strong stochastic noise they tendto settle into temporally ordered states of tonic �ring or oscillations. Recentextensive numerical study (Bush and Douglas 1991, Hansel and Sompolin-sky 1992,1996) of a model of local circuits in visual cortex with realisticconductance-based dynamics has shown the existence of parameter regimesin which these networks exhibit strongly irregular states, denoted as synchro-nized chaotic states. These chaotic states are generated by the emergenceof strong synchrony in the uctuating activity of di�erent neurons, which inturns generates self-consistently a strong uctuating feedback to each cell.Thus, this is a network realization of the scenario of correlated synapticinputs, mentioned above. The resulted patterns of activity show stronglysynchronized bursting patterns, tightly timed by the common inhibitory feed-back. While bursting patterns are sometimes observed in cortical networks,these synchronized chaotic states are hard to reconcile with the Poisson-likeweakly correlated �ring patterns, as is commonly observed in cortex.In this work we explore the possibility that local networks with intrinsicdynamics evolve towards states that are characterized by strong chaos in con-junction with weak cross-correlations, through the mechanism of balancingbetween excitation and inhibition. This possibility raises several questions:(I) What are the conditions under which a network evolves to a state inwhich the excitatory and inhibitory inputs are balanced. (II) What are thecharacteristics of this balanced state? Does the balanced state represent a co-operative state which is qualitatively distinct from the synchronized chaoticstate? (III) What are the functional advantages of the balanced state?We study the above questions using a network model with the simpli�eddynamics of binary elements. The architecture consists of excitatory and in-hibitory populations connected by sparse random connections. An essentialingredient of our model is the introduction of strong connections among theunits. A cell is connected, on the average, to K other cells and K is large.However, the gap between the threshold of the cell and its resting potentialis only of the order of pK excitatory inputs. Thus the network will saturateunless a dynamically developed balance between the excitatory inputs andthe inhibitory inputs to a cell emerges. Indeed, our analytical solution ofthe model in the limit of large network size shows that in a broad range ofparameters the network settles into a stable balanced state. An interestingfeature of the present theory is that it goes far beyond calculating the prop-erties of the macroscopic order parameters. The theory yields a complete4



statistical characterization of the balanced state. It shows that the balancedstate is associated with a strong Poisson-like �ring pattern and also with abroad inhomogeneity in the average rates of individual neurons. Finally, weaddress the possible functional implications of the balanced state by show-ing that the network is capable of fast tracking of temporal changes in theexternal input to the network.The outline of the paper is as follows: In Section 2 we present the model'sdynamics and architecture. Section 3 presents the mean-�eld dynamic equa-tions of the evolution in time of the two macroscopic order parameters whichare the rates of activity of the two subpopulations. The mean-�eld theory isexact in the limit of large network size, N , and 1 � K � N . In Section 4the behavior of the population rates in the balanced state is studied. Section5 is devoted to the spatial and temporal distribution of activity within thenetwork. Section 6 addresses the stability of the balanced state. It showsthat there is a comfortable parameter regime where the balanced state isstable. We also discuss what happens to the network when the balanced�xed-point is unstable. Section 7 considers the e�ect of inhomogeneity inthe local thresholds. We show that in the presence of inhomogeneity thedistribution of rates acquires a characteristic skewed shape with a long tail,qualitatively similar to the observed distribution of rates in populations ofneurons in the cortex of behaving monkeys. In Section 8, we evaluate thesensitivity of the temporal uctuations in the local instantaneous activitiesto a small change in the initial condition. We conclude that a small changein the initial condition leads rapidly to a complete loss of memory of theunperturbered initial conditions. Thus, our network shows the main charac-teristics of chaotic systems. Section 9 studies the dynamic response of thesystem to dynamic changes in the external input, and shows the fast trackingcapabilities of the network. In Section 10 we discuss the results and someopen issues. Details of the theory are outlined in Appendix A and B.A preliminary report on this work was published in Van Vreeswijk andSompolinsky (1996).2 The ModelWe consider a network of N1 excitatory and N2 inhibitory neurons. Thenetwork also receives input from excitatory neurons outside of the network5
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Figure 1: A schematic representation of the network architecture. Excitatory connectionsare shown as open circles, inhibitory ones as �lled circles.(see Fig. 1). We will use either the subscript 1 or E to denote the excitatorypopulation and 2 or I for the inhibitory one. The pattern of connectionsis random but �xed in time. The connection between the i-th postsynapticneuron of the k-th population and the j-th presynaptic neuron of the l-thpopulation, denoted J ijkl , is Jkl=pK with probability K=Nk and zero oth-erwise. Here k; l = 1; 2. The synaptic constants Jk 1 are positive and Jk 2negative. Thus, on average, K excitatory and K inhibitory neurons projectto each neuron. We will call K the connectivity index. The state of eachneuron is described by a binary variable �. The value � = 0 (� = 1) cor-responds to a quiescent (active) state. The network has an asynchronousdynamics where only one neuron updates it state at any given time. Theupdated state of the updating neuron at time t is�ik(t) = �(uik(t)) (2.1)where �(x) is the Heaviside function, �(x) = 0 for x � 0 and �(x) = 1 forx > 0. The total synaptic input, uik to the neuron, relative to the threshold,�k, at time t is uik(t) = 2Xl=1 NlXj=1J ijkl�jl (t) + u0k � �k: (2.2)where u0k denotes the constant external input to the k-th population. Asexplained in Appendix B the precise de�nition of the order of updates is notessential. One model is a stochastic model in which each neuron updates itsstate at time intervals which have Poisson statistics. This model is the sim-plest to analyze. However, it has the drawback that it introduces a stochastic6



element (the random choice of the updating neuron). An alternative modelis a fully deterministic one in which each neuron updates its state at equallyspaced times where the time between updates is di�erent for each neuron.We show in Appendix B that the two models have the same mean-�eld equa-tions. In both cases, the mean intervals between consecutive updates of aneuron of the k-th population is �k. We will use time units such that �E = 1so that the only independent time parameter is � � �I .To make correspondence with point processes we de�ne a spike as thetransition from the passive (0) to the active (1) state. Note that the �ringrate, rik, of neuron i in population k is di�erent from the the average value,mik(t), of �ik because, before the cell can spike, it �rst has to update to thepassive state. However if neuron i of the kth population updates to the activestate in two consecutive updates, the synapses projecting from this cell stayactive after the second update, even though no new spike is emitted. Howeverif mik, which we will call the activity rate, is small, the probability of twoconsecutive updates to the active state is low, and thus for small mik, theactivity rate and the �ring rate are nearly equal. Indeed if we assume that ateach update the probability of being in the active state is mik (which is verynearly true in this model for low rates as shown in section 5.3), the �ringrate is given by rik = mik(1�mik)=�k.An central ingredient of our model is the assumption that the total exci-tatory feedback current and the total inhibitory current into a cell are largecompared to the neuronal threshold. We model this by choosing thresholds �kthat are of order 1 and by assuming that the strength of individual synapsesis of order 1=pK, i:e:, the coe�cients Jkl are of order unity. Furthermore,as will be seen later it is crucial that the excitatory inputs from the externalsources too are large compared to the threshold. This is modeled by denotingthese inputs as u0k = Ekm0pK k = 1; 2 (2.3)where Ek is of order unity and 0 < m0 < 1 represents the mean activity ofthe external neurons. We will also use the notationE1 = E (2.4)for the external input to the excitatory population andE2 = I (2.5)7



for the external input to the inhibitory neurons. As noted above we assumethat the external input is temporally regular.Since the model neurons are threshold elements, the absolute scale of ukiis irrelevant. We therefore set JEE = JIE = 1 (2.6)so that the only connection parameters from the network are the inhibitoryand external ones, which we will denote asJE � �JEI ; JI � �JII (2.7)where JI ; JE > 0.3 Mean-Field Equations for Population RatesThe dynamics of our model can be described by mean-�eld theory, whichis exact in the limit of large Nk. To de�ne this limit we will assume thatNI=NE is held �xed as the network size N = NE + NI grows. The natureof the mean-�eld theory depends on the assumed relationship between thenetwork size and the connectivity index. Conventional mean-�eld theoryassumes that the networks are fully connected, which is de�ned here to meanthat K=N is �xed as N !1. Here we assume sparse connectivity de�ned byassuming that K �xed as N grows. As explained in the Introduction, we areprimarily interested in temporal variability that is present in highly connectednetworks. Highly connected networks are either fully connected or sparselyconnected with large connectivity index. Therefore we will focus on the caseof large K. Technically, we will �rst take the limit N ! 1 and then thelimitK !1. In reality, networks have a large �xed size and connectivity sothat the distinction between full and sparse connectivity may be problematic.Nevertheless, roughly speaking, the sparse limit is appropriate as long as1� K � Nk ; k = 1; 2: (3.1)The mean-�eld theory of our model for arbitrary �xed K is presented inAppendix A. Taking the large K limit provides a substantial simpli�cationof the mean-�eld equations. In this limit most of the properties of the systemcan be expressed in terms of the �rst and second moments of the neuronal8



activity lavels as will be shown here and in the following sections. We �rstconsider the population-averaged �ring rates of the excitatory and inhibitorycells as mk(t) = [�ik(t)] = 1Nk NkXi=1 �ik(t) ; k = 1; 2 (3.2)where [:::] denotes a population average. In Appendix A we show that theaverage activities satisfy in the large K limit�k ddtmk(t) = �mk(t) + H  �ukp�k! (3.3)Here H is the complementary error-functionH(z) � Z 1z dxp2�e�x2=2 : (3.4)shown in Fig. 2. the quantities uk(t) and �k(t) areuk(t) = pK  2Xl=1 Jklml(t) + Ekm0!� �k (3.5)and �k(t) = 2Xl=1 (Jkl)2ml(t) ; (3.6)respectively. Equation (3.5) denotes the population-average of the total inputto a neuron in the k-th population, relative to threshold. Equation (3.6)denotes the variance of this input. Note that the external population doesnot contribute to variance because we assumed that the input is the samefor all the neurons in a population.In the case of a constant external input, namely, m0(t) = m0, the networksettles into a state in which the average activities are constant, mk(t) = mk,given by the stable �xed-points of Eq. (3.3),mk = H  �ukp�k! (3.7)where the mean inputs areuE = (Em0 +mE � JEmI)pK � �E; (3.8)9
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4 Population Rates in the Balanced StateThe balanced state is characterized as a state in which the temporal uctu-ations in the inputs are of the same order as the distance between the meaninput relative to threshold (even when K is large). To show this we need toprobe directly the network temporal properties. Here we study the necessaryconsequences of the balanced state on the behavior of the population rates.A necessary condition for a balanced state is that both the excitatory and theinhibitory populations do not �re at their maximum rate, or are completelysilent, when we take the limit K !1. In other words we look for solutionswith 0 < mk < 1 in the large K limit.To have equilibrium rates with mk 6= 0; 1 in the large K limit, both uEand uI have to be �nite in this limit. This means that the RHS of Eqs. (3.8)-(3.9) vanish to leading order. This leads to the following equationsEm0 +mE � JEmI = O(1=pK) (4.1)Im0 +mE � JImI = O(1=pK) (4.2)Thus, in the large K limit we obtainmE = JIE � JEIJE � JI m0 � AEm0: (4.3)mI = E � IJE � JIm0 � AIm0; (4.4)Since both AE and AI have to be positive the coupling strengths have tosatisfy EI > JEJI > 1 (4.5)or EI < JEJI < 1: (4.6)Besides this balanced solution we should also examine the possibility of un-balanced solutions in which eithermk = 0 and uk is of orderpK and negativeor, mk = 1 and uk is of order pK and positive. Equation (4.6) admits anunbalanced solution in which mE = 0. In this solution mI is to leading ordergiven by mI = Im0=JI (since the leading order in uI should vanish) so thatuE = pK(E � JEI=JI)m0 < 0: (4.7)11



Furthermore if JE < 1 and JI < 1 there exists a solution with mE = mI = 1even for m0 = 0. In this solution uk satis�es to leading orderuk = pK(1� Jk) (k = E; I): (4.8)So uk is of order pK and positive.Thus if we require that there be no stationary solutions with mE = 0; 1or mI = 0; 1 for small m0, the following constraints have to be satis�edEI > JEJI > 1 (4.9)JE > 1: (4.10)It is straightforward to show that these constraints eliminate all possibleunbalanced states.Throughout the paper we will assume that Eqs. (4.9) and (4.10) aresatis�ed, and that m0 is small enough, so that Akm0 < 1. Equations (4.3)-(4.4) imply that the network activity rates grow linearly with the externalrate, mk = Akm0, even though microscopic dynamics is highly nonlinear.This is because the network dynamically �nds an operating point at whichthe net input in both populations is balanced. Thus, the linearity in thenetwork rates reects the linearity of the synaptic summation underlying ourmodel.4.1 The Net InputThe above equations determine the average rates of the populations, butthey must be consistent also with the general equilibrium results Eq. (3.7).According to Eqs. (4.3) and (4.4) the leading O(pK) contributions to ukcancel each other. Thus, the net value of uk is determined by subleadingcontributions, such as corrections of order 1=pK to mk. In fact, Eq. (3.7)should be viewed as equations that determine the net synaptic inputs ukgiven the mean activity rates mk, Eqs. (4.3)-(4.4). It is useful to denote byh(m) the scaled input of m, de�ned as the solution of the equationm = H(�h) (4.11)Thus Eq. (3.7) reduces to uk = p�kh(mk): (4.12)12



The activity of neurons in cortex is usually much less than the saturationrate. It is therefore useful to consider the limit where m0 � 1. In this regimemk � 1 and we can use the approximationH(x) � exp(�x2=2)p2�jxj (4.13)to obtain h(m) � �q2j logmj (4.14)Substituting this result in Eq. (4.12) yieldsuk � �q2�kj log�kj (4.15)This relation between mk and uk will be needed below in the calculation ofthe rate distribution (Section 5.1).4.2 Finite K CorrectionsFor �nite K the residuals of order 1=pK in the rates are not negligible sothat Eqs. (4.3) and (4.4) no longer hold exactly. For �nite K the equilibriumactivities satisfy mk = Fk(mE; mI), with Fk given be Eq. (A.5). However,as long as mk � K�1 (4.16)the Gaussian assumption of the input statistics is a good approximation,hence Eqs. (3.7) still hold. Thus, the leading �nite K corrections can beincorporated by resorting to the full mean-�eld equations Eqs. (3.3)-(3.10).In particular, the �nite K equations for the �xed-point areEm0 +mE � JEmI = (�E +p�Eh(mE))=pK (4.17)Im0 +mE � JImI = (�I +p�Ih(mI))=pK: (4.18)As long as m0 is not small, the right hand sides of these equations are smallfor large K hence the corrections to the linear solution, Eqs. (4.3)- (4.4) aresmall. When m0 becomes su�ciently small (i.e, of order 1=pK or less) thestrong non-linearity in the single neuron dynamics reveals itself in a strongnon-linearity in the population response. In particular, the e�ect of the singleneuron threshold �k becomes important. This is seen in Fig. 3 where the13
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cells never �re. In other words, the population average does not distinguishbetween temporal and spatial uctuations of activity levels.Fortunately, the mean-�eld theory fully characterizes the statistics of boththe spatial and the temporal uctuations in the activities in the balancedstate. This statistics can be expressed by writing the instantaneous activityof a cell as threshold function of two random variables xi and yi(t),�ik(t) = ���uk +q�k xi +q�k � �k yi(t)� (5.1)The means uk are given by Eqs. (3.8)-(3.9). The parameter �k is given by�k = qE + J2kqI (5.2)The order parameter qk is de�ned asqk = 1Nk NkXi=1(mik)2: (5.3)where mik is the time-averaged activity rate of the i-th cell,mik �< �ik(t) > (5.4)The symbol < ::: > denotes average over long time. Both xi and yi(t) areindependent Gaussian variables with zero mean and unit variance.Quenched Fluctuations of Synaptic Inputs: The term proportional toxi represents a quenched random component of the synaptic input received bydi�erent cells and thus represents a spatial inhomogeneity in the rates. Theorigin of this inhomogeneity is two-fold. Since in our model the connectivityis random, cells may di�er in the number of synaptic inputs they have. Thiscomponent is given by �1 < uik >= 2Xl=1 NlXj=1 �J ijkl [mjl ]: (5.5)Here �J ijkl = J ijkl� [J ijkl ]. In addition, di�erent neurons are connected to di�er-ent cells so that even if all the cells would have received the same number of15



inputs the system would evolve into a state with a self-consistently developedspatial inhomogeneity. The second component can be written as�2 < uik >= 2Xl=1 NlXj=1 J ijkl �mjl (5.6)where �mil � mil �ml. Adding the two contributions yields[ (� < uik(t) > )2] = 2Xl=1 J2klql = qE + J2kqI = �k (5.7)Thus, this variance represents the uctuation in both the number and theidentity of input cells to the di�erent cells.Temporal Fluctuations of Synaptic Inputs: The term in eq. (5.1)which is proportional to yi(t) represents the stochastic component of theinputs to a cell, namely a temporally uctuating component which has ashort-time correlations. This can be written asuik(t)� < uik >= 2Xl=1 NlXj=1 J ijkl (�jk(t)�mjk) (5.8)from which one obtains[ (uik(t)� < uik > )2] = 2Xl=1 J2kl(ml � ql) = mE � qE + J2k(mI � qI) = �k � �k(5.9)Note that the variance of the temporal uctuations in the inputs depends onmk � qk which in turn measures the temporal variability of the state.5.1 Distribution of Time-Averaged RatesThe distribution of rates in the k-th population is de�ned as�k(m) � N�1k NkXi=1 �(m�mki ) (5.10)
16



The statistics of the time average local rates can be derived by averaging Eq.(5.1) over yi(t) (which is equivalent to average over time),mik = mk(xi) = H  �uk +p�k xip�k � �k ! : (5.11)Thus, the distribution of mik is fully determined by its �rst two moments.Averaging this equation over xi yields Eq. (3.7). Similarly, squaring Eq.(5.11) and averaging over xi yieldsqk = Z Dx "H  �uk +p�k xp�k � �k !#2 : (5.12)Here we have used the Gaussian measure Dx � dx exp(�x2=2)=p2�. Ingeneral, qk satis�es (mk)2 � qk � mk. The smaller qk, the more homogeneousthe rate distribution. In a frozen state in which a fraction mk of the cells areactive every time they are updated, while all other cells are always quiescent,qk is given by qk = mk. On the other hand, if all cells in the population havea probability mk of being active each time they are updated, mki = mk, qk =(mk)2. Equations (5.12) have two solutions. There is a solution with qk = mk,corresponding to a frozen state, but this solution is unstable. The stablesolution has (mk)2 < qk < mk, which corresponds to a temporally uctuatingstate. Although the frozen solution is an unstable one{as mentioned above{its existence highlights the fact that the temporal variability in our systemis purely of deterministic origin and is not induced by external stochasticsources.Generalizing Eq. (5.12), we can write�k(m) = Z Dx �(m�mk(x)) (5.13)In Appendix A.1 we analyze the properties of this distribution. A numericalevaluation of �k(m) is shown in Fig. 4 which displays the rate distribution ofthe excitatory activity for di�erent values of mE. The distribution is plottedagainst m=mE. The synaptic couplings were kept constant, while the meanrates were varied by adjusting the external rate m0. For high mean activitylevels the distribution has a pronounced skewed shape. Note however thataccording to Eq. (5.11) the distribution of the time average inputs uki to thecells is Gaussian, for all values of mk.17
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of single cells, or equivalently the temporal uctuations in their input. Wehave already stated that the temporal uctuations in uki (t) obey Gaussianstatistics, with variance given by �k � �k. To fully characterize its statisticswe have to evaluate its auto-correlations. Using arguments similar to thoseoutlined above, it is straightforward to show that the autocorrelation of theinput is linearly related to the autocorrelations in the local activities,�k(�) = [< �uki (t) �uki (t + �) >] = qE(�) + J2kqI(�) (5.15)where qk(�) is the time-delayed autocorrelations of the local activities,qk(�) = N�1k NkXi=1 < �ki (t)�ki (t+ �) > (5.16)and as before < ::: > denotes average over t. Note that qk(0) = mk whereasqk(� ! 1) = qk. Likewise, �k(0) = �k whereas �k(� ! 1) = �k. Usingthis relation, the following self-consistent equation for qk(�) (with � � 0) isobtained,�k dqk(�)d� = �qk(�)+ Z 10 dt�k exp(�t=�k) Z Dx 24H 0@�uk �q�k(t+ �) xq�k � �k(t + �) 1A352 (5.17)Note that the integral over t in Eq. (5.17) results from averaging over thedistribution of update time intervals. The solution of this integral equationyields a function qk(t) which decays to its equilibrium value with a timeconstant of the order of �k. A numerical solution of Eq. (5.17) for qk(�) isshown in Fig. 5. As can be seen, the autocorrelations are larger than thosepredicted by Poisson statistics. This enhancement of short-time correlationsreect the refractoriness in the activities of the cells that project the cell.5.3 Numerical Realization of Synaptic Inputs to a CellIn order to demonstrate the nature of the uctuating synaptic inputs to asingle excitatory cell in the balanced state, we have generated numericallysamples of stochastic Gaussian processes which simulates the uctuations of19
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equation of the form�k ddt�mk(t) = ��mk(t) +pK Xl=1;2 fkl�ml(t) (6.1)Calculating fkl by partial di�erentiation of the RHS of Eq. (3.3), yieldsfkl = exp(�u2k=2�k)Jklp2��k (6.2)Solving Eqs. (6.1) one obtains �mk(t) = �mk;1 exp(�1t) + �mk;2 exp(�2t)where the eigenvalues �1 and �2 of the 2 by 2 equations Eqs. (6.1) are bothof order pK. Requiring that their real part be negative yields a conditionon � of the form � < �L (6.3)where �L is of order 1, its precise value depends on the system parameters.It is important to note that since both �1 and �2 are of order pK, if � < �L,small perturbations will decay with extremely short time constant of order1=pK. This is due to the strong negative feedback, of order pK, generatedby the strong synaptic couplings.6.2 Global StabilityThe local stability condition Eq. (6.3) guarantees that a perturbation smallerthan O(1=pK) will die out. It is therefore important to ask whether the bal-anced state is stable also to perturbations that are large compared to thisorder. However, such perturbation will generate a large disruption in theinputs uk, of order pK, hence linearization of the dynamic equations is in-adequate. We therefore have to consider the nonlinear evolution of perturba-tions in the rates under Eqs. (3.3). In fact, since the perturbation destroysthe balance between excitation and inhibition, H(�uk=p�k) of Eq. (3.3)can be approximated by �(uk), hence the evolution of the perturbations isdescribed by �k ddt�mk(t) = ��mk(t) + �(�mE � Jk�mI)�mk: (6.4)These equations are piece-wise linear and therefore can be solved explicitly.One �nds that the solution of these equations decay to zero provided that23
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7 Inhomogeneous ThresholdsSo far we have considered networks of identical neurons, except for theirconnectivity. Real neuronal systems exhibit a substantial inhomogeneity insingle neuron properties. It is therefore important to consider how such in-homogeneities a�ect the behavior of our system. We will model the inhomo-geneity by a variability in the thresholds of the neurons. Inhomogeneities inthe local thresholds may have particularly strong e�ect in a balanced statewith low mean activity. The reason for this is that the intrinsic uctua-tions are all generated by feedback from the network activity. Hence theydecrease in amplitude as the mean activity in the network drops. In partic-ular, under these conditions the intrinsic temporal uctuations may not beof su�ciently large amplitude to overcome the quenched dispersion of localthresholds. Therefore, the important issue which we address here is: doesthe balanced state remain temporally uctuating in the limit of low meanactivity in the presence of inhomogeneous thresholds, or does it become afrozen state. We will show that the answer to these questions depend notonly on the width of the threshold distribution but also on the form of itstail.We denote the local threshold of a neuron by �ki + �k where �k is thepopulation averaged threshold and �ki is a quenched random variable withzero mean. We will call �ki the local threshold. The mean activity rate ofneurons in the k-th population that have a local threshold � ismk(�) = H  � � ukp�k ! : (7.7)and hence the population averaged rate ismk = Z d�P (�)H  � � ukp�k ! (7.8)where P (�) denotes the quenched distribution of �, and uk and �k are givenas before by Eqs. (3.8), (3.9), and (3.10). Note that we have absorbed themean threshold, �k in the de�nition of uk (see Eqs. (3.8)-(3.9)).
27



7.1 Distribution of Thresholds with Long TailsWe �rst consider a distribution with a long tail of low thresholds. A concreteexample is P (�) = 1�p2� exp(�12(�=�)2) (7.9)In this case, the spatial uctuations in the inputs (relative to thresholds)consist of two Gaussian terms: one is induced by the random connectivityand has a variance �k and the other induced by the thresholds and has avariance �. The balance conditions which determines the population rates,Eqs. (4.3)-(4.4), still holds. In addition,mk = H  �ukp�k +�2! (7.10)which determines uk, andqk = Z Dx "H  �uk �p�+ �k xp�k � �k !#2 (7.11)Now let us consider the limit of low mean rates, which is achieved by assumingthat m0 is small. For �xed �, if the mean rates become su�ciently low sothat mk � �, the intrinsic variances �k and �k can be neglected comparedwith �, hence one obtainsmk � qk � H ��uk� � : (7.12)The fact that qk � mk implies that the state is essentially a frozen state,namely, mk(�) � �(uk � �) (7.13)and consequently, the distribution of mean rates has a distinct bi-modalshape, �k(m) � (1�mk)�(m) +mk�(m� 1) ; mk � 1 (7.14)as shown in Fig. 11A. Thus, an unbounded threshold distribution has arelatively strong qualitative e�ect on the balance state, in the limit of lowmean rate. 28
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Figure 11: Distribution of the activities of the cells in the excitatory population in thelarge K limit. (A) Distribution for a network of neurons with a Gaussian distribution ofthresholds. The distribution is shown for population averaged rates mE = 0:01 (solid line)and mE = 0:1 (dashed line). The insert shows the divergence at m = 1 of the distributionfor mE = 0:01 with the density in arbitrary units. Parameter values D = 0:2 and othervalues as in Fig. 3. (B) Distribution of activity levels of the cells in the excitatorypopulation in the large K limit for a network of neurons with a bounded distribution ofthresholds. The distribution is shown for mean rates mE = 0:01 (solid line) and mE = 0:1(dashed line). Parameter values as in A. (C) Firing rate distribution for neurons in theright prefrontal cortex of a monkey attending to a complex stimulus (light source andsound) and executing a reaching movement. The rates were averaged over the duration ofevents that showed a signi�cant response. The average rates was 15:8 Hz.
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7.2 Bounded DistributionWe next consider the case of a bounded distribution of thresholds. As anexample we take a distribution of � which is uniform between ��=2 and+�=2, and zero otherwise. In this case, Eq.(7.8) yieldsmk = 1� Z �=2��=2 d�H  �uk + �p�k ! (7.15)To assess the e�ect of � we analyze Eq. (7.15) in the low mk limit. In thiscase, the solution for uk is uk +�=2 = O(pmk) (7.16)Thus, the population rates adjust themselves so that synaptic input is slightlybelow the smallest threshold in the population, �k�D=2, see Eq. (3.8). Thesmall gap between the mean synaptic input and the minimal threshold issuch that the temporal uctuations of the network, with the low variance�k, are su�cient to bring the neurons to threshold levels. Indeed, analyzingthe rate distribution for this case we �nd that it is a unimodal with widthpqk where qk / ��3=2k (7.17)This means that the rate distribution is extremely broad and skewed. Thefull shape of the rate-distribution is given by�k(m) � q�k=2�2mqj logmj ; m� < m < m+ (7.18)and zero otherwise. The bounds of m are:m� / exp(��2=(2�k)) (7.19)m+ / �q�k=j log(�k)j >> mk: (7.20)The above results show that in the case of a bounded threshold distribu-tion, the temporal variability remains strong even in the limit of low meanrates. However, the inhomogeneity does a�ect strongly the shape of the ratedistribution making it more skewed and broad. Figure 11B shows the results30



of numerical calculation of the rate distribution for the excitatory popula-tion, with a uniform distribution of thresholds between ��=2 and �=2, fordi�erent values of mean rates. Comparing Figs. 4, 11A and 11B we seethat for moderate mean rates mk = 0:1, � does not have a big e�ect onthe shape of the distribution. However, lowering the network mean activitythe distribution peak shifts to values which are much smaller then the meanwhile its tail extends to rates which are of the order of pmE. In contrast, inthe case of a homogeneous threshold, lowering the mean rates shifts the peaktowards the mean and decreases the width of �(m), see Fig. 4. In the caseof a Gaussian distribution, lowering the mean rates creates a pronouncedbi-modal distribution, characteristic of a frozen state, as seen in Fig. 11A.In general, for small mk, a threshold distribution P (�) will yield a ratedistribution �k for population k, that is given by�k(m) = p2�P ��p�k(h(m) + ~hk)� eh2(m)=2; (7.21)where ~hk is determined by Z dmm�k(m) = mk: (7.22)If P (�) has tails that fall o� as slow as or slower than than a Gaussian, �k willdiverge for m = 0 and m = 1, while if P (�) falls of faster than a Gaussian, �kwill be negligible for m < m� and for m > m+ with, for small mk, m� � mkand mk � m+ � 1. In this case �k can be approximated by�k(m) / P ��p�k(q2 log(m)� ~hk)�mqlog(m) (7.23)for m� < m < m+. Furthermore P ��p�k(q2 log(m)� ~hk)� varies onlyslowly with m for these rates.Thus for a threshold distribution with a tail that falls o� faster than aGaussian the distribution of the rates goes to 0 for m = 0 and m = 1 andhas a long power-law tail that extends up to a rate m+ that is much largerthan the average rate. In contrast if the tails of the distribution fall o� asslow as or slower than a Gaussian, the rate distribution will peak at m = 0and m = 1 if the average rate is su�ciently low.31



7.3 Experimental Rate DistributionThe above results make a clear prediction about the shape of the rate distri-bution in a local population of neurons that have low mean rates. It seemsreasonable to compare these predictions with the distribution of rates incortical neuronal pools of behaving animals. Figure 11C presents an experi-mentally determined rate histogram of neurons in the right prefrontal cortexof a monkey (Abeles et al. unpublished). The data was taken from periodsof time while the monkey was attending to a variety of stimuli (light sourcesand sound) or was executing simple reaching movements. The average rate(of the neurons that showed any activity during the time of measurement)was 15:8 Hz. The observed histogram has a distinct unimodal skewed shapewith a tail extending up to 80 Hz. These results are consistent with thetheoretical predictions of Fig. 11B.8 Chaotic Nature of the Balanced StateThe strong temporal uctuations of the neuronal activity in our model andthe resultant fast decay of temporal correlations strongly suggests that thebalanced state corresponds to a chaotic attractor. However, to justify charac-terizing this state as chaotic we need to study the sensitivity of the dynamictrajectory to small perturbations in the initial conditions. If the networkevolves to a chaotic attractor small perturbations in the state of the networkshould grow at least exponentially. Therefore after some time the state ofthe network is far from the state the network would have been in had it notbeen perturbed. This de�nition of chaos is technically speaking inapplicableto a system with discrete degrees of freedom such as ours, since in this casethe size of a perturbation of the system state is bounded by the discretenessof the system's state. In our case, the minimum perturbation is changingthe state of a single neuron. Nevertheless, in the limit of large network sizewe can consider such a perturbation as in�nitesimal, as described below. Weconsider two copies of the network. In one copy, the states of the neuronsare given by �i1;k(t); in the other they are given by �i2;k(t). Both networkshave the same connection matrices J ijkl and have the same update schedule.The networks get the same constant input m0(t) = m0, and are assumed to32



have reached a balanced state with the same population rates,1Nk NkXi=1 < �ip;k(t) >= mk for p = 1; 2: (8.1)The distance between the network states at time t is de�ned asDk(t) = 1Nk NkXi=1 ���i1;k(t)� �i2;k(t)�2�= 1Nk NkXi=1 nD�i1;k(t)E+ D�i2;k(t)E� 2 D�i1;k(t)�i2;k(t)Eo (8.2)Here the angular brackets do not mean average over time but average overall initial conditions of the two networks subject to the constraints that eachindividual network is at equilibrium (e.g., its mk and qk have the equilibriumvalues), and that the distance between the initial states of the two networksequals a given Dk(0). If the network is in a chaotic state, the distanceDk(t) of the cells in population k, de�ned by Eq. (8.2) should grow at leastexponentially for small Dk, The maximum Liapunov exponent �L, de�nedby �L � limDk!0D�1k dDkdt ; (8.3)should be positive. Note that in calculating �L we will �rst take the large Nlimit of Dk and then Dk ! 0 limit. To write the dynamics of Dk it is usefulto write Dk(t) as Dk(t) = 2(mk �Qk(t)) (8.4)where Qk(t) denotes the overlap of the two trajectories. In Appendix A weshow that Qk(t) satis�es an equation similar to that of qk(�), namely,�k dQkdt = �Qk+ Z Dx 24H 0@�uk +qk(t)xq�k � k(t) 1A352 : (8.5)with uk and �k are as above, and k(t) given byk(t) = 2Xl=1(Jkl)2Ql(t) = QE(t) + J2kQI(t): (8.6)33



It is easy to see that this equation has two stationary solutions. One isQk = mk (8.7)which corresponds to a fully locked trajectories. This solution is unstable, aswill be shown below. The stable �xed-point isQk = qk (8.8)which corresponds to a fully desynchronized trajectories so that at long timesthe correlations between the two trajectories at the same time are the justthose induced by the time-independent average activities. Starting from anynonidentical states, the two trajectories will eventually desynchronize themcompletely. To �nd the initial rate of divergence, we expand Eq. (8.5) forsmall Dk, and �nd that to leading order, the distances satisfy�k dDkdt = 2� e�u2k=2�kp�k p�k � k : (8.9)Since �k�k / Dk, Eq. (8.9) has a growing solution even if Dk(0) = 0. Thisimplies that the Liapunov exponent �L is in�nitely large in the balancedstate. Figure 12 shows the evolution of DE. As can be seen DE increasesrapidly to the equilibrium value DE = 2(mE � qE), for arbitrarily smallinitial positive value. This should be contrasted with systems with �nitepositive Liapunov exponents where the initial rate of growth depends on themagnitude of the initial perturbation of the initial conditions. The divergenceof �L in our system is related to the discreteness of the degrees of freedom,which implies an in�nitely high microscopic gain: a small change in the inputsto a cell can cause a �nite change in its state.9 Tracking of Time Dependent InputWe have shown that for a large range of parameters, a network with synapticstrengths of order 1=pK will evolve to a balanced state and investigatedsome of the characteristics of this state. But so far we have not addressedthe question of what the functional advantages of this state might be. Whyshould a network generate an excitatory input that is much larger than thethreshold input and then counterbalances this with a nearly equally large34
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equilibrium rate for m0(t) = m0 which are given bym1k (t) = H 0@� u1k (t)q�1k (t)1A ; (9.1)with u1k (t) = pK(Jk0m0(t) + 2Xl=1 Jklm1l (t))� �k (9.2)and �1k (t) = Xl=1;2(Jkl)2m1l (t): (9.3)Note that to leading order in K m1k satis�es the balance conditionm1k (t) = Akm0(t) (9.4)However, Eqs. (9.1)-(9.3) take into account also the 1=pK corrections inm1k (t).We now assume thatmk(t) = m1k (t) +m1k(t)=pK (9.5)namely, that the deviation from perfect tracking of the instantaneous is onlyof order 1=pK. The rates mk satisfy Eq. (3.3). To leading order in K thisis �k dm1k (t)dt = �m1k (t) +H 0@�u1k (t) +Pl Jklm1l (t)q�1k (t) 1A ; k = 1; 2: (9.6)Using Eq. (9.4) we obtainAk  �k dm0(t)dt + m0(t)! = H 0@�u1k (t) +Pl Jklm1l (t)q�1k (t) 1A ; k = 1; 2: (9.7)which determines the small deviations mk(t)=pK as functions of the time-dependent drive m0(t). Since H(x) is between 0 and 1 the above equationshave a solution only for 0 < m0+�k dm0dt < 1=Ak. This implies that the almost36
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the inputs and the highly nonlinear dynamics of single cells. This initiallarge response causes a fast rate of increase in the population rates, since�mk � ��1k dt�Pk, implying that �mk reaches the value Ak�m0 in time oforder �k=�m0 � �k=pK, see the dotted line in the Figure. The �nal changein the population rates follows linearly the change in the external input asrequired to maintain the balance between excitation and inhibition.The limitation on the change in the external rate is readily explained bythe maximum increase (decrease) in the network rate that the microscopicdynamics allows. The fastest the network rates can increase (decrease), isby putting all newly updated cells in the active (passive) state, i.e., Pk = 1(Pk = 0), so that the change in the network rates is bounded by�mk < �k dmkdt < 1�mk: (9.9)If the external rates increase (decrease) faster than the bound Eqs. (9.8) thenetwork will not stay in the balanced state during the rate change, so thatuk is of order pK. Consequently, the input is above (below) the thresholdfor all cells of the kth population that are updated, and all updated cells arein the active (passive) state.To compare the tracking capabilities of balanced networks with those ofan unbalanced network, we consider a network of threshold linear neuronswith synapses of strength Jkl=K for inter-network connections and ~Jk0=K forthe strengths of the synapses projecting from the external population andthe thresholds Tk chosen so that the equilibrium rates of this network is thesame as those for the balanced network. We choose the same neuronal timeconstants as in the balanced network. In this network the rates satisfy�k dmkdt = �mk + ( ~Jk0m0 � JkEmE + JkImI + Tk)+; (9.10)with (x)+ = (x+ jxj)=2. If we set mk(t) = m1k (m0(t))+m1k(t), the di�erencebetween the network rates and the rates of a perfectly tracking network,m1k(t), satisfy �E dm1Edt = (JEE � 1)m1E + JEIm1I � �EAE dm0dt (9.11)�I dm1Idt = JIEm1E + (JII � 1)m1I � �IAI dm0dt : (9.12)38
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10 Discussion10.1 Asynchronous and Synchronized ChaosThe purpose of our theory is to identify the di�erent mechanisms by whichthe deterministic dynamics generates strongly irregular states in large neuralnetworks, in which each cell receives input from many other cells. To un-derstand these mechanisms from a theoretical point of view it is importantto study the network behavior in the limits of large system size N and largeconnectivity index K. In a �nite network with uctuating dynamics therewill always be some degree of synchrony and some compensation between in-hibition and excitation. It is thus impossible to single out balancing betweenexcitation and inhibition as a mechanism for variability which is separatefrom synchronized chaos (Bush and Douglas 1991, Hansel and Sompolinsky1992,1996). It is only in the limit of large N , where states with synchronythat does not vanish in this limit can be distinguished from states wherethe synchrony does vanish, that the di�erent mechanisms become clearlyseparate. Likewise, the importance of the limit of large K is that for �xed�nite K, network parameters may be tuned so that uctuations in individualsynaptic inputs generate uctuations in the membrane potential of the post-synaptic cells. These uctuations can be due to stochastic synaptic failuresor variability in the presynaptic cells from within or outside the network. Inother words, for a �nite �xed K the issue of balancing between excitation andinhibition is a quantitative issue. Only in the large K limit is there a clearseparation in the balanced state between the distance between the net inputfrom threshold and the corresponding distance of each of the excitatory andinhibitory components.The outcome of the present theory combined with our previous studiesis that chaotic states in large highly connected networks can be classi�edas synchronized chaos and asynchronous chaos. Synchronized chaos is likelyto occur in fully connected networks, where K is proportional to N , yield-ing a strong overlap between inputs to di�erent neurons. In this case, thechaotic state is characterized by cross-correlations between neuronal pairswhose amplitude is of order 1 even in the limit of N !1, thereby creatingstrong uctuations of the common feedback. Thus, synchronized chaos canbe viewed as resulting from an instability in the dynamics of the macroscopicdegrees of freedom that comprises the common uctuating mean-�eld.41



Asynchronous chaotic states are distinguished by the weak cross-correlations.In the present case this is due to the sparseness of the connections. Morespeci�cally, in our networks the amplitude of the cross-correlations has abroad distribution in the network due to inhomogeneity in the connectivity.Most of the cross-correlations are of the order 1=N where N is the networksize. The maximal value of the cross-correlations occurs for pairs that aredirectly connected and this cross-correlation is of the order of the strength ofthe synapse, i.e., O(1=pK). Thus, chaos in this state is the result of insta-bility in local degrees of freedom, similar to chaos in asymmetric spin-glassesand neural networks.10.2 Balanced State with Strong or Weak SynapsesThe scaling of connection strength in our theory of the balanced state isdi�erent from conventional mean-�eld theories of highly connected networks.Most mean-�eld theories of large, highly connected neural networks assumethat each connection is scaled as the inverse of the mean number of inputsto a neuron, K. In contrast, we scale the connections as 1=pK. This aspect,together with the relative sparseness of the connections, and the asynchronyof the dynamics yields a highly irregular dynamical state, despite the fact thatthe single neuron dynamics in our model is the simple threshold updates ofbinary units. The presence of relatively large connections is again analogousto the scaling of connections in highly connected spin-glasses and randomneural networks, where the interactions have to scale as the inverse squareroot of the connectivity index (Derrida et al. 1987, Sompolinsky et al. 1988).In Sompolinsky et al. (1988) the network is a fully connected asymmetricanalog circuit with connections that are independent random variables withzero mean. The connections posses a square-root scaling with the numberof inputs, as is natural for mean-�eld spin-glasses (Mezard et al. 1987). InDerrida et al. (1987) the connectivity is randomly sparse as is in our model.The connections store random memories so that in the limit of a largeK (andcorrespondingly large number of stored patterns) they are e�ectively randomin sign, and exhibit chaotic dynamics similar to the asymmetric spin-glass. Incontrast, in our case the connections are not random in sign but are organizedin an excitatory- inhibitory two-population architecture. Consequently, thebalance between excitation and inhibition which gives rise to the temporallydisordered state is entirely a dynamic e�ect. Our results should be contrasted42
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Because of the importance of the scaling of the synapses in our theory,it is very informative to consider the behavior of our model if we use aconventional scaling of synapses i.e, that each synapse scales as 1=K, theweak synapses scenario. In this scenario, each component of the synapticinputs, including the total external input to a cell is of order 1. The solutionof this model (Van Vreeswijk and Sompolinsky unpublished) shows that whenK is not large, the network settles in a strongly disordered state. This is notsurprising given that the connectivity is randomly asymmetric and there isno danger of averaging of the uctuating inputs to a cell. However, the fate ofthe temporal variability asK is increased is highly sensitive to the presence oflocal inhomogeneity. If the neurons have the same threshold, the chaotic stateis maintained as K increases. In this case, the population rates adjust theirvalue so that the net input is close to the threshold level within a distanceof the order of 1=pK. This is shown in Fig. 17. This �gure displays thetime course of the various synaptic inputs to a cell, evaluated by simulatinga sample from the statistics predicted by the mean-�eld solution with theweak-synapses scaling. The results of this �gure should be contrasted withthe behavior of the strong synapses scenario, Fig. 6. In Fig. 17 the variabilityis caused by the fact that the cell is always hovering close to its threshold.In contrast, in the case of Fig. 6 the distance between the net input andthe threshold is not small compared to the distance between threshold andrest. In this case, the variability is caused by the presence of excitatory andinhibitory inputs each of which is much larger than the threshold.Despite the di�erence in behavior between the two scenarios, the dynamicmechanism for these balanced chaotic states is the same. In both cases, thedistance between the net input and the threshold is smaller (by a factorof 1=pK) from the distance to threshold of the excitatory and inhibitorycomponents. Thus, it would seem that choosing between these scenarios islargely a matter of biological interpretation. However, there are some qual-itative di�erence between the two scenarios. Since the synaptic inputs areall of the same order as the threshold, it is harder to obtain states with lowmean rates in both the excitatory and inhibitory populations. To achievelow rates, the ratio between the external inputs to the two populations (I=Ein the notation of Eqs. (2.4)) and (2.5) has to be close to the ratio of theirthresholds �I=�E. More importantly, the weak-synapses scenario of Fig. 17breaks down in the presence of inhomogeneity in the local thresholds. Inthis case the population rates are incapable of accommodating the di�erent44



thresholds. As a result, in the case of inhomogeneous thresholds, when Kincreases the network state becomes increasingly frozen; neurons with highthresholds become inactive whereas neurons with low ones �re close to sat-uration. This freezing occurs as soon as the width of the inhomogeneity inthreshold is larger than 1=pK. In contrast, in the scenario of strong synapseswe assume, the state only becomes frozen when the inhomogeneity is largecompared to 1. Note that in the case of Fig. 17 the external input is of thesame order as the net input to the cell. Equally important is the fact that inthe weak scenario case and homogeneous networks, the collective time con-stants are of order of the single cell time constant so that the network willnot exhibit the phenomenon of fast tracking predicted in our theory.Finally the model can be generalized to a model with synaptic strengthsthat scale as K��, with 0 < � < 1. Of course these models can only bedistinguished from the present model in the large K limit. In this limit thenet average inputs into the populations scale as K1��, while the quenchedand temporal uctuation in the inputs scale as K1=2��. Therefore the leadingorder in the inputs have to cancel, leading to the balance condition. For any� this leads to asynchronous chaotic activity in a homogeneous network,similar to the case � = 1=2. However if we introduce a distribution of thethreshold with width of order 1, we have to distinguish two regimes, apartfrom � = 1=2 of our model. If � > 1=2 the uctuations in the input decreasewith K so that the network goes to the frozen state in the large K limit. Onthe other hand, if � < 1=2 the uctuations grow with K, and therefore theinhomogeneity in the threshold becomes negligible in the largeK limit. Thusa network with inhomogeneous threshold will act the same way as a networkwith homogeneous thresholds. Speci�cally for low rates the rate distributionwill become narrow. Thus only for a network with synaptic strengths of order1=pK is there a nontrivial interaction between the uctuation in the inputand the threshold inhomogeneities.10.3 Comparison with Other Network ModelsSome of our results are consistent with those of the Integrate-and-Fire net-work models of Tsodyks and Sejnowski (1995) and Amit and Brunel (1996a,b).Although constructing an exact mean-�eld theory for the Integrate-and-Firedynamics similar to the one presented here for binary units is much moredi�cult, we believe that most of the predictions of our mean-�eld theory45



are applicable to the Integrate-and-Fire dynamics as well, provided the thesame connectivity architecture and scaling of parameters with N and K areused. However, a direct comparison between our theory and the results ofTsodyks and Sejnowski (1995) and Amit and Brunel (1996a,b) is di�cult,because of their introduction of stochasticity in the network, the combina-tion of mechanisms such as resetting potential close to threshold, and thelack of full explicit speci�cation of scaling of parameters with N and K.Tsodyks and Sejnowski show numerically that their model is capable of `fastswitching' in response to a fast change in the external stimulus. This maybe related to the fast tracking predicted in our model. The fact that ourmodel does not respond fast to a sudden switching of the stimulus (see Fig.13) is probably a result of the dynamics of binary neurons. However, theswitching time constants observed in Tsodyks and Sejnowski (1995) is of thesame order as the single cell integration time constant, while the fast trackingshould occur on a much shorter time constant. In recent numerical simula-tions of Integrate-and-Fire Networks Amit and Brunel (1996b) show that thestrength of the average cross-correlations decreases as N increases, (keepingthe connectivity index constant). However, they do not show whether as Nincreases, the variability in the single cell remains the same. If this wouldbe the case then, their results are consistent with our predictions regardingasynchronous chaotic state.10.4 Biological ImplicationsWith regards to the biological systems we should reemphasize that mostlikely temporal irregularity is a result of several mechanisms including thosementioned in the Introduction. Our discussion above makes it clear thateven with regards to deterministic network mechanism in a �nite systemthe temporally irregular state is likely to be at best intermediate betweenthe synchronized and the balanced chaotic states. As discussed above, animportant question is whether external input is large relative to net inputto a cortical cell. Recent experimental �ndings of Ferster et al. (1996)in cat primary visual cortex suggest that the input from LGN to Layer 4cortical cells are in fact a fraction of the net input. Stratford er al. (1996)show that the total strength of the LGN synapses is about 2.5 to 3 timessmaller than the total strength of the excitatory feedback synapses from layer4 cells, however this study does not measure the strength of the feedback46



from the inhibitory interneurons so it does not allow for the estimation ofthe net feedback. Further experimental clari�cation of this issue is calledfor. Measurements of the distribution of time-averaged rates within a localpopulation of neurons and the change in its shape when the over-all level ofresponse increases, similar to those of Fig. 11B, would be an interesting testof the underlying statistical characteristics of the network spatio-temporaluctuations.10.5 Future WorkOn theoretical grounds our work raises several interesting issues that areworth pursuing. First, it would be important to know whether the theoryof the balanced state applies also to networks with more interesting connec-tivity architecture. Thus, it would be interesting to extend our theory tonetworks that model associative memory or hypercolumns in visual cortex.It is important to study the consequences of nonlinearities of synaptic sum-mations, e.g., by treating synaptic inputs as conductance changes instead ofcurrents.In considering the functional implications of our theory it is importantto distinguish between the sensitivity of a chaotic autonomous system tochanges in its initial condition and its ability to lock to a changing externaldrive. The analysis of tracking capabilities of our network shows that themacroscopic state of the network responds fast to a changing input. In thecase of a homogeneous input it can be shown that the microscopic state isnot tightly locked to the changing stimulus. On the other hand, preliminaryanalysis (Van Vreeswijk and Sompolinsky unpublished) shows that in thecase of spatially inhomogeneous input uctuations the microscopic state ofthe network will tightly lock to the stimulus temporal variations. These�ndings are consistent with recent �ndings that cortical cells respond highlyreliably to the uctuations in the stimulus (Bair and Koch 1996, Britten etal. 1994). Elucidation of the computational aspects of balanced states inneuronal networks is a challenging issue.Recently Markram and Tsodyks (1996) have shown that the synapses be-tween cortical pyramidal cells show a marked degree of depression. It shouldbe investigated how such dynamical synapses a�ect the balanced state. If oneassumes synaptic depression between the excitatory-to-excitatory synapsesonly, and facilitation between the synapses from the inhibitory to the ex-47



citatory and from the excitatory to inhibitory populations (Thomson et al.1995,1996), the equilibrium rates in the network decrease, relative to those ina network without facilitation. This synaptic depression and facilitation alsohas the e�ect that the constraints on the synaptic strengths Eqs. (4.9) and(4.10) can be relaxed. Because the synaptic depression and facilitation onlybecome e�ective on a time scale that is as slow as or slower than the mem-brane time constant, the response of such a network to an external input thatchanges with time is more complicated that in the model studied here. If theinput is suddenly increased by a small amount, the network rates increaseto the rate the network would have in equilibrium if the synaptic strenghtswere not changed in a time of order 1=pK and then, on a much slower timescale the rates decrease due to the change in the synaptic strengths.It should be noted that, since in the balanced state the �niteK correctionsof the rates are determined by both the �rst and the second moment ofinput, the change in rate due to synaptic depression/facilitation depends notonly the average change in the synaptic strength, but also its uctuation.Thus synaptic depression due to a change in the height of the EPSPs, butwithout a change in the probability of release will a�ect the rates di�erentlyfrom synaptic depression that leaves the height of the EPSPs una�ected butdecreases the probability of release, even if both mechanisms result in thesame average depression. An other e�ect of synaptic depression that willhave to be taken into account, is that it will decrease the uctuations inthe input, since the e�ect of of the second spike in decreased if it followsshortly after the �rst spike. This will give rise to negative correlations in theinput, even if the presynaptic cells �re Poissonian. This leads to decreaseductuations. Facilitation, on the other hand, will enhance the uctuations.These issues warrant further study.AcknowledgmentsWe thank D.J. Amit, D. Hansel and T. Sejnowski, and M. Tsodyks for veryhelpful discussions. We are grateful to M. Abeles, H. Bergman and E. Vaadiafor permission to present their data. This work is partially supported by theFund for Basic Research of the Israeli Academy of Science.Appendix A: Derivation of theMean-Field The-ory 48



A.1 Population RatesWe �rst consider the population-averaged activities mE(t) and mI(t) in thelimit of large NE and NI and �nite K. We �rst assume that each cell in thek-th population is updated stochastically at a rate �k. When a cell is updatedit moves to the active state if its total input is above threshold. Otherwise,its updated state is 0. It is convenient to de�ne a time-dependent local ratevariable, mik(t) =< �ik(t) > (A.1)Here, the symbol < ::: > does not mean average over time, as in Eq. (5.4)and thereafter. Instead, here it means average over all initial conditions thatare consistent with given values for mk(0) and also over the random sequenceof update times. It is well known that the rate of a binary variable whichobeys the above update rule satis�es the following continuous time dynamics(Ginzburg and Sompolinsky 1994, Glauber 1963)�k ddtmik(t) = �mik(t) + �(uik(t)) (A.2)where uik(t) is the total synaptic input into a cell i in the k-th populationrelative to its threshold, and is given in our case by Eq. (2.2). If a cell receivesnE(t) and nI(t) excitatory and inhibitory feedback inputs, respectively, thenits input is uik(t) = pKJk0m0 + JkEpKnE(t) + JkIpKnI(t)� �k (A.3)The main assumption underlying the mean-�eld theory is that the activitiesof the di�erent input cells to a given cell are uncorrelated. Technically, thisholds rigorously provided that K � logNk (Derrida et al. 1987). Usingthis assumption, the population average of Eq. (A.2) yields the followingmean-�eld equations for the population activities�k ddtmk(t) = �mk(t) + Fk(mE(t); mI(t)): (A.4)where Fk denotes the probability that the updating cell at time t will be inan updated active state. It is given byFk(mE; mI) = 1Xn1;n2=0 p1(n1)p2(n2)� pKJk0m0 +Xl JklpKnl � �k! (A.5)49



where pl(n) is the probability that a cell receives n active inputs from thel-th population.For NE; NI !1 the probability of s synapses of population l projectingto a cell is Kse�K=s!. On average each of these synapses has a probabilityml to be active, hencepl(n) = 1Xs=n Kss! e�K  sn !mnl (1�ml)s�n= (mlK)nn! e�mlK: (A.6)Equations (A.4)-(A.6) de�ne the mean-�eld equations for the populationactivity levels for �nite K. The average values of nE and nI satisfy < nk >=mkK. The standard deviations �(nE) and �(nI) are given by �(nk) = mkK.In the large K limit the probability distributions pk(n) can be replaced byGaussian distributions. According to Eq. (A.6), the means and variances ofthis distribution are [nk] = [(�nk)2] = Kmk. Therefore, in the limit K !1,Fk(mE; mI) is given byFk(mE; mI) = Z Dx�(uk +p�kx) = H  �ukp�k! : (A.7)where Dx = dx exp(�x2=2)=p2�. From the above statistics of nl, one ob-tains that the average input, relative to threshold, uk into a cell of populationk given by uk = (Jk0m0 + JkEmE + JkImI)pK � �k (A.8)and standard deviation of the input �k�k = (JkE)2mE + (JkI)2mI : (A.9)from which Eqs. (3.3)-(3.6) follow.A.2 Auto-CorrelationsWe now extend the above analysis to evaluate the dynamics of the auto-correlation function qk(�), Eqs. (5.16). Using similar arguments as for Eq.(A.2), qk(�) satis�es an equation of the following form�k dqkd� = �qk(�) + Z 10 dt0�k exp(�t0=�k)Fk(fmlg; fql(t0 + �)g): (A.10)50



where Fk = hD�(uik(t))�(uik(t + t0 + �)) Ei (A.11)Here the averaging is also over absolute time t. The integral over time inthe RHS of the above equation takes into account the correlation betweenthe inputs to a cell that updates its state at time t + � and its inputs atthe last update before time t. Thus, the time integral is an integral over theexponential distribution of update interval of the last update before timet. Separating the total number of active inputs into those that come fromsources in the k-th population that are active in both times (n1;k ) and thosethat are active only in one of the times (n2;k and n3;k, respectively), one canwriteFk = Yl=1;2 Xnkl pl(n1l; n2l; n3l)� pKJk0m0 +Xl JklpK (n1l + n2l)� �k!�� pKJk0m0 +Xl JklpK (n1l + n3l)� �k! : (A.12)where pl(n1; n2; n3) = (qlK)n1n1! ((ml � ql)K)n2+n3n2!n3! e�(2ml�ql)K : (A.13)In the large K limit this can be written asFk = Z Dx1 Z Dx2 Z Dx3�(uk +q�kx1 +q�k � �kx2 � �k)��(uk +q�kx1 +q�k � �kx3 � �k)= Z Dx "H  �k � uk �p�kxp�k � �k !#2 ; (A.14)with uk and �k as above, and �k given by�k(�) = Xl=1;2(Jkl)2ql(�): (A.15)So that qk satis�es Eq. (5.17). 51



A.3 Sensitivity to Initial ConditionsThe derivation of Eq. (8.5) for the overlaps Qk(t) = (mk + Dk)=2 of twotrajectories Eq. (8.2) which start with slightly di�erent initial conditions, issimilar to that of qk. Here the inputs n1;k are the sources to a given cell thatare active at time t in both trajectories. The only di�erence between theequation for the delayed-time autocorrelations and the equal-time overlapbetween two trajectories is the integral over the previous update times whichappears in (A.10) and (5.17). This results from the fact that in the lattercase the update sequence is identical in the two trajectories.Appendix B: Determinstic Update RulesThe general form of Eq. (A.4) is usually derived for a binary variablethat is updated stochastically at a rate �k. One might therefore argue thatthe irregular �ring in our model is due to the stochasticity of the updatetimes of the model neurons. To show that this is not the case we de�ne herea completely deterministic dynamic model and show that it leads to exactlythe same equations for the mean rates of activity as those given above.Consider the same network model, except that a neuron i of populationk is updated at times t = (n + �ik)�k with n = 0; 1; 2; : : : and �ik is randomlychosen between 0 and 1. Let m+k (t) be the probability that the neuron ofpopulation k, that is updated at time t, goes into (or stays in) the activestate. Since all neurons of population k are updated exactly once betweentimes t� �k and t, mk(t) is given bymk(t) = 1�k Z �k0 dt0m+k (t� t0) (B.1)Going through arguments similar to those shown above, one can show thatmk satis�es mk(t) = 1�k Z �k0 dt0Fk(mE(t� t0); mI(t� t0)) (B.2)with Fk given by Eqn. (A.5).If we introduce inhomogeneities in the rate with which the cells are up-dated so that cell i of population is updated at times t = (n + �ik)�ki , where52
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