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SUMMARY 

 

1This report evaluates two different methods for determining the buckling force of a beam 

structure. 2The first method is based on a simplified engineering model and hand calculation. 3The 

second method uses a non-linear beam theory and a numerical model. 4The results of both methods 

are validated against experimental data. 5Comparison of the results indicate that both approaches 

predict the buckling force within engineering accuracy. 

 

1. INTRODUCTION 

 

6An important criterion for designing structures composed of thin or slender structural parts is 

the stability of the structure. 7The aim of stability analyses is to ensure that structural parts, such as 

slender beam- or plate-like structures, do not buckle and thereby threaten the integrity of the structure. 

8To avoid this problem, it is necessary to have a reliable model for predicting buckling load. 9For this 

purpose, simplified engineering models are typically used to predict critical loading under rather 

severe assumptions, such as loading aligned with the beam axis. 10A well-known example of this is 

the simple Euler formulas [1] for buckling of a beam. 11However, although imperfections or post-

buckling behaviour can be better predicted using more precise models, this would require more 

complex analysis to account for large displacements. 

12In order to evaluate the applicability of using a simplified engineering model instead of a 

more precise method based on a non-linear beam theory [2] to account for large displacements, this 

report compares the results yielded by these two models aganst experimental results. 13The 

structure used for this comparison is a beam of high-strength steel supported by two hinges acting 

as cylindrical joints. 

14The rest of this report is divided into five sections. 15Section 2 describes the structure of the 

beam studied in this report. 16Section 3 discusses the Bernoulli beam equation used in the simplified 

methods for determining the buckling force. 17Section 4 reviews the theory on non-linear buckling 

analysis, and Section 5 describes the buckling experiment. 18Section 6 presents and compares the 

experimental results to those of the two approaches for solving the buckling problem. 

 



  

2. BEAM STRUCTURE 

 

19The beam structure and its parts are shown schematically in Figure 1. 20The structure is 

loaded at Hinge B with a horizontal force F. 21Hinge B allows free rotation and horizontal 

displacement uB, while Hinge A at the other end allows only rotation. 22The hinges located at the 

ends are much stiffer than the flexible parts of the beam structure. 23Rotation centers of the cylindrical 

joints have small offsets from the centerline of the flexible beam part.  

 

 

 

Figure 1. Illustration of the beam structure and its four main geometrical parameters: length L, 

thickness t, width b of the flexible part, and hinge length d. 

 

24The values of the geometrical parameters defined in Figure 1 are given in Table 1. 25The beam is 

composed of high strength steel and has a Young’s modulus of  E = 210GPa and a Poisson’s ratio of 

ν = 0.3.  

Table 1. Geometrical parameters of the structure 

d L b t α 

0.06m  0.61m  0.04m  0.003m  / 3  

 



  

3. BUCKLING ANALYSIS 

 

26Engineering models for an axially loaded beam are based on the Bernoulli beam equation 

modified by the bending effect of the axial load. 27The critical axial loading crN  of the beam is 

identified by the non-uniqueness of the bending solution. 28The outcome is a simple analytical 

expression attributed to Euler [2]. 

29For the beam structure in Figure 1, the axial force N  acting on the beam can be deduced 

from the equilibrium of the moving joint of Hinge B as 

 cosN F = .   (1) 

30The buckling force yielded by the engineering model is given by 

 2
cr 2

EI
N

L
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31As the equilibrium Equation (1) holds also at the critical loading, equations can be solved for the 

critical loading crF  acting on Joint B (Figure 1). 32The axial buckling force expression of a simply 

supported beam in Equation (2) assumes constant bending rigidity between the two joints. 

33Therefore, EI  is chosen as the bending stiffness for the flexible part of the beam, and L  the distance 

between the joints.  

4. NON-LINEAR ANALYSIS 

34Post-buckling analysis and finding the full force-displacement relationship requires a model that 

would also be valid for large displacements. 35In variational form, the planar beam problem can be 

stated as follows [3]: Find the corresponding displacement components ( )u x  and ( )v x  in the 

directions of X −  and Y − axis (Figure 1), such that 

  ( ) 0
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W EA EI dx u F     = − + − =  (3) 

for all u  and v . 36With the Lagrange notation for a derivative with respect to the material 

coordinate x along the axis of the beam, the Green-Lagrange strain  and curvature   in the virtual 

work expression are defined by 
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37Equations (3), (4) , and (5) assume that  and   vanish at the initial geometry when 0F = .  



  

 38The finite element method and a cubic element approximation for the displacement 

components are used to find a numerical solution. 39In the displacement-controlled algorithm, 

displacement Bu  is decreased (a negative quantity) step-by-step. 40Starting from a known equilibrium 

solution, Bu  is given a decrement with 0Bu = , Newton’s method is used to find a new equilibrium 

solution, and force F is calculated by considering 0Bu  . 

41Figure 2 shows the force F  acting on node B as function of the displacement F Bu u= −  in 

the direction of the force when the joints have an offset of 1 mm. 42The range for the displacement is 

from the initial position to the position where the nodes of Hinges A and B are on the same vertical 

line. 43From the figure, it can be observed that buckling occurs with a small displacement at the 

point  / 0FdF du = . 44Consequently, a buckling experiment based on control of F  is not feasible. 

 

 

 

Figure 2. Displacement-force relationship given by the large displacement beam model. 

 

5. BUCKLING EXPERIMENT 

 

45The set-up of the buckling experiment is shown schematically in Figure 3. 46A slider-

threaded bar-wrench system is used to adjust the horizontal position BX  of Joint B. 47The force F

acting on the joint is given by a force-transducer connected to a computer through an amplifier.  

48During the experiment, Hinge B is moved to 25 positions starting from the initial position (

0F = ) to the position where the line connecting the joints is vertical ( 0F = ). 49Thereafter, the 25 

positions are measured in the reverse order. 50The two measurements allow elimination of the friction 

force acting on Hinge B from the slider. 51The outcome of the experiment is given in Appendix A.   
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Figure 3. Set-up of the buckling experiment. 

 

6. RESULTS AND CONCLUSION 

 

52Table 2 shows the critical force values given by the simplified engineering model, the method 

based on non-linear beam theory and a numerical model, and the experiments. 53As can be seen from 

the table, the predictions by the two models yielded results that are in fair agreement and well within 

the precision needed for design: the results yielded by the approaches differ by less than 5%.  

Table 2. Critical loading of the structure 
 

Method crF  [N] 

Simplified 175 

Non-linear 177 

Experiment 168 
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APPENDIX A. Measured force-displacement relationship. 

 

N:o BX  [mm] F+  [N]  F−  [N] ( ) / 2 [N]F F− ++  

1 82 3 2 3 

2 90 181 153 167 

3 100 177 159 168 

4 110 176 157 167 

5 120 172 153 163 

6 130 168 149 159 

7 140 165 146 156 

8 150 164 145 155 

9 160 158 139 149 

10 170 154 136 145 

11 180 150 136 143 

12 190 145 129 137 

13 200 141 127 134 

14 220 133 114 124 

15 240 121 106 114 

16 260 110 97 104 

17 280 106 87 97 

18 300 98 76 87 

19 320 84 67 76 

20 340 75 55 65 

21 360 59 42 51 

22 380 46 33 40 

23 400 33 24 29 

24 420 18 5 12 

25 440 6 6 6 

 


