Session 4

Building LCA and green building certificates

Ali Amiri

Postdoc researcher

Aalto University

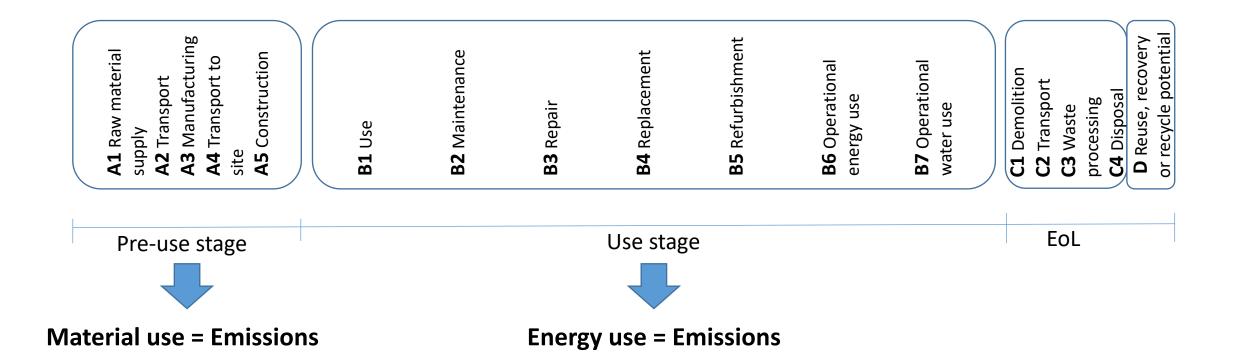
ali.amiri@aalto.fi

Climate.now + Built Environment

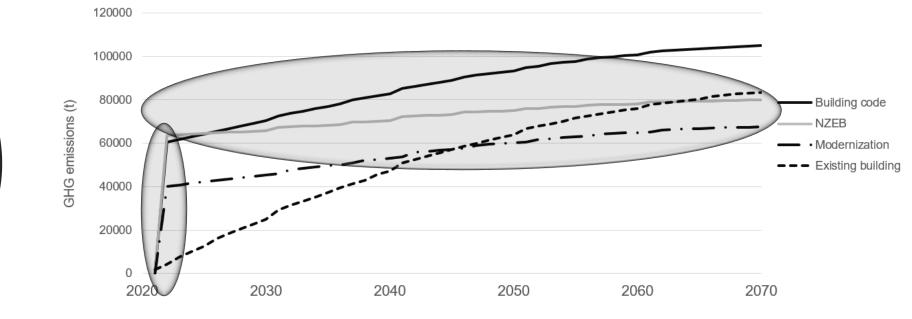
16 May 2024

Content

- Life cycle assessment (LCA)
- Green building certificates
- LEED as a green building certificate


Definition of LCA:

Life Cycle Assessment (LCA) is a systematic method for evaluating the environmental impacts of products, processes, or services throughout their entire life cycle.


Stages of LCA:

Raw Material Extraction: Harvesting or mining the raw materials.
Production: Manufacturing the product.
Distribution: Transporting the product to the consumer.
Usage: Using the product during its operational life.
End-of-Life: Disposing or recycling the product.

Buildings' life cycle consist of three main stages

What can we do for less emissions?

- Maybe we can focus on use stage which results in thicker insulation, improved thermal performance of windows, and more efficient heat recovery systems.
- Or any smart idea (D1)?

The life cycle of a building includes several key phases: **design, construction, operation, and end-of-life**.

During the design phase, architects and engineers focus on sustainability and efficiency. The construction phase involves significant energy use and emissions due to material extraction, processing, and building activities. The operational phase, the longest, entails energy and water use, along with maintenance. Finally, at the end-of-life, buildings are demolished or deconstructed, with materials recycled or disposed of. Effective management aims to minimize environmental impacts at each stage through sustainable practices and efficiency improvements.

How to minimize energy and material use in buildings?

Green buildings

- Yudelson (2010) describes a green building as "A high-performance property that considers and reduces its impact on the environment and human health."
- Kibert (2016) defines green buildings as "Healthy facilities designed and built in a resource-efficient manner, using ecologically based principles."

Imagine that you want to design a point-based green building certificate. What is the criteria you give points? (D2)

Life cycle stages		Product		Constr	ruction		Related t	o the build	Jse stage ling fabric	e.		to the operation		End-	of-life		beyond the system boundary	
Modules	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D	
	Raw material supply	Iransport	Manufacturing	Transport	Construction	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Demolition	Iransport	Waste processing	Disposal	Reuse / Recovery / Recycling potentia	

Pre-use stage

Use stage

End of life (EoL)

Different certification systems

BREEAM

British Building Research Establishment Environmental Assessment Method

• LEED

Leadership in the Energy and Environmental Design

Categories	LEED v2.2	LEED v3 (2009)	LEED v4
Location and Transportation (LT)	-	-	16 (14.6%)
Sustainable Sites (SS)	14 (20.3%)	26 (23.6%)	10 (9.1%)
Energy and Atmosphere (EA)	17 (24.6%)	35 (31.8%)	33 (30)
Water Efficiency (WE)	5 (7.3%)	10 (9.1%)	11 (10%)
Indoor Environment Quality	15 (21.7%)	15 (13.6%)	16 (14.5%)
(IEQ)			
Material and Resources (MR)	13 (18.8%)	14 (12.7%)	13 (11.8%)
Innovation (ID)	5 (7.3%)	6 (5.5%)	6 (5.5%)
Regional Priority (RP)	-	4 (3.7%)	4 (3.6%)
Integrative Process (IP)	-	-	1 (0.9%)
Total	69	110	110

• G-SEED (Korea)

Green Standard for Energy & Environmental Design

• CASBEE (Japan)

Comprehensive Assessment System for Built Environment Efficiency

• Green Star (Australia)

Categories, credits, prerequisites, and available points in LEED v4

LEED for Building Design and Construction LEED for Interior Design and Construction LEED for Building Operations and Maintenance LEED for Neighborhood Development

Categories	Prerequisites	Credits	Available points	Share %
Integrative Process (IP)	-	1	1	0.9
Location and Transportation (LT)	-	7	16	14.6
Sustainable Sites (SS)	1	6	10	9.1
Water Efficiency (WE)	3	4	11	10
Energy and Atmosphere (EA)	4	7	33	30
Materials and Resources (MR)	2	5	13	11.8
Indoor Environmental Quality (IQ)	2	9	16	14.5
Innovation (IN)	-	2	6	5.5
Regional Priority (RP)	-	4	4	3.6
Total	12	45	110	100

The LEED certification is based on points and includes four levels, namely Certified (40-49 points), Silver (50-59 points), Gold (60-79 points) and Platinum (80+ points).

Projects in the world

• LEED has grown to become the world's most widely used green building rating system, with nearly **80,000 projects** participating in LEED across **162 countries**, including more than 32,500 certified commercial projects

	Y	?	N												
	1	0	0	Credit	Integrative Process		1								
Г	9	0	6	Location	and Transportatio	n	15	0	9	4	Material	s and Reso	urces		13
	0	0	0	Credit	LEED for Neighborhoo	d Development Lo	15	 Y			Prereq	Storage and Collection of Recyclables		Required	
	1	0	0	Credit	Sensitive Land Protect	ion	1	 Y			Prereq	Construction	n and Demolit	ion Waste Mar	n Required
	0	0	2	Credit	High Priority Site		2	0	3	2	Credit	Building Life-Cycle Impact Reduction		5	
	4	0	1	Credit	Surrounding Density a	nd Diverse Uses	5	0	2	0	Credit	•	duct Disclosu		2
	4	0	0	Credit	Access to Quality Tra	nsit	4	0	2	0	Credit			re and Optimiz	z 2
	0	0	1	Credit	Bicycle Facilities		1	0	2	0	Credit	Building Pro	duct Disclosu	re and Optimiz	z 2
	0	0	1	Credit	Reduced Parking Foot	orint	1	0	0	2	Credit	Construction	n and Demolit	ion Waste Mar	n 2
	0	0	1	Credit	Green Vehicles		1								
								5	3	8	Indoor E	nvironmen	tal Quality	1	16
Γ	7	0	5	Sustainal	ole Sites		12	Y			Prereq	Minimum Ind	loor Air Qualit	y Performance	Required
	Y			Prereq	Construction Activity	Pollution Prevention	Required	Y			Prereq	Environmen	tal Tobacco S	Smoke Control	Required
	Y			Prereq	Environmental Site As	sessment	Required	Y			Prereq	Minimum Ac	oustic Perfor	mance	Required
	1	0	0	Credit	Site Assessment		1	0	0	2	Credit	Enhanced Ir	ndoor Air Qua	lity Strategies	2
	2	0	0	Credit	Site Development - Pro	tect or Restore H	2	0	3	0	Credit	Low - Emittin	g Materials		3
	0	0	1	Credit	Open Space		1	0	0	1	Credit	Construction	n Indoor Air C	uality Manage	e 1
	2	0	1	Credit	Rainw ater Manageme	nt	3	0	0	2	Credit	Indoor Air G	uality Assess	sment	2
	0	0	2	Credit	Heat Island Reduction		2	1	0	0	Credit	Thermal Cor	mfort		1
	1	0	0	Credit	Light Pollution Reduction	n	1	1	0	1	Credit	Interior Lighting		2	
	0	0	1	Credit	Site Master Plan		1	1	0	2	Credit	Daylight Mo	delling		3
	1	0	0	Credit	Joint Use of Facilities		1	1	0	0	Credit	Quality Viev	vs		1
								1	0	0	Credit	Acoustic Pe	erformance		1
	0	0	12	Water Eff	iciency		12								
	Y			Prereq	Outdoor Water Use Re	duction	Required	0	2	1	Innovatio	on			6
	Ν			Prereq	Indoor Water Use Red	uction	Required	0	2	0	Credit	Innovation			5
	Ν			Prereq	Building-Level Water N	Netering	Required	0	0	1	Credit	LEED Accre	dited Profess	ional	1
	0	0	2	Credit	Outdoor Water Use Re	duction	2								
	0	0	7	Credit	Indoor Water Use Red	uction	7	3	0	1	Regiona	I Priority			4
	0	0	2	Credit	Cooling Tow er Water	Jse	2	1	0	0	Credit	Regional Pri	ority: Specific	: Credit	1
	0	0	1	Credit	Water Metering		1	1	0	0	Credit	Regional Pri	ority: Specific	credit	1
Ļ								1	0	0	Credit	Regional Pri	ority: Specific	credit	1
	7	0	24	Energy a	nd Atmosphere		31	0	0	1	Credit	Regional Pri	ority: Specific	Credit	1
	Y			Prereq	Fundamental Commiss	ioning and Verific	Required								
.	Y			Prereq	Minimum Energy Perfo	rmance	Required	32	14	64	TOTALS		Possi	ble Points:	110
ן ג	Y			Prereq	Building-Level Energy	Metering	Required	 	Certified: 4	0 to 49 points	s, Silver: 50	0 to 59 points,	Gold: 60 to	79 points, Pla	atinum: 80 to
	Y			Prereq	Fundamental Refrigera	int Management	Required								
	4	0	2	Credit	Enhanced Commission	ing	6								
	0	0	16	Credit	Optimize Energy Perfo	rmance	16								
	0	0	1	Credit	Advanced Energy Met	ering	1								
	0	0	2	Credit	Demand Response		2								
	0	0	3	Credit	Renew able Energy Production		3								
	1	0	0	Credit	Enhanced Refrigerant	Management	1								
	2	0	0	Credit	Green Power and Car	oon Offsets	2								

LEED v4 for BUILDING DESIGN AND CONSTRUCTION

Includes: LEED BD+C: New Construction LEED BD+C: Core and Shell LEED BD+C: Schools LEED BD+C: Retail LEED BD+C: Data Centers LEED BD+C: Hospitality LEED BD+C: Healthcare

A school case study building located in Iceland

						L	ocatio	n & Tra	nsport	ation
	Credit	Title	NC	cs	Schools	Retail	Data Centers	Warehouses & Distribution Centers	Hospitality	Healthcare
Overview of Credits	LT Credit	LEED for Neighborhood Development Location	8-16	8-20	8-15	8-16	8-16	8-16	8-16	5-9
Cre	LT Credit	Credit Sensitive Land Protection	1	2	1	1	1	1	1	1
of	LT Credit	High-Priority Site	1-2	2-3	1-2	1-2	1-2	1-2	1-2	1-2
iew	LT Credit	Surrounding Density and Diverse Uses	1-5	1-6	1-5	1-5	1-5	1-5	1-5	1
erv	LT Credit	Access to Quality Transit	1-5	1-6	1-4	1-5	1-5	1-5	1-5	1-2
$\stackrel{>}{\circ}$	LT Credit	Bicycle Facilities	1	1	1	1	1	1	1	1
	LT Credit	Reduced Parking Footprint	1	1	1	1	1	1	1	1
	LT Credit	Green Vehicles	1	1	1	1	1	1	1 1	ESEAQO 1
									GREE	ESEAACH INSTITUT

Source: USGBD

9	0	6	Location	and Transportation	5			
0	0	0	Credit	LEED for Neighborhood Development Location				
1	0	0	Credit 🤇	t Sensitive Land Protection				
0	0	2	Credit	High Priority Site				
4	0	1	Credit	edit Surrounding Density and Diverse Uses				
4	0	0	Credit	Access to Quality Transit	4			
0	0	1	Credit	Bicycle Facilities	1			
0	0	1	Credit	edit Reduced Parking Footprint				
0	0	1	Credit	Credit Green Vehicles				

Requirement

Intent

To avoid the development of environmentally sensitive lands and reduce the environmental impact from the location of a building on a site.

Option 1.

Locate the development footprint on land that has been previously developed.

OR

Option 2.

Locate the development footprint on land that has been previously developed or that does not meet the following criteria for sensitive land: Prime farmland, floodplains, habitat, water bodies, or wetlands.

From session 2

Sustainable human settlements

· One of today's hot questions is

"How should we arrange our societies and the built environment to minimize the environmental loads?"

- Currently planning / urban development mostly follows the idea of higher density being the policy guideline to follow
- However, so far the result has been just an illusion of low-carbon cities

UNIVERSITY OF ICELAND FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING

Energy & Atmosphere

	Credit	Title	NC	CS	Schools	Retail	Data Centers	Warehouses & Distribution Centers	Hospitality	Healthcare
	Prerequisite	Fundamental Commissioning and Verification	Req	Req	Req	Req	Req	Req	Req	Req
its	Prerequisite	Minimum Energy Performance	Req	Req	Req	Req	Req	Req	Req	Req
Credits	Prerequisite	Building-Level Energy Metering	Req	Req	Req	Req	Req	Req	Req	Req
	Prerequisite	Fundamental Refrigerant Management	Req	Req	Req	Req	Req	Req	Req	Req
0 /	EA Credit	Enhanced Commissioning	2-6	2-6	2-6	2-6	2-6	2-6	2-6	2-6
verview of	EA Credit	Optimize Energy Performance	1- 18	1- 18	1-16	1-18	1-18	1-18	1-18	1-20
N i	EA Credit	Advanced Energy Metering	1	1	1	1	1	1	1	1
Vθ	EA Credit	Demand Response	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2
Ó	EA Credit	Renewable Energy Production	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3
	EA Credit	Enhanced Refrigerant Management	1	1	1	1	1	1	1	1
	EA Credit	Green Power and Carbon Offsets	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2

Source: USGBD

7	0	24	Energy a	and Atmosphere	31
Y			Prereq	Fundamental Commissioning and Verification	Required
Y			Prereq	Minimum Energy Performance	Required
Y			Prereq	Building-Level Energy Metering	Required
Y			Prereq	Fundamental Refrigerant Management	Required
4	0	2	Credit	Enhanced Commissioning	6
0	0	16	Credit	Optimize Energy Performance	16
0	0	1	Credit	Advanced Energy Metering	1
0	0	2	Credit	Demand Response	2
0	0	3	Credit	Renew able Energy Production	3
1	0	0	Credit	Enhanced Refrigerant Management	1
2	0	0	Credit	Green Pow er and Carbon Offsets	2

Intent

To increase participation in demand response technologies and programs that make energy generation and distribution systems more efficient, increase grid reliability, and reduce greenhouse gas emissions.

Requirement

Design building and equipment for participation in demand response programs through load shedding or shifting. On-site electricity generation does not meet the intent of this credit.

Materials & Resources

Credit	Title	NC	cs	Schools	Retail	Data Centers	Warehouses & Distribution Centers	Hospitality	Healthcare
Prereq	Storage and Collection of Recyclables	Req	Req	Req	Req	Req	Req	Req	Req
Prereq	Construction and Demolition Waste Management Planning	Req	Req	Req	Req	Req	Req	Req	Req
Prereq	PBT Source Reduction—Mercury	NA	NA	NA	NA	NA	NA	NA	Req
Credit	Building Life-Cycle Impact Reduction	2-5	2-6	2-5	2-5	2-5	2-5	2-5	2-5
			Buildin	g Product	Disclos	ure and Op	timization		
Credit	Environmental Product Declarations	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2
Credit	Sourcing of Raw Materials	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2
Credit	Material Ingredients	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2
Credit	PBT Source Reduction—Mercury	NA	NA	NA	NA	NA	NA	NA	1
Credit	PBT Source Reduction— Lead, Cadmium, and Copper	NA	NA	NA	NA	NA	NA	NA	2
Credit	Furniture and Medical Furnishings	NA	NA	NA	NA	NA	NA	NA	1-2
Credit	Design for Flexibility	NA	NA	NA	NA	NA	NA	NA	1
Credit	Construction & Demolition Waste Management	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2

Source: USGBD

0	9	4	Materials	and Resources	13
Y			Prereq	Storage and Collection of Recyclables	Required
Y			Prereq	Construction and Demolition Waste Management F	Required
0	3	2	Credit 🤇	Building Life-Cycle Impact Reduction	5
0	2	0	Credit	Building Product Disclosure and Optimization -	2
0	2	0	Credit	Building Product Disclosure and Optimization - So	2
0	2	0	Credit	Building Product Disclosure and Optimization - Ma	2
0	0	2	Credit	Construction and Demolition Waste Management	2

Requirement

Demonstrate reduced environmental effects during initial project decision-making by reusing existing building resources or demonstrating a reduction in materials use through life-cycle assessment. Achieve one of the following options.

Intent

To encourage adaptive reuse and optimize the environmental performance of products and materials.

Emissions reduction in at least three of these:

- global warming potential (greenhouse gases), in CO2e;
- depletion of the stratospheric ozone layer, in kg CFC-11;
- acidification of land and water sources, in moles H+ or kg SO2;
- eutrophication, in kg nitrogen or kg phosphate;
- formation of tropospheric ozone, in kg NOx or kg ethene;
- depletion of nonrenewable energy resources, in MJ.

From the previous session

Examples of more sustainable materials, available now

- Mycelium
- Hempcrete
- Biocrete
- Biocement
- CLT and other timber and bamboo products

Mycelium

Hempcrete

Biocrete

Indoor Environmental Quality

Credit	Title	NC	CS	Schools	Retail	Data Centers	Warehouses & Distribution Centers	Hospitality	Healthcare
Prereq	Minimum Indoor Air Quality Performance	Req	Req	Req	Req	Req	Req	Req	Req
Prereq	Environmental Tobacco Smoke (ETS) Control	Req	Req	Req	Req	Req	Req	Req	Req
Prereq	Minimum Acoustical Performance	Req	Req	Req	Req	Req	Req	Req	Req
Credit	Enhanced Indoor Air Quality	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2
Credit	Low-Emitting Materials	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3
Credit	Construction Indoor Air Quality Management Plan	1	1	1	1	1	1	1	1
Credit	Indoor Air Quality Assessment	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2
Credit	Thermal Comfort	1	1	1	1	1	1	1	1
Credit	Interior Lighting	1-2	1-2	1-2	2	1-2	1-2	1-2	1
Credit	Daylight	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-2
Credit	Quality Views	1	1	1	1	1	1	1	1-2
Credit	Acoustic Performance	1	1	1	1	1	1	1	1-2

Source: USGBD

5	3	8	Indoor En	vironmental Quality	16
Y			Prereq	Minimum Indoor Air Quality Performance	Required
Y			Prereq	Environmental Tobacco Smoke Control	Required
Y			Prereq	Minimum Acoustic Performance	Required
0	0	2	Credit	Enhanced Indoor Air Quality Strategies	2
0	3	0	Credit	Low - Emitting Materials	3
0	0	1	Credit	Construction Indoor Air Quality Management Plan	1
0	0	2	Credit	Indoor Air Quality Assessment	2
1	0	0	Credit	Thermal Comfort	1
1	0	1	Credit	Interior Lighting	2
1	0	2	Credit	Daylight Modelling	3
1	0	0	Credit	Quality View s	1
1	0	0	Credit	Acoustic Performance	1

Requirement

To connect building occupants with the outdoors, reinforce circadian rhythms, and reduce the use of electrical lighting by introducing daylight into the space. Option 1. Simulation: Spatial Daylight Autonomy and Annual Sunlight Exposure

Option 2. Simulation: Illuminance Calculations

Option 3. Measurement

Intent

INNOVATION (IN)

IN CREDIT: INNOVATION

To encourage projects to achieve exceptional or innovative performance

IN CREDIT: LEED ACCREDITED PROFESSIONAL

To encourage the team integration required by a LEED project and to streamline the application and certification process.

REGIONAL PRIORITY (RP)

RP CREDIT: REGIONAL PRIORITY

To provide an incentive for the achievement of credits that address geographically specific environmental, social equity, and public health priorities.

0	2	1	Innovation				
0	2	0	Credit	Innovation			5
0	0	1	Credit	LEED Accredited Professional			1
3	0	1	Regional Priority 4				
1	0	0	Credit	Regional Priority: Specific Credit			1
1	0	0	Credit	Regional Priority: Specific Credit			1
1	0	0	Credit	Regional Priority: Specific Credit 1			
0	0	1	Credit	Regional Priority: Specific Credit 1			
32	14	64	TOTALS			Possible Points:	110
	Certified: 40 to 49 points, Silver: 50 to 59 points, Gold: 60 to 79 points, Platinum: 80 to 110						

Picture: students from the previous course

OVERALL LEED SCORECARD					
Integrative process credits	0/1				
Location & transport	19/20				
Sustainable sites	1/11				
Water efficiency	9/11				
Energy & atmosphere	23/33				
Material & resources	5/14				
Indoor environmental quality	4/10				
Regional property credits	3/4				
Innovation	2/6				
Total	67/110				

KOy Keilaniemen Torni (Keilaniementie 1, Espoo, Finland) As Oy Espoon Leppävaaran Atleetti ("Juli Leppävaaran Atleetti") is the first residential building in Finland to receive LEED Gold certificate1. The building was originally constructed in 1987 to serve as an office building and was converted into residential use with 94 dwelling units in 2021.

Location and transportation (LT)

- Bicycle facilities (1/1 p)
- Surrounding density and diverse uses (5/5 p)

Sustainable sites (SS)

- Light pollution reduction (1/1 p)
- Open space (1/1p)

Energy and Atmosphere (EA)

• Optimize energy performance (12/18)

Water efficiency (WE)

• Water metering (1/1)

Indoor environment quality (IEQ)

- Daylight (3/3)
- Quality views (1/1)

Material and resources (MR)

- Construction and demolition waste management (2/2)
- Building life-cycle impact reduction (2/5)

Picture: students from the previous course

How much extra you pay for a green building? (Q2 and Q3)

Schedule

16.5.	Building LCA and green building certificates	T2	Ali Amiri
23.5.	Circular construction	Online	Katarzyna Jagozinska
30.5.	Carbon storing potential of the built environment	T2	Ali Amiri

Any question?

Thank you