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Today’s agenda

e Carbon budgets
* Environmental impacts of
building materials
* Concrete
* Asphalt
* Steel




Carbon budgets

* Carbon dioxide (CO,) lasts for long in the
atmosphere
* First 10% goes quickly
* Next 70% takes centuries to millenia
e Last 20% takes tens of thousands of years

* As we know that the amount of CO, in the
atmosphere correlates with climate, we can
calculate how much we extra can emit for a certain
rise in temperature

* We influence the natural carbon cycle
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Carbon budgets

 Remaining budget
e for 1.5°C warming = ~400 GtCO2
* For 2.0°C warming = ~1000 GtCO2

e 2023 annual emissions 37 GtCO2

Excluding methane and other GHGs

Excluding additional Earth-system feedbacks such as permafrost
melting or methane released from wetlands



...meaning that year after year the mitigation curve to reach
a certain warming target becomes steeper and steeper
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Tipping
points
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Potential global processes bringing the tipping
points closer (or taking us beyond them)

* Permafrost melt The major global environmental
 Ocean acidification reducing the problems are not isolated
carbon uptake issues, but deeply connected

* Snowcover reduction
e Deforestation Built
* Watercover darkening environment N

* Snow and icecover darkening

* Erosion

OCEAN
ACIDIFICATION




Questions about carbon budgets?



Environmental impact of building
materials

* Civil works and building construction consumes
60% of the raw materials extracted from the
lithosphere (buildings 24%)

* In Europe, 4.8 tonnes per inhabitant per year

* Building sector accounts for:

* 36% of total global final energy use

* 54% of final electricity demand
* 37% of energy-related CO2 emissions
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https://www.visualcapitalist.com/visualizing-the-accumulation-of-human-made-mass-on-earth/
https://www.visualcapitalist.com/visualizing-the-accumulation-of-human-made-mass-on-earth/

Global load

* Concrete and steel responsible for 6.5% and 7.0%
of global CO, emissions, respectively

Figure 2. Buildings and construction’s share of global final energy and energy-related CO, emissions, 2020
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Concrete

e Concrete alone consumes 65% of the total
embodied energy of a home

e Concrete is a mix of cement, water, aggregate and
additives

* Most common building material
 Portland cement the most common cement in concrete

* In 2009, the cement industry in the EU responsible for
38.5% of total European CO2 emissions from industry



Asphalt concrete

* Asphalt concrete is a mix of asphalt or ,,bitumen”
and aggregate

* Mainly for road surfaces

* Asphalt obtained from petroleum
* high pressure and temperatures up to 425 °C required

* Most common mix requires 165 °C to process asphalt as
component in asphalt concrete

e ...but temperature for mix varies, HMA, WMA, CMA



Steel

* Iron and steel production accounts for ~20% of
global final energy use
* Largest industrial source of CO2 emissions
* Half is used for construction

* Made from iron ore or scrap
* 98% of mined iron ore goes into making steel
* Requires high temperatures
e Reliance on carbon-based fuels



LCA results differ, one example:

Building product

Primary GWP (kg
energy CO2-Eq/kg)

demand (MJ-

Cement
Reinforced concrete

Sawn timber,
softwood, planed,
air dried

Glued laminated
timber, indoor use

Reinforced steel

Flat glass

Eq/kg)

3150 4.235 0.819 3.937

2546 1.802 0.179 2.768

600 18.395 0.267 4.192

600 27.309 0.541 8.366 325
7900 24.336 1.526 26.149 12055
2500 15.511 1.136 77.794 2840

Zabalza Bribian et al. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental
impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46, 1133-1140.



The impact of material

replacement
- o @

Impact categories total base case total scenario 2 Unit Decrease [ Increase % Not even ta king
Climate change 17,319,130 9,775,484 kg CO2-Eq| _ 7,543,646 (4/;;) sequestration
Ozone depletion 0.86 0.7 kg CFC-11-Eq| 0.16 9% potential into
Terrestrial acidification 51,814 39,685 SO2-Eq 12,129 23% account
Freshwater eutrophication 3,810 3,156 kg P-Eq 654 17%
Photochemical oxidant formation 62,104 49,921 kg NMVOC 12,183 20%
Freshwater ecotoxicity 259,620 210,250 kg 1,4-DCB-Eq 49,370 19%
Human toxicity 3,734,476 3,057,572 kg 1,4-DCB-Eq 676,904 18%
Particulate matter formation 28,915 21,555 kg PM10-Eq 7,360 25%
Agricultural land occupation 481,906 74,595,042 m2a 74,113,136 15379%
Water depletion 216,317 74,099 m3 142,218 66%
lonising radiation 646,404 721,513 kg U235-Eq 75,109 12%
Fossil depletion 3,320,639 2,554,296 kg oil-Eq 766,343 23%
Marine ecotoxicity 244,212 198,328 | kg 1,4-DCB-Eq 45,884 19%
Marine eutrophication 155 129 kg N-Eq 26 17%
Metal depletion 4,068,833 3,416,525 kg Fe-Eq 652,308 16%
Natural land transform 4,765 3,372 m2 1,393 29%
Terrestrial ecotoxicity 1,298 2,154 kg 1,4-DCB-Eq 856 66%
Urban land occupation 780,777 1,231,060 m2a 450,282 58%

Hjordis Sigurdarddttir, Master thesis, 2022



Transport

* The environmental impact of building materials differs
depending on transport method

* Primary energy demand (MJ-Eq/km) of transporting 1
tonne of materials is...
e 3.266 by road
e 0.751 by rail
* 0.170 by ship

Weight, location and fuel source matter!

Zabalza Bribian et al. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental
impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46, 1133-1140.



Future scenarios

* Possible for a sustainable future scenario to rely on
these highly unnatural high-impact materials?

* Durability
 How long do they actually need to last?

 The Icelandic turf house

* Repair and reuse
* Evolved with household composition

* End of life

* They don’t dissolve naturally



The cement industry reacting, but
too late?

* Norcem
* CCSto be used in production by 2030
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Examples of more sustainable
materials, available now

* Mycelium
* Hempcrete
* Biocrete

* Biocement
* CLT and other timber and bamboo products



Mycelium
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https://materialdistrict.com/article/leaning-mycelium-mycotree/



Hempcrete

//www.hempitecture.com/hempcrete

https



Biocrete

https://www.biocrete.no/




Biocement

https://biocement.com/



CLT

https://www.storaenso.com/en/products/mass-timber-construction



And in general vernacular
architecture...

e Use of local resources

* Buildings responsive to
local climate

* Less energy-intensive
manufacturing

* E.g. Clay, straw, earth,
snow, turf, wood

Christian

Schittich (Ed.) Ve rn aCU Ia r
Architecture

Atlas for Living
Throughout the World
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BREEAM vs non-certified

Samanburdur & heildar kolefnisspori orkunytinnar byggingar med
handahéfsvoldum efnum med umhverfisyfirlysingar og grunnlinu byggingar
(midad vid 7 gCO2-ig/kWh)
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BREEAM vs non-certified

Samanburdur & kolefnisspori orkunytinnar byggingar med
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To give a bit of perspective for the
importance of the issue:

Poorer countries catching up with Western
infrastructure stocks, using current
technologies, would cause approximately 350
Gt CO2 from materials production (Miiller et
al.), which roughly equals the TOTAL carbon
budget available for 1.5 degrees warming
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Next lectures

16.5. Building LCA and green T2 Ali Amiri
building certificates
23.5. Circular construction Online |Katarzyna
Jagozinska
30.5. Carbon storing potential of | T2 Ali Amiri
the built environment




Calculation estimate example
from lceland

35.000 apartments in the next 10 years

Average size 100m?2

Typical emissions per m2 are 500kg
35.000 * 100 * 0,5 tonns = 1.75 million

Annual national CO2 emissions= 3.5 million tonns
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