Percolation exercises 1

- 1. (a) Show that there is no phase transition in one dimension, that is: $p_c(\mathbb{Z}) = 1$. (b) Show that there is no phase transition on a strip, that is: $p_c(\mathbb{Z} \times \{0, 1, \dots, n\}) = 1$.
- 2. (a) Given the definition of a sigma algebra F on a set Ω, show that: Ø ∈ F, Ω ∈ F, and that F is closed under countable intersections.
 (b) Show that the events {x ↔ y}, {x ↔ ∞}, {∃ an ∞ cluster} all lie in the sigma algebra σ(A), where A is the set of cylinder sets.
- 3. In this exercise, we prove the uniqueness part of Caratheodory's extension theorem. Let μ_1, μ_2 be two measures on (Ω, \mathbb{F}) , where \mathbb{F} is a sigma algebra on Ω , with $\mu_1(\Omega) = \mu_2(\Omega) < \infty$. Let $\mu_1 = \mu_2$ on \mathbb{A} , where $\mathbb{A} \subset 2^{\Omega}$ satisfying $\emptyset \in \mathbb{A}$, and $A, B \in \mathbb{A} \Rightarrow A \cap B \in \mathbb{A}$, and $\sigma(\mathbb{A}) = \mathbb{F}$. We want to show that $\mu_1 = \mu_2$ on all of \mathbb{F} .

(a) Let \mathbb{D} be the set of sets A in \mathbb{F} such that $\mu_1(A) = \mu_2(A)$. Show first that \mathbb{D} is closed under intersections and complements.

(b) Let $A_i \in \mathbb{D}$ and $A_i \subset A_{i+1}$ for all $i \in \mathbb{N}$. Show that $\bigcup_{i=1}^{\infty} A_i \in \mathbb{D}$.

(c) Show that the above properties are enough to show that \mathbb{D} is a sigma algebra. Conclude that $\mathbb{D} = \mathbb{F}$.

4. Prove the corollary to Caratheodory's extension theorem, that is, show that for all events A in our sigma-algebra $\mathbb{F} = \sigma(\mathbb{A})$, and for all $\varepsilon > 0$, there exists a cylinder set $A_{\varepsilon} \in \mathbb{A}$ such that

$$\mathbb{P}_p[A \triangle A_\varepsilon] \le \varepsilon,\tag{1}$$

where $A \triangle A_{\varepsilon} = (A \setminus A_{\varepsilon}) \cup (A_{\varepsilon} \setminus A)$, called the symmetric difference of A and A_{ε} . You can use the following identity: for all $A \in \mathbb{F} = \sigma(\mathbb{A})$,

$$\mu[A] = \inf\left\{\sum_{i=1}^{\infty} \mu[B_i] : B_i \in \mathbb{A}, \ A \subset \bigcup_{i=1}^{\infty} B_i\right\}.$$
(2)

5. Let us define a *lattice animal of size* n to be a set of vertices $C \subset \mathbb{Z}^d$ such that $0 \in C$, C is connected, and |C| = n. Let A_n be the set of lattice animals of size n. In this exercise we show that $|A_n| \leq 4^{dn}$.

(a) Consider \mathbb{P}_p , our percolation measure on \mathbb{Z}^d . Let $C_0 \subset \mathbb{Z}^d$ be the cluster of the random percolation configuration under \mathbb{P}_p which contains the origin. For a fixed lattice animal C of size n, show that

$$\mathbb{P}_p[C_0 = C] \ge p^{2dn} (1-p)^{2dn}.$$
(3)

- (b) Prove that $|A_n| \leq 4^{dn}$.
- 6. (a) In the lectures we defined bond percolation. Give a definition of site percolation on \mathbb{Z}^d , where one uses vertices rather than edges.

(b) Show that bond percolation on the two-dimensional lattice \mathbb{Z}^2 is equivalent to site percolation on a modified lattice.

(c) Show that on \mathbb{Z}^2 , $p_c(bond) \leq p_c(site)$.