Percolation exercises 3

1. In this problem we give an alternative proof that $\theta(p)=\mathbb{P}_{p}[0 \leftrightarrow \infty]$ is continuous on $\left(p_{c}, 1\right]$. Drawing some pictures will probably help. Let $1 \leq k \leq n<\infty$. Let K be the number of disjoint clusters in Λ_{n} intersecting both Λ_{k} and $\partial \Lambda_{n}$. Let $U_{k, n}$ be the event that $K \leq 1$.
(a) Show that $\mathbb{P}\left[U_{k, n}\right]$ is nondecreasing in n and that since the infinite cluster is unique, $\mathbb{P}_{p}\left[U_{k, n}\right] \rightarrow 1$ as $n \rightarrow \infty$.
(b) The above shows that for all $\varepsilon>0$ and for each $p \in[0,1]$ and $k \in \mathbb{N}$, there is some $n=n(p, k, \varepsilon)$ such that

$$
\begin{equation*}
\mathbb{P}_{p}\left[U_{k, n}\right]>1-\varepsilon . \tag{1}
\end{equation*}
$$

We want to show this uniformly in p, ie there exists $n=n(k, \varepsilon)$ independent of p such that (1) holds; show this, using the sets

$$
\begin{equation*}
O_{m}:=\left\{p \in[0,1]: \mathbb{P}_{p}\left[U_{k, m}\right]>1-\varepsilon\right\}, \tag{2}
\end{equation*}
$$

and the compactness of $[0,1]$.
(c) Recall we defined $\theta_{n}(p):=\mathbb{P}_{p}\left[0 \leftrightarrow \partial \Lambda_{n}\right]$. Let $p_{1}>p_{c}$. We aim to show that θ_{n} converges uniformly to θ on $\left[p_{1}, 1\right]$. Using the events $\left\{0 \leftrightarrow \partial \Lambda_{n}\right\},\left\{\Lambda_{k} \leftrightarrow \infty\right\}$, and $U_{k, n}$, show that for $k \geq 1$ large enough and $n \geq k$ large enough, we have, for all $p \in\left[p_{1}, 1\right]$,

$$
\begin{equation*}
\theta(p) \geq \theta_{n}(p)-2 \varepsilon \tag{3}
\end{equation*}
$$

(d) Deduce the uniform convergence.
2. In this exercise we prove the monotone convergence theorem. See the lecture notes on MyCourses for the definition of the integral of a function f, which we denote by $\mu(f)$. For $\left(x_{n}\right)_{n \in \mathbb{N}}, x \in[0, \infty]$, we say $x_{n} \nearrow x$ if $x_{n} \leq x_{n+1}$ and $x_{n} \rightarrow x$. Similarly, let Ω be a set, and let $f_{n}, f: \Omega \rightarrow[0, \infty]$. We say $f_{n} \nearrow f$ if $f_{n}(x) \nearrow f(x)$ for all $x \in \Omega$. The monotone convergence theorem says:
Theorem Let $(\Omega, \mathbb{F}, \mu)$ be a measure space. Let $f,\left(f_{n}\right)_{n \in \mathbb{N}}$ be non-negative, measurable functions on Ω, with $f_{n} \nearrow f$. Then $\mu\left(f_{n}\right) \nearrow \mu(f)$.
(a) Case 1: Prove the theorem for $f_{n}=\mathbb{1}_{A_{n}}, f=\mathbb{1}_{A}$, where A_{n} and A are events in F.
(b) Case 2: Prove for f_{n} simple and $f=\mathbb{1}_{A}$. Use the sets

$$
\begin{equation*}
A_{n}=\left\{x: f_{n}(x)>1-\varepsilon\right\}, \tag{4}
\end{equation*}
$$

where $\varepsilon>0$.
(c) Case 3: Prove for f_{n} and f simple. Use the functions $a_{k}^{-1} \mathbb{1}_{A_{k}} f_{n}$, where $f=$
$\sum_{k=1}^{m} a_{k} \mathbb{A}_{\mathbb{k}}$ and linearity of the integral on simple functions.
(d) Case 4: Prove for f_{n} simple and $f \geq 0$ and measurable. For g simple, use the functions $\min \left\{f_{n}, g\right\}$, and the fact that on simple functions, the integral is monotone: $h_{1} \leq h_{2}$ simple gives $\mu\left(h_{1}\right) \leq \mu\left(h_{2}\right)$.
(e) Case 5: Prove for f_{n} and f nonnegative and measurable. Use the functions

$$
\begin{equation*}
g_{n}:=\min \left\{\left(2^{-n}\left\lfloor 2^{n} f_{n}\right\rfloor\right), n\right\} \tag{5}
\end{equation*}
$$

where $\lfloor x\rfloor$ is the largest integer $\leq x$.
3. In this question, we study percolation on an infinite regular tree, and use a branching process (known as the Galton-Watson tree) to compute the critical point.

The branching process describes the growth of some population. For $n \geq 1$, let Z_{n} be the number of individuals in the $n^{t h}$ generation. The population starts with one individual: $Z_{0}=1$. This individual has $k \geq 0$ children with some probability p_{k}, where $p_{k} \geq 0$ and $\sum_{k=0}^{\infty} p_{k}=1$. The vector $\left(p_{k}\right)_{k \geq 0}$ is called the offspring distribution.

Each of the individuals in the first generation has, again, a random number of children given by $\left(p_{k}\right)_{k \geq 0}$, independently, and so on:

$$
Z_{n+1}= \begin{cases}\sum_{i=1}^{Z_{n}} L_{n, i} & \text { if } Z_{n}>0 \tag{6}\\ 0 & \text { if } Z_{n}=0\end{cases}
$$

where $L_{n, i} \sim\left(p_{k}\right)_{k \geq 0}$ iid.
We say the population goes extinct if $Z_{n}=0$ for some $n \in \mathbb{N}$, and we say it survives if $Z_{n}>0$ for all $n \in \mathbb{N}$. Survival/extinction depends on $\left(p_{k}\right)_{k \geq 0}$. To study this, we use generating functions. For $s \in[0,1]$, define

$$
\begin{equation*}
f_{n}(s):=\mathbb{E}\left[s^{Z_{n}}\right] \tag{7}
\end{equation*}
$$

(a) Compute $f_{0}, f_{1}, f_{1}^{\prime}(1)$, and show f_{1} is convex, that is, $f_{1}^{\prime \prime}(s) \geq 0$ for all $s \in[0,1]$. (Here as $f:[0,1] \rightarrow \mathbb{R}$, we think of $f^{\prime}(1), f^{\prime \prime}(1)$, etc as the derivative from the left to make it well-defined. We also use the convention $0^{0}=1$.)
(b) Show that

$$
\begin{equation*}
f_{n}(s)=\underbrace{f_{1} \circ \cdots \circ f_{1}}_{n \text { times }}(s) . \tag{8}
\end{equation*}
$$

(c) Let $q \in(0,1]$ be the smallest fixed point of f_{1} (ie. the smallest element of $(0,1]$ with $f_{1}(q)=q$. Show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}_{p}\left[Z_{n}=0\right]=q \tag{9}
\end{equation*}
$$

(d) Show that (assuming $p_{1}<1$) $\lim _{n \rightarrow \infty} \mathbb{P}_{p}\left[Z_{n}=0\right]<1$ (ie the population survives with positive probability) if and only if the expected number of offsprings of each individual is strictly greater than 1 :

$$
\begin{equation*}
\sum_{k=0}^{\infty} k \cdot p_{k}>1 \tag{10}
\end{equation*}
$$

(e) Let $d \geq 1, d \in \mathbb{N}$. Consider an infinite tree T_{d}, such that every vertex has degree exactly $d+1$, apart from one chosen vertex, which we call the root, which has degree d. Consider percolation on T_{d}, and relate the cluster of the root to the branching process. Show that $p_{c}\left(T_{d}\right)=\frac{1}{d}$.

