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1. In this problem we give an alternative proof that θ(p) = Pp[0 ↔ ∞] is continuous on
(pc, 1]. Drawing some pictures will probably help. Let 1 ≤ k ≤ n < ∞. Let K be
the number of disjoint clusters in Λn intersecting both Λk and ∂Λn. Let Uk,n be the
event that K ≤ 1.
(a) Show that P[Uk,n] is nondecreasing in n and that since the infinite cluster is
unique, Pp[Uk,n] → 1 as n → ∞.
(b) The above shows that for all ε > 0 and for each p ∈ [0, 1] and k ∈ N, there is
some n = n(p, k, ε) such that

Pp[Uk,n] > 1− ε. (1)

We want to show this uniformly in p, ie there exists n = n(k, ε) independent of p
such that (1) holds; show this, using the sets

Om := {p ∈ [0, 1] : Pp[Uk,m] > 1− ε}, (2)

and the compactness of [0, 1].
(c) Recall we defined θn(p) := Pp[0 ↔ ∂Λn]. Let p1 > pc. We aim to show that θn

converges uniformly to θ on [p1, 1]. Using the events {0 ↔ ∂Λn}, {Λk ↔ ∞}, and
Uk,n, show that for k ≥ 1 large enough and n ≥ k large enough, we have, for all
p ∈ [p1, 1],

θ(p) ≥ θn(p)− 2ε. (3)

(d) Deduce the uniform convergence.

2. In this exercise we prove the monotone convergence theorem. See the lecture notes
on MyCourses for the definition of the integral of a function f , which we denote by
µ(f). For (xn)n∈N, x ∈ [0,∞], we say xn ↗ x if xn ≤ xn+1 and xn → x. Similarly,
let Ω be a set, and let fn, f : Ω → [0,∞]. We say fn ↗ f if fn(x) ↗ f(x) for all
x ∈ Ω. The monotone convergence theorem says:

Theorem Let (Ω,F, µ) be a measure space. Let f, (fn)n∈N be non-negative, mea-
surable functions on Ω, with fn ↗ f . Then µ(fn) ↗ µ(f).
(a) Case 1: Prove the theorem for fn = 1An , f = 1A, where An and A are events in
F.
(b) Case 2: Prove for fn simple and f = 1A. Use the sets

An = {x : fn(x) > 1− ε}, (4)

where ε > 0.
(c) Case 3: Prove for fn and f simple. Use the functions a−1

k 1Ak
fn, where f =

1



∑m
k=1 akAk and linearity of the integral on simple functions.

(d) Case 4: Prove for fn simple and f ≥ 0 and measurable. For g simple, use the
functions min{fn, g}, and the fact that on simple functions, the integral is monotone:
h1 ≤ h2 simple gives µ(h1) ≤ µ(h2).
(e) Case 5: Prove for fn and f nonnegative and measurable. Use the functions

gn := min{(2−n⌊2nfn⌋), n}, (5)

where ⌊x⌋ is the largest integer ≤ x.

3. In this question, we study percolation on an infinite regular tree, and use a branching
process (known as the Galton-Watson tree) to compute the critical point.

The branching process describes the growth of some population. For n ≥ 1, let
Zn be the number of individuals in the nth generation. The population starts with
one individual: Z0 = 1. This individual has k ≥ 0 children with some probability
pk, where pk ≥ 0 and

∑∞
k=0 pk = 1. The vector (pk)k≥0 is called the offspring

distribution.

Each of the individuals in the first generation has, again, a random number of children
given by (pk)k≥0, independently, and so on:

Zn+1 =


∑Zn

i=1 Ln,i if Zn > 0

0 if Zn = 0,
(6)

where Ln,i ∼ (pk)k≥0 iid.

We say the population goes extinct if Zn = 0 for some n ∈ N, and we say it survives
if Zn > 0 for all n ∈ N. Survival/extinction depends on (pk)k≥0. To study this, we
use generating functions. For s ∈ [0, 1], define

fn(s) := E[sZn ]. (7)

(a) Compute f0, f1, f ′
1(1), and show f1 is convex, that is, f ′′

1 (s) ≥ 0 for all s ∈ [0, 1].
(Here as f : [0, 1] → R, we think of f ′(1), f ′′(1), etc as the derivative from the left to
make it well-defined. We also use the convention 00 = 1.)
(b) Show that

fn(s) = f1 ◦ · · · ◦ f1︸ ︷︷ ︸
n times

(s). (8)

(c) Let q ∈ (0, 1] be the smallest fixed point of f1 (ie. the smallest element of (0, 1]
with f1(q) = q. Show that

lim
n→∞

Pp[Zn = 0] = q. (9)

(d) Show that (assuming p1 < 1) limn→∞ Pp[Zn = 0] < 1 (ie the population survives
with positive probability) if and only if the expected number of offsprings of each
individual is strictly greater than 1:

∞∑
k=0

k · pk > 1. (10)
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(e) Let d ≥ 1, d ∈ N. Consider an infinite tree Td, such that every vertex has degree
exactly d+1, apart from one chosen vertex, which we call the root, which has degree
d. Consider percolation on Td, and relate the cluster of the root to the branching
process. Show that pc(Td) =

1
d .
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