
Percolation exercises 4

1. In this problem we’ll give another proof of the Margulis-Russo formula: for all A
increasing, A ⊂ {0, 1}E , E finite,

d

dp
Pp[A] =

∑
e∈E

Pp[e pivotal for A]. (1)

(a) Let G = (V,E) be finite, and let E = {e1, . . . , en}. Let p = (p1, . . . , pn) ∈ [0, 1]n,
and let ωp ∈ {0, 1}E , satisfy (ωp)ei = 1 with probability pi. Define such a random
variable using the coupling measure P∗, and show that for all i = 1, . . . , n,

d

dpi
P∗[ωp ∈ A] = P∗[ei pivotal for A in ωp]. (2)

(b) Conclude the Margulis-Russo formula.

2. In the lectures in week 4, we will prove the FKG inequality: for all A,B increasing
events, we have

Pp[A ∩B] ≥ P[A]P[B]. (3)

Here we give an alternative proof for when A,B are dependent on finitely many edges.
We work on a finite graph G = (V,E). Let A,B be increasing events in {0, 1}E . For
Pp[B] = 0, the result is trivial, so we assume P[B] > 0, and it suffices to prove

Pp[A|B] ≥ P[A]. (4)

(a) Let e ∈ E. We first prove the above for the case when B = {we = 1}. To do
this, first show that

1

p
Pp[A,ωe = 1] ≥ 1

1− p
Pp[A,ωe = 0], (5)

and then use this to show the case when B = {we = 1}.
(b) Let C be some event depending on edges in E \ {e}. Assume that we have

Pp[A|C,ωe = 1] ≥ Pp[A|C]. (6)

Show that Pp[ωe = 1|A,C] ≥ Pp[ωe = 1].
(c) Recall the coupling from the lectures. Let E = {e1, . . . , en}, and let Uei be iid
uniform random variables on [0, 1] for i = 1, . . . , n. Then ω ∈ {0, 1}E is defined by
ωei = 1 iff Uei ≥ 1− p. Define another random variable η ∈ {0, 1}E by

ηei = 1 iff Uei ≥ qi, (7)
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where

q1 = P∗[we1 = 1 | A],

qi = P∗[wei = 1 | A,ωe[i−1]
= ηe[i−1]

],
(8)

where ηe[i−1]
= (η1, . . . , ηi−1). For clarity, we define

P∗[wei = 1 | A,ωe[i−1]
= ηe[i−1]

] :=
∑

x∈{0,1}i−1

P∗[ηe[i−1]
= x]P∗[wei = 1 | A,ωe[i−1]

= x].

(9)
It is straightforward (if tedious) to check that P∗[η ∈ B] = P∗[ω ∈ B | ω ∈ A] (you
don’t need to do this). Using part (b), show that qi ≥ p for all 1 ≤ i ≤ n, and
conclude the FKG inequality.

3. In this question, we use another inequality, the BK-Reiner inequality, to give another
proof of part 1 of the sharpness theorem. Let A,B ∈ {0, 1}E(Zd) be events. We define
an event A◦B, which heuristically means that A and B both happen, but on disjoint
sets of edges. For example, if A = {x ↔ y} and B = {z ↔ w}, then A ◦ B is the
event that there are two disjoint paths, one connecting x and y and one connecting
z and w. Let us define A ◦B precisely.

For ω ∈ A, we say S ⊂ E(Zd) is a witness of A in ω if any other configuration
ω′ ∈ {0, 1}E(Zd) coinciding with ω on S is also in A. Then A ◦ B is the event that
there exist witnesses I = I(ω) of A and J = J(w) of B which are disjoint.

The BK-Reiner inequality states: let A,B be cylinder events. Then

Pp[A ◦B] ≤ Pp[A]Pp[B]. (10)

We assume this holds for all cylinder events, as well as events {x ↔ y} on Zd.

In part 1 of the proof of sharpness (the part for p < p̃c), we crucially used inde-
pendence. Rewrite the proof such that it does not use independence, but uses the
BK-Reiner inequality instead.
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