Percolation exercises 4

1. In this problem we'll give another proof of the Margulis-Russo formula: for all A increasing, $A \subset\{0,1\}^{E}, E$ finite,

$$
\begin{equation*}
\frac{d}{d p} \mathbb{P}_{p}[A]=\sum_{e \in E} \mathbb{P}_{p}[e \text { pivotal for } A] \tag{1}
\end{equation*}
$$

(a) Let $G=(V, E)$ be finite, and let $E=\left\{e_{1}, \ldots, e_{n}\right\}$. Let $\underline{p}=\left(p_{1}, \ldots, p_{n}\right) \in[0,1]^{n}$, and let $\omega^{\underline{p}} \in\{0,1\}^{E}$, satisfy $\left(\omega^{\underline{p}}\right)_{e_{i}}=1$ with probability p_{i}. Define such a random variable using the coupling measure \mathbb{P}^{*}, and show that for all $i=1, \ldots, n$,

$$
\begin{equation*}
\frac{d}{d p_{i}} \mathbb{P}^{*}\left[\omega^{\underline{p}} \in A\right]=\mathbb{P}^{*}\left[e_{i} \text { pivotal for } A \text { in } \omega^{\underline{p}}\right] \tag{2}
\end{equation*}
$$

(b) Conclude the Margulis-Russo formula.
2. In the lectures in week 4 , we will prove the FKG inequality: for all A, B increasing events, we have

$$
\begin{equation*}
\mathbb{P}_{p}[A \cap B] \geq \mathbb{P}[A] \mathbb{P}[B] \tag{3}
\end{equation*}
$$

Here we give an alternative proof for when A, B are dependent on finitely many edges. We work on a finite graph $G=(V, E)$. Let A, B be increasing events in $\{0,1\}^{E}$. For $\mathbb{P}_{p}[B]=0$, the result is trivial, so we assume $\mathbb{P}[B]>0$, and it suffices to prove

$$
\begin{equation*}
\mathbb{P}_{p}[A \mid B] \geq \mathbb{P}[A] \tag{4}
\end{equation*}
$$

(a) Let $e \in E$. We first prove the above for the case when $B=\left\{w_{e}=1\right\}$. To do this, first show that

$$
\begin{equation*}
\frac{1}{p} \mathbb{P}_{p}\left[A, \omega_{e}=1\right] \geq \frac{1}{1-p} \mathbb{P}_{p}\left[A, \omega_{e}=0\right] \tag{5}
\end{equation*}
$$

and then use this to show the case when $B=\left\{w_{e}=1\right\}$.
(b) Let C be some event depending on edges in $E \backslash\{e\}$. Assume that we have

$$
\begin{equation*}
\mathbb{P}_{p}\left[A \mid C, \omega_{e}=1\right] \geq \mathbb{P}_{p}[A \mid C] \tag{6}
\end{equation*}
$$

Show that $\mathbb{P}_{p}\left[\omega_{e}=1 \mid A, C\right] \geq \mathbb{P}_{p}\left[\omega_{e}=1\right]$.
(c) Recall the coupling from the lectures. Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$, and let $U_{e_{i}}$ be iid uniform random variables on $[0,1]$ for $i=1, \ldots, n$. Then $\omega \in\{0,1\}^{E}$ is defined by $\omega_{e_{i}}=1$ iff $U_{e_{i}} \geq 1-p$. Define another random variable $\eta \in\{0,1\}^{E}$ by

$$
\begin{equation*}
\eta_{e_{i}}=1 \text { iff } U_{e_{i}} \geq q_{i} \tag{7}
\end{equation*}
$$

where

$$
\left.\left.\begin{array}{rl}
q_{1} & =\mathbb{P}^{*}\left[w_{e_{1}}=1 \mid A\right], \tag{8}\\
q_{i} & =\mathbb{P}^{*}\left[w_{e_{i}}\right.
\end{array}=1 \right\rvert\, A, \omega_{e_{[i-1]}}=\eta_{e_{[i-1]}}\right],
$$

where $\eta_{e_{[i-1]}}=\left(\eta_{1}, \ldots, \eta_{i-1}\right)$. For clarity, we define
$\mathbb{P}^{*}\left[w_{e_{i}}=1 \mid A, \omega_{e_{[i-1]}}=\eta_{e_{[i-1]}}\right]:=\sum_{x \in\{0,1\}^{i-1}} \mathbb{P}^{*}\left[\eta_{e_{[i-1]}}=x\right] \mathbb{P}^{*}\left[w_{e_{i}}=1 \mid A, \omega_{e_{[i-1]}}=x\right]$.
It is straightforward (if tedious) to check that $\mathbb{P}^{*}[\eta \in B]=\mathbb{P}^{*}[\omega \in B \mid \omega \in A]$ (you don't need to do this). Using part (b), show that $q_{i} \geq p$ for all $1 \leq i \leq n$, and conclude the FKG inequality.
3. In this question, we use another inequality, the BK-Reiner inequality, to give another proof of part 1 of the sharpness theorem. Let $A, B \in\{0,1\}^{E\left(\mathbb{Z}^{d}\right)}$ be events. We define an event $A \circ B$, which heuristically means that A and B both happen, but on disjoint sets of edges. For example, if $A=\{x \leftrightarrow y\}$ and $B=\{z \leftrightarrow w\}$, then $A \circ B$ is the event that there are two disjoint paths, one connecting x and y and one connecting z and w. Let us define $A \circ B$ precisely.
For $\omega \in A$, we say $S \subset E\left(\mathbb{Z}^{d}\right)$ is a witness of A in ω if any other configuration $\omega^{\prime} \in\{0,1\}^{E\left(\mathbb{Z}^{d}\right)}$ coinciding with ω on S is also in A. Then $A \circ B$ is the event that there exist witnesses $I=I(\omega)$ of A and $J=J(w)$ of B which are disjoint.
The BK-Reiner inequality states: let A, B be cylinder events. Then

$$
\begin{equation*}
\mathbb{P}_{p}[A \circ B] \leq \mathbb{P}_{p}[A] \mathbb{P}_{p}[B] . \tag{10}
\end{equation*}
$$

We assume this holds for all cylinder events, as well as events $\{x \leftrightarrow y\}$ on \mathbb{Z}^{d}.

In part 1 of the proof of sharpness (the part for $p<\tilde{p_{c}}$), we crucially used independence. Rewrite the proof such that it does not use independence, but uses the BK-Reiner inequality instead.

